| 1 | //! Inter-Integrated-Circuit (I2C) |
| 2 | #![macro_use ] |
| 3 | |
| 4 | #[cfg_attr (i2c_v1, path = "v1.rs" )] |
| 5 | #[cfg_attr (any(i2c_v2, i2c_v3), path = "v2.rs" )] |
| 6 | mod _version; |
| 7 | |
| 8 | use core::future::Future; |
| 9 | use core::iter; |
| 10 | use core::marker::PhantomData; |
| 11 | |
| 12 | use embassy_hal_internal::{Peripheral, PeripheralRef}; |
| 13 | use embassy_sync::waitqueue::AtomicWaker; |
| 14 | #[cfg (feature = "time" )] |
| 15 | use embassy_time::{Duration, Instant}; |
| 16 | |
| 17 | use crate::dma::ChannelAndRequest; |
| 18 | #[cfg (gpio_v2)] |
| 19 | use crate::gpio::Pull; |
| 20 | use crate::gpio::{AfType, AnyPin, OutputType, SealedPin as _, Speed}; |
| 21 | use crate::interrupt::typelevel::Interrupt; |
| 22 | use crate::mode::{Async, Blocking, Mode}; |
| 23 | use crate::rcc::{RccInfo, SealedRccPeripheral}; |
| 24 | use crate::time::Hertz; |
| 25 | use crate::{interrupt, peripherals}; |
| 26 | |
| 27 | /// I2C error. |
| 28 | #[derive (Debug, PartialEq, Eq, Copy, Clone)] |
| 29 | #[cfg_attr (feature = "defmt" , derive(defmt::Format))] |
| 30 | pub enum Error { |
| 31 | /// Bus error |
| 32 | Bus, |
| 33 | /// Arbitration lost |
| 34 | Arbitration, |
| 35 | /// ACK not received (either to the address or to a data byte) |
| 36 | Nack, |
| 37 | /// Timeout |
| 38 | Timeout, |
| 39 | /// CRC error |
| 40 | Crc, |
| 41 | /// Overrun error |
| 42 | Overrun, |
| 43 | /// Zero-length transfers are not allowed. |
| 44 | ZeroLengthTransfer, |
| 45 | } |
| 46 | |
| 47 | /// I2C config |
| 48 | #[non_exhaustive ] |
| 49 | #[derive (Copy, Clone)] |
| 50 | pub struct Config { |
| 51 | /// Enable internal pullup on SDA. |
| 52 | /// |
| 53 | /// Using external pullup resistors is recommended for I2C. If you do |
| 54 | /// have external pullups you should not enable this. |
| 55 | #[cfg (gpio_v2)] |
| 56 | pub sda_pullup: bool, |
| 57 | /// Enable internal pullup on SCL. |
| 58 | /// |
| 59 | /// Using external pullup resistors is recommended for I2C. If you do |
| 60 | /// have external pullups you should not enable this. |
| 61 | #[cfg (gpio_v2)] |
| 62 | pub scl_pullup: bool, |
| 63 | /// Timeout. |
| 64 | #[cfg (feature = "time" )] |
| 65 | pub timeout: embassy_time::Duration, |
| 66 | } |
| 67 | |
| 68 | impl Default for Config { |
| 69 | fn default() -> Self { |
| 70 | Self { |
| 71 | #[cfg (gpio_v2)] |
| 72 | sda_pullup: false, |
| 73 | #[cfg (gpio_v2)] |
| 74 | scl_pullup: false, |
| 75 | #[cfg (feature = "time" )] |
| 76 | timeout: embassy_time::Duration::from_millis(1000), |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | impl Config { |
| 82 | fn scl_af(&self) -> AfType { |
| 83 | #[cfg (gpio_v1)] |
| 84 | return AfType::output(OutputType::OpenDrain, Speed::Medium); |
| 85 | #[cfg (gpio_v2)] |
| 86 | return AfType::output_pull( |
| 87 | OutputType::OpenDrain, |
| 88 | Speed::Medium, |
| 89 | match self.scl_pullup { |
| 90 | true => Pull::Up, |
| 91 | false => Pull::None, |
| 92 | }, |
| 93 | ); |
| 94 | } |
| 95 | |
| 96 | fn sda_af(&self) -> AfType { |
| 97 | #[cfg (gpio_v1)] |
| 98 | return AfType::output(OutputType::OpenDrain, Speed::Medium); |
| 99 | #[cfg (gpio_v2)] |
| 100 | return AfType::output_pull( |
| 101 | OutputType::OpenDrain, |
| 102 | Speed::Medium, |
| 103 | match self.sda_pullup { |
| 104 | true => Pull::Up, |
| 105 | false => Pull::None, |
| 106 | }, |
| 107 | ); |
| 108 | } |
| 109 | } |
| 110 | |
| 111 | /// I2C driver. |
| 112 | pub struct I2c<'d, M: Mode> { |
| 113 | info: &'static Info, |
| 114 | state: &'static State, |
| 115 | kernel_clock: Hertz, |
| 116 | scl: Option<PeripheralRef<'d, AnyPin>>, |
| 117 | sda: Option<PeripheralRef<'d, AnyPin>>, |
| 118 | tx_dma: Option<ChannelAndRequest<'d>>, |
| 119 | rx_dma: Option<ChannelAndRequest<'d>>, |
| 120 | #[cfg (feature = "time" )] |
| 121 | timeout: Duration, |
| 122 | _phantom: PhantomData<M>, |
| 123 | } |
| 124 | |
| 125 | impl<'d> I2c<'d, Async> { |
| 126 | /// Create a new I2C driver. |
| 127 | pub fn new<T: Instance>( |
| 128 | peri: impl Peripheral<P = T> + 'd, |
| 129 | scl: impl Peripheral<P = impl SclPin<T>> + 'd, |
| 130 | sda: impl Peripheral<P = impl SdaPin<T>> + 'd, |
| 131 | _irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>> |
| 132 | + interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>> |
| 133 | + 'd, |
| 134 | tx_dma: impl Peripheral<P = impl TxDma<T>> + 'd, |
| 135 | rx_dma: impl Peripheral<P = impl RxDma<T>> + 'd, |
| 136 | freq: Hertz, |
| 137 | config: Config, |
| 138 | ) -> Self { |
| 139 | Self::new_inner( |
| 140 | peri, |
| 141 | new_pin!(scl, config.scl_af()), |
| 142 | new_pin!(sda, config.sda_af()), |
| 143 | new_dma!(tx_dma), |
| 144 | new_dma!(rx_dma), |
| 145 | freq, |
| 146 | config, |
| 147 | ) |
| 148 | } |
| 149 | } |
| 150 | |
| 151 | impl<'d> I2c<'d, Blocking> { |
| 152 | /// Create a new blocking I2C driver. |
| 153 | pub fn new_blocking<T: Instance>( |
| 154 | peri: impl Peripheral<P = T> + 'd, |
| 155 | scl: impl Peripheral<P = impl SclPin<T>> + 'd, |
| 156 | sda: impl Peripheral<P = impl SdaPin<T>> + 'd, |
| 157 | freq: Hertz, |
| 158 | config: Config, |
| 159 | ) -> Self { |
| 160 | Self::new_inner( |
| 161 | peri, |
| 162 | scl:new_pin!(scl, config.scl_af()), |
| 163 | sda:new_pin!(sda, config.sda_af()), |
| 164 | tx_dma:None, |
| 165 | rx_dma:None, |
| 166 | freq, |
| 167 | config, |
| 168 | ) |
| 169 | } |
| 170 | } |
| 171 | |
| 172 | impl<'d, M: Mode> I2c<'d, M> { |
| 173 | /// Create a new I2C driver. |
| 174 | fn new_inner<T: Instance>( |
| 175 | _peri: impl Peripheral<P = T> + 'd, |
| 176 | scl: Option<PeripheralRef<'d, AnyPin>>, |
| 177 | sda: Option<PeripheralRef<'d, AnyPin>>, |
| 178 | tx_dma: Option<ChannelAndRequest<'d>>, |
| 179 | rx_dma: Option<ChannelAndRequest<'d>>, |
| 180 | freq: Hertz, |
| 181 | config: Config, |
| 182 | ) -> Self { |
| 183 | unsafe { T::EventInterrupt::enable() }; |
| 184 | unsafe { T::ErrorInterrupt::enable() }; |
| 185 | |
| 186 | let mut this = Self { |
| 187 | info: T::info(), |
| 188 | state: T::state(), |
| 189 | kernel_clock: T::frequency(), |
| 190 | scl, |
| 191 | sda, |
| 192 | tx_dma, |
| 193 | rx_dma, |
| 194 | #[cfg (feature = "time" )] |
| 195 | timeout: config.timeout, |
| 196 | _phantom: PhantomData, |
| 197 | }; |
| 198 | this.enable_and_init(freq, config); |
| 199 | this |
| 200 | } |
| 201 | |
| 202 | fn enable_and_init(&mut self, freq: Hertz, config: Config) { |
| 203 | self.info.rcc.enable_and_reset(); |
| 204 | self.init(freq, config); |
| 205 | } |
| 206 | |
| 207 | fn timeout(&self) -> Timeout { |
| 208 | Timeout { |
| 209 | #[cfg (feature = "time" )] |
| 210 | deadline: Instant::now() + self.timeout, |
| 211 | } |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | impl<'d, M: Mode> Drop for I2c<'d, M> { |
| 216 | fn drop(&mut self) { |
| 217 | self.scl.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
| 218 | self.sda.as_ref().map(|x: &PeripheralRef<'_, AnyPin>| x.set_as_disconnected()); |
| 219 | |
| 220 | self.info.rcc.disable() |
| 221 | } |
| 222 | } |
| 223 | |
| 224 | #[derive (Copy, Clone)] |
| 225 | struct Timeout { |
| 226 | #[cfg (feature = "time" )] |
| 227 | deadline: Instant, |
| 228 | } |
| 229 | |
| 230 | #[allow (dead_code)] |
| 231 | impl Timeout { |
| 232 | #[inline ] |
| 233 | fn check(self) -> Result<(), Error> { |
| 234 | #[cfg (feature = "time" )] |
| 235 | if Instant::now() > self.deadline { |
| 236 | return Err(Error::Timeout); |
| 237 | } |
| 238 | |
| 239 | Ok(()) |
| 240 | } |
| 241 | |
| 242 | #[inline ] |
| 243 | fn with<R>(self, fut: impl Future<Output = Result<R, Error>>) -> impl Future<Output = Result<R, Error>> { |
| 244 | #[cfg (feature = "time" )] |
| 245 | { |
| 246 | use futures_util::FutureExt; |
| 247 | |
| 248 | embassy_futures::select::select(embassy_time::Timer::at(self.deadline), fut).map(|r| match r { |
| 249 | embassy_futures::select::Either::First(_) => Err(Error::Timeout), |
| 250 | embassy_futures::select::Either::Second(r) => r, |
| 251 | }) |
| 252 | } |
| 253 | |
| 254 | #[cfg (not(feature = "time" ))] |
| 255 | fut |
| 256 | } |
| 257 | } |
| 258 | |
| 259 | struct State { |
| 260 | #[allow (unused)] |
| 261 | waker: AtomicWaker, |
| 262 | } |
| 263 | |
| 264 | impl State { |
| 265 | const fn new() -> Self { |
| 266 | Self { |
| 267 | waker: AtomicWaker::new(), |
| 268 | } |
| 269 | } |
| 270 | } |
| 271 | |
| 272 | struct Info { |
| 273 | regs: crate::pac::i2c::I2c, |
| 274 | rcc: RccInfo, |
| 275 | } |
| 276 | |
| 277 | peri_trait!( |
| 278 | irqs: [EventInterrupt, ErrorInterrupt], |
| 279 | ); |
| 280 | |
| 281 | pin_trait!(SclPin, Instance); |
| 282 | pin_trait!(SdaPin, Instance); |
| 283 | dma_trait!(RxDma, Instance); |
| 284 | dma_trait!(TxDma, Instance); |
| 285 | |
| 286 | /// Event interrupt handler. |
| 287 | pub struct EventInterruptHandler<T: Instance> { |
| 288 | _phantom: PhantomData<T>, |
| 289 | } |
| 290 | |
| 291 | impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> { |
| 292 | unsafe fn on_interrupt() { |
| 293 | _version::on_interrupt::<T>() |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | /// Error interrupt handler. |
| 298 | pub struct ErrorInterruptHandler<T: Instance> { |
| 299 | _phantom: PhantomData<T>, |
| 300 | } |
| 301 | |
| 302 | impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> { |
| 303 | unsafe fn on_interrupt() { |
| 304 | _version::on_interrupt::<T>() |
| 305 | } |
| 306 | } |
| 307 | |
| 308 | foreach_peripheral!( |
| 309 | (i2c, $inst:ident) => { |
| 310 | #[allow(private_interfaces)] |
| 311 | impl SealedInstance for peripherals::$inst { |
| 312 | fn info() -> &'static Info { |
| 313 | static INFO: Info = Info{ |
| 314 | regs: crate::pac::$inst, |
| 315 | rcc: crate::peripherals::$inst::RCC_INFO, |
| 316 | }; |
| 317 | &INFO |
| 318 | } |
| 319 | fn state() -> &'static State { |
| 320 | static STATE: State = State::new(); |
| 321 | &STATE |
| 322 | } |
| 323 | } |
| 324 | |
| 325 | impl Instance for peripherals::$inst { |
| 326 | type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV; |
| 327 | type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER; |
| 328 | } |
| 329 | }; |
| 330 | ); |
| 331 | |
| 332 | impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Read for I2c<'d, M> { |
| 333 | type Error = Error; |
| 334 | |
| 335 | fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> { |
| 336 | self.blocking_read(address, read:buffer) |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | impl<'d, M: Mode> embedded_hal_02::blocking::i2c::Write for I2c<'d, M> { |
| 341 | type Error = Error; |
| 342 | |
| 343 | fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> { |
| 344 | self.blocking_write(address, write) |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | impl<'d, M: Mode> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, M> { |
| 349 | type Error = Error; |
| 350 | |
| 351 | fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { |
| 352 | self.blocking_write_read(address, write, read) |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | impl embedded_hal_1::i2c::Error for Error { |
| 357 | fn kind(&self) -> embedded_hal_1::i2c::ErrorKind { |
| 358 | match *self { |
| 359 | Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus, |
| 360 | Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss, |
| 361 | Self::Nack => { |
| 362 | embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown) |
| 363 | } |
| 364 | Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other, |
| 365 | Self::Crc => embedded_hal_1::i2c::ErrorKind::Other, |
| 366 | Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun, |
| 367 | Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other, |
| 368 | } |
| 369 | } |
| 370 | } |
| 371 | |
| 372 | impl<'d, M: Mode> embedded_hal_1::i2c::ErrorType for I2c<'d, M> { |
| 373 | type Error = Error; |
| 374 | } |
| 375 | |
| 376 | impl<'d, M: Mode> embedded_hal_1::i2c::I2c for I2c<'d, M> { |
| 377 | fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> { |
| 378 | self.blocking_read(address, read) |
| 379 | } |
| 380 | |
| 381 | fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> { |
| 382 | self.blocking_write(address, write) |
| 383 | } |
| 384 | |
| 385 | fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { |
| 386 | self.blocking_write_read(address, write, read) |
| 387 | } |
| 388 | |
| 389 | fn transaction( |
| 390 | &mut self, |
| 391 | address: u8, |
| 392 | operations: &mut [embedded_hal_1::i2c::Operation<'_>], |
| 393 | ) -> Result<(), Self::Error> { |
| 394 | self.blocking_transaction(addr:address, operations) |
| 395 | } |
| 396 | } |
| 397 | |
| 398 | impl<'d> embedded_hal_async::i2c::I2c for I2c<'d, Async> { |
| 399 | async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> { |
| 400 | self.read(address, buffer:read).await |
| 401 | } |
| 402 | |
| 403 | async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> { |
| 404 | self.write(address, write).await |
| 405 | } |
| 406 | |
| 407 | async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> { |
| 408 | self.write_read(address, write, read).await |
| 409 | } |
| 410 | |
| 411 | async fn transaction( |
| 412 | &mut self, |
| 413 | address: u8, |
| 414 | operations: &mut [embedded_hal_1::i2c::Operation<'_>], |
| 415 | ) -> Result<(), Self::Error> { |
| 416 | self.transaction(addr:address, operations).await |
| 417 | } |
| 418 | } |
| 419 | |
| 420 | /// Frame type in I2C transaction. |
| 421 | /// |
| 422 | /// This tells each method what kind of framing to use, to generate a (repeated) start condition (ST |
| 423 | /// or SR), and/or a stop condition (SP). For read operations, this also controls whether to send an |
| 424 | /// ACK or NACK after the last byte received. |
| 425 | /// |
| 426 | /// For write operations, the following options are identical because they differ only in the (N)ACK |
| 427 | /// treatment relevant for read operations: |
| 428 | /// |
| 429 | /// - `FirstFrame` and `FirstAndNextFrame` |
| 430 | /// - `NextFrame` and `LastFrameNoStop` |
| 431 | /// |
| 432 | /// Abbreviations used below: |
| 433 | /// |
| 434 | /// - `ST` = start condition |
| 435 | /// - `SR` = repeated start condition |
| 436 | /// - `SP` = stop condition |
| 437 | /// - `ACK`/`NACK` = last byte in read operation |
| 438 | #[derive (Copy, Clone)] |
| 439 | #[allow (dead_code)] |
| 440 | enum FrameOptions { |
| 441 | /// `[ST/SR]+[NACK]+[SP]` First frame (of this type) in transaction and also last frame overall. |
| 442 | FirstAndLastFrame, |
| 443 | /// `[ST/SR]+[NACK]` First frame of this type in transaction, last frame in a read operation but |
| 444 | /// not the last frame overall. |
| 445 | FirstFrame, |
| 446 | /// `[ST/SR]+[ACK]` First frame of this type in transaction, neither last frame overall nor last |
| 447 | /// frame in a read operation. |
| 448 | FirstAndNextFrame, |
| 449 | /// `[ACK]` Middle frame in a read operation (neither first nor last). |
| 450 | NextFrame, |
| 451 | /// `[NACK]+[SP]` Last frame overall in this transaction but not the first frame. |
| 452 | LastFrame, |
| 453 | /// `[NACK]` Last frame in a read operation but not last frame overall in this transaction. |
| 454 | LastFrameNoStop, |
| 455 | } |
| 456 | |
| 457 | #[allow (dead_code)] |
| 458 | impl FrameOptions { |
| 459 | /// Sends start or repeated start condition before transfer. |
| 460 | fn send_start(self) -> bool { |
| 461 | match self { |
| 462 | Self::FirstAndLastFrame | Self::FirstFrame | Self::FirstAndNextFrame => true, |
| 463 | Self::NextFrame | Self::LastFrame | Self::LastFrameNoStop => false, |
| 464 | } |
| 465 | } |
| 466 | |
| 467 | /// Sends stop condition after transfer. |
| 468 | fn send_stop(self) -> bool { |
| 469 | match self { |
| 470 | Self::FirstAndLastFrame | Self::LastFrame => true, |
| 471 | Self::FirstFrame | Self::FirstAndNextFrame | Self::NextFrame | Self::LastFrameNoStop => false, |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | /// Sends NACK after last byte received, indicating end of read operation. |
| 476 | fn send_nack(self) -> bool { |
| 477 | match self { |
| 478 | Self::FirstAndLastFrame | Self::FirstFrame | Self::LastFrame | Self::LastFrameNoStop => true, |
| 479 | Self::FirstAndNextFrame | Self::NextFrame => false, |
| 480 | } |
| 481 | } |
| 482 | } |
| 483 | |
| 484 | /// Iterates over operations in transaction. |
| 485 | /// |
| 486 | /// Returns necessary frame options for each operation to uphold the [transaction contract] and have |
| 487 | /// the right start/stop/(N)ACK conditions on the wire. |
| 488 | /// |
| 489 | /// [transaction contract]: embedded_hal_1::i2c::I2c::transaction |
| 490 | #[allow (dead_code)] |
| 491 | fn operation_frames<'a, 'b: 'a>( |
| 492 | operations: &'a mut [embedded_hal_1::i2c::Operation<'b>], |
| 493 | ) -> Result<impl IntoIterator<Item = (&'a mut embedded_hal_1::i2c::Operation<'b>, FrameOptions)>, Error> { |
| 494 | use embedded_hal_1::i2c::Operation::{Read, Write}; |
| 495 | |
| 496 | // Check empty read buffer before starting transaction. Otherwise, we would risk halting with an |
| 497 | // error in the middle of the transaction. |
| 498 | // |
| 499 | // In principle, we could allow empty read frames within consecutive read operations, as long as |
| 500 | // at least one byte remains in the final (merged) read operation, but that makes the logic more |
| 501 | // complicated and error-prone. |
| 502 | if operations.iter().any(|op| match op { |
| 503 | Read(read) => read.is_empty(), |
| 504 | Write(_) => false, |
| 505 | }) { |
| 506 | return Err(Error::Overrun); |
| 507 | } |
| 508 | |
| 509 | let mut operations = operations.iter_mut().peekable(); |
| 510 | |
| 511 | let mut next_first_frame = true; |
| 512 | |
| 513 | Ok(iter::from_fn(move || { |
| 514 | let Some(op) = operations.next() else { |
| 515 | return None; |
| 516 | }; |
| 517 | |
| 518 | // Is `op` first frame of its type? |
| 519 | let first_frame = next_first_frame; |
| 520 | let next_op = operations.peek(); |
| 521 | |
| 522 | // Get appropriate frame options as combination of the following properties: |
| 523 | // |
| 524 | // - For each first operation of its type, generate a (repeated) start condition. |
| 525 | // - For the last operation overall in the entire transaction, generate a stop condition. |
| 526 | // - For read operations, check the next operation: if it is also a read operation, we merge |
| 527 | // these and send ACK for all bytes in the current operation; send NACK only for the final |
| 528 | // read operation's last byte (before write or end of entire transaction) to indicate last |
| 529 | // byte read and release the bus for transmission of the bus master's next byte (or stop). |
| 530 | // |
| 531 | // We check the third property unconditionally, i.e. even for write opeartions. This is okay |
| 532 | // because the resulting frame options are identical for write operations. |
| 533 | let frame = match (first_frame, next_op) { |
| 534 | (true, None) => FrameOptions::FirstAndLastFrame, |
| 535 | (true, Some(Read(_))) => FrameOptions::FirstAndNextFrame, |
| 536 | (true, Some(Write(_))) => FrameOptions::FirstFrame, |
| 537 | // |
| 538 | (false, None) => FrameOptions::LastFrame, |
| 539 | (false, Some(Read(_))) => FrameOptions::NextFrame, |
| 540 | (false, Some(Write(_))) => FrameOptions::LastFrameNoStop, |
| 541 | }; |
| 542 | |
| 543 | // Pre-calculate if `next_op` is the first operation of its type. We do this here and not at |
| 544 | // the beginning of the loop because we hand out `op` as iterator value and cannot access it |
| 545 | // anymore in the next iteration. |
| 546 | next_first_frame = match (&op, next_op) { |
| 547 | (_, None) => false, |
| 548 | (Read(_), Some(Write(_))) | (Write(_), Some(Read(_))) => true, |
| 549 | (Read(_), Some(Read(_))) | (Write(_), Some(Write(_))) => false, |
| 550 | }; |
| 551 | |
| 552 | Some((op, frame)) |
| 553 | })) |
| 554 | } |
| 555 | |