| 1 | //! Helper trait for generic float types. |
| 2 | |
| 3 | use core::f64; |
| 4 | |
| 5 | use crate::fmt::{Debug, LowerExp}; |
| 6 | use crate::num::FpCategory; |
| 7 | use crate::ops::{self, Add, Div, Mul, Neg}; |
| 8 | |
| 9 | /// Lossy `as` casting between two types. |
| 10 | pub trait CastInto<T: Copy>: Copy { |
| 11 | fn cast(self) -> T; |
| 12 | } |
| 13 | |
| 14 | /// Collection of traits that allow us to be generic over integer size. |
| 15 | pub trait Integer: |
| 16 | Sized |
| 17 | + Clone |
| 18 | + Copy |
| 19 | + Debug |
| 20 | + ops::Shr<u32, Output = Self> |
| 21 | + ops::Shl<u32, Output = Self> |
| 22 | + ops::BitAnd<Output = Self> |
| 23 | + ops::BitOr<Output = Self> |
| 24 | + PartialEq |
| 25 | + CastInto<i16> |
| 26 | { |
| 27 | const ZERO: Self; |
| 28 | const ONE: Self; |
| 29 | } |
| 30 | |
| 31 | macro_rules! int { |
| 32 | ($($ty:ty),+) => { |
| 33 | $( |
| 34 | impl CastInto<i16> for $ty { |
| 35 | fn cast(self) -> i16 { |
| 36 | self as i16 |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | impl Integer for $ty { |
| 41 | const ZERO: Self = 0; |
| 42 | const ONE: Self = 1; |
| 43 | } |
| 44 | )+ |
| 45 | } |
| 46 | } |
| 47 | |
| 48 | int!(u32, u64); |
| 49 | |
| 50 | /// A helper trait to avoid duplicating basically all the conversion code for IEEE floats. |
| 51 | /// |
| 52 | /// See the parent module's doc comment for why this is necessary. |
| 53 | /// |
| 54 | /// Should **never ever** be implemented for other types or be used outside the `dec2flt` module. |
| 55 | #[doc (hidden)] |
| 56 | pub trait RawFloat: |
| 57 | Sized |
| 58 | + Div<Output = Self> |
| 59 | + Neg<Output = Self> |
| 60 | + Mul<Output = Self> |
| 61 | + Add<Output = Self> |
| 62 | + LowerExp |
| 63 | + PartialEq |
| 64 | + PartialOrd |
| 65 | + Default |
| 66 | + Clone |
| 67 | + Copy |
| 68 | + Debug |
| 69 | { |
| 70 | /// The unsigned integer with the same size as the float |
| 71 | type Int: Integer + Into<u64>; |
| 72 | |
| 73 | /* general constants */ |
| 74 | |
| 75 | const INFINITY: Self; |
| 76 | const NEG_INFINITY: Self; |
| 77 | const NAN: Self; |
| 78 | const NEG_NAN: Self; |
| 79 | |
| 80 | /// Bit width of the float |
| 81 | const BITS: u32; |
| 82 | |
| 83 | /// The number of bits in the significand, *including* the hidden bit. |
| 84 | const SIG_TOTAL_BITS: u32; |
| 85 | |
| 86 | const EXP_MASK: Self::Int; |
| 87 | const SIG_MASK: Self::Int; |
| 88 | |
| 89 | /// The number of bits in the significand, *excluding* the hidden bit. |
| 90 | const SIG_BITS: u32 = Self::SIG_TOTAL_BITS - 1; |
| 91 | |
| 92 | /// Number of bits in the exponent. |
| 93 | const EXP_BITS: u32 = Self::BITS - Self::SIG_BITS - 1; |
| 94 | |
| 95 | /// The saturated (maximum bitpattern) value of the exponent, i.e. the infinite |
| 96 | /// representation. |
| 97 | /// |
| 98 | /// This shifted fully right, use `EXP_MASK` for the shifted value. |
| 99 | const EXP_SAT: u32 = (1 << Self::EXP_BITS) - 1; |
| 100 | |
| 101 | /// Signed version of `EXP_SAT` since we convert a lot. |
| 102 | const INFINITE_POWER: i32 = Self::EXP_SAT as i32; |
| 103 | |
| 104 | /// The exponent bias value. This is also the maximum value of the exponent. |
| 105 | const EXP_BIAS: u32 = Self::EXP_SAT >> 1; |
| 106 | |
| 107 | /// Minimum exponent value of normal values. |
| 108 | const EXP_MIN: i32 = -(Self::EXP_BIAS as i32 - 1); |
| 109 | |
| 110 | /// Round-to-even only happens for negative values of q |
| 111 | /// when q ≥ −4 in the 64-bit case and when q ≥ −17 in |
| 112 | /// the 32-bitcase. |
| 113 | /// |
| 114 | /// When q ≥ 0,we have that 5^q ≤ 2m+1. In the 64-bit case,we |
| 115 | /// have 5^q ≤ 2m+1 ≤ 2^54 or q ≤ 23. In the 32-bit case,we have |
| 116 | /// 5^q ≤ 2m+1 ≤ 2^25 or q ≤ 10. |
| 117 | /// |
| 118 | /// When q < 0, we have w ≥ (2m+1)×5^−q. We must have that w < 2^64 |
| 119 | /// so (2m+1)×5^−q < 2^64. We have that 2m+1 > 2^53 (64-bit case) |
| 120 | /// or 2m+1 > 2^24 (32-bit case). Hence,we must have 2^53×5^−q < 2^64 |
| 121 | /// (64-bit) and 2^24×5^−q < 2^64 (32-bit). Hence we have 5^−q < 2^11 |
| 122 | /// or q ≥ −4 (64-bit case) and 5^−q < 2^40 or q ≥ −17 (32-bitcase). |
| 123 | /// |
| 124 | /// Thus we have that we only need to round ties to even when |
| 125 | /// we have that q ∈ [−4,23](in the 64-bit case) or q∈[−17,10] |
| 126 | /// (in the 32-bit case). In both cases,the power of five(5^|q|) |
| 127 | /// fits in a 64-bit word. |
| 128 | const MIN_EXPONENT_ROUND_TO_EVEN: i32; |
| 129 | const MAX_EXPONENT_ROUND_TO_EVEN: i32; |
| 130 | |
| 131 | /* limits related to Fast pathing */ |
| 132 | |
| 133 | /// Largest decimal exponent for a non-infinite value. |
| 134 | /// |
| 135 | /// This is the max exponent in binary converted to the max exponent in decimal. Allows fast |
| 136 | /// pathing anything larger than `10^LARGEST_POWER_OF_TEN`, which will round to infinity. |
| 137 | const LARGEST_POWER_OF_TEN: i32 = { |
| 138 | let largest_pow2 = Self::EXP_BIAS + 1; |
| 139 | pow2_to_pow10(largest_pow2 as i64) as i32 |
| 140 | }; |
| 141 | |
| 142 | /// Smallest decimal exponent for a non-zero value. This allows for fast pathing anything |
| 143 | /// smaller than `10^SMALLEST_POWER_OF_TEN`, which will round to zero. |
| 144 | /// |
| 145 | /// The smallest power of ten is represented by `⌊log10(2^-n / (2^64 - 1))⌋`, where `n` is |
| 146 | /// the smallest power of two. The `2^64 - 1)` denomenator comes from the number of values |
| 147 | /// that are representable by the intermediate storage format. I don't actually know _why_ |
| 148 | /// the storage format is relevant here. |
| 149 | /// |
| 150 | /// The values may be calculated using the formula. Unfortunately we cannot calculate them at |
| 151 | /// compile time since intermediates exceed the range of an `f64`. |
| 152 | const SMALLEST_POWER_OF_TEN: i32; |
| 153 | |
| 154 | /// Maximum exponent for a fast path case, or `⌊(SIG_BITS+1)/log2(5)⌋` |
| 155 | // assuming FLT_EVAL_METHOD = 0 |
| 156 | const MAX_EXPONENT_FAST_PATH: i64 = { |
| 157 | let log2_5 = f64::consts::LOG2_10 - 1.0; |
| 158 | (Self::SIG_TOTAL_BITS as f64 / log2_5) as i64 |
| 159 | }; |
| 160 | |
| 161 | /// Minimum exponent for a fast path case, or `-⌊(SIG_BITS+1)/log2(5)⌋` |
| 162 | const MIN_EXPONENT_FAST_PATH: i64 = -Self::MAX_EXPONENT_FAST_PATH; |
| 163 | |
| 164 | /// Maximum exponent that can be represented for a disguised-fast path case. |
| 165 | /// This is `MAX_EXPONENT_FAST_PATH + ⌊(SIG_BITS+1)/log2(10)⌋` |
| 166 | const MAX_EXPONENT_DISGUISED_FAST_PATH: i64 = |
| 167 | Self::MAX_EXPONENT_FAST_PATH + (Self::SIG_TOTAL_BITS as f64 / f64::consts::LOG2_10) as i64; |
| 168 | |
| 169 | /// Maximum mantissa for the fast-path (`1 << 53` for f64). |
| 170 | const MAX_MANTISSA_FAST_PATH: u64 = 1 << Self::SIG_TOTAL_BITS; |
| 171 | |
| 172 | /// Converts integer into float through an as cast. |
| 173 | /// This is only called in the fast-path algorithm, and therefore |
| 174 | /// will not lose precision, since the value will always have |
| 175 | /// only if the value is <= Self::MAX_MANTISSA_FAST_PATH. |
| 176 | fn from_u64(v: u64) -> Self; |
| 177 | |
| 178 | /// Performs a raw transmutation from an integer. |
| 179 | fn from_u64_bits(v: u64) -> Self; |
| 180 | |
| 181 | /// Gets a small power-of-ten for fast-path multiplication. |
| 182 | fn pow10_fast_path(exponent: usize) -> Self; |
| 183 | |
| 184 | /// Returns the category that this number falls into. |
| 185 | fn classify(self) -> FpCategory; |
| 186 | |
| 187 | /// Transmute to the integer representation |
| 188 | fn to_bits(self) -> Self::Int; |
| 189 | |
| 190 | /// Returns the mantissa, exponent and sign as integers. |
| 191 | /// |
| 192 | /// That is, this returns `(m, p, s)` such that `s * m * 2^p` represents the original float. |
| 193 | /// For 0, the exponent will be `-(EXP_BIAS + SIG_BITS`, which is the |
| 194 | /// minimum subnormal power. |
| 195 | fn integer_decode(self) -> (u64, i16, i8) { |
| 196 | let bits = self.to_bits(); |
| 197 | let sign: i8 = if bits >> (Self::BITS - 1) == Self::Int::ZERO { 1 } else { -1 }; |
| 198 | let mut exponent: i16 = ((bits & Self::EXP_MASK) >> Self::SIG_BITS).cast(); |
| 199 | let mantissa = if exponent == 0 { |
| 200 | (bits & Self::SIG_MASK) << 1 |
| 201 | } else { |
| 202 | (bits & Self::SIG_MASK) | (Self::Int::ONE << Self::SIG_BITS) |
| 203 | }; |
| 204 | // Exponent bias + mantissa shift |
| 205 | exponent -= (Self::EXP_BIAS + Self::SIG_BITS) as i16; |
| 206 | (mantissa.into(), exponent, sign) |
| 207 | } |
| 208 | } |
| 209 | |
| 210 | /// Solve for `b` in `10^b = 2^a` |
| 211 | const fn pow2_to_pow10(a: i64) -> i64 { |
| 212 | let res: f64 = (a as f64) / f64::consts::LOG2_10; |
| 213 | res as i64 |
| 214 | } |
| 215 | |
| 216 | impl RawFloat for f32 { |
| 217 | type Int = u32; |
| 218 | |
| 219 | const INFINITY: Self = f32::INFINITY; |
| 220 | const NEG_INFINITY: Self = f32::NEG_INFINITY; |
| 221 | const NAN: Self = f32::NAN; |
| 222 | const NEG_NAN: Self = -f32::NAN; |
| 223 | |
| 224 | const BITS: u32 = 32; |
| 225 | const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; |
| 226 | const EXP_MASK: Self::Int = Self::EXP_MASK; |
| 227 | const SIG_MASK: Self::Int = Self::MAN_MASK; |
| 228 | |
| 229 | const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -17; |
| 230 | const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 10; |
| 231 | const SMALLEST_POWER_OF_TEN: i32 = -65; |
| 232 | |
| 233 | #[inline ] |
| 234 | fn from_u64(v: u64) -> Self { |
| 235 | debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); |
| 236 | v as _ |
| 237 | } |
| 238 | |
| 239 | #[inline ] |
| 240 | fn from_u64_bits(v: u64) -> Self { |
| 241 | f32::from_bits((v & 0xFFFFFFFF) as u32) |
| 242 | } |
| 243 | |
| 244 | fn pow10_fast_path(exponent: usize) -> Self { |
| 245 | #[allow (clippy::use_self)] |
| 246 | const TABLE: [f32; 16] = |
| 247 | [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 0., 0., 0., 0., 0.]; |
| 248 | TABLE[exponent & 15] |
| 249 | } |
| 250 | |
| 251 | fn to_bits(self) -> Self::Int { |
| 252 | self.to_bits() |
| 253 | } |
| 254 | |
| 255 | fn classify(self) -> FpCategory { |
| 256 | self.classify() |
| 257 | } |
| 258 | } |
| 259 | |
| 260 | impl RawFloat for f64 { |
| 261 | type Int = u64; |
| 262 | |
| 263 | const INFINITY: Self = Self::INFINITY; |
| 264 | const NEG_INFINITY: Self = Self::NEG_INFINITY; |
| 265 | const NAN: Self = Self::NAN; |
| 266 | const NEG_NAN: Self = -Self::NAN; |
| 267 | |
| 268 | const BITS: u32 = 64; |
| 269 | const SIG_TOTAL_BITS: u32 = Self::MANTISSA_DIGITS; |
| 270 | const EXP_MASK: Self::Int = Self::EXP_MASK; |
| 271 | const SIG_MASK: Self::Int = Self::MAN_MASK; |
| 272 | |
| 273 | const MIN_EXPONENT_ROUND_TO_EVEN: i32 = -4; |
| 274 | const MAX_EXPONENT_ROUND_TO_EVEN: i32 = 23; |
| 275 | const SMALLEST_POWER_OF_TEN: i32 = -342; |
| 276 | |
| 277 | #[inline ] |
| 278 | fn from_u64(v: u64) -> Self { |
| 279 | debug_assert!(v <= Self::MAX_MANTISSA_FAST_PATH); |
| 280 | v as _ |
| 281 | } |
| 282 | |
| 283 | #[inline ] |
| 284 | fn from_u64_bits(v: u64) -> Self { |
| 285 | f64::from_bits(v) |
| 286 | } |
| 287 | |
| 288 | fn pow10_fast_path(exponent: usize) -> Self { |
| 289 | const TABLE: [f64; 32] = [ |
| 290 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, |
| 291 | 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 0., 0., 0., 0., 0., 0., 0., 0., 0., |
| 292 | ]; |
| 293 | TABLE[exponent & 31] |
| 294 | } |
| 295 | |
| 296 | fn to_bits(self) -> Self::Int { |
| 297 | self.to_bits() |
| 298 | } |
| 299 | |
| 300 | fn classify(self) -> FpCategory { |
| 301 | self.classify() |
| 302 | } |
| 303 | } |
| 304 | |