| 1 | use core::cmp; |
| 2 | use core::future::poll_fn; |
| 3 | use core::task::Poll; |
| 4 | |
| 5 | use embassy_embedded_hal::SetConfig; |
| 6 | use embassy_hal_internal::drop::OnDrop; |
| 7 | use embedded_hal_1::i2c::Operation; |
| 8 | |
| 9 | use super::*; |
| 10 | use crate::pac::i2c; |
| 11 | |
| 12 | pub(crate) unsafe fn on_interrupt<T: Instance>() { |
| 13 | let regs: I2c = T::info().regs; |
| 14 | let isr: Isr = regs.isr().read(); |
| 15 | |
| 16 | if isr.tcr() || isr.tc() { |
| 17 | T::state().waker.wake(); |
| 18 | } |
| 19 | // The flag can only be cleared by writting to nbytes, we won't do that here, so disable |
| 20 | // the interrupt |
| 21 | critical_section::with(|_| { |
| 22 | regs.cr1().modify(|w: &mut Cr1| w.set_tcie(val:false)); |
| 23 | }); |
| 24 | } |
| 25 | |
| 26 | impl<'d, M: Mode> I2c<'d, M> { |
| 27 | pub(crate) fn init(&mut self, freq: Hertz, _config: Config) { |
| 28 | self.info.regs.cr1().modify(|reg| { |
| 29 | reg.set_pe(false); |
| 30 | reg.set_anfoff(false); |
| 31 | }); |
| 32 | |
| 33 | let timings = Timings::new(self.kernel_clock, freq.into()); |
| 34 | |
| 35 | self.info.regs.timingr().write(|reg| { |
| 36 | reg.set_presc(timings.prescale); |
| 37 | reg.set_scll(timings.scll); |
| 38 | reg.set_sclh(timings.sclh); |
| 39 | reg.set_sdadel(timings.sdadel); |
| 40 | reg.set_scldel(timings.scldel); |
| 41 | }); |
| 42 | |
| 43 | self.info.regs.cr1().modify(|reg| { |
| 44 | reg.set_pe(true); |
| 45 | }); |
| 46 | } |
| 47 | |
| 48 | fn master_stop(&mut self) { |
| 49 | self.info.regs.cr2().write(|w| w.set_stop(true)); |
| 50 | } |
| 51 | |
| 52 | fn master_read( |
| 53 | info: &'static Info, |
| 54 | address: u8, |
| 55 | length: usize, |
| 56 | stop: Stop, |
| 57 | reload: bool, |
| 58 | restart: bool, |
| 59 | timeout: Timeout, |
| 60 | ) -> Result<(), Error> { |
| 61 | assert!(length < 256); |
| 62 | |
| 63 | if !restart { |
| 64 | // Wait for any previous address sequence to end |
| 65 | // automatically. This could be up to 50% of a bus |
| 66 | // cycle (ie. up to 0.5/freq) |
| 67 | while info.regs.cr2().read().start() { |
| 68 | timeout.check()?; |
| 69 | } |
| 70 | } |
| 71 | |
| 72 | // Set START and prepare to receive bytes into |
| 73 | // `buffer`. The START bit can be set even if the bus |
| 74 | // is BUSY or I2C is in slave mode. |
| 75 | |
| 76 | let reload = if reload { |
| 77 | i2c::vals::Reload::NOT_COMPLETED |
| 78 | } else { |
| 79 | i2c::vals::Reload::COMPLETED |
| 80 | }; |
| 81 | |
| 82 | info.regs.cr2().modify(|w| { |
| 83 | w.set_sadd((address << 1 | 0) as u16); |
| 84 | w.set_add10(i2c::vals::Addmode::BIT7); |
| 85 | w.set_dir(i2c::vals::Dir::READ); |
| 86 | w.set_nbytes(length as u8); |
| 87 | w.set_start(true); |
| 88 | w.set_autoend(stop.autoend()); |
| 89 | w.set_reload(reload); |
| 90 | }); |
| 91 | |
| 92 | Ok(()) |
| 93 | } |
| 94 | |
| 95 | fn master_write( |
| 96 | info: &'static Info, |
| 97 | address: u8, |
| 98 | length: usize, |
| 99 | stop: Stop, |
| 100 | reload: bool, |
| 101 | timeout: Timeout, |
| 102 | ) -> Result<(), Error> { |
| 103 | assert!(length < 256); |
| 104 | |
| 105 | // Wait for any previous address sequence to end |
| 106 | // automatically. This could be up to 50% of a bus |
| 107 | // cycle (ie. up to 0.5/freq) |
| 108 | while info.regs.cr2().read().start() { |
| 109 | timeout.check()?; |
| 110 | } |
| 111 | |
| 112 | // Wait for the bus to be free |
| 113 | while info.regs.isr().read().busy() { |
| 114 | timeout.check()?; |
| 115 | } |
| 116 | |
| 117 | let reload = if reload { |
| 118 | i2c::vals::Reload::NOT_COMPLETED |
| 119 | } else { |
| 120 | i2c::vals::Reload::COMPLETED |
| 121 | }; |
| 122 | |
| 123 | // Set START and prepare to send `bytes`. The |
| 124 | // START bit can be set even if the bus is BUSY or |
| 125 | // I2C is in slave mode. |
| 126 | info.regs.cr2().modify(|w| { |
| 127 | w.set_sadd((address << 1 | 0) as u16); |
| 128 | w.set_add10(i2c::vals::Addmode::BIT7); |
| 129 | w.set_dir(i2c::vals::Dir::WRITE); |
| 130 | w.set_nbytes(length as u8); |
| 131 | w.set_start(true); |
| 132 | w.set_autoend(stop.autoend()); |
| 133 | w.set_reload(reload); |
| 134 | }); |
| 135 | |
| 136 | Ok(()) |
| 137 | } |
| 138 | |
| 139 | fn master_continue(info: &'static Info, length: usize, reload: bool, timeout: Timeout) -> Result<(), Error> { |
| 140 | assert!(length < 256 && length > 0); |
| 141 | |
| 142 | while !info.regs.isr().read().tcr() { |
| 143 | timeout.check()?; |
| 144 | } |
| 145 | |
| 146 | let reload = if reload { |
| 147 | i2c::vals::Reload::NOT_COMPLETED |
| 148 | } else { |
| 149 | i2c::vals::Reload::COMPLETED |
| 150 | }; |
| 151 | |
| 152 | info.regs.cr2().modify(|w| { |
| 153 | w.set_nbytes(length as u8); |
| 154 | w.set_reload(reload); |
| 155 | }); |
| 156 | |
| 157 | Ok(()) |
| 158 | } |
| 159 | |
| 160 | fn flush_txdr(&self) { |
| 161 | if self.info.regs.isr().read().txis() { |
| 162 | self.info.regs.txdr().write(|w| w.set_txdata(0)); |
| 163 | } |
| 164 | if !self.info.regs.isr().read().txe() { |
| 165 | self.info.regs.isr().modify(|w| w.set_txe(true)) |
| 166 | } |
| 167 | } |
| 168 | |
| 169 | fn wait_txe(&self, timeout: Timeout) -> Result<(), Error> { |
| 170 | loop { |
| 171 | let isr = self.info.regs.isr().read(); |
| 172 | if isr.txe() { |
| 173 | return Ok(()); |
| 174 | } else if isr.berr() { |
| 175 | self.info.regs.icr().write(|reg| reg.set_berrcf(true)); |
| 176 | return Err(Error::Bus); |
| 177 | } else if isr.arlo() { |
| 178 | self.info.regs.icr().write(|reg| reg.set_arlocf(true)); |
| 179 | return Err(Error::Arbitration); |
| 180 | } else if isr.nackf() { |
| 181 | self.info.regs.icr().write(|reg| reg.set_nackcf(true)); |
| 182 | self.flush_txdr(); |
| 183 | return Err(Error::Nack); |
| 184 | } |
| 185 | |
| 186 | timeout.check()?; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | fn wait_rxne(&self, timeout: Timeout) -> Result<(), Error> { |
| 191 | loop { |
| 192 | let isr = self.info.regs.isr().read(); |
| 193 | if isr.rxne() { |
| 194 | return Ok(()); |
| 195 | } else if isr.berr() { |
| 196 | self.info.regs.icr().write(|reg| reg.set_berrcf(true)); |
| 197 | return Err(Error::Bus); |
| 198 | } else if isr.arlo() { |
| 199 | self.info.regs.icr().write(|reg| reg.set_arlocf(true)); |
| 200 | return Err(Error::Arbitration); |
| 201 | } else if isr.nackf() { |
| 202 | self.info.regs.icr().write(|reg| reg.set_nackcf(true)); |
| 203 | self.flush_txdr(); |
| 204 | return Err(Error::Nack); |
| 205 | } |
| 206 | |
| 207 | timeout.check()?; |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | fn wait_tc(&self, timeout: Timeout) -> Result<(), Error> { |
| 212 | loop { |
| 213 | let isr = self.info.regs.isr().read(); |
| 214 | if isr.tc() { |
| 215 | return Ok(()); |
| 216 | } else if isr.berr() { |
| 217 | self.info.regs.icr().write(|reg| reg.set_berrcf(true)); |
| 218 | return Err(Error::Bus); |
| 219 | } else if isr.arlo() { |
| 220 | self.info.regs.icr().write(|reg| reg.set_arlocf(true)); |
| 221 | return Err(Error::Arbitration); |
| 222 | } else if isr.nackf() { |
| 223 | self.info.regs.icr().write(|reg| reg.set_nackcf(true)); |
| 224 | self.flush_txdr(); |
| 225 | return Err(Error::Nack); |
| 226 | } |
| 227 | |
| 228 | timeout.check()?; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | fn read_internal(&mut self, address: u8, read: &mut [u8], restart: bool, timeout: Timeout) -> Result<(), Error> { |
| 233 | let completed_chunks = read.len() / 255; |
| 234 | let total_chunks = if completed_chunks * 255 == read.len() { |
| 235 | completed_chunks |
| 236 | } else { |
| 237 | completed_chunks + 1 |
| 238 | }; |
| 239 | let last_chunk_idx = total_chunks.saturating_sub(1); |
| 240 | |
| 241 | Self::master_read( |
| 242 | self.info, |
| 243 | address, |
| 244 | read.len().min(255), |
| 245 | Stop::Automatic, |
| 246 | last_chunk_idx != 0, |
| 247 | restart, |
| 248 | timeout, |
| 249 | )?; |
| 250 | |
| 251 | for (number, chunk) in read.chunks_mut(255).enumerate() { |
| 252 | if number != 0 { |
| 253 | Self::master_continue(self.info, chunk.len(), number != last_chunk_idx, timeout)?; |
| 254 | } |
| 255 | |
| 256 | for byte in chunk { |
| 257 | // Wait until we have received something |
| 258 | self.wait_rxne(timeout)?; |
| 259 | |
| 260 | *byte = self.info.regs.rxdr().read().rxdata(); |
| 261 | } |
| 262 | } |
| 263 | Ok(()) |
| 264 | } |
| 265 | |
| 266 | fn write_internal(&mut self, address: u8, write: &[u8], send_stop: bool, timeout: Timeout) -> Result<(), Error> { |
| 267 | let completed_chunks = write.len() / 255; |
| 268 | let total_chunks = if completed_chunks * 255 == write.len() { |
| 269 | completed_chunks |
| 270 | } else { |
| 271 | completed_chunks + 1 |
| 272 | }; |
| 273 | let last_chunk_idx = total_chunks.saturating_sub(1); |
| 274 | |
| 275 | // I2C start |
| 276 | // |
| 277 | // ST SAD+W |
| 278 | if let Err(err) = Self::master_write( |
| 279 | self.info, |
| 280 | address, |
| 281 | write.len().min(255), |
| 282 | Stop::Software, |
| 283 | last_chunk_idx != 0, |
| 284 | timeout, |
| 285 | ) { |
| 286 | if send_stop { |
| 287 | self.master_stop(); |
| 288 | } |
| 289 | return Err(err); |
| 290 | } |
| 291 | |
| 292 | for (number, chunk) in write.chunks(255).enumerate() { |
| 293 | if number != 0 { |
| 294 | Self::master_continue(self.info, chunk.len(), number != last_chunk_idx, timeout)?; |
| 295 | } |
| 296 | |
| 297 | for byte in chunk { |
| 298 | // Wait until we are allowed to send data |
| 299 | // (START has been ACKed or last byte when |
| 300 | // through) |
| 301 | if let Err(err) = self.wait_txe(timeout) { |
| 302 | if send_stop { |
| 303 | self.master_stop(); |
| 304 | } |
| 305 | return Err(err); |
| 306 | } |
| 307 | |
| 308 | self.info.regs.txdr().write(|w| w.set_txdata(*byte)); |
| 309 | } |
| 310 | } |
| 311 | // Wait until the write finishes |
| 312 | let result = self.wait_tc(timeout); |
| 313 | if send_stop { |
| 314 | self.master_stop(); |
| 315 | } |
| 316 | result |
| 317 | } |
| 318 | |
| 319 | // ========================= |
| 320 | // Blocking public API |
| 321 | |
| 322 | /// Blocking read. |
| 323 | pub fn blocking_read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Error> { |
| 324 | self.read_internal(address, read, false, self.timeout()) |
| 325 | // Automatic Stop |
| 326 | } |
| 327 | |
| 328 | /// Blocking write. |
| 329 | pub fn blocking_write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> { |
| 330 | self.write_internal(address, write, true, self.timeout()) |
| 331 | } |
| 332 | |
| 333 | /// Blocking write, restart, read. |
| 334 | pub fn blocking_write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> { |
| 335 | let timeout = self.timeout(); |
| 336 | self.write_internal(address, write, false, timeout)?; |
| 337 | self.read_internal(address, read, true, timeout) |
| 338 | // Automatic Stop |
| 339 | } |
| 340 | |
| 341 | /// Blocking transaction with operations. |
| 342 | /// |
| 343 | /// Consecutive operations of same type are merged. See [transaction contract] for details. |
| 344 | /// |
| 345 | /// [transaction contract]: embedded_hal_1::i2c::I2c::transaction |
| 346 | pub fn blocking_transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> { |
| 347 | let _ = addr; |
| 348 | let _ = operations; |
| 349 | todo!() |
| 350 | } |
| 351 | |
| 352 | /// Blocking write multiple buffers. |
| 353 | /// |
| 354 | /// The buffers are concatenated in a single write transaction. |
| 355 | pub fn blocking_write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error> { |
| 356 | if write.is_empty() { |
| 357 | return Err(Error::ZeroLengthTransfer); |
| 358 | } |
| 359 | |
| 360 | let timeout = self.timeout(); |
| 361 | |
| 362 | let first_length = write[0].len(); |
| 363 | let last_slice_index = write.len() - 1; |
| 364 | |
| 365 | if let Err(err) = Self::master_write( |
| 366 | self.info, |
| 367 | address, |
| 368 | first_length.min(255), |
| 369 | Stop::Software, |
| 370 | (first_length > 255) || (last_slice_index != 0), |
| 371 | timeout, |
| 372 | ) { |
| 373 | self.master_stop(); |
| 374 | return Err(err); |
| 375 | } |
| 376 | |
| 377 | for (idx, slice) in write.iter().enumerate() { |
| 378 | let slice_len = slice.len(); |
| 379 | let completed_chunks = slice_len / 255; |
| 380 | let total_chunks = if completed_chunks * 255 == slice_len { |
| 381 | completed_chunks |
| 382 | } else { |
| 383 | completed_chunks + 1 |
| 384 | }; |
| 385 | let last_chunk_idx = total_chunks.saturating_sub(1); |
| 386 | |
| 387 | if idx != 0 { |
| 388 | if let Err(err) = Self::master_continue( |
| 389 | self.info, |
| 390 | slice_len.min(255), |
| 391 | (idx != last_slice_index) || (slice_len > 255), |
| 392 | timeout, |
| 393 | ) { |
| 394 | self.master_stop(); |
| 395 | return Err(err); |
| 396 | } |
| 397 | } |
| 398 | |
| 399 | for (number, chunk) in slice.chunks(255).enumerate() { |
| 400 | if number != 0 { |
| 401 | if let Err(err) = Self::master_continue( |
| 402 | self.info, |
| 403 | chunk.len(), |
| 404 | (number != last_chunk_idx) || (idx != last_slice_index), |
| 405 | timeout, |
| 406 | ) { |
| 407 | self.master_stop(); |
| 408 | return Err(err); |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | for byte in chunk { |
| 413 | // Wait until we are allowed to send data |
| 414 | // (START has been ACKed or last byte when |
| 415 | // through) |
| 416 | if let Err(err) = self.wait_txe(timeout) { |
| 417 | self.master_stop(); |
| 418 | return Err(err); |
| 419 | } |
| 420 | |
| 421 | // Put byte on the wire |
| 422 | //self.i2c.txdr.write(|w| w.txdata().bits(*byte)); |
| 423 | self.info.regs.txdr().write(|w| w.set_txdata(*byte)); |
| 424 | } |
| 425 | } |
| 426 | } |
| 427 | // Wait until the write finishes |
| 428 | let result = self.wait_tc(timeout); |
| 429 | self.master_stop(); |
| 430 | result |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | impl<'d> I2c<'d, Async> { |
| 435 | async fn write_dma_internal( |
| 436 | &mut self, |
| 437 | address: u8, |
| 438 | write: &[u8], |
| 439 | first_slice: bool, |
| 440 | last_slice: bool, |
| 441 | timeout: Timeout, |
| 442 | ) -> Result<(), Error> { |
| 443 | let total_len = write.len(); |
| 444 | |
| 445 | let dma_transfer = unsafe { |
| 446 | let regs = self.info.regs; |
| 447 | regs.cr1().modify(|w| { |
| 448 | w.set_txdmaen(true); |
| 449 | if first_slice { |
| 450 | w.set_tcie(true); |
| 451 | } |
| 452 | }); |
| 453 | let dst = regs.txdr().as_ptr() as *mut u8; |
| 454 | |
| 455 | self.tx_dma.as_mut().unwrap().write(write, dst, Default::default()) |
| 456 | }; |
| 457 | |
| 458 | let mut remaining_len = total_len; |
| 459 | |
| 460 | let on_drop = OnDrop::new(|| { |
| 461 | let regs = self.info.regs; |
| 462 | regs.cr1().modify(|w| { |
| 463 | if last_slice { |
| 464 | w.set_txdmaen(false); |
| 465 | } |
| 466 | w.set_tcie(false); |
| 467 | }) |
| 468 | }); |
| 469 | |
| 470 | poll_fn(|cx| { |
| 471 | self.state.waker.register(cx.waker()); |
| 472 | |
| 473 | let isr = self.info.regs.isr().read(); |
| 474 | if remaining_len == total_len { |
| 475 | if first_slice { |
| 476 | Self::master_write( |
| 477 | self.info, |
| 478 | address, |
| 479 | total_len.min(255), |
| 480 | Stop::Software, |
| 481 | (total_len > 255) || !last_slice, |
| 482 | timeout, |
| 483 | )?; |
| 484 | } else { |
| 485 | Self::master_continue(self.info, total_len.min(255), (total_len > 255) || !last_slice, timeout)?; |
| 486 | self.info.regs.cr1().modify(|w| w.set_tcie(true)); |
| 487 | } |
| 488 | } else if !(isr.tcr() || isr.tc()) { |
| 489 | // poll_fn was woken without an interrupt present |
| 490 | return Poll::Pending; |
| 491 | } else if remaining_len == 0 { |
| 492 | return Poll::Ready(Ok(())); |
| 493 | } else { |
| 494 | let last_piece = (remaining_len <= 255) && last_slice; |
| 495 | |
| 496 | if let Err(e) = Self::master_continue(self.info, remaining_len.min(255), !last_piece, timeout) { |
| 497 | return Poll::Ready(Err(e)); |
| 498 | } |
| 499 | self.info.regs.cr1().modify(|w| w.set_tcie(true)); |
| 500 | } |
| 501 | |
| 502 | remaining_len = remaining_len.saturating_sub(255); |
| 503 | Poll::Pending |
| 504 | }) |
| 505 | .await?; |
| 506 | |
| 507 | dma_transfer.await; |
| 508 | |
| 509 | if last_slice { |
| 510 | // This should be done already |
| 511 | self.wait_tc(timeout)?; |
| 512 | self.master_stop(); |
| 513 | } |
| 514 | |
| 515 | drop(on_drop); |
| 516 | |
| 517 | Ok(()) |
| 518 | } |
| 519 | |
| 520 | async fn read_dma_internal( |
| 521 | &mut self, |
| 522 | address: u8, |
| 523 | buffer: &mut [u8], |
| 524 | restart: bool, |
| 525 | timeout: Timeout, |
| 526 | ) -> Result<(), Error> { |
| 527 | let total_len = buffer.len(); |
| 528 | |
| 529 | let dma_transfer = unsafe { |
| 530 | let regs = self.info.regs; |
| 531 | regs.cr1().modify(|w| { |
| 532 | w.set_rxdmaen(true); |
| 533 | w.set_tcie(true); |
| 534 | }); |
| 535 | let src = regs.rxdr().as_ptr() as *mut u8; |
| 536 | |
| 537 | self.rx_dma.as_mut().unwrap().read(src, buffer, Default::default()) |
| 538 | }; |
| 539 | |
| 540 | let mut remaining_len = total_len; |
| 541 | |
| 542 | let on_drop = OnDrop::new(|| { |
| 543 | let regs = self.info.regs; |
| 544 | regs.cr1().modify(|w| { |
| 545 | w.set_rxdmaen(false); |
| 546 | w.set_tcie(false); |
| 547 | }) |
| 548 | }); |
| 549 | |
| 550 | poll_fn(|cx| { |
| 551 | self.state.waker.register(cx.waker()); |
| 552 | |
| 553 | let isr = self.info.regs.isr().read(); |
| 554 | if remaining_len == total_len { |
| 555 | Self::master_read( |
| 556 | self.info, |
| 557 | address, |
| 558 | total_len.min(255), |
| 559 | Stop::Software, |
| 560 | total_len > 255, |
| 561 | restart, |
| 562 | timeout, |
| 563 | )?; |
| 564 | } else if !(isr.tcr() || isr.tc()) { |
| 565 | // poll_fn was woken without an interrupt present |
| 566 | return Poll::Pending; |
| 567 | } else if remaining_len == 0 { |
| 568 | return Poll::Ready(Ok(())); |
| 569 | } else { |
| 570 | let last_piece = remaining_len <= 255; |
| 571 | |
| 572 | if let Err(e) = Self::master_continue(self.info, remaining_len.min(255), !last_piece, timeout) { |
| 573 | return Poll::Ready(Err(e)); |
| 574 | } |
| 575 | self.info.regs.cr1().modify(|w| w.set_tcie(true)); |
| 576 | } |
| 577 | |
| 578 | remaining_len = remaining_len.saturating_sub(255); |
| 579 | Poll::Pending |
| 580 | }) |
| 581 | .await?; |
| 582 | |
| 583 | dma_transfer.await; |
| 584 | |
| 585 | // This should be done already |
| 586 | self.wait_tc(timeout)?; |
| 587 | self.master_stop(); |
| 588 | |
| 589 | drop(on_drop); |
| 590 | |
| 591 | Ok(()) |
| 592 | } |
| 593 | |
| 594 | // ========================= |
| 595 | // Async public API |
| 596 | |
| 597 | /// Write. |
| 598 | pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error> { |
| 599 | let timeout = self.timeout(); |
| 600 | if write.is_empty() { |
| 601 | self.write_internal(address, write, true, timeout) |
| 602 | } else { |
| 603 | timeout |
| 604 | .with(self.write_dma_internal(address, write, true, true, timeout)) |
| 605 | .await |
| 606 | } |
| 607 | } |
| 608 | |
| 609 | /// Write multiple buffers. |
| 610 | /// |
| 611 | /// The buffers are concatenated in a single write transaction. |
| 612 | pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error> { |
| 613 | let timeout = self.timeout(); |
| 614 | |
| 615 | if write.is_empty() { |
| 616 | return Err(Error::ZeroLengthTransfer); |
| 617 | } |
| 618 | let mut iter = write.iter(); |
| 619 | |
| 620 | let mut first = true; |
| 621 | let mut current = iter.next(); |
| 622 | while let Some(c) = current { |
| 623 | let next = iter.next(); |
| 624 | let is_last = next.is_none(); |
| 625 | |
| 626 | let fut = self.write_dma_internal(address, c, first, is_last, timeout); |
| 627 | timeout.with(fut).await?; |
| 628 | first = false; |
| 629 | current = next; |
| 630 | } |
| 631 | Ok(()) |
| 632 | } |
| 633 | |
| 634 | /// Read. |
| 635 | pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error> { |
| 636 | let timeout = self.timeout(); |
| 637 | |
| 638 | if buffer.is_empty() { |
| 639 | self.read_internal(address, buffer, false, timeout) |
| 640 | } else { |
| 641 | let fut = self.read_dma_internal(address, buffer, false, timeout); |
| 642 | timeout.with(fut).await |
| 643 | } |
| 644 | } |
| 645 | |
| 646 | /// Write, restart, read. |
| 647 | pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> { |
| 648 | let timeout = self.timeout(); |
| 649 | |
| 650 | if write.is_empty() { |
| 651 | self.write_internal(address, write, false, timeout)?; |
| 652 | } else { |
| 653 | let fut = self.write_dma_internal(address, write, true, true, timeout); |
| 654 | timeout.with(fut).await?; |
| 655 | } |
| 656 | |
| 657 | if read.is_empty() { |
| 658 | self.read_internal(address, read, true, timeout)?; |
| 659 | } else { |
| 660 | let fut = self.read_dma_internal(address, read, true, timeout); |
| 661 | timeout.with(fut).await?; |
| 662 | } |
| 663 | |
| 664 | Ok(()) |
| 665 | } |
| 666 | |
| 667 | /// Transaction with operations. |
| 668 | /// |
| 669 | /// Consecutive operations of same type are merged. See [transaction contract] for details. |
| 670 | /// |
| 671 | /// [transaction contract]: embedded_hal_1::i2c::I2c::transaction |
| 672 | pub async fn transaction(&mut self, addr: u8, operations: &mut [Operation<'_>]) -> Result<(), Error> { |
| 673 | let _ = addr; |
| 674 | let _ = operations; |
| 675 | todo!() |
| 676 | } |
| 677 | } |
| 678 | |
| 679 | /// I2C Stop Configuration |
| 680 | /// |
| 681 | /// Peripheral options for generating the STOP condition |
| 682 | #[derive (Copy, Clone, PartialEq)] |
| 683 | enum Stop { |
| 684 | /// Software end mode: Must write register to generate STOP condition |
| 685 | Software, |
| 686 | /// Automatic end mode: A STOP condition is automatically generated once the |
| 687 | /// configured number of bytes have been transferred |
| 688 | Automatic, |
| 689 | } |
| 690 | |
| 691 | impl Stop { |
| 692 | fn autoend(&self) -> i2c::vals::Autoend { |
| 693 | match self { |
| 694 | Stop::Software => i2c::vals::Autoend::SOFTWARE, |
| 695 | Stop::Automatic => i2c::vals::Autoend::AUTOMATIC, |
| 696 | } |
| 697 | } |
| 698 | } |
| 699 | |
| 700 | struct Timings { |
| 701 | prescale: u8, |
| 702 | scll: u8, |
| 703 | sclh: u8, |
| 704 | sdadel: u8, |
| 705 | scldel: u8, |
| 706 | } |
| 707 | |
| 708 | impl Timings { |
| 709 | fn new(i2cclk: Hertz, freq: Hertz) -> Self { |
| 710 | let i2cclk = i2cclk.0; |
| 711 | let freq = freq.0; |
| 712 | // Refer to RM0433 Rev 7 Figure 539 for setup and hold timing: |
| 713 | // |
| 714 | // t_I2CCLK = 1 / PCLK1 |
| 715 | // t_PRESC = (PRESC + 1) * t_I2CCLK |
| 716 | // t_SCLL = (SCLL + 1) * t_PRESC |
| 717 | // t_SCLH = (SCLH + 1) * t_PRESC |
| 718 | // |
| 719 | // t_SYNC1 + t_SYNC2 > 4 * t_I2CCLK |
| 720 | // t_SCL ~= t_SYNC1 + t_SYNC2 + t_SCLL + t_SCLH |
| 721 | let ratio = i2cclk / freq; |
| 722 | |
| 723 | // For the standard-mode configuration method, we must have a ratio of 4 |
| 724 | // or higher |
| 725 | assert!(ratio >= 4, "The I2C PCLK must be at least 4 times the bus frequency!" ); |
| 726 | |
| 727 | let (presc_reg, scll, sclh, sdadel, scldel) = if freq > 100_000 { |
| 728 | // Fast-mode (Fm) or Fast-mode Plus (Fm+) |
| 729 | // here we pick SCLL + 1 = 2 * (SCLH + 1) |
| 730 | |
| 731 | // Prescaler, 384 ticks for sclh/scll. Round up then subtract 1 |
| 732 | let presc_reg = ((ratio - 1) / 384) as u8; |
| 733 | // ratio < 1200 by pclk 120MHz max., therefore presc < 16 |
| 734 | |
| 735 | // Actual precale value selected |
| 736 | let presc = (presc_reg + 1) as u32; |
| 737 | |
| 738 | let sclh = ((ratio / presc) - 3) / 3; |
| 739 | let scll = (2 * (sclh + 1)) - 1; |
| 740 | |
| 741 | let (sdadel, scldel) = if freq > 400_000 { |
| 742 | // Fast-mode Plus (Fm+) |
| 743 | assert!(i2cclk >= 17_000_000); // See table in datsheet |
| 744 | |
| 745 | let sdadel = i2cclk / 8_000_000 / presc; |
| 746 | let scldel = i2cclk / 4_000_000 / presc - 1; |
| 747 | |
| 748 | (sdadel, scldel) |
| 749 | } else { |
| 750 | // Fast-mode (Fm) |
| 751 | assert!(i2cclk >= 8_000_000); // See table in datsheet |
| 752 | |
| 753 | let sdadel = i2cclk / 4_000_000 / presc; |
| 754 | let scldel = i2cclk / 2_000_000 / presc - 1; |
| 755 | |
| 756 | (sdadel, scldel) |
| 757 | }; |
| 758 | |
| 759 | (presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8) |
| 760 | } else { |
| 761 | // Standard-mode (Sm) |
| 762 | // here we pick SCLL = SCLH |
| 763 | assert!(i2cclk >= 2_000_000); // See table in datsheet |
| 764 | |
| 765 | // Prescaler, 512 ticks for sclh/scll. Round up then |
| 766 | // subtract 1 |
| 767 | let presc = (ratio - 1) / 512; |
| 768 | let presc_reg = cmp::min(presc, 15) as u8; |
| 769 | |
| 770 | // Actual prescale value selected |
| 771 | let presc = (presc_reg + 1) as u32; |
| 772 | |
| 773 | let sclh = ((ratio / presc) - 2) / 2; |
| 774 | let scll = sclh; |
| 775 | |
| 776 | // Speed check |
| 777 | assert!(sclh < 256, "The I2C PCLK is too fast for this bus frequency!" ); |
| 778 | |
| 779 | let sdadel = i2cclk / 2_000_000 / presc; |
| 780 | let scldel = i2cclk / 500_000 / presc - 1; |
| 781 | |
| 782 | (presc_reg, scll as u8, sclh as u8, sdadel as u8, scldel as u8) |
| 783 | }; |
| 784 | |
| 785 | // Sanity check |
| 786 | assert!(presc_reg < 16); |
| 787 | |
| 788 | // Keep values within reasonable limits for fast per_ck |
| 789 | let sdadel = cmp::max(sdadel, 2); |
| 790 | let scldel = cmp::max(scldel, 4); |
| 791 | |
| 792 | //(presc_reg, scll, sclh, sdadel, scldel) |
| 793 | Self { |
| 794 | prescale: presc_reg, |
| 795 | scll, |
| 796 | sclh, |
| 797 | sdadel, |
| 798 | scldel, |
| 799 | } |
| 800 | } |
| 801 | } |
| 802 | |
| 803 | impl<'d, M: Mode> SetConfig for I2c<'d, M> { |
| 804 | type Config = Hertz; |
| 805 | type ConfigError = (); |
| 806 | fn set_config(&mut self, config: &Self::Config) -> Result<(), ()> { |
| 807 | let timings: Timings = Timings::new(self.kernel_clock, *config); |
| 808 | self.info.regs.timingr().write(|reg: &mut Timingr| { |
| 809 | reg.set_presc(val:timings.prescale); |
| 810 | reg.set_scll(val:timings.scll); |
| 811 | reg.set_sclh(val:timings.sclh); |
| 812 | reg.set_sdadel(val:timings.sdadel); |
| 813 | reg.set_scldel(val:timings.scldel); |
| 814 | }); |
| 815 | |
| 816 | Ok(()) |
| 817 | } |
| 818 | } |
| 819 | |