1 | use std::{cmp::Ordering, ptr::NonNull}; |
2 | |
3 | use crate::{ |
4 | benchmark::{BenchOptions, DEFAULT_SAMPLE_COUNT}, |
5 | config::SortingAttr, |
6 | counter::KnownCounterKind, |
7 | entry::{AnyBenchEntry, EntryLocation, EntryMeta, GenericBenchEntry, GroupEntry}, |
8 | tree_painter::TreeColumn, |
9 | util::sort::natural_cmp, |
10 | }; |
11 | |
12 | /// `BenchEntry` tree organized by path components. |
13 | pub(crate) enum EntryTree<'a> { |
14 | /// Benchmark group; parent to leaves and other parents. |
15 | Parent { raw_name: &'a str, group: Option<&'a GroupEntry>, children: Vec<Self> }, |
16 | |
17 | /// Benchmark entry leaf. |
18 | Leaf { |
19 | /// The benchmark entry being run. |
20 | entry: AnyBenchEntry<'a>, |
21 | |
22 | /// The names of arguments to run. |
23 | args: Option<Vec<&'static &'static str>>, |
24 | }, |
25 | } |
26 | |
27 | impl<'a> EntryTree<'a> { |
28 | /// Constructs a tree from an iterator of benchmark entries in the order |
29 | /// they're produced. |
30 | pub fn from_benches<I>(benches: I) -> Vec<Self> |
31 | where |
32 | I: IntoIterator<Item = AnyBenchEntry<'a>>, |
33 | { |
34 | let mut result = Vec::<Self>::new(); |
35 | |
36 | for bench in benches { |
37 | let mut insert_entry = |path_iter| { |
38 | Self::insert_entry(&mut result, bench, path_iter); |
39 | }; |
40 | |
41 | match bench { |
42 | AnyBenchEntry::Bench(bench) => { |
43 | insert_entry(&mut bench.meta.module_path_components()); |
44 | } |
45 | AnyBenchEntry::GenericBench(bench) => { |
46 | insert_entry(&mut bench.path_components()); |
47 | } |
48 | } |
49 | } |
50 | |
51 | result |
52 | } |
53 | |
54 | /// Returns the maximum span for a name in `tree`. |
55 | /// |
56 | /// This is the number of terminal columns used for labeling benchmark names |
57 | /// prior to emitting stats columns. |
58 | pub fn max_name_span(tree: &[Self], depth: usize) -> usize { |
59 | // The number of terminal columns used per-depth for box drawing |
60 | // characters. For example, "│ ╰─ " is 6 for depth 2. |
61 | const DEPTH_COLS: usize = 3; |
62 | |
63 | tree.iter() |
64 | .map(|node| { |
65 | let node_name_span = { |
66 | let prefix_len = depth * DEPTH_COLS; |
67 | let name_len = node.display_name().chars().count(); |
68 | prefix_len + name_len |
69 | }; |
70 | |
71 | // The maximum span of any descendent. |
72 | let children_max_span = Self::max_name_span(node.children(), depth + 1); |
73 | |
74 | // The maximum span of any runtime argument. |
75 | let args_max_span = node |
76 | .arg_names() |
77 | .unwrap_or_default() |
78 | .iter() |
79 | .map(|arg| { |
80 | let prefix_len = (depth + 1) * DEPTH_COLS; |
81 | let name_len = arg.chars().count(); |
82 | prefix_len + name_len |
83 | }) |
84 | .max() |
85 | .unwrap_or_default(); |
86 | |
87 | node_name_span.max(children_max_span).max(args_max_span) |
88 | }) |
89 | .max() |
90 | .unwrap_or_default() |
91 | } |
92 | |
93 | /// Returns the likely span for a given column. |
94 | pub fn common_column_width(tree: &[Self], column: TreeColumn) -> usize { |
95 | // Time and throughput info. |
96 | if column.is_time_stat() { |
97 | return KnownCounterKind::MAX_COMMON_COLUMN_WIDTH; |
98 | } |
99 | |
100 | tree.iter() |
101 | .map(|tree| { |
102 | let Some(options) = tree.bench_options() else { |
103 | return 0; |
104 | }; |
105 | |
106 | let width = match column { |
107 | TreeColumn::Samples => { |
108 | let sample_count = options.sample_count.unwrap_or(DEFAULT_SAMPLE_COUNT); |
109 | 1 + sample_count.checked_ilog10().unwrap_or_default() as usize |
110 | } |
111 | |
112 | // Iters is the last column, so it does not need pad width. |
113 | // All other columns are time stats handled previously. |
114 | _ => 0, |
115 | }; |
116 | |
117 | width.max(Self::common_column_width(tree.children(), column)) |
118 | }) |
119 | .max() |
120 | .unwrap_or_default() |
121 | } |
122 | |
123 | /// Inserts the benchmark group into a tree. |
124 | /// |
125 | /// Groups are inserted after tree construction because it prevents having |
126 | /// parents without terminating leaves. Groups that do not match an existing |
127 | /// parent are not inserted. |
128 | pub fn insert_group(mut tree: &mut [Self], group: &'a GroupEntry) { |
129 | // Update `tree` to be the innermost set of subtrees whose parents match |
130 | // `group.module_path`. |
131 | 'component: for component in group.meta.module_path_components() { |
132 | for subtree in tree { |
133 | match subtree { |
134 | EntryTree::Parent { raw_name, children, .. } if component == *raw_name => { |
135 | tree = children; |
136 | continue 'component; |
137 | } |
138 | _ => {} |
139 | } |
140 | } |
141 | |
142 | // No matches for this component in any subtrees. |
143 | return; |
144 | } |
145 | |
146 | // Find the matching tree to insert the group into. |
147 | for subtree in tree { |
148 | match subtree { |
149 | EntryTree::Parent { raw_name, group: slot, .. } |
150 | if group.meta.raw_name == *raw_name => |
151 | { |
152 | *slot = Some(group); |
153 | return; |
154 | } |
155 | _ => {} |
156 | } |
157 | } |
158 | } |
159 | |
160 | /// Removes entries from the tree whose paths do not match the filter. |
161 | pub fn retain(tree: &mut Vec<Self>, mut filter: impl FnMut(&str) -> bool) { |
162 | fn retain( |
163 | tree: &mut Vec<EntryTree>, |
164 | parent_path: &str, |
165 | filter: &mut impl FnMut(&str) -> bool, |
166 | ) { |
167 | tree.retain_mut(|subtree| { |
168 | let subtree_path: String; |
169 | let subtree_path: &str = if parent_path.is_empty() { |
170 | subtree.display_name() |
171 | } else { |
172 | subtree_path = format!(" {parent_path}:: {}" , subtree.display_name()); |
173 | &subtree_path |
174 | }; |
175 | |
176 | match subtree { |
177 | EntryTree::Parent { children, .. } => { |
178 | retain(children, subtree_path, filter); |
179 | |
180 | // If no children exist, filter out this parent. |
181 | !children.is_empty() |
182 | } |
183 | |
184 | EntryTree::Leaf { args: None, .. } => filter(subtree_path), |
185 | |
186 | EntryTree::Leaf { args: Some(args), .. } => { |
187 | args.retain(|arg| filter(&format!(" {subtree_path}:: {arg}" ))); |
188 | |
189 | // If no arguments exist, filter out this leaf. |
190 | !args.is_empty() |
191 | } |
192 | } |
193 | }); |
194 | } |
195 | retain(tree, "" , &mut filter); |
196 | } |
197 | |
198 | /// Sorts the tree by the given ordering. |
199 | pub fn sort_by_attr(tree: &mut [Self], attr: SortingAttr, reverse: bool) { |
200 | let apply_reverse = |
201 | |ordering: Ordering| if reverse { ordering.reverse() } else { ordering }; |
202 | |
203 | tree.sort_unstable_by(|a, b| apply_reverse(a.cmp_by_attr(b, attr))); |
204 | |
205 | tree.iter_mut().for_each(|tree| { |
206 | match tree { |
207 | // Sort benchmark arguments. |
208 | EntryTree::Leaf { args, .. } => { |
209 | if let Some(args) = args { |
210 | args.sort_by(|&a, &b| apply_reverse(attr.cmp_bench_arg_names(a, b))); |
211 | } |
212 | } |
213 | |
214 | // Sort children. |
215 | EntryTree::Parent { children, .. } => { |
216 | Self::sort_by_attr(children, attr, reverse); |
217 | } |
218 | } |
219 | }); |
220 | } |
221 | |
222 | fn cmp_by_attr(&self, other: &Self, attr: SortingAttr) -> Ordering { |
223 | // We take advantage of the fact that entries have stable addresses, |
224 | // unlike `EntryTree`. |
225 | let entry_addr_ordering = match (self.entry_addr(), other.entry_addr()) { |
226 | (Some(a), Some(b)) => Some(a.cmp(&b)), |
227 | _ => None, |
228 | }; |
229 | |
230 | // If entries have the same address, then all attributes will be equal. |
231 | if matches!(entry_addr_ordering, Some(Ordering::Equal)) { |
232 | return Ordering::Equal; |
233 | } |
234 | |
235 | for attr in attr.with_tie_breakers() { |
236 | let ordering = match attr { |
237 | SortingAttr::Kind => self.kind().cmp(&other.kind()), |
238 | SortingAttr::Name => self.cmp_display_name(other), |
239 | SortingAttr::Location => { |
240 | let location_ordering = self.location().cmp(&other.location()); |
241 | |
242 | // Use the entry's address to break location ties. |
243 | // |
244 | // This makes generic benchmarks use the same order as their |
245 | // types and constants. |
246 | if location_ordering.is_eq() { |
247 | entry_addr_ordering.unwrap_or(Ordering::Equal) |
248 | } else { |
249 | location_ordering |
250 | } |
251 | } |
252 | }; |
253 | |
254 | if ordering.is_ne() { |
255 | return ordering; |
256 | } |
257 | } |
258 | |
259 | Ordering::Equal |
260 | } |
261 | |
262 | /// Helper for constructing a tree. |
263 | /// |
264 | /// This uses recursion because the iterative approach runs into limitations |
265 | /// with mutable borrows. |
266 | fn insert_entry( |
267 | tree: &mut Vec<Self>, |
268 | entry: AnyBenchEntry<'a>, |
269 | rem_modules: &mut dyn Iterator<Item = &'a str>, |
270 | ) { |
271 | let Some(current_module) = rem_modules.next() else { |
272 | tree.push(Self::Leaf { |
273 | entry, |
274 | args: entry.arg_names().map(|args| args.iter().collect()), |
275 | }); |
276 | return; |
277 | }; |
278 | |
279 | let Some(children) = Self::get_children(tree, current_module) else { |
280 | tree.push(Self::from_path(entry, current_module, rem_modules)); |
281 | return; |
282 | }; |
283 | |
284 | Self::insert_entry(children, entry, rem_modules); |
285 | } |
286 | |
287 | /// Constructs a sequence of branches from a module path. |
288 | fn from_path( |
289 | entry: AnyBenchEntry<'a>, |
290 | current_module: &'a str, |
291 | rem_modules: &mut dyn Iterator<Item = &'a str>, |
292 | ) -> Self { |
293 | let child = if let Some(next_module) = rem_modules.next() { |
294 | Self::from_path(entry, next_module, rem_modules) |
295 | } else { |
296 | Self::Leaf { entry, args: entry.arg_names().map(|args| args.iter().collect()) } |
297 | }; |
298 | Self::Parent { raw_name: current_module, group: None, children: vec![child] } |
299 | } |
300 | |
301 | /// Finds the `Parent.children` for the corresponding module in `tree`. |
302 | fn get_children<'t>(tree: &'t mut [Self], module: &str) -> Option<&'t mut Vec<Self>> { |
303 | tree.iter_mut().find_map(|tree| match tree { |
304 | Self::Parent { raw_name, children, group: _ } if *raw_name == module => Some(children), |
305 | _ => None, |
306 | }) |
307 | } |
308 | |
309 | /// Returns an integer denoting the enum variant. |
310 | /// |
311 | /// This is used instead of `std::mem::Discriminant` because it does not |
312 | /// implement `Ord`. |
313 | pub fn kind(&self) -> i32 { |
314 | // Leaves should appear before parents. |
315 | match self { |
316 | Self::Leaf { .. } => 0, |
317 | Self::Parent { .. } => 1, |
318 | } |
319 | } |
320 | |
321 | /// Returns a pointer to use as the identity of the entry. |
322 | pub fn entry_addr(&self) -> Option<NonNull<()>> { |
323 | match self { |
324 | Self::Leaf { entry, .. } => Some(entry.entry_addr()), |
325 | Self::Parent { group, .. } => { |
326 | group.map(|entry: &GroupEntry| NonNull::from(entry).cast()) |
327 | } |
328 | } |
329 | } |
330 | |
331 | pub fn meta(&self) -> Option<&'a EntryMeta> { |
332 | match self { |
333 | Self::Parent { group, .. } => Some(&(*group)?.meta), |
334 | Self::Leaf { entry, .. } => Some(entry.meta()), |
335 | } |
336 | } |
337 | |
338 | pub fn bench_options(&self) -> Option<&'a BenchOptions> { |
339 | self.meta()?.bench_options() |
340 | } |
341 | |
342 | pub fn raw_name(&self) -> &'a str { |
343 | match self { |
344 | Self::Parent { group: Some(group), .. } => group.meta.raw_name, |
345 | Self::Parent { raw_name, .. } => raw_name, |
346 | Self::Leaf { entry, .. } => entry.raw_name(), |
347 | } |
348 | } |
349 | |
350 | pub fn display_name(&self) -> &'a str { |
351 | if let Self::Leaf { entry, .. } = self { |
352 | entry.display_name() |
353 | } else if let Some(common) = self.meta() { |
354 | common.display_name |
355 | } else { |
356 | let raw_name = self.raw_name(); |
357 | raw_name.strip_prefix("r#" ).unwrap_or(raw_name) |
358 | } |
359 | } |
360 | |
361 | /// Returns the location of this entry, group, or the children's earliest |
362 | /// location. |
363 | fn location(&self) -> Option<&'a EntryLocation> { |
364 | if let Some(common) = self.meta() { |
365 | Some(&common.location) |
366 | } else { |
367 | self.children().iter().flat_map(Self::location).min() |
368 | } |
369 | } |
370 | |
371 | /// Compares display names naturally, taking into account integers. |
372 | /// |
373 | /// There is special consideration for the `PartialOrd` implementation of |
374 | /// constants, so that `EntryConst` can sort integers and floats by value |
375 | /// instead of lexicographically. |
376 | fn cmp_display_name(&self, other: &Self) -> Ordering { |
377 | match (self, other) { |
378 | ( |
379 | Self::Leaf { |
380 | entry: |
381 | AnyBenchEntry::GenericBench(GenericBenchEntry { |
382 | const_value: Some(this), .. |
383 | }), |
384 | .. |
385 | }, |
386 | Self::Leaf { |
387 | entry: |
388 | AnyBenchEntry::GenericBench(GenericBenchEntry { |
389 | const_value: Some(other), .. |
390 | }), |
391 | .. |
392 | }, |
393 | ) => this.cmp_name(other), |
394 | |
395 | _ => natural_cmp(self.display_name(), other.display_name()), |
396 | } |
397 | } |
398 | |
399 | fn children(&self) -> &[Self] { |
400 | match self { |
401 | Self::Leaf { .. } => &[], |
402 | Self::Parent { children, .. } => children, |
403 | } |
404 | } |
405 | |
406 | fn arg_names(&self) -> Option<&[&'static &'static str]> { |
407 | match self { |
408 | Self::Leaf { args, .. } => args.as_deref(), |
409 | Self::Parent { .. } => None, |
410 | } |
411 | } |
412 | } |
413 | |