| 1 | // Copyright 2013 The Servo Project Developers. See the COPYRIGHT |
| 2 | // file at the top-level directory of this distribution. |
| 3 | // |
| 4 | // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| 5 | // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| 6 | // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| 7 | // option. This file may not be copied, modified, or distributed |
| 8 | // except according to those terms. |
| 9 | |
| 10 | use crate::approxeq::ApproxEq; |
| 11 | use crate::trig::Trig; |
| 12 | use crate::{point2, point3, vec3, Angle, Point2D, Point3D, Vector2D, Vector3D}; |
| 13 | use crate::{Transform2D, Transform3D, UnknownUnit}; |
| 14 | |
| 15 | use core::cmp::{Eq, PartialEq}; |
| 16 | use core::fmt; |
| 17 | use core::hash::Hash; |
| 18 | use core::marker::PhantomData; |
| 19 | use core::ops::{Add, Mul, Neg, Sub}; |
| 20 | |
| 21 | #[cfg (feature = "bytemuck" )] |
| 22 | use bytemuck::{Pod, Zeroable}; |
| 23 | use num_traits::real::Real; |
| 24 | use num_traits::{NumCast, One, Zero}; |
| 25 | #[cfg (feature = "serde" )] |
| 26 | use serde::{Deserialize, Serialize}; |
| 27 | |
| 28 | /// A transform that can represent rotations in 2d, represented as an angle in radians. |
| 29 | #[repr (C)] |
| 30 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 31 | #[cfg_attr ( |
| 32 | feature = "serde" , |
| 33 | serde(bound( |
| 34 | serialize = "T: serde::Serialize" , |
| 35 | deserialize = "T: serde::Deserialize<'de>" |
| 36 | )) |
| 37 | )] |
| 38 | pub struct Rotation2D<T, Src, Dst> { |
| 39 | /// Angle in radians |
| 40 | pub angle: T, |
| 41 | #[doc (hidden)] |
| 42 | pub _unit: PhantomData<(Src, Dst)>, |
| 43 | } |
| 44 | |
| 45 | impl<T: Copy, Src, Dst> Copy for Rotation2D<T, Src, Dst> {} |
| 46 | |
| 47 | impl<T: Clone, Src, Dst> Clone for Rotation2D<T, Src, Dst> { |
| 48 | fn clone(&self) -> Self { |
| 49 | Rotation2D { |
| 50 | angle: self.angle.clone(), |
| 51 | _unit: PhantomData, |
| 52 | } |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | impl<T, Src, Dst> Eq for Rotation2D<T, Src, Dst> where T: Eq {} |
| 57 | |
| 58 | impl<T, Src, Dst> PartialEq for Rotation2D<T, Src, Dst> |
| 59 | where |
| 60 | T: PartialEq, |
| 61 | { |
| 62 | fn eq(&self, other: &Self) -> bool { |
| 63 | self.angle == other.angle |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | impl<T, Src, Dst> Hash for Rotation2D<T, Src, Dst> |
| 68 | where |
| 69 | T: Hash, |
| 70 | { |
| 71 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
| 72 | self.angle.hash(state:h); |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | #[cfg (feature = "arbitrary" )] |
| 77 | impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Rotation2D<T, Src, Dst> |
| 78 | where |
| 79 | T: arbitrary::Arbitrary<'a>, |
| 80 | { |
| 81 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 82 | Ok(Rotation2D::new(arbitrary::Arbitrary::arbitrary(u)?)) |
| 83 | } |
| 84 | } |
| 85 | |
| 86 | #[cfg (feature = "bytemuck" )] |
| 87 | unsafe impl<T: Zeroable, Src, Dst> Zeroable for Rotation2D<T, Src, Dst> {} |
| 88 | |
| 89 | #[cfg (feature = "bytemuck" )] |
| 90 | unsafe impl<T: Pod, Src: 'static, Dst: 'static> Pod for Rotation2D<T, Src, Dst> {} |
| 91 | |
| 92 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> { |
| 93 | /// Creates a rotation from an angle in radians. |
| 94 | #[inline ] |
| 95 | pub fn new(angle: Angle<T>) -> Self { |
| 96 | Rotation2D { |
| 97 | angle: angle.radians, |
| 98 | _unit: PhantomData, |
| 99 | } |
| 100 | } |
| 101 | |
| 102 | /// Creates a rotation from an angle in radians. |
| 103 | pub fn radians(angle: T) -> Self { |
| 104 | Self::new(Angle::radians(angle)) |
| 105 | } |
| 106 | |
| 107 | /// Creates the identity rotation. |
| 108 | #[inline ] |
| 109 | pub fn identity() -> Self |
| 110 | where |
| 111 | T: Zero, |
| 112 | { |
| 113 | Self::radians(T::zero()) |
| 114 | } |
| 115 | } |
| 116 | |
| 117 | impl<T: Copy, Src, Dst> Rotation2D<T, Src, Dst> { |
| 118 | /// Cast the unit, preserving the numeric value. |
| 119 | /// |
| 120 | /// # Example |
| 121 | /// |
| 122 | /// ```rust |
| 123 | /// # use euclid::Rotation2D; |
| 124 | /// enum Local {} |
| 125 | /// enum World {} |
| 126 | /// |
| 127 | /// enum Local2 {} |
| 128 | /// enum World2 {} |
| 129 | /// |
| 130 | /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); |
| 131 | /// |
| 132 | /// assert_eq!(to_world.angle, to_world.cast_unit::<Local2, World2>().angle); |
| 133 | /// ``` |
| 134 | #[inline ] |
| 135 | pub fn cast_unit<Src2, Dst2>(&self) -> Rotation2D<T, Src2, Dst2> { |
| 136 | Rotation2D { |
| 137 | angle: self.angle, |
| 138 | _unit: PhantomData, |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | /// Drop the units, preserving only the numeric value. |
| 143 | /// |
| 144 | /// # Example |
| 145 | /// |
| 146 | /// ```rust |
| 147 | /// # use euclid::Rotation2D; |
| 148 | /// enum Local {} |
| 149 | /// enum World {} |
| 150 | /// |
| 151 | /// let to_world: Rotation2D<_, Local, World> = Rotation2D::radians(42); |
| 152 | /// |
| 153 | /// assert_eq!(to_world.angle, to_world.to_untyped().angle); |
| 154 | /// ``` |
| 155 | #[inline ] |
| 156 | pub fn to_untyped(&self) -> Rotation2D<T, UnknownUnit, UnknownUnit> { |
| 157 | self.cast_unit() |
| 158 | } |
| 159 | |
| 160 | /// Tag a unitless value with units. |
| 161 | /// |
| 162 | /// # Example |
| 163 | /// |
| 164 | /// ```rust |
| 165 | /// # use euclid::Rotation2D; |
| 166 | /// use euclid::UnknownUnit; |
| 167 | /// enum Local {} |
| 168 | /// enum World {} |
| 169 | /// |
| 170 | /// let rot: Rotation2D<_, UnknownUnit, UnknownUnit> = Rotation2D::radians(42); |
| 171 | /// |
| 172 | /// assert_eq!(rot.angle, Rotation2D::<_, Local, World>::from_untyped(&rot).angle); |
| 173 | /// ``` |
| 174 | #[inline ] |
| 175 | pub fn from_untyped(r: &Rotation2D<T, UnknownUnit, UnknownUnit>) -> Self { |
| 176 | r.cast_unit() |
| 177 | } |
| 178 | } |
| 179 | |
| 180 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> |
| 181 | where |
| 182 | T: Copy, |
| 183 | { |
| 184 | /// Returns self.angle as a strongly typed `Angle<T>`. |
| 185 | pub fn get_angle(&self) -> Angle<T> { |
| 186 | Angle::radians(self.angle) |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | impl<T: Real, Src, Dst> Rotation2D<T, Src, Dst> { |
| 191 | /// Creates a 3d rotation (around the z axis) from this 2d rotation. |
| 192 | #[inline ] |
| 193 | pub fn to_3d(&self) -> Rotation3D<T, Src, Dst> { |
| 194 | Rotation3D::around_z(self.get_angle()) |
| 195 | } |
| 196 | |
| 197 | /// Returns the inverse of this rotation. |
| 198 | #[inline ] |
| 199 | pub fn inverse(&self) -> Rotation2D<T, Dst, Src> { |
| 200 | Rotation2D::radians(-self.angle) |
| 201 | } |
| 202 | |
| 203 | /// Returns a rotation representing the other rotation followed by this rotation. |
| 204 | #[inline ] |
| 205 | pub fn then<NewSrc>(&self, other: &Rotation2D<T, NewSrc, Src>) -> Rotation2D<T, NewSrc, Dst> { |
| 206 | Rotation2D::radians(self.angle + other.angle) |
| 207 | } |
| 208 | |
| 209 | /// Returns the given 2d point transformed by this rotation. |
| 210 | /// |
| 211 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
| 212 | #[inline ] |
| 213 | pub fn transform_point(&self, point: Point2D<T, Src>) -> Point2D<T, Dst> { |
| 214 | let (sin, cos) = Real::sin_cos(self.angle); |
| 215 | point2(point.x * cos - point.y * sin, point.y * cos + point.x * sin) |
| 216 | } |
| 217 | |
| 218 | /// Returns the given 2d vector transformed by this rotation. |
| 219 | /// |
| 220 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
| 221 | #[inline ] |
| 222 | pub fn transform_vector(&self, vector: Vector2D<T, Src>) -> Vector2D<T, Dst> { |
| 223 | self.transform_point(vector.to_point()).to_vector() |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | impl<T, Src, Dst> Rotation2D<T, Src, Dst> |
| 228 | where |
| 229 | T: Copy + Add<Output = T> + Sub<Output = T> + Mul<Output = T> + Zero + Trig, |
| 230 | { |
| 231 | /// Returns the matrix representation of this rotation. |
| 232 | #[inline ] |
| 233 | pub fn to_transform(&self) -> Transform2D<T, Src, Dst> { |
| 234 | Transform2D::rotation(self.get_angle()) |
| 235 | } |
| 236 | } |
| 237 | |
| 238 | impl<T: fmt::Debug, Src, Dst> fmt::Debug for Rotation2D<T, Src, Dst> { |
| 239 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 240 | write!(f, "Rotation( {:?} rad)" , self.angle) |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | impl<T, Src, Dst> ApproxEq<T> for Rotation2D<T, Src, Dst> |
| 245 | where |
| 246 | T: Copy + Neg<Output = T> + ApproxEq<T>, |
| 247 | { |
| 248 | fn approx_epsilon() -> T { |
| 249 | T::approx_epsilon() |
| 250 | } |
| 251 | |
| 252 | fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { |
| 253 | self.angle.approx_eq_eps(&other.angle, approx_epsilon:eps) |
| 254 | } |
| 255 | } |
| 256 | |
| 257 | /// A transform that can represent rotations in 3d, represented as a quaternion. |
| 258 | /// |
| 259 | /// Most methods expect the quaternion to be normalized. |
| 260 | /// When in doubt, use [`unit_quaternion`] instead of [`quaternion`] to create |
| 261 | /// a rotation as the former will ensure that its result is normalized. |
| 262 | /// |
| 263 | /// Some people use the `x, y, z, w` (or `w, x, y, z`) notations. The equivalence is |
| 264 | /// as follows: `x -> i`, `y -> j`, `z -> k`, `w -> r`. |
| 265 | /// The memory layout of this type corresponds to the `x, y, z, w` notation |
| 266 | /// |
| 267 | /// [`quaternion`]: Self::quaternion |
| 268 | /// [`unit_quaternion`]: Self::unit_quaternion |
| 269 | #[repr (C)] |
| 270 | #[cfg_attr (feature = "serde" , derive(Serialize, Deserialize))] |
| 271 | #[cfg_attr ( |
| 272 | feature = "serde" , |
| 273 | serde(bound( |
| 274 | serialize = "T: serde::Serialize" , |
| 275 | deserialize = "T: serde::Deserialize<'de>" |
| 276 | )) |
| 277 | )] |
| 278 | pub struct Rotation3D<T, Src, Dst> { |
| 279 | /// Component multiplied by the imaginary number `i`. |
| 280 | pub i: T, |
| 281 | /// Component multiplied by the imaginary number `j`. |
| 282 | pub j: T, |
| 283 | /// Component multiplied by the imaginary number `k`. |
| 284 | pub k: T, |
| 285 | /// The real part. |
| 286 | pub r: T, |
| 287 | #[doc (hidden)] |
| 288 | pub _unit: PhantomData<(Src, Dst)>, |
| 289 | } |
| 290 | |
| 291 | impl<T: Copy, Src, Dst> Copy for Rotation3D<T, Src, Dst> {} |
| 292 | |
| 293 | impl<T: Clone, Src, Dst> Clone for Rotation3D<T, Src, Dst> { |
| 294 | fn clone(&self) -> Self { |
| 295 | Rotation3D { |
| 296 | i: self.i.clone(), |
| 297 | j: self.j.clone(), |
| 298 | k: self.k.clone(), |
| 299 | r: self.r.clone(), |
| 300 | _unit: PhantomData, |
| 301 | } |
| 302 | } |
| 303 | } |
| 304 | |
| 305 | impl<T, Src, Dst> Eq for Rotation3D<T, Src, Dst> where T: Eq {} |
| 306 | |
| 307 | impl<T, Src, Dst> PartialEq for Rotation3D<T, Src, Dst> |
| 308 | where |
| 309 | T: PartialEq, |
| 310 | { |
| 311 | fn eq(&self, other: &Self) -> bool { |
| 312 | self.i == other.i && self.j == other.j && self.k == other.k && self.r == other.r |
| 313 | } |
| 314 | } |
| 315 | |
| 316 | impl<T, Src, Dst> Hash for Rotation3D<T, Src, Dst> |
| 317 | where |
| 318 | T: Hash, |
| 319 | { |
| 320 | fn hash<H: core::hash::Hasher>(&self, h: &mut H) { |
| 321 | self.i.hash(state:h); |
| 322 | self.j.hash(state:h); |
| 323 | self.k.hash(state:h); |
| 324 | self.r.hash(state:h); |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | /// Note: the quaternions produced by this implementation are not normalized |
| 329 | /// (nor even necessarily finite). That is, this is not appropriate to use to |
| 330 | /// choose an actual “arbitrary rotation”, at least not without postprocessing. |
| 331 | #[cfg (feature = "arbitrary" )] |
| 332 | impl<'a, T, Src, Dst> arbitrary::Arbitrary<'a> for Rotation3D<T, Src, Dst> |
| 333 | where |
| 334 | T: arbitrary::Arbitrary<'a>, |
| 335 | { |
| 336 | fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { |
| 337 | let (i, j, k, r) = arbitrary::Arbitrary::arbitrary(u)?; |
| 338 | Ok(Rotation3D::quaternion(i, j, k, r)) |
| 339 | } |
| 340 | } |
| 341 | |
| 342 | #[cfg (feature = "bytemuck" )] |
| 343 | unsafe impl<T: Zeroable, Src, Dst> Zeroable for Rotation3D<T, Src, Dst> {} |
| 344 | |
| 345 | #[cfg (feature = "bytemuck" )] |
| 346 | unsafe impl<T: Pod, Src: 'static, Dst: 'static> Pod for Rotation3D<T, Src, Dst> {} |
| 347 | |
| 348 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> { |
| 349 | /// Creates a rotation around from a quaternion representation. |
| 350 | /// |
| 351 | /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` |
| 352 | /// where `a`, `b` and `c` describe the vector part and the last parameter `r` is |
| 353 | /// the real part. |
| 354 | /// |
| 355 | /// The resulting quaternion is not necessarily normalized. See [`unit_quaternion`]. |
| 356 | /// |
| 357 | /// [`unit_quaternion`]: Self::unit_quaternion |
| 358 | #[inline ] |
| 359 | pub fn quaternion(a: T, b: T, c: T, r: T) -> Self { |
| 360 | Rotation3D { |
| 361 | i: a, |
| 362 | j: b, |
| 363 | k: c, |
| 364 | r, |
| 365 | _unit: PhantomData, |
| 366 | } |
| 367 | } |
| 368 | |
| 369 | /// Creates the identity rotation. |
| 370 | #[inline ] |
| 371 | pub fn identity() -> Self |
| 372 | where |
| 373 | T: Zero + One, |
| 374 | { |
| 375 | Self::quaternion(T::zero(), T::zero(), T::zero(), T::one()) |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> |
| 380 | where |
| 381 | T: Copy, |
| 382 | { |
| 383 | /// Returns the vector part (i, j, k) of this quaternion. |
| 384 | #[inline ] |
| 385 | pub fn vector_part(&self) -> Vector3D<T, UnknownUnit> { |
| 386 | vec3(self.i, self.j, self.k) |
| 387 | } |
| 388 | |
| 389 | /// Cast the unit, preserving the numeric value. |
| 390 | /// |
| 391 | /// # Example |
| 392 | /// |
| 393 | /// ```rust |
| 394 | /// # use euclid::Rotation3D; |
| 395 | /// enum Local {} |
| 396 | /// enum World {} |
| 397 | /// |
| 398 | /// enum Local2 {} |
| 399 | /// enum World2 {} |
| 400 | /// |
| 401 | /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); |
| 402 | /// |
| 403 | /// assert_eq!(to_world.i, to_world.cast_unit::<Local2, World2>().i); |
| 404 | /// assert_eq!(to_world.j, to_world.cast_unit::<Local2, World2>().j); |
| 405 | /// assert_eq!(to_world.k, to_world.cast_unit::<Local2, World2>().k); |
| 406 | /// assert_eq!(to_world.r, to_world.cast_unit::<Local2, World2>().r); |
| 407 | /// ``` |
| 408 | #[inline ] |
| 409 | pub fn cast_unit<Src2, Dst2>(&self) -> Rotation3D<T, Src2, Dst2> { |
| 410 | Rotation3D { |
| 411 | i: self.i, |
| 412 | j: self.j, |
| 413 | k: self.k, |
| 414 | r: self.r, |
| 415 | _unit: PhantomData, |
| 416 | } |
| 417 | } |
| 418 | |
| 419 | /// Drop the units, preserving only the numeric value. |
| 420 | /// |
| 421 | /// # Example |
| 422 | /// |
| 423 | /// ```rust |
| 424 | /// # use euclid::Rotation3D; |
| 425 | /// enum Local {} |
| 426 | /// enum World {} |
| 427 | /// |
| 428 | /// let to_world: Rotation3D<_, Local, World> = Rotation3D::quaternion(1, 2, 3, 4); |
| 429 | /// |
| 430 | /// assert_eq!(to_world.i, to_world.to_untyped().i); |
| 431 | /// assert_eq!(to_world.j, to_world.to_untyped().j); |
| 432 | /// assert_eq!(to_world.k, to_world.to_untyped().k); |
| 433 | /// assert_eq!(to_world.r, to_world.to_untyped().r); |
| 434 | /// ``` |
| 435 | #[inline ] |
| 436 | pub fn to_untyped(&self) -> Rotation3D<T, UnknownUnit, UnknownUnit> { |
| 437 | self.cast_unit() |
| 438 | } |
| 439 | |
| 440 | /// Tag a unitless value with units. |
| 441 | /// |
| 442 | /// # Example |
| 443 | /// |
| 444 | /// ```rust |
| 445 | /// # use euclid::Rotation3D; |
| 446 | /// use euclid::UnknownUnit; |
| 447 | /// enum Local {} |
| 448 | /// enum World {} |
| 449 | /// |
| 450 | /// let rot: Rotation3D<_, UnknownUnit, UnknownUnit> = Rotation3D::quaternion(1, 2, 3, 4); |
| 451 | /// |
| 452 | /// assert_eq!(rot.i, Rotation3D::<_, Local, World>::from_untyped(&rot).i); |
| 453 | /// assert_eq!(rot.j, Rotation3D::<_, Local, World>::from_untyped(&rot).j); |
| 454 | /// assert_eq!(rot.k, Rotation3D::<_, Local, World>::from_untyped(&rot).k); |
| 455 | /// assert_eq!(rot.r, Rotation3D::<_, Local, World>::from_untyped(&rot).r); |
| 456 | /// ``` |
| 457 | #[inline ] |
| 458 | pub fn from_untyped(r: &Rotation3D<T, UnknownUnit, UnknownUnit>) -> Self { |
| 459 | r.cast_unit() |
| 460 | } |
| 461 | } |
| 462 | |
| 463 | impl<T, Src, Dst> Rotation3D<T, Src, Dst> |
| 464 | where |
| 465 | T: Real, |
| 466 | { |
| 467 | /// Creates a rotation around from a quaternion representation and normalizes it. |
| 468 | /// |
| 469 | /// The parameters are a, b, c and r compose the quaternion `a*i + b*j + c*k + r` |
| 470 | /// before normalization, where `a`, `b` and `c` describe the vector part and the |
| 471 | /// last parameter `r` is the real part. |
| 472 | #[inline ] |
| 473 | pub fn unit_quaternion(i: T, j: T, k: T, r: T) -> Self { |
| 474 | Self::quaternion(i, j, k, r).normalize() |
| 475 | } |
| 476 | |
| 477 | /// Creates a rotation around a given axis. |
| 478 | pub fn around_axis(axis: Vector3D<T, Src>, angle: Angle<T>) -> Self { |
| 479 | let axis = axis.normalize(); |
| 480 | let two = T::one() + T::one(); |
| 481 | let (sin, cos) = Angle::sin_cos(angle / two); |
| 482 | Self::quaternion(axis.x * sin, axis.y * sin, axis.z * sin, cos) |
| 483 | } |
| 484 | |
| 485 | /// Creates a rotation around the x axis. |
| 486 | pub fn around_x(angle: Angle<T>) -> Self { |
| 487 | let zero = Zero::zero(); |
| 488 | let two = T::one() + T::one(); |
| 489 | let (sin, cos) = Angle::sin_cos(angle / two); |
| 490 | Self::quaternion(sin, zero, zero, cos) |
| 491 | } |
| 492 | |
| 493 | /// Creates a rotation around the y axis. |
| 494 | pub fn around_y(angle: Angle<T>) -> Self { |
| 495 | let zero = Zero::zero(); |
| 496 | let two = T::one() + T::one(); |
| 497 | let (sin, cos) = Angle::sin_cos(angle / two); |
| 498 | Self::quaternion(zero, sin, zero, cos) |
| 499 | } |
| 500 | |
| 501 | /// Creates a rotation around the z axis. |
| 502 | pub fn around_z(angle: Angle<T>) -> Self { |
| 503 | let zero = Zero::zero(); |
| 504 | let two = T::one() + T::one(); |
| 505 | let (sin, cos) = Angle::sin_cos(angle / two); |
| 506 | Self::quaternion(zero, zero, sin, cos) |
| 507 | } |
| 508 | |
| 509 | /// Creates a rotation from Euler angles. |
| 510 | /// |
| 511 | /// The rotations are applied in roll then pitch then yaw order. |
| 512 | /// |
| 513 | /// - Roll (also called bank) is a rotation around the x axis. |
| 514 | /// - Pitch (also called bearing) is a rotation around the y axis. |
| 515 | /// - Yaw (also called heading) is a rotation around the z axis. |
| 516 | pub fn euler(roll: Angle<T>, pitch: Angle<T>, yaw: Angle<T>) -> Self { |
| 517 | let half = T::one() / (T::one() + T::one()); |
| 518 | |
| 519 | let (sy, cy) = Real::sin_cos(half * yaw.get()); |
| 520 | let (sp, cp) = Real::sin_cos(half * pitch.get()); |
| 521 | let (sr, cr) = Real::sin_cos(half * roll.get()); |
| 522 | |
| 523 | Self::quaternion( |
| 524 | cy * sr * cp - sy * cr * sp, |
| 525 | cy * cr * sp + sy * sr * cp, |
| 526 | sy * cr * cp - cy * sr * sp, |
| 527 | cy * cr * cp + sy * sr * sp, |
| 528 | ) |
| 529 | } |
| 530 | |
| 531 | /// Returns the inverse of this rotation. |
| 532 | #[inline ] |
| 533 | pub fn inverse(&self) -> Rotation3D<T, Dst, Src> { |
| 534 | Rotation3D::quaternion(-self.i, -self.j, -self.k, self.r) |
| 535 | } |
| 536 | |
| 537 | /// Computes the norm of this quaternion. |
| 538 | #[inline ] |
| 539 | pub fn norm(&self) -> T { |
| 540 | self.square_norm().sqrt() |
| 541 | } |
| 542 | |
| 543 | /// Computes the squared norm of this quaternion. |
| 544 | #[inline ] |
| 545 | pub fn square_norm(&self) -> T { |
| 546 | self.i * self.i + self.j * self.j + self.k * self.k + self.r * self.r |
| 547 | } |
| 548 | |
| 549 | /// Returns a [unit quaternion] from this one. |
| 550 | /// |
| 551 | /// [unit quaternion]: https://en.wikipedia.org/wiki/Quaternion#Unit_quaternion |
| 552 | #[inline ] |
| 553 | pub fn normalize(&self) -> Self { |
| 554 | self.mul(T::one() / self.norm()) |
| 555 | } |
| 556 | |
| 557 | /// Returns `true` if [norm] of this quaternion is (approximately) one. |
| 558 | /// |
| 559 | /// [norm]: Self::norm |
| 560 | #[inline ] |
| 561 | pub fn is_normalized(&self) -> bool |
| 562 | where |
| 563 | T: ApproxEq<T>, |
| 564 | { |
| 565 | let eps = NumCast::from(1.0e-5).unwrap(); |
| 566 | self.square_norm().approx_eq_eps(&T::one(), &eps) |
| 567 | } |
| 568 | |
| 569 | /// Spherical linear interpolation between this rotation and another rotation. |
| 570 | /// |
| 571 | /// `t` is expected to be between zero and one. |
| 572 | pub fn slerp(&self, other: &Self, t: T) -> Self |
| 573 | where |
| 574 | T: ApproxEq<T>, |
| 575 | { |
| 576 | debug_assert!(self.is_normalized()); |
| 577 | debug_assert!(other.is_normalized()); |
| 578 | |
| 579 | let r1 = *self; |
| 580 | let mut r2 = *other; |
| 581 | |
| 582 | let mut dot = r1.i * r2.i + r1.j * r2.j + r1.k * r2.k + r1.r * r2.r; |
| 583 | |
| 584 | let one = T::one(); |
| 585 | |
| 586 | if dot.approx_eq(&T::one()) { |
| 587 | // If the inputs are too close, linearly interpolate to avoid precision issues. |
| 588 | return r1.lerp(&r2, t); |
| 589 | } |
| 590 | |
| 591 | // If the dot product is negative, the quaternions |
| 592 | // have opposite handed-ness and slerp won't take |
| 593 | // the shorter path. Fix by reversing one quaternion. |
| 594 | if dot < T::zero() { |
| 595 | r2 = r2.mul(-T::one()); |
| 596 | dot = -dot; |
| 597 | } |
| 598 | |
| 599 | // For robustness, stay within the domain of acos. |
| 600 | dot = Real::min(dot, one); |
| 601 | |
| 602 | // Angle between r1 and the result. |
| 603 | let theta = Real::acos(dot) * t; |
| 604 | |
| 605 | // r1 and r3 form an orthonormal basis. |
| 606 | let r3 = r2.sub(r1.mul(dot)).normalize(); |
| 607 | let (sin, cos) = Real::sin_cos(theta); |
| 608 | r1.mul(cos).add(r3.mul(sin)) |
| 609 | } |
| 610 | |
| 611 | /// Basic Linear interpolation between this rotation and another rotation. |
| 612 | #[inline ] |
| 613 | pub fn lerp(&self, other: &Self, t: T) -> Self { |
| 614 | let one_t = T::one() - t; |
| 615 | self.mul(one_t).add(other.mul(t)).normalize() |
| 616 | } |
| 617 | |
| 618 | /// Returns the given 3d point transformed by this rotation. |
| 619 | /// |
| 620 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
| 621 | pub fn transform_point3d(&self, point: Point3D<T, Src>) -> Point3D<T, Dst> |
| 622 | where |
| 623 | T: ApproxEq<T>, |
| 624 | { |
| 625 | debug_assert!(self.is_normalized()); |
| 626 | |
| 627 | let two = T::one() + T::one(); |
| 628 | let cross = self.vector_part().cross(point.to_vector().to_untyped()) * two; |
| 629 | |
| 630 | point3( |
| 631 | point.x + self.r * cross.x + self.j * cross.z - self.k * cross.y, |
| 632 | point.y + self.r * cross.y + self.k * cross.x - self.i * cross.z, |
| 633 | point.z + self.r * cross.z + self.i * cross.y - self.j * cross.x, |
| 634 | ) |
| 635 | } |
| 636 | |
| 637 | /// Returns the given 2d point transformed by this rotation then projected on the xy plane. |
| 638 | /// |
| 639 | /// The input point must be use the unit Src, and the returned point has the unit Dst. |
| 640 | #[inline ] |
| 641 | pub fn transform_point2d(&self, point: Point2D<T, Src>) -> Point2D<T, Dst> |
| 642 | where |
| 643 | T: ApproxEq<T>, |
| 644 | { |
| 645 | self.transform_point3d(point.to_3d()).xy() |
| 646 | } |
| 647 | |
| 648 | /// Returns the given 3d vector transformed by this rotation. |
| 649 | /// |
| 650 | /// The input vector must be use the unit Src, and the returned point has the unit Dst. |
| 651 | #[inline ] |
| 652 | pub fn transform_vector3d(&self, vector: Vector3D<T, Src>) -> Vector3D<T, Dst> |
| 653 | where |
| 654 | T: ApproxEq<T>, |
| 655 | { |
| 656 | self.transform_point3d(vector.to_point()).to_vector() |
| 657 | } |
| 658 | |
| 659 | /// Returns the given 2d vector transformed by this rotation then projected on the xy plane. |
| 660 | /// |
| 661 | /// The input vector must be use the unit Src, and the returned point has the unit Dst. |
| 662 | #[inline ] |
| 663 | pub fn transform_vector2d(&self, vector: Vector2D<T, Src>) -> Vector2D<T, Dst> |
| 664 | where |
| 665 | T: ApproxEq<T>, |
| 666 | { |
| 667 | self.transform_vector3d(vector.to_3d()).xy() |
| 668 | } |
| 669 | |
| 670 | /// Returns the matrix representation of this rotation. |
| 671 | #[inline ] |
| 672 | #[rustfmt::skip] |
| 673 | pub fn to_transform(&self) -> Transform3D<T, Src, Dst> |
| 674 | where |
| 675 | T: ApproxEq<T>, |
| 676 | { |
| 677 | debug_assert!(self.is_normalized()); |
| 678 | |
| 679 | let i2 = self.i + self.i; |
| 680 | let j2 = self.j + self.j; |
| 681 | let k2 = self.k + self.k; |
| 682 | let ii = self.i * i2; |
| 683 | let ij = self.i * j2; |
| 684 | let ik = self.i * k2; |
| 685 | let jj = self.j * j2; |
| 686 | let jk = self.j * k2; |
| 687 | let kk = self.k * k2; |
| 688 | let ri = self.r * i2; |
| 689 | let rj = self.r * j2; |
| 690 | let rk = self.r * k2; |
| 691 | |
| 692 | let one = T::one(); |
| 693 | let zero = T::zero(); |
| 694 | |
| 695 | let m11 = one - (jj + kk); |
| 696 | let m12 = ij + rk; |
| 697 | let m13 = ik - rj; |
| 698 | |
| 699 | let m21 = ij - rk; |
| 700 | let m22 = one - (ii + kk); |
| 701 | let m23 = jk + ri; |
| 702 | |
| 703 | let m31 = ik + rj; |
| 704 | let m32 = jk - ri; |
| 705 | let m33 = one - (ii + jj); |
| 706 | |
| 707 | Transform3D::new( |
| 708 | m11, m12, m13, zero, |
| 709 | m21, m22, m23, zero, |
| 710 | m31, m32, m33, zero, |
| 711 | zero, zero, zero, one, |
| 712 | ) |
| 713 | } |
| 714 | |
| 715 | /// Returns a rotation representing this rotation followed by the other rotation. |
| 716 | #[inline ] |
| 717 | pub fn then<NewDst>(&self, other: &Rotation3D<T, Dst, NewDst>) -> Rotation3D<T, Src, NewDst> |
| 718 | where |
| 719 | T: ApproxEq<T>, |
| 720 | { |
| 721 | debug_assert!(self.is_normalized()); |
| 722 | Rotation3D::quaternion( |
| 723 | other.i * self.r + other.r * self.i + other.j * self.k - other.k * self.j, |
| 724 | other.j * self.r + other.r * self.j + other.k * self.i - other.i * self.k, |
| 725 | other.k * self.r + other.r * self.k + other.i * self.j - other.j * self.i, |
| 726 | other.r * self.r - other.i * self.i - other.j * self.j - other.k * self.k, |
| 727 | ) |
| 728 | } |
| 729 | |
| 730 | // add, sub and mul are used internally for intermediate computation but aren't public |
| 731 | // because they don't carry real semantic meanings (I think?). |
| 732 | |
| 733 | #[inline ] |
| 734 | fn add(&self, other: Self) -> Self { |
| 735 | Self::quaternion( |
| 736 | self.i + other.i, |
| 737 | self.j + other.j, |
| 738 | self.k + other.k, |
| 739 | self.r + other.r, |
| 740 | ) |
| 741 | } |
| 742 | |
| 743 | #[inline ] |
| 744 | fn sub(&self, other: Self) -> Self { |
| 745 | Self::quaternion( |
| 746 | self.i - other.i, |
| 747 | self.j - other.j, |
| 748 | self.k - other.k, |
| 749 | self.r - other.r, |
| 750 | ) |
| 751 | } |
| 752 | |
| 753 | #[inline ] |
| 754 | fn mul(&self, factor: T) -> Self { |
| 755 | Self::quaternion( |
| 756 | self.i * factor, |
| 757 | self.j * factor, |
| 758 | self.k * factor, |
| 759 | self.r * factor, |
| 760 | ) |
| 761 | } |
| 762 | } |
| 763 | |
| 764 | impl<T: fmt::Debug, Src, Dst> fmt::Debug for Rotation3D<T, Src, Dst> { |
| 765 | fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| 766 | write!( |
| 767 | f, |
| 768 | "Quat( {:?}*i + {:?}*j + {:?}*k + {:?})" , |
| 769 | self.i, self.j, self.k, self.r |
| 770 | ) |
| 771 | } |
| 772 | } |
| 773 | |
| 774 | impl<T, Src, Dst> ApproxEq<T> for Rotation3D<T, Src, Dst> |
| 775 | where |
| 776 | T: Copy + Neg<Output = T> + ApproxEq<T>, |
| 777 | { |
| 778 | fn approx_epsilon() -> T { |
| 779 | T::approx_epsilon() |
| 780 | } |
| 781 | |
| 782 | fn approx_eq_eps(&self, other: &Self, eps: &T) -> bool { |
| 783 | (self.i.approx_eq_eps(&other.i, approx_epsilon:eps) |
| 784 | && self.j.approx_eq_eps(&other.j, approx_epsilon:eps) |
| 785 | && self.k.approx_eq_eps(&other.k, approx_epsilon:eps) |
| 786 | && self.r.approx_eq_eps(&other.r, approx_epsilon:eps)) |
| 787 | || (self.i.approx_eq_eps(&-other.i, approx_epsilon:eps) |
| 788 | && self.j.approx_eq_eps(&-other.j, approx_epsilon:eps) |
| 789 | && self.k.approx_eq_eps(&-other.k, approx_epsilon:eps) |
| 790 | && self.r.approx_eq_eps(&-other.r, approx_epsilon:eps)) |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | #[test ] |
| 795 | fn simple_rotation_2d() { |
| 796 | use crate::default::Rotation2D; |
| 797 | use core::f32::consts::{FRAC_PI_2, PI}; |
| 798 | |
| 799 | let ri = Rotation2D::identity(); |
| 800 | let r90 = Rotation2D::radians(FRAC_PI_2); |
| 801 | let rm90 = Rotation2D::radians(-FRAC_PI_2); |
| 802 | let r180 = Rotation2D::radians(PI); |
| 803 | |
| 804 | assert!(ri |
| 805 | .transform_point(point2(1.0, 2.0)) |
| 806 | .approx_eq(&point2(1.0, 2.0))); |
| 807 | assert!(r90 |
| 808 | .transform_point(point2(1.0, 2.0)) |
| 809 | .approx_eq(&point2(-2.0, 1.0))); |
| 810 | assert!(rm90 |
| 811 | .transform_point(point2(1.0, 2.0)) |
| 812 | .approx_eq(&point2(2.0, -1.0))); |
| 813 | assert!(r180 |
| 814 | .transform_point(point2(1.0, 2.0)) |
| 815 | .approx_eq(&point2(-1.0, -2.0))); |
| 816 | |
| 817 | assert!(r90 |
| 818 | .inverse() |
| 819 | .inverse() |
| 820 | .transform_point(point2(1.0, 2.0)) |
| 821 | .approx_eq(&r90.transform_point(point2(1.0, 2.0)))); |
| 822 | } |
| 823 | |
| 824 | #[test ] |
| 825 | fn simple_rotation_3d_in_2d() { |
| 826 | use crate::default::Rotation3D; |
| 827 | use core::f32::consts::{FRAC_PI_2, PI}; |
| 828 | |
| 829 | let ri = Rotation3D::identity(); |
| 830 | let r90 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); |
| 831 | let rm90 = Rotation3D::around_z(Angle::radians(-FRAC_PI_2)); |
| 832 | let r180 = Rotation3D::around_z(Angle::radians(PI)); |
| 833 | |
| 834 | assert!(ri |
| 835 | .transform_point2d(point2(1.0, 2.0)) |
| 836 | .approx_eq(&point2(1.0, 2.0))); |
| 837 | assert!(r90 |
| 838 | .transform_point2d(point2(1.0, 2.0)) |
| 839 | .approx_eq(&point2(-2.0, 1.0))); |
| 840 | assert!(rm90 |
| 841 | .transform_point2d(point2(1.0, 2.0)) |
| 842 | .approx_eq(&point2(2.0, -1.0))); |
| 843 | assert!(r180 |
| 844 | .transform_point2d(point2(1.0, 2.0)) |
| 845 | .approx_eq(&point2(-1.0, -2.0))); |
| 846 | |
| 847 | assert!(r90 |
| 848 | .inverse() |
| 849 | .inverse() |
| 850 | .transform_point2d(point2(1.0, 2.0)) |
| 851 | .approx_eq(&r90.transform_point2d(point2(1.0, 2.0)))); |
| 852 | } |
| 853 | |
| 854 | #[test ] |
| 855 | fn pre_post() { |
| 856 | use crate::default::Rotation3D; |
| 857 | use core::f32::consts::FRAC_PI_2; |
| 858 | |
| 859 | let r1 = Rotation3D::around_x(Angle::radians(FRAC_PI_2)); |
| 860 | let r2 = Rotation3D::around_y(Angle::radians(FRAC_PI_2)); |
| 861 | let r3 = Rotation3D::around_z(Angle::radians(FRAC_PI_2)); |
| 862 | |
| 863 | let t1 = r1.to_transform(); |
| 864 | let t2 = r2.to_transform(); |
| 865 | let t3 = r3.to_transform(); |
| 866 | |
| 867 | let p = point3(1.0, 2.0, 3.0); |
| 868 | |
| 869 | // Check that the order of transformations is correct (corresponds to what |
| 870 | // we do in Transform3D). |
| 871 | let p1 = r1.then(&r2).then(&r3).transform_point3d(p); |
| 872 | let p2 = t1.then(&t2).then(&t3).transform_point3d(p); |
| 873 | |
| 874 | assert!(p1.approx_eq(&p2.unwrap())); |
| 875 | |
| 876 | // Check that changing the order indeed matters. |
| 877 | let p3 = t3.then(&t1).then(&t2).transform_point3d(p); |
| 878 | assert!(!p1.approx_eq(&p3.unwrap())); |
| 879 | } |
| 880 | |
| 881 | #[test ] |
| 882 | fn to_transform3d() { |
| 883 | use crate::default::Rotation3D; |
| 884 | |
| 885 | use core::f32::consts::{FRAC_PI_2, PI}; |
| 886 | let rotations = [ |
| 887 | Rotation3D::identity(), |
| 888 | Rotation3D::around_x(Angle::radians(FRAC_PI_2)), |
| 889 | Rotation3D::around_x(Angle::radians(-FRAC_PI_2)), |
| 890 | Rotation3D::around_x(Angle::radians(PI)), |
| 891 | Rotation3D::around_y(Angle::radians(FRAC_PI_2)), |
| 892 | Rotation3D::around_y(Angle::radians(-FRAC_PI_2)), |
| 893 | Rotation3D::around_y(Angle::radians(PI)), |
| 894 | Rotation3D::around_z(Angle::radians(FRAC_PI_2)), |
| 895 | Rotation3D::around_z(Angle::radians(-FRAC_PI_2)), |
| 896 | Rotation3D::around_z(Angle::radians(PI)), |
| 897 | ]; |
| 898 | |
| 899 | let points = [ |
| 900 | point3(0.0, 0.0, 0.0), |
| 901 | point3(1.0, 2.0, 3.0), |
| 902 | point3(-5.0, 3.0, -1.0), |
| 903 | point3(-0.5, -1.0, 1.5), |
| 904 | ]; |
| 905 | |
| 906 | for rotation in &rotations { |
| 907 | for &point in &points { |
| 908 | let p1 = rotation.transform_point3d(point); |
| 909 | let p2 = rotation.to_transform().transform_point3d(point); |
| 910 | assert!(p1.approx_eq(&p2.unwrap())); |
| 911 | } |
| 912 | } |
| 913 | } |
| 914 | |
| 915 | #[test ] |
| 916 | fn slerp() { |
| 917 | use crate::default::Rotation3D; |
| 918 | |
| 919 | let q1 = Rotation3D::quaternion(1.0, 0.0, 0.0, 0.0); |
| 920 | let q2 = Rotation3D::quaternion(0.0, 1.0, 0.0, 0.0); |
| 921 | let q3 = Rotation3D::quaternion(0.0, 0.0, -1.0, 0.0); |
| 922 | |
| 923 | // The values below can be obtained with a python program: |
| 924 | // import numpy |
| 925 | // import quaternion |
| 926 | // q1 = numpy.quaternion(1, 0, 0, 0) |
| 927 | // q2 = numpy.quaternion(0, 1, 0, 0) |
| 928 | // quaternion.slerp_evaluate(q1, q2, 0.2) |
| 929 | |
| 930 | assert!(q1.slerp(&q2, 0.0).approx_eq(&q1)); |
| 931 | assert!(q1.slerp(&q2, 0.2).approx_eq(&Rotation3D::quaternion( |
| 932 | 0.951056516295154, |
| 933 | 0.309016994374947, |
| 934 | 0.0, |
| 935 | 0.0 |
| 936 | ))); |
| 937 | assert!(q1.slerp(&q2, 0.4).approx_eq(&Rotation3D::quaternion( |
| 938 | 0.809016994374947, |
| 939 | 0.587785252292473, |
| 940 | 0.0, |
| 941 | 0.0 |
| 942 | ))); |
| 943 | assert!(q1.slerp(&q2, 0.6).approx_eq(&Rotation3D::quaternion( |
| 944 | 0.587785252292473, |
| 945 | 0.809016994374947, |
| 946 | 0.0, |
| 947 | 0.0 |
| 948 | ))); |
| 949 | assert!(q1.slerp(&q2, 0.8).approx_eq(&Rotation3D::quaternion( |
| 950 | 0.309016994374947, |
| 951 | 0.951056516295154, |
| 952 | 0.0, |
| 953 | 0.0 |
| 954 | ))); |
| 955 | assert!(q1.slerp(&q2, 1.0).approx_eq(&q2)); |
| 956 | |
| 957 | assert!(q1.slerp(&q3, 0.0).approx_eq(&q1)); |
| 958 | assert!(q1.slerp(&q3, 0.2).approx_eq(&Rotation3D::quaternion( |
| 959 | 0.951056516295154, |
| 960 | 0.0, |
| 961 | -0.309016994374947, |
| 962 | 0.0 |
| 963 | ))); |
| 964 | assert!(q1.slerp(&q3, 0.4).approx_eq(&Rotation3D::quaternion( |
| 965 | 0.809016994374947, |
| 966 | 0.0, |
| 967 | -0.587785252292473, |
| 968 | 0.0 |
| 969 | ))); |
| 970 | assert!(q1.slerp(&q3, 0.6).approx_eq(&Rotation3D::quaternion( |
| 971 | 0.587785252292473, |
| 972 | 0.0, |
| 973 | -0.809016994374947, |
| 974 | 0.0 |
| 975 | ))); |
| 976 | assert!(q1.slerp(&q3, 0.8).approx_eq(&Rotation3D::quaternion( |
| 977 | 0.309016994374947, |
| 978 | 0.0, |
| 979 | -0.951056516295154, |
| 980 | 0.0 |
| 981 | ))); |
| 982 | assert!(q1.slerp(&q3, 1.0).approx_eq(&q3)); |
| 983 | } |
| 984 | |
| 985 | #[test ] |
| 986 | fn around_axis() { |
| 987 | use crate::default::Rotation3D; |
| 988 | use core::f32::consts::{FRAC_PI_2, PI}; |
| 989 | |
| 990 | // Two sort of trivial cases: |
| 991 | let r1 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(PI)); |
| 992 | let r2 = Rotation3D::around_axis(vec3(1.0, 1.0, 0.0), Angle::radians(FRAC_PI_2)); |
| 993 | assert!(r1 |
| 994 | .transform_point3d(point3(1.0, 2.0, 0.0)) |
| 995 | .approx_eq(&point3(2.0, 1.0, 0.0))); |
| 996 | assert!(r2 |
| 997 | .transform_point3d(point3(1.0, 0.0, 0.0)) |
| 998 | .approx_eq(&point3(0.5, 0.5, -0.5.sqrt()))); |
| 999 | |
| 1000 | // A more arbitrary test (made up with numpy): |
| 1001 | let r3 = Rotation3D::around_axis(vec3(0.5, 1.0, 2.0), Angle::radians(2.291288)); |
| 1002 | assert!(r3 |
| 1003 | .transform_point3d(point3(1.0, 0.0, 0.0)) |
| 1004 | .approx_eq(&point3(-0.58071821, 0.81401868, -0.01182979))); |
| 1005 | } |
| 1006 | |
| 1007 | #[test ] |
| 1008 | fn from_euler() { |
| 1009 | use crate::default::Rotation3D; |
| 1010 | use core::f32::consts::FRAC_PI_2; |
| 1011 | |
| 1012 | // First test simple separate yaw pitch and roll rotations, because it is easy to come |
| 1013 | // up with the corresponding quaternion. |
| 1014 | // Since several quaternions can represent the same transformation we compare the result |
| 1015 | // of transforming a point rather than the values of each quaternions. |
| 1016 | let p = point3(1.0, 2.0, 3.0); |
| 1017 | |
| 1018 | let angle = Angle::radians(FRAC_PI_2); |
| 1019 | let zero = Angle::radians(0.0); |
| 1020 | |
| 1021 | // roll |
| 1022 | let roll_re = Rotation3D::euler(angle, zero, zero); |
| 1023 | let roll_rq = Rotation3D::around_x(angle); |
| 1024 | let roll_pe = roll_re.transform_point3d(p); |
| 1025 | let roll_pq = roll_rq.transform_point3d(p); |
| 1026 | |
| 1027 | // pitch |
| 1028 | let pitch_re = Rotation3D::euler(zero, angle, zero); |
| 1029 | let pitch_rq = Rotation3D::around_y(angle); |
| 1030 | let pitch_pe = pitch_re.transform_point3d(p); |
| 1031 | let pitch_pq = pitch_rq.transform_point3d(p); |
| 1032 | |
| 1033 | // yaw |
| 1034 | let yaw_re = Rotation3D::euler(zero, zero, angle); |
| 1035 | let yaw_rq = Rotation3D::around_z(angle); |
| 1036 | let yaw_pe = yaw_re.transform_point3d(p); |
| 1037 | let yaw_pq = yaw_rq.transform_point3d(p); |
| 1038 | |
| 1039 | assert!(roll_pe.approx_eq(&roll_pq)); |
| 1040 | assert!(pitch_pe.approx_eq(&pitch_pq)); |
| 1041 | assert!(yaw_pe.approx_eq(&yaw_pq)); |
| 1042 | |
| 1043 | // Now check that the yaw pitch and roll transformations when combined are applied in |
| 1044 | // the proper order: roll -> pitch -> yaw. |
| 1045 | let ypr_e = Rotation3D::euler(angle, angle, angle); |
| 1046 | let ypr_q = roll_rq.then(&pitch_rq).then(&yaw_rq); |
| 1047 | let ypr_pe = ypr_e.transform_point3d(p); |
| 1048 | let ypr_pq = ypr_q.transform_point3d(p); |
| 1049 | |
| 1050 | assert!(ypr_pe.approx_eq(&ypr_pq)); |
| 1051 | } |
| 1052 | |