1 | //! PWM driver with complementary output support. |
2 | |
3 | use core::marker::PhantomData; |
4 | |
5 | use embassy_hal_internal::{into_ref, PeripheralRef}; |
6 | use stm32_metapac::timer::vals::Ckd; |
7 | |
8 | use super::low_level::{CountingMode, OutputPolarity, Timer}; |
9 | use super::simple_pwm::{Ch1, Ch2, Ch3, Ch4, PwmPin}; |
10 | use super::{ |
11 | AdvancedInstance4Channel, Channel, Channel1ComplementaryPin, Channel2ComplementaryPin, Channel3ComplementaryPin, |
12 | Channel4ComplementaryPin, |
13 | }; |
14 | use crate::gpio::{AnyPin, OutputType}; |
15 | use crate::time::Hertz; |
16 | use crate::timer::low_level::OutputCompareMode; |
17 | use crate::Peripheral; |
18 | |
19 | /// Complementary PWM pin wrapper. |
20 | /// |
21 | /// This wraps a pin to make it usable with PWM. |
22 | pub struct ComplementaryPwmPin<'d, T, C> { |
23 | _pin: PeripheralRef<'d, AnyPin>, |
24 | phantom: PhantomData<(T, C)>, |
25 | } |
26 | |
27 | macro_rules! complementary_channel_impl { |
28 | ($new_chx:ident, $channel:ident, $pin_trait:ident) => { |
29 | impl<'d, T: AdvancedInstance4Channel> ComplementaryPwmPin<'d, T, $channel> { |
30 | #[doc = concat!("Create a new " , stringify!($channel), " complementary PWM pin instance." )] |
31 | pub fn $new_chx(pin: impl Peripheral<P = impl $pin_trait<T>> + 'd, output_type: OutputType) -> Self { |
32 | into_ref!(pin); |
33 | critical_section::with(|_| { |
34 | pin.set_low(); |
35 | pin.set_as_af( |
36 | pin.af_num(), |
37 | crate::gpio::AfType::output(output_type, crate::gpio::Speed::VeryHigh), |
38 | ); |
39 | }); |
40 | ComplementaryPwmPin { |
41 | _pin: pin.map_into(), |
42 | phantom: PhantomData, |
43 | } |
44 | } |
45 | } |
46 | }; |
47 | } |
48 | |
49 | complementary_channel_impl!(new_ch1, Ch1, Channel1ComplementaryPin); |
50 | complementary_channel_impl!(new_ch2, Ch2, Channel2ComplementaryPin); |
51 | complementary_channel_impl!(new_ch3, Ch3, Channel3ComplementaryPin); |
52 | complementary_channel_impl!(new_ch4, Ch4, Channel4ComplementaryPin); |
53 | |
54 | /// PWM driver with support for standard and complementary outputs. |
55 | pub struct ComplementaryPwm<'d, T: AdvancedInstance4Channel> { |
56 | inner: Timer<'d, T>, |
57 | } |
58 | |
59 | impl<'d, T: AdvancedInstance4Channel> ComplementaryPwm<'d, T> { |
60 | /// Create a new complementary PWM driver. |
61 | #[allow (clippy::too_many_arguments)] |
62 | pub fn new( |
63 | tim: impl Peripheral<P = T> + 'd, |
64 | _ch1: Option<PwmPin<'d, T, Ch1>>, |
65 | _ch1n: Option<ComplementaryPwmPin<'d, T, Ch1>>, |
66 | _ch2: Option<PwmPin<'d, T, Ch2>>, |
67 | _ch2n: Option<ComplementaryPwmPin<'d, T, Ch2>>, |
68 | _ch3: Option<PwmPin<'d, T, Ch3>>, |
69 | _ch3n: Option<ComplementaryPwmPin<'d, T, Ch3>>, |
70 | _ch4: Option<PwmPin<'d, T, Ch4>>, |
71 | _ch4n: Option<ComplementaryPwmPin<'d, T, Ch4>>, |
72 | freq: Hertz, |
73 | counting_mode: CountingMode, |
74 | ) -> Self { |
75 | Self::new_inner(tim, freq, counting_mode) |
76 | } |
77 | |
78 | fn new_inner(tim: impl Peripheral<P = T> + 'd, freq: Hertz, counting_mode: CountingMode) -> Self { |
79 | let mut this = Self { inner: Timer::new(tim) }; |
80 | |
81 | this.inner.set_counting_mode(counting_mode); |
82 | this.set_frequency(freq); |
83 | this.inner.start(); |
84 | |
85 | this.inner.enable_outputs(); |
86 | |
87 | [Channel::Ch1, Channel::Ch2, Channel::Ch3, Channel::Ch4] |
88 | .iter() |
89 | .for_each(|&channel| { |
90 | this.inner.set_output_compare_mode(channel, OutputCompareMode::PwmMode1); |
91 | this.inner.set_output_compare_preload(channel, true); |
92 | }); |
93 | |
94 | this |
95 | } |
96 | |
97 | /// Enable the given channel. |
98 | pub fn enable(&mut self, channel: Channel) { |
99 | self.inner.enable_channel(channel, true); |
100 | self.inner.enable_complementary_channel(channel, true); |
101 | } |
102 | |
103 | /// Disable the given channel. |
104 | pub fn disable(&mut self, channel: Channel) { |
105 | self.inner.enable_complementary_channel(channel, false); |
106 | self.inner.enable_channel(channel, false); |
107 | } |
108 | |
109 | /// Set PWM frequency. |
110 | /// |
111 | /// Note: when you call this, the max duty value changes, so you will have to |
112 | /// call `set_duty` on all channels with the duty calculated based on the new max duty. |
113 | pub fn set_frequency(&mut self, freq: Hertz) { |
114 | let multiplier = if self.inner.get_counting_mode().is_center_aligned() { |
115 | 2u8 |
116 | } else { |
117 | 1u8 |
118 | }; |
119 | self.inner.set_frequency_internal(freq * multiplier, 16); |
120 | } |
121 | |
122 | /// Get max duty value. |
123 | /// |
124 | /// This value depends on the configured frequency and the timer's clock rate from RCC. |
125 | pub fn get_max_duty(&self) -> u16 { |
126 | self.inner.get_max_compare_value() as u16 + 1 |
127 | } |
128 | |
129 | /// Set the duty for a given channel. |
130 | /// |
131 | /// The value ranges from 0 for 0% duty, to [`get_max_duty`](Self::get_max_duty) for 100% duty, both included. |
132 | pub fn set_duty(&mut self, channel: Channel, duty: u16) { |
133 | assert!(duty <= self.get_max_duty()); |
134 | self.inner.set_compare_value(channel, duty as _) |
135 | } |
136 | |
137 | /// Set the output polarity for a given channel. |
138 | pub fn set_polarity(&mut self, channel: Channel, polarity: OutputPolarity) { |
139 | self.inner.set_output_polarity(channel, polarity); |
140 | self.inner.set_complementary_output_polarity(channel, polarity); |
141 | } |
142 | |
143 | /// Set the dead time as a proportion of max_duty |
144 | pub fn set_dead_time(&mut self, value: u16) { |
145 | let (ckd, value) = compute_dead_time_value(value); |
146 | |
147 | self.inner.set_dead_time_clock_division(ckd); |
148 | self.inner.set_dead_time_value(value); |
149 | } |
150 | } |
151 | |
152 | impl<'d, T: AdvancedInstance4Channel> embedded_hal_02::Pwm for ComplementaryPwm<'d, T> { |
153 | type Channel = Channel; |
154 | type Time = Hertz; |
155 | type Duty = u16; |
156 | |
157 | fn disable(&mut self, channel: Self::Channel) { |
158 | self.inner.enable_complementary_channel(channel, false); |
159 | self.inner.enable_channel(channel, false); |
160 | } |
161 | |
162 | fn enable(&mut self, channel: Self::Channel) { |
163 | self.inner.enable_channel(channel, true); |
164 | self.inner.enable_complementary_channel(channel, true); |
165 | } |
166 | |
167 | fn get_period(&self) -> Self::Time { |
168 | self.inner.get_frequency() |
169 | } |
170 | |
171 | fn get_duty(&self, channel: Self::Channel) -> Self::Duty { |
172 | self.inner.get_compare_value(channel) as u16 |
173 | } |
174 | |
175 | fn get_max_duty(&self) -> Self::Duty { |
176 | self.inner.get_max_compare_value() as u16 + 1 |
177 | } |
178 | |
179 | fn set_duty(&mut self, channel: Self::Channel, duty: Self::Duty) { |
180 | assert!(duty <= self.get_max_duty()); |
181 | self.inner.set_compare_value(channel, duty as u32) |
182 | } |
183 | |
184 | fn set_period<P>(&mut self, period: P) |
185 | where |
186 | P: Into<Self::Time>, |
187 | { |
188 | self.inner.set_frequency(period.into()); |
189 | } |
190 | } |
191 | |
192 | fn compute_dead_time_value(value: u16) -> (Ckd, u8) { |
193 | /* |
194 | Dead-time = T_clk * T_dts * T_dtg |
195 | |
196 | T_dts: |
197 | This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the |
198 | dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters |
199 | (ETR, TIx), |
200 | 00: tDTS=tCK_INT |
201 | 01: tDTS=2*tCK_INT |
202 | 10: tDTS=4*tCK_INT |
203 | |
204 | T_dtg: |
205 | This bit-field defines the duration of the dead-time inserted between the complementary |
206 | outputs. DT correspond to this duration. |
207 | DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS. |
208 | DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS. |
209 | DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS. |
210 | DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS. |
211 | Example if TDTS=125ns (8MHz), dead-time possible values are: |
212 | 0 to 15875 ns by 125 ns steps, |
213 | 16 us to 31750 ns by 250 ns steps, |
214 | 32 us to 63us by 1 us steps, |
215 | 64 us to 126 us by 2 us steps |
216 | */ |
217 | |
218 | let mut error = u16::MAX; |
219 | let mut ckd = Ckd::DIV1; |
220 | let mut bits = 0u8; |
221 | |
222 | for this_ckd in [Ckd::DIV1, Ckd::DIV2, Ckd::DIV4] { |
223 | let outdiv = match this_ckd { |
224 | Ckd::DIV1 => 1, |
225 | Ckd::DIV2 => 2, |
226 | Ckd::DIV4 => 4, |
227 | _ => unreachable!(), |
228 | }; |
229 | |
230 | // 127 |
231 | // 128 |
232 | // .. |
233 | // 254 |
234 | // 256 |
235 | // .. |
236 | // 504 |
237 | // 512 |
238 | // .. |
239 | // 1008 |
240 | |
241 | let target = value / outdiv; |
242 | let (these_bits, result) = if target < 128 { |
243 | (target as u8, target) |
244 | } else if target < 255 { |
245 | (64 + (target / 2) as u8, (target - target % 2)) |
246 | } else if target < 508 { |
247 | (32 + (target / 8) as u8, (target - target % 8)) |
248 | } else if target < 1008 { |
249 | (32 + (target / 16) as u8, (target - target % 16)) |
250 | } else { |
251 | (u8::MAX, 1008) |
252 | }; |
253 | |
254 | let this_error = value.abs_diff(result * outdiv); |
255 | if error > this_error { |
256 | ckd = this_ckd; |
257 | bits = these_bits; |
258 | error = this_error; |
259 | } |
260 | |
261 | if error == 0 { |
262 | break; |
263 | } |
264 | } |
265 | |
266 | (ckd, bits) |
267 | } |
268 | |
269 | #[cfg (test)] |
270 | mod tests { |
271 | use super::{compute_dead_time_value, Ckd}; |
272 | |
273 | #[test ] |
274 | fn test_compute_dead_time_value() { |
275 | struct TestRun { |
276 | value: u16, |
277 | ckd: Ckd, |
278 | bits: u8, |
279 | } |
280 | |
281 | let fn_results = [ |
282 | TestRun { |
283 | value: 1, |
284 | ckd: Ckd::DIV1, |
285 | bits: 1, |
286 | }, |
287 | TestRun { |
288 | value: 125, |
289 | ckd: Ckd::DIV1, |
290 | bits: 125, |
291 | }, |
292 | TestRun { |
293 | value: 245, |
294 | ckd: Ckd::DIV1, |
295 | bits: 64 + 245 / 2, |
296 | }, |
297 | TestRun { |
298 | value: 255, |
299 | ckd: Ckd::DIV2, |
300 | bits: 127, |
301 | }, |
302 | TestRun { |
303 | value: 400, |
304 | ckd: Ckd::DIV1, |
305 | bits: 32 + (400u16 / 8) as u8, |
306 | }, |
307 | TestRun { |
308 | value: 600, |
309 | ckd: Ckd::DIV4, |
310 | bits: 64 + (600u16 / 8) as u8, |
311 | }, |
312 | ]; |
313 | |
314 | for test_run in fn_results { |
315 | let (ckd, bits) = compute_dead_time_value(test_run.value); |
316 | |
317 | assert_eq!(ckd.to_bits(), test_run.ckd.to_bits()); |
318 | assert_eq!(bits, test_run.bits); |
319 | } |
320 | } |
321 | } |
322 | |