1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
2 | // file at the top-level directory of this distribution. |
3 | // |
4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
7 | // option. This file may not be copied, modified, or distributed |
8 | // except according to those terms. |
9 | |
10 | use crate::approxeq::ApproxEq; |
11 | use crate::trig::Trig; |
12 | use crate::{point2, point3, vec3, Angle, Point2D, Point3D, Vector2D, Vector3D}; |
13 | use crate::{Transform2D, Transform3D, UnknownUnit}; |
14 | |
15 | use core::cmp::{Eq, PartialEq}; |
16 | use core::fmt; |
17 | use core::hash::Hash; |
18 | use core::marker::PhantomData; |
19 | use core::ops::{Add, Mul, Neg, Sub}; |
20 | |
21 | #[cfg (feature = "bytemuck" )] |
22 | use bytemuck::{Pod, Zeroable}; |
23 | use num_traits::real::Real; |
24 | use num_traits::{NumCast, One, Zero}; |
25 | #[cfg (feature = "serde" )] |
26 | use serde::{Deserialize, Serialize}; |
27 | |
28 | /// A transform that can represent rotations in 2d, represented as an angle in radians. |
29 | #[repr (C)] |
30 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
31 | #[cfg_attr ( |
32 | feature = "serde" , |
33 | serde(bound( |
34 | serialize = "T: serde::Serialize" , |
35 | deserialize = "T: serde::Deserialize<'de>" |
36 | )) |
37 | )] |
38 | pub struct Rotation2D<T, Src, Dst> { |
39 | /// Angle in radians |
40 | pub angle: T, |
41 | #[doc (hidden)] |
42 | pub _unit: PhantomData<(Src, Dst)>, |
43 | } |
44 | |
45 | impl<T: Copy, Src, Dst> Copy for Rotation2D<T, Src, Dst> {} |
46 | |
47 | impl<T: Clone, Src, Dst> Clone for Rotation2D<T, Src, Dst> { |
48 | fn clone(&self) -> Self { |
49 | Rotation2D { |
50 | angle: self.angle.clone(), |
51 | _unit: PhantomData, |
52 | } |
53 | } |
54 | } |
55 | |
56 | impl<T, Src, Dst> Eq for Rotation2D<T, Src, Dst> where T: Eq {} |
57 | |
58 | impl<T, Src, Dst> PartialEq for Rotation2D<T, Src, Dst> |
59 | where |
60 | T: PartialEq, |
61 | { |
62 | fn eq(&self, other: &Self) -> bool { |
63 | self.angle == other.angle |
64 | } |
65 | } |
66 | |
67 | impl<T, Src, Dst> Hash for Rotation2D<T, Src, Dst> |
68 | where |
69 | T: Hash, |
70 | { |
71 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
72 | self.angle.hash(state:h); |
73 | } |
74 | } |
75 | |
76 | #[cfg (feature = "arbitrary" )] |
77 | impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Rotation2D<T, Src, Dst> |
78 | where |
79 | T: arbitrary::Arbitrary<'a>, |
80 | { |
81 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
82 | Ok(Rotation2D::new(arbitrary::Arbitrary::arbitrary(u)?)) |
83 | } |
84 | } |
85 | |
86 | #[cfg (feature = "bytemuck" )] |
87 | unsafe impl<T: Zeroable, Src, Dst> Zeroable for Rotation2D<T, Src, Dst> {} |
88 | |
89 | #[cfg (feature = "bytemuck" )] |
90 | unsafe impl<T: Pod, Src: 'static, Dst: 'static> Pod for Rotation2D<T, Src, Dst> {} |
91 | |
92 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> { |
93 | /// Creates a rotation from an angle in radians. |
94 | #[inline ] |
95 | pub fn new(angle: Angle<T>) -> Self { |
96 | Rotation2D { |
97 | angle: angle.radians, |
98 | _unit: PhantomData, |
99 | } |
100 | } |
101 | |
102 | /// Creates a rotation from an angle in radians. |
103 | pub fn radians(angle: T) -> Self { |
104 | Self::new(Angle::radians(angle)) |
105 | } |
106 | |
107 | /// Creates the identity rotation. |
108 | #[inline ] |
109 | pub fn identity() -> Self |
110 | where |
111 | T: Zero, |
112 | { |
113 | Self::radians(T::zero()) |
114 | } |
115 | } |
116 | |
117 | impl<T: Copy, Src, Dst> Rotation2D<T, Src, Dst> { |
118 | /// Cast the unit, preserving the numeric value. |
119 | /// |
120 | /// # Example |
121 | /// |
122 | /// ```rust |
123 | /// # use euclid::Rotation2D; |
124 | /// enum Local {} |
125 | /// enum World {} |
126 | /// |
127 | /// enum Local2 {} |
128 | /// enum World2 {} |
129 | /// |
130 | /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); |
131 | /// |
132 | /// assert_eq!(to_world.angle, to_world.cast_unit::<Local2, World2>().angle); |
133 | /// ``` |
134 | #[inline ] |
135 | pub fn cast_unit<Src2, Dst2>(&self) -> Rotation2D<T, Src2, Dst2> { |
136 | Rotation2D { |
137 | angle: self.angle, |
138 | _unit: PhantomData, |
139 | } |
140 | } |
141 | |
142 | /// Drop the units, preserving only the numeric value. |
143 | /// |
144 | /// # Example |
145 | /// |
146 | /// ```rust |
147 | /// # use euclid::Rotation2D; |
148 | /// enum Local {} |
149 | /// enum World {} |
150 | /// |
151 | /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); |
152 | /// |
153 | /// assert_eq!(to_world.angle, to_world.to_untyped().angle); |
154 | /// ``` |
155 | #[inline ] |
156 | pub fn to_untyped(&self) -> Rotation2D<T, UnknownUnit, UnknownUnit> { |
157 | self.cast_unit() |
158 | } |
159 | |
160 | /// Tag a unitless value with units. |
161 | /// |
162 | /// # Example |
163 | /// |
164 | /// ```rust |
165 | /// # use euclid::Rotation2D; |
166 | /// use euclid::UnknownUnit; |
167 | /// enum Local {} |
168 | /// enum World {} |
169 | /// |
170 | /// let rot: Rotation2D<_, UnknownUnit, UnknownUnit> = Rotation2D::radians(42); |
171 | /// |
172 | /// assert_eq!(rot.angle, Rotation2D::<_, Local, World>::from_untyped(&rot).angle); |
173 | /// ``` |
174 | #[inline ] |
175 | pub fn from_untyped(r: &Rotation2D<T, UnknownUnit, UnknownUnit>) -> Self { |
176 | r.cast_unit() |
177 | } |
178 | } |
179 | |
180 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> |
181 | where |
182 | T: Copy, |
183 | { |
184 | /// Returns self.angle as a strongly typed `Angle<T>`. |
185 | pub fn get_angle(&self) -> Angle<T> { |
186 | Angle::radians(self.angle) |
187 | } |
188 | } |
189 | |
190 | impl<T: Real, Src, Dst> Rotation2D<T, Src, Dst> { |
191 | /// Creates a 3d rotation (around the z axis) from this 2d rotation. |
192 | #[inline ] |
193 | pub fn to_3d(&self) -> Rotation3D<T, Src, Dst> { |
194 | Rotation3D::around_z(self.get_angle()) |
195 | } |
196 | |
197 | /// Returns the inverse of this rotation. |
198 | #[inline ] |
199 | pub fn inverse(&self) -> Rotation2D<T, Dst, Src> { |
200 | Rotation2D::radians(-self.angle) |
201 | } |
202 | |
203 | /// Returns a rotation representing the other rotation followed by this rotation. |
204 | #[inline ] |
205 | pub fn then<NewSrc>(&self, other: &Rotation2D<T, NewSrc, Src>) -> Rotation2D<T, NewSrc, Dst> { |
206 | Rotation2D::radians(self.angle + other.angle) |
207 | } |
208 | |
209 | /// Returns the given 2d point transformed by this rotation. |
210 | /// |
211 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
212 | #[inline ] |
213 | pub fn transform_point(&self, point: Point2D<T, Src>) -> Point2D<T, Dst> { |
214 | let (sin, cos) = Real::sin_cos(self.angle); |
215 | point2(point.x * cos - point.y * sin, point.y * cos + point.x * sin) |
216 | } |
217 | |
218 | /// Returns the given 2d vector transformed by this rotation. |
219 | /// |
220 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
221 | #[inline ] |
222 | pub fn transform_vector(&self, vector: Vector2D<T, Src>) -> Vector2D<T, Dst> { |
223 | self.transform_point(vector.to_point()).to_vector() |
224 | } |
225 | } |
226 | |
227 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> |
228 | where |
229 | T: Copy + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Zero + Trig, |
230 | { |
231 | /// Returns the matrix representation of this rotation. |
232 | #[inline ] |
233 | pub fn to_transform(&self) -> Transform2D<T, Src, Dst> { |
234 | Transform2D::rotation(self.get_angle()) |
235 | } |
236 | } |
237 | |
238 | impl<T: fmt::Debug, Src, Dst> fmt::Debug for Rotation2D<T, Src, Dst> { |
239 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
240 | write!(f, "Rotation( {:?} rad)" , self.angle) |
241 | } |
242 | } |
243 | |
244 | impl<T, Src, Dst> ApproxEq<T> for Rotation2D<T, Src, Dst> |
245 | where |
246 | T: Copy + Neg<Output = T> + ApproxEq<T>, |
247 | { |
248 | fn approx_epsilon() -> T { |
249 | T::approx_epsilon() |
250 | } |
251 | |
252 | fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { |
253 | self.angle.approx_eq_eps(&other.angle, approx_epsilon:eps) |
254 | } |
255 | } |
256 | |
257 | /// A transform that can represent rotations in 3d, represented as a quaternion. |
258 | /// |
259 | /// Most methods expect the quaternion to be normalized. |
260 | /// When in doubt, use [`unit_quaternion`] instead of [`quaternion`] to create |
261 | /// a rotation as the former will ensure that its result is normalized. |
262 | /// |
263 | /// Some people use the `x, y, z, w` (or `w, x, y, z`) notations. The equivalence is |
264 | /// as follows: `x -> i`, `y -> j`, `z -> k`, `w -> r`. |
265 | /// The memory layout of this type corresponds to the `x, y, z, w` notation |
266 | /// |
267 | /// [`quaternion`]: Self::quaternion |
268 | /// [`unit_quaternion`]: Self::unit_quaternion |
269 | #[repr (C)] |
270 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
271 | #[cfg_attr ( |
272 | feature = "serde" , |
273 | serde(bound( |
274 | serialize = "T: serde::Serialize" , |
275 | deserialize = "T: serde::Deserialize<'de>" |
276 | )) |
277 | )] |
278 | pub struct Rotation3D<T, Src, Dst> { |
279 | /// Component multiplied by the imaginary number `i`. |
280 | pub i: T, |
281 | /// Component multiplied by the imaginary number `j`. |
282 | pub j: T, |
283 | /// Component multiplied by the imaginary number `k`. |
284 | pub k: T, |
285 | /// The real part. |
286 | pub r: T, |
287 | #[doc (hidden)] |
288 | pub _unit: PhantomData<(Src, Dst)>, |
289 | } |
290 | |
291 | impl<T: Copy, Src, Dst> Copy for Rotation3D<T, Src, Dst> {} |
292 | |
293 | impl<T: Clone, Src, Dst> Clone for Rotation3D<T, Src, Dst> { |
294 | fn clone(&self) -> Self { |
295 | Rotation3D { |
296 | i: self.i.clone(), |
297 | j: self.j.clone(), |
298 | k: self.k.clone(), |
299 | r: self.r.clone(), |
300 | _unit: PhantomData, |
301 | } |
302 | } |
303 | } |
304 | |
305 | impl<T, Src, Dst> Eq for Rotation3D<T, Src, Dst> where T: Eq {} |
306 | |
307 | impl<T, Src, Dst> PartialEq for Rotation3D<T, Src, Dst> |
308 | where |
309 | T: PartialEq, |
310 | { |
311 | fn eq(&self, other: &Self) -> bool { |
312 | self.i == other.i && self.j == other.j && self.k == other.k && self.r == other.r |
313 | } |
314 | } |
315 | |
316 | impl<T, Src, Dst> Hash for Rotation3D<T, Src, Dst> |
317 | where |
318 | T: Hash, |
319 | { |
320 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
321 | self.i.hash(state:h); |
322 | self.j.hash(state:h); |
323 | self.k.hash(state:h); |
324 | self.r.hash(state:h); |
325 | } |
326 | } |
327 | |
328 | /// Note: the quaternions produced by this implementation are not normalized |
329 | /// (nor even necessarily finite). That is, this is not appropriate to use to |
330 | /// choose an actual “arbitrary rotation”, at least not without postprocessing. |
331 | #[cfg (feature = "arbitrary" )] |
332 | impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Rotation3D<T, Src, Dst> |
333 | where |
334 | T: arbitrary::Arbitrary<'a>, |
335 | { |
336 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
337 | let (i, j, k, r) = arbitrary::Arbitrary::arbitrary(u)?; |
338 | Ok(Rotation3D::quaternion(i, j, k, r)) |
339 | } |
340 | } |
341 | |
342 | #[cfg (feature = "bytemuck" )] |
343 | unsafe impl<T: Zeroable, Src, Dst> Zeroable for Rotation3D<T, Src, Dst> {} |
344 | |
345 | #[cfg (feature = "bytemuck" )] |
346 | unsafe impl<T: Pod, Src: 'static, Dst: 'static> Pod for Rotation3D<T, Src, Dst> {} |
347 | |
348 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> { |
349 | /// Creates a rotation around from a quaternion representation. |
350 | /// |
351 | /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` |
352 | /// where `a`, `b` and `c` describe the vector part and the last parameter `r` is |
353 | /// the real part. |
354 | /// |
355 | /// The resulting quaternion is not necessarily normalized. See [`unit_quaternion`]. |
356 | /// |
357 | /// [`unit_quaternion`]: Self::unit_quaternion |
358 | #[inline ] |
359 | pub fn quaternion(a: T, b: T, c: T, r: T) -> Self { |
360 | Rotation3D { |
361 | i: a, |
362 | j: b, |
363 | k: c, |
364 | r, |
365 | _unit: PhantomData, |
366 | } |
367 | } |
368 | |
369 | /// Creates the identity rotation. |
370 | #[inline ] |
371 | pub fn identity() -> Self |
372 | where |
373 | T: Zero + One, |
374 | { |
375 | Self::quaternion(T::zero(), T::zero(), T::zero(), T::one()) |
376 | } |
377 | } |
378 | |
379 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> |
380 | where |
381 | T: Copy, |
382 | { |
383 | /// Returns the vector part (i, j, k) of this quaternion. |
384 | #[inline ] |
385 | pub fn vector_part(&self) -> Vector3D<T, UnknownUnit> { |
386 | vec3(self.i, self.j, self.k) |
387 | } |
388 | |
389 | /// Cast the unit, preserving the numeric value. |
390 | /// |
391 | /// # Example |
392 | /// |
393 | /// ```rust |
394 | /// # use euclid::Rotation3D; |
395 | /// enum Local {} |
396 | /// enum World {} |
397 | /// |
398 | /// enum Local2 {} |
399 | /// enum World2 {} |
400 | /// |
401 | /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); |
402 | /// |
403 | /// assert_eq!(to_world.i, to_world.cast_unit::<Local2, World2>().i); |
404 | /// assert_eq!(to_world.j, to_world.cast_unit::<Local2, World2>().j); |
405 | /// assert_eq!(to_world.k, to_world.cast_unit::<Local2, World2>().k); |
406 | /// assert_eq!(to_world.r, to_world.cast_unit::<Local2, World2>().r); |
407 | /// ``` |
408 | #[inline ] |
409 | pub fn cast_unit<Src2, Dst2>(&self) -> Rotation3D<T, Src2, Dst2> { |
410 | Rotation3D { |
411 | i: self.i, |
412 | j: self.j, |
413 | k: self.k, |
414 | r: self.r, |
415 | _unit: PhantomData, |
416 | } |
417 | } |
418 | |
419 | /// Drop the units, preserving only the numeric value. |
420 | /// |
421 | /// # Example |
422 | /// |
423 | /// ```rust |
424 | /// # use euclid::Rotation3D; |
425 | /// enum Local {} |
426 | /// enum World {} |
427 | /// |
428 | /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); |
429 | /// |
430 | /// assert_eq!(to_world.i, to_world.to_untyped().i); |
431 | /// assert_eq!(to_world.j, to_world.to_untyped().j); |
432 | /// assert_eq!(to_world.k, to_world.to_untyped().k); |
433 | /// assert_eq!(to_world.r, to_world.to_untyped().r); |
434 | /// ``` |
435 | #[inline ] |
436 | pub fn to_untyped(&self) -> Rotation3D<T, UnknownUnit, UnknownUnit> { |
437 | self.cast_unit() |
438 | } |
439 | |
440 | /// Tag a unitless value with units. |
441 | /// |
442 | /// # Example |
443 | /// |
444 | /// ```rust |
445 | /// # use euclid::Rotation3D; |
446 | /// use euclid::UnknownUnit; |
447 | /// enum Local {} |
448 | /// enum World {} |
449 | /// |
450 | /// let rot: Rotation3D<_, UnknownUnit, UnknownUnit> = Rotation3D::quaternion(1, 2, 3, 4); |
451 | /// |
452 | /// assert_eq!(rot.i, Rotation3D::<_, Local, World>::from_untyped(&rot).i); |
453 | /// assert_eq!(rot.j, Rotation3D::<_, Local, World>::from_untyped(&rot).j); |
454 | /// assert_eq!(rot.k, Rotation3D::<_, Local, World>::from_untyped(&rot).k); |
455 | /// assert_eq!(rot.r, Rotation3D::<_, Local, World>::from_untyped(&rot).r); |
456 | /// ``` |
457 | #[inline ] |
458 | pub fn from_untyped(r: &Rotation3D<T, UnknownUnit, UnknownUnit>) -> Self { |
459 | r.cast_unit() |
460 | } |
461 | } |
462 | |
463 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> |
464 | where |
465 | T: Real, |
466 | { |
467 | /// Creates a rotation around from a quaternion representation and normalizes it. |
468 | /// |
469 | /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` |
470 | /// before normalization, where `a`, `b` and `c` describe the vector part and the |
471 | /// last parameter `r` is the real part. |
472 | #[inline ] |
473 | pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> Self { |
474 | Self::quaternion(i, j, k, r).normalize() |
475 | } |
476 | |
477 | /// Creates a rotation around a given axis. |
478 | pub fn around_axis(axis: Vector3D<T, Src>, angle: Angle<T>) -> Self { |
479 | let axis = axis.normalize(); |
480 | let two = T::one() + T::one(); |
481 | let (sin, cos) = Angle::sin_cos(angle / two); |
482 | Self::quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos) |
483 | } |
484 | |
485 | /// Creates a rotation around the x axis. |
486 | pub fn around_x(angle: Angle<T>) -> Self { |
487 | let zero = Zero::zero(); |
488 | let two = T::one() + T::one(); |
489 | let (sin, cos) = Angle::sin_cos(angle / two); |
490 | Self::quaternion(sin, zero, zero, cos) |
491 | } |
492 | |
493 | /// Creates a rotation around the y axis. |
494 | pub fn around_y(angle: Angle<T>) -> Self { |
495 | let zero = Zero::zero(); |
496 | let two = T::one() + T::one(); |
497 | let (sin, cos) = Angle::sin_cos(angle / two); |
498 | Self::quaternion(zero, sin, zero, cos) |
499 | } |
500 | |
501 | /// Creates a rotation around the z axis. |
502 | pub fn around_z(angle: Angle<T>) -> Self { |
503 | let zero = Zero::zero(); |
504 | let two = T::one() + T::one(); |
505 | let (sin, cos) = Angle::sin_cos(angle / two); |
506 | Self::quaternion(zero, zero, sin, cos) |
507 | } |
508 | |
509 | /// Creates a rotation from Euler angles. |
510 | /// |
511 | /// The rotations are applied in roll then pitch then yaw order. |
512 | /// |
513 | /// - Roll (also called bank) is a rotation around the x axis. |
514 | /// - Pitch (also called bearing) is a rotation around the y axis. |
515 | /// - Yaw (also called heading) is a rotation around the z axis. |
516 | pub fn euler(roll: Angle<T>, pitch: Angle<T>, yaw: Angle<T>) -> Self { |
517 | let half = T::one() / (T::one() + T::one()); |
518 | |
519 | let (sy, cy) = Real::sin_cos(half * yaw.get()); |
520 | let (sp, cp) = Real::sin_cos(half * pitch.get()); |
521 | let (sr, cr) = Real::sin_cos(half * roll.get()); |
522 | |
523 | Self::quaternion( |
524 | cy * sr * cp - sy * cr * sp, |
525 | cy * cr * sp + sy * sr * cp, |
526 | sy * cr * cp - cy * sr * sp, |
527 | cy * cr * cp + sy * sr * sp, |
528 | ) |
529 | } |
530 | |
531 | /// Returns the inverse of this rotation. |
532 | #[inline ] |
533 | pub fn inverse(&self) -> Rotation3D<T, Dst, Src> { |
534 | Rotation3D::quaternion(-self.i, -self.j, -self.k, self.r) |
535 | } |
536 | |
537 | /// Computes the norm of this quaternion. |
538 | #[inline ] |
539 | pub fn norm(&self) -> T { |
540 | self.square_norm().sqrt() |
541 | } |
542 | |
543 | /// Computes the squared norm of this quaternion. |
544 | #[inline ] |
545 | pub fn square_norm(&self) -> T { |
546 | self.i * self.i + self.j * self.j + self.k * self.k + self.r * self.r |
547 | } |
548 | |
549 | /// Returns a [unit quaternion] from this one. |
550 | /// |
551 | /// [unit quaternion]: https://en.wikipedia.org/wiki/Quaternion#Unit_quaternion |
552 | #[inline ] |
553 | pub fn normalize(&self) -> Self { |
554 | self.mul(T::one() / self.norm()) |
555 | } |
556 | |
557 | /// Returns `true` if [norm] of this quaternion is (approximately) one. |
558 | /// |
559 | /// [norm]: Self::norm |
560 | #[inline ] |
561 | pub fn is_normalized(&self) -> bool |
562 | where |
563 | T: ApproxEq<T>, |
564 | { |
565 | let eps = NumCast::from(1.0e-5).unwrap(); |
566 | self.square_norm().approx_eq_eps(&T::one(), &eps) |
567 | } |
568 | |
569 | /// Spherical linear interpolation between this rotation and another rotation. |
570 | /// |
571 | /// `t` is expected to be between zero and one. |
572 | pub fn slerp(&self, other: &Self, t: T) -> Self |
573 | where |
574 | T: ApproxEq<T>, |
575 | { |
576 | debug_assert!(self.is_normalized()); |
577 | debug_assert!(other.is_normalized()); |
578 | |
579 | let r1 = *self; |
580 | let mut r2 = *other; |
581 | |
582 | let mut dot = r1.i * r2.i + r1.j * r2.j + r1.k * r2.k + r1.r * r2.r; |
583 | |
584 | let one = T::one(); |
585 | |
586 | if dot.approx_eq(&T::one()) { |
587 | // If the inputs are too close, linearly interpolate to avoid precision issues. |
588 | return r1.lerp(&r2, t); |
589 | } |
590 | |
591 | // If the dot product is negative, the quaternions |
592 | // have opposite handed-ness and slerp won't take |
593 | // the shorter path. Fix by reversing one quaternion. |
594 | if dot < T::zero() { |
595 | r2 = r2.mul(-T::one()); |
596 | dot = -dot; |
597 | } |
598 | |
599 | // For robustness, stay within the domain of acos. |
600 | dot = Real::min(dot, one); |
601 | |
602 | // Angle between r1 and the result. |
603 | let theta = Real::acos(dot) * t; |
604 | |
605 | // r1 and r3 form an orthonormal basis. |
606 | let r3 = r2.sub(r1.mul(dot)).normalize(); |
607 | let (sin, cos) = Real::sin_cos(theta); |
608 | r1.mul(cos).add(r3.mul(sin)) |
609 | } |
610 | |
611 | /// Basic Linear interpolation between this rotation and another rotation. |
612 | #[inline ] |
613 | pub fn lerp(&self, other: &Self, t: T) -> Self { |
614 | let one_t = T::one() - t; |
615 | self.mul(one_t).add(other.mul(t)).normalize() |
616 | } |
617 | |
618 | /// Returns the given 3d point transformed by this rotation. |
619 | /// |
620 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
621 | pub fn transform_point3d(&self, point: Point3D<T, Src>) -> Point3D<T, Dst> |
622 | where |
623 | T: ApproxEq<T>, |
624 | { |
625 | debug_assert!(self.is_normalized()); |
626 | |
627 | let two = T::one() + T::one(); |
628 | let cross = self.vector_part().cross(point.to_vector().to_untyped()) * two; |
629 | |
630 | point3( |
631 | point.x + self.r * cross.x + self.j * cross.z - self.k * cross.y, |
632 | point.y + self.r * cross.y + self.k * cross.x - self.i * cross.z, |
633 | point.z + self.r * cross.z + self.i * cross.y - self.j * cross.x, |
634 | ) |
635 | } |
636 | |
637 | /// Returns the given 2d point transformed by this rotation then projected on the xy plane. |
638 | /// |
639 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
640 | #[inline ] |
641 | pub fn transform_point2d(&self, point: Point2D<T, Src>) -> Point2D<T, Dst> |
642 | where |
643 | T: ApproxEq<T>, |
644 | { |
645 | self.transform_point3d(point.to_3d()).xy() |
646 | } |
647 | |
648 | /// Returns the given 3d vector transformed by this rotation. |
649 | /// |
650 | /// The input vector must be use the unit Src, and the returned point has the unit Dst. |
651 | #[inline ] |
652 | pub fn transform_vector3d(&self, vector: Vector3D<T, Src>) -> Vector3D<T, Dst> |
653 | where |
654 | T: ApproxEq<T>, |
655 | { |
656 | self.transform_point3d(vector.to_point()).to_vector() |
657 | } |
658 | |
659 | /// Returns the given 2d vector transformed by this rotation then projected on the xy plane. |
660 | /// |
661 | /// The input vector must be use the unit Src, and the returned point has the unit Dst. |
662 | #[inline ] |
663 | pub fn transform_vector2d(&self, vector: Vector2D<T, Src>) -> Vector2D<T, Dst> |
664 | where |
665 | T: ApproxEq<T>, |
666 | { |
667 | self.transform_vector3d(vector.to_3d()).xy() |
668 | } |
669 | |
670 | /// Returns the matrix representation of this rotation. |
671 | #[inline ] |
672 | #[rustfmt::skip] |
673 | pub fn to_transform(&self) -> Transform3D<T, Src, Dst> |
674 | where |
675 | T: ApproxEq<T>, |
676 | { |
677 | debug_assert!(self.is_normalized()); |
678 | |
679 | let i2 = self.i + self.i; |
680 | let j2 = self.j + self.j; |
681 | let k2 = self.k + self.k; |
682 | let ii = self.i * i2; |
683 | let ij = self.i * j2; |
684 | let ik = self.i * k2; |
685 | let jj = self.j * j2; |
686 | let jk = self.j * k2; |
687 | let kk = self.k * k2; |
688 | let ri = self.r * i2; |
689 | let rj = self.r * j2; |
690 | let rk = self.r * k2; |
691 | |
692 | let one = T::one(); |
693 | let zero = T::zero(); |
694 | |
695 | let m11 = one - (jj + kk); |
696 | let m12 = ij + rk; |
697 | let m13 = ik - rj; |
698 | |
699 | let m21 = ij - rk; |
700 | let m22 = one - (ii + kk); |
701 | let m23 = jk + ri; |
702 | |
703 | let m31 = ik + rj; |
704 | let m32 = jk - ri; |
705 | let m33 = one - (ii + jj); |
706 | |
707 | Transform3D::new( |
708 | m11, m12, m13, zero, |
709 | m21, m22, m23, zero, |
710 | m31, m32, m33, zero, |
711 | zero, zero, zero, one, |
712 | ) |
713 | } |
714 | |
715 | /// Returns a rotation representing this rotation followed by the other rotation. |
716 | #[inline ] |
717 | pub fn then<NewDst>(&self, other: &Rotation3D<T, Dst, NewDst>) -> Rotation3D<T, Src, NewDst> |
718 | where |
719 | T: ApproxEq<T>, |
720 | { |
721 | debug_assert!(self.is_normalized()); |
722 | Rotation3D::quaternion( |
723 | other.i * self.r + other.r * self.i + other.j * self.k - other.k * self.j, |
724 | other.j * self.r + other.r * self.j + other.k * self.i - other.i * self.k, |
725 | other.k * self.r + other.r * self.k + other.i * self.j - other.j * self.i, |
726 | other.r * self.r - other.i * self.i - other.j * self.j - other.k * self.k, |
727 | ) |
728 | } |
729 | |
730 | // add, sub and mul are used internally for intermediate computation but aren't public |
731 | // because they don't carry real semantic meanings (I think?). |
732 | |
733 | #[inline ] |
734 | fn add(&self, other: Self) -> Self { |
735 | Self::quaternion( |
736 | self.i + other.i, |
737 | self.j + other.j, |
738 | self.k + other.k, |
739 | self.r + other.r, |
740 | ) |
741 | } |
742 | |
743 | #[inline ] |
744 | fn sub(&self, other: Self) -> Self { |
745 | Self::quaternion( |
746 | self.i - other.i, |
747 | self.j - other.j, |
748 | self.k - other.k, |
749 | self.r - other.r, |
750 | ) |
751 | } |
752 | |
753 | #[inline ] |
754 | fn mul(&self, factor: T) -> Self { |
755 | Self::quaternion( |
756 | self.i * factor, |
757 | self.j * factor, |
758 | self.k * factor, |
759 | self.r * factor, |
760 | ) |
761 | } |
762 | } |
763 | |
764 | impl<T: fmt::Debug, Src, Dst> fmt::Debug for Rotation3D<T, Src, Dst> { |
765 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
766 | write!( |
767 | f, |
768 | "Quat( {:?}*i + {:?}*j + {:?}*k + {:?})" , |
769 | self.i, self.j, self.k, self.r |
770 | ) |
771 | } |
772 | } |
773 | |
774 | impl<T, Src, Dst> ApproxEq<T> for Rotation3D<T, Src, Dst> |
775 | where |
776 | T: Copy + Neg<Output = T> + ApproxEq<T>, |
777 | { |
778 | fn approx_epsilon() -> T { |
779 | T::approx_epsilon() |
780 | } |
781 | |
782 | fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { |
783 | (self.i.approx_eq_eps(&other.i, approx_epsilon:eps) |
784 | && self.j.approx_eq_eps(&other.j, approx_epsilon:eps) |
785 | && self.k.approx_eq_eps(&other.k, approx_epsilon:eps) |
786 | && self.r.approx_eq_eps(&other.r, approx_epsilon:eps)) |
787 | || (self.i.approx_eq_eps(&-other.i, approx_epsilon:eps) |
788 | && self.j.approx_eq_eps(&-other.j, approx_epsilon:eps) |
789 | && self.k.approx_eq_eps(&-other.k, approx_epsilon:eps) |
790 | && self.r.approx_eq_eps(&-other.r, approx_epsilon:eps)) |
791 | } |
792 | } |
793 | |
794 | #[test ] |
795 | fn simple_rotation_2d() { |
796 | use crate::default::Rotation2D; |
797 | use core::f32::consts::{FRAC_PI_2, PI}; |
798 | |
799 | let ri = Rotation2D::identity(); |
800 | let r90 = Rotation2D::radians(FRAC_PI_2); |
801 | let rm90 = Rotation2D::radians(-FRAC_PI_2); |
802 | let r180 = Rotation2D::radians(PI); |
803 | |
804 | assert!(ri |
805 | .transform_point(point2(1.0, 2.0)) |
806 | .approx_eq(&point2(1.0, 2.0))); |
807 | assert!(r90 |
808 | .transform_point(point2(1.0, 2.0)) |
809 | .approx_eq(&point2(-2.0, 1.0))); |
810 | assert!(rm90 |
811 | .transform_point(point2(1.0, 2.0)) |
812 | .approx_eq(&point2(2.0, -1.0))); |
813 | assert!(r180 |
814 | .transform_point(point2(1.0, 2.0)) |
815 | .approx_eq(&point2(-1.0, -2.0))); |
816 | |
817 | assert!(r90 |
818 | .inverse() |
819 | .inverse() |
820 | .transform_point(point2(1.0, 2.0)) |
821 | .approx_eq(&r90.transform_point(point2(1.0, 2.0)))); |
822 | } |
823 | |
824 | #[test ] |
825 | fn simple_rotation_3d_in_2d() { |
826 | use crate::default::Rotation3D; |
827 | use core::f32::consts::{FRAC_PI_2, PI}; |
828 | |
829 | let ri = Rotation3D::identity(); |
830 | let r90 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); |
831 | let rm90 = Rotation3D::around_z(Angle::radians(-FRAC_PI_2)); |
832 | let r180 = Rotation3D::around_z(Angle::radians(PI)); |
833 | |
834 | assert!(ri |
835 | .transform_point2d(point2(1.0, 2.0)) |
836 | .approx_eq(&point2(1.0, 2.0))); |
837 | assert!(r90 |
838 | .transform_point2d(point2(1.0, 2.0)) |
839 | .approx_eq(&point2(-2.0, 1.0))); |
840 | assert!(rm90 |
841 | .transform_point2d(point2(1.0, 2.0)) |
842 | .approx_eq(&point2(2.0, -1.0))); |
843 | assert!(r180 |
844 | .transform_point2d(point2(1.0, 2.0)) |
845 | .approx_eq(&point2(-1.0, -2.0))); |
846 | |
847 | assert!(r90 |
848 | .inverse() |
849 | .inverse() |
850 | .transform_point2d(point2(1.0, 2.0)) |
851 | .approx_eq(&r90.transform_point2d(point2(1.0, 2.0)))); |
852 | } |
853 | |
854 | #[test ] |
855 | fn pre_post() { |
856 | use crate::default::Rotation3D; |
857 | use core::f32::consts::FRAC_PI_2; |
858 | |
859 | let r1 = Rotation3D::around_x(Angle::radians(FRAC_PI_2)); |
860 | let r2 = Rotation3D::around_y(Angle::radians(FRAC_PI_2)); |
861 | let r3 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); |
862 | |
863 | let t1 = r1.to_transform(); |
864 | let t2 = r2.to_transform(); |
865 | let t3 = r3.to_transform(); |
866 | |
867 | let p = point3(1.0, 2.0, 3.0); |
868 | |
869 | // Check that the order of transformations is correct (corresponds to what |
870 | // we do in Transform3D). |
871 | let p1 = r1.then(&r2).then(&r3).transform_point3d(p); |
872 | let p2 = t1.then(&t2).then(&t3).transform_point3d(p); |
873 | |
874 | assert!(p1.approx_eq(&p2.unwrap())); |
875 | |
876 | // Check that changing the order indeed matters. |
877 | let p3 = t3.then(&t1).then(&t2).transform_point3d(p); |
878 | assert!(!p1.approx_eq(&p3.unwrap())); |
879 | } |
880 | |
881 | #[test ] |
882 | fn to_transform3d() { |
883 | use crate::default::Rotation3D; |
884 | |
885 | use core::f32::consts::{FRAC_PI_2, PI}; |
886 | let rotations = [ |
887 | Rotation3D::identity(), |
888 | Rotation3D::around_x(Angle::radians(FRAC_PI_2)), |
889 | Rotation3D::around_x(Angle::radians(-FRAC_PI_2)), |
890 | Rotation3D::around_x(Angle::radians(PI)), |
891 | Rotation3D::around_y(Angle::radians(FRAC_PI_2)), |
892 | Rotation3D::around_y(Angle::radians(-FRAC_PI_2)), |
893 | Rotation3D::around_y(Angle::radians(PI)), |
894 | Rotation3D::around_z(Angle::radians(FRAC_PI_2)), |
895 | Rotation3D::around_z(Angle::radians(-FRAC_PI_2)), |
896 | Rotation3D::around_z(Angle::radians(PI)), |
897 | ]; |
898 | |
899 | let points = [ |
900 | point3(0.0, 0.0, 0.0), |
901 | point3(1.0, 2.0, 3.0), |
902 | point3(-5.0, 3.0, -1.0), |
903 | point3(-0.5, -1.0, 1.5), |
904 | ]; |
905 | |
906 | for rotation in &rotations { |
907 | for &point in &points { |
908 | let p1 = rotation.transform_point3d(point); |
909 | let p2 = rotation.to_transform().transform_point3d(point); |
910 | assert!(p1.approx_eq(&p2.unwrap())); |
911 | } |
912 | } |
913 | } |
914 | |
915 | #[test ] |
916 | fn slerp() { |
917 | use crate::default::Rotation3D; |
918 | |
919 | let q1 = Rotation3D::quaternion(1.0, 0.0, 0.0, 0.0); |
920 | let q2 = Rotation3D::quaternion(0.0, 1.0, 0.0, 0.0); |
921 | let q3 = Rotation3D::quaternion(0.0, 0.0, -1.0, 0.0); |
922 | |
923 | // The values below can be obtained with a python program: |
924 | // import numpy |
925 | // import quaternion |
926 | // q1 = numpy.quaternion(1, 0, 0, 0) |
927 | // q2 = numpy.quaternion(0, 1, 0, 0) |
928 | // quaternion.slerp_evaluate(q1, q2, 0.2) |
929 | |
930 | assert!(q1.slerp(&q2, 0.0).approx_eq(&q1)); |
931 | assert!(q1.slerp(&q2, 0.2).approx_eq(&Rotation3D::quaternion( |
932 | 0.951056516295154, |
933 | 0.309016994374947, |
934 | 0.0, |
935 | 0.0 |
936 | ))); |
937 | assert!(q1.slerp(&q2, 0.4).approx_eq(&Rotation3D::quaternion( |
938 | 0.809016994374947, |
939 | 0.587785252292473, |
940 | 0.0, |
941 | 0.0 |
942 | ))); |
943 | assert!(q1.slerp(&q2, 0.6).approx_eq(&Rotation3D::quaternion( |
944 | 0.587785252292473, |
945 | 0.809016994374947, |
946 | 0.0, |
947 | 0.0 |
948 | ))); |
949 | assert!(q1.slerp(&q2, 0.8).approx_eq(&Rotation3D::quaternion( |
950 | 0.309016994374947, |
951 | 0.951056516295154, |
952 | 0.0, |
953 | 0.0 |
954 | ))); |
955 | assert!(q1.slerp(&q2, 1.0).approx_eq(&q2)); |
956 | |
957 | assert!(q1.slerp(&q3, 0.0).approx_eq(&q1)); |
958 | assert!(q1.slerp(&q3, 0.2).approx_eq(&Rotation3D::quaternion( |
959 | 0.951056516295154, |
960 | 0.0, |
961 | -0.309016994374947, |
962 | 0.0 |
963 | ))); |
964 | assert!(q1.slerp(&q3, 0.4).approx_eq(&Rotation3D::quaternion( |
965 | 0.809016994374947, |
966 | 0.0, |
967 | -0.587785252292473, |
968 | 0.0 |
969 | ))); |
970 | assert!(q1.slerp(&q3, 0.6).approx_eq(&Rotation3D::quaternion( |
971 | 0.587785252292473, |
972 | 0.0, |
973 | -0.809016994374947, |
974 | 0.0 |
975 | ))); |
976 | assert!(q1.slerp(&q3, 0.8).approx_eq(&Rotation3D::quaternion( |
977 | 0.309016994374947, |
978 | 0.0, |
979 | -0.951056516295154, |
980 | 0.0 |
981 | ))); |
982 | assert!(q1.slerp(&q3, 1.0).approx_eq(&q3)); |
983 | } |
984 | |
985 | #[test ] |
986 | fn around_axis() { |
987 | use crate::default::Rotation3D; |
988 | use core::f32::consts::{FRAC_PI_2, PI}; |
989 | |
990 | // Two sort of trivial cases: |
991 | let r1 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(PI)); |
992 | let r2 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(FRAC_PI_2)); |
993 | assert!(r1 |
994 | .transform_point3d(point3(1.0, 2.0, 0.0)) |
995 | .approx_eq(&point3(2.0, 1.0, 0.0))); |
996 | assert!(r2 |
997 | .transform_point3d(point3(1.0, 0.0, 0.0)) |
998 | .approx_eq(&point3(0.5, 0.5, -0.5.sqrt()))); |
999 | |
1000 | // A more arbitrary test (made up with numpy): |
1001 | let r3 = Rotation3D::around_axis(vec3(0.5, 1.0, 2.0), Angle::radians(2.291288)); |
1002 | assert!(r3 |
1003 | .transform_point3d(point3(1.0, 0.0, 0.0)) |
1004 | .approx_eq(&point3(-0.58071821, 0.81401868, -0.01182979))); |
1005 | } |
1006 | |
1007 | #[test ] |
1008 | fn from_euler() { |
1009 | use crate::default::Rotation3D; |
1010 | use core::f32::consts::FRAC_PI_2; |
1011 | |
1012 | // First test simple separate yaw pitch and roll rotations, because it is easy to come |
1013 | // up with the corresponding quaternion. |
1014 | // Since several quaternions can represent the same transformation we compare the result |
1015 | // of transforming a point rather than the values of each quaternions. |
1016 | let p = point3(1.0, 2.0, 3.0); |
1017 | |
1018 | let angle = Angle::radians(FRAC_PI_2); |
1019 | let zero = Angle::radians(0.0); |
1020 | |
1021 | // roll |
1022 | let roll_re = Rotation3D::euler(angle, zero, zero); |
1023 | let roll_rq = Rotation3D::around_x(angle); |
1024 | let roll_pe = roll_re.transform_point3d(p); |
1025 | let roll_pq = roll_rq.transform_point3d(p); |
1026 | |
1027 | // pitch |
1028 | let pitch_re = Rotation3D::euler(zero, angle, zero); |
1029 | let pitch_rq = Rotation3D::around_y(angle); |
1030 | let pitch_pe = pitch_re.transform_point3d(p); |
1031 | let pitch_pq = pitch_rq.transform_point3d(p); |
1032 | |
1033 | // yaw |
1034 | let yaw_re = Rotation3D::euler(zero, zero, angle); |
1035 | let yaw_rq = Rotation3D::around_z(angle); |
1036 | let yaw_pe = yaw_re.transform_point3d(p); |
1037 | let yaw_pq = yaw_rq.transform_point3d(p); |
1038 | |
1039 | assert!(roll_pe.approx_eq(&roll_pq)); |
1040 | assert!(pitch_pe.approx_eq(&pitch_pq)); |
1041 | assert!(yaw_pe.approx_eq(&yaw_pq)); |
1042 | |
1043 | // Now check that the yaw pitch and roll transformations when combined are applied in |
1044 | // the proper order: roll -> pitch -> yaw. |
1045 | let ypr_e = Rotation3D::euler(angle, angle, angle); |
1046 | let ypr_q = roll_rq.then(&pitch_rq).then(&yaw_rq); |
1047 | let ypr_pe = ypr_e.transform_point3d(p); |
1048 | let ypr_pq = ypr_q.transform_point3d(p); |
1049 | |
1050 | assert!(ypr_pe.approx_eq(&ypr_pq)); |
1051 | } |
1052 | |