| 1 | use simd_adler32::Adler32; |
| 2 | |
| 3 | use crate::{ |
| 4 | huffman::{self, build_table}, |
| 5 | tables::{ |
| 6 | self, CLCL_ORDER, DIST_SYM_TO_DIST_BASE, DIST_SYM_TO_DIST_EXTRA, FIXED_DIST_TABLE, |
| 7 | FIXED_LITLEN_TABLE, LEN_SYM_TO_LEN_BASE, LEN_SYM_TO_LEN_EXTRA, LITLEN_TABLE_ENTRIES, |
| 8 | }, |
| 9 | }; |
| 10 | |
| 11 | /// An error encountered while decompressing a deflate stream. |
| 12 | #[derive (Debug, PartialEq)] |
| 13 | pub enum DecompressionError { |
| 14 | /// The zlib header is corrupt. |
| 15 | BadZlibHeader, |
| 16 | /// All input was consumed, but the end of the stream hasn't been reached. |
| 17 | InsufficientInput, |
| 18 | /// A block header specifies an invalid block type. |
| 19 | InvalidBlockType, |
| 20 | /// An uncompressed block's NLEN value is invalid. |
| 21 | InvalidUncompressedBlockLength, |
| 22 | /// Too many literals were specified. |
| 23 | InvalidHlit, |
| 24 | /// Too many distance codes were specified. |
| 25 | InvalidHdist, |
| 26 | /// Attempted to repeat a previous code before reading any codes, or past the end of the code |
| 27 | /// lengths. |
| 28 | InvalidCodeLengthRepeat, |
| 29 | /// The stream doesn't specify a valid huffman tree. |
| 30 | BadCodeLengthHuffmanTree, |
| 31 | /// The stream doesn't specify a valid huffman tree. |
| 32 | BadLiteralLengthHuffmanTree, |
| 33 | /// The stream doesn't specify a valid huffman tree. |
| 34 | BadDistanceHuffmanTree, |
| 35 | /// The stream contains a literal/length code that was not allowed by the header. |
| 36 | InvalidLiteralLengthCode, |
| 37 | /// The stream contains a distance code that was not allowed by the header. |
| 38 | InvalidDistanceCode, |
| 39 | /// The stream contains contains back-reference as the first symbol. |
| 40 | InputStartsWithRun, |
| 41 | /// The stream contains a back-reference that is too far back. |
| 42 | DistanceTooFarBack, |
| 43 | /// The deflate stream checksum is incorrect. |
| 44 | WrongChecksum, |
| 45 | /// Extra input data. |
| 46 | ExtraInput, |
| 47 | } |
| 48 | |
| 49 | struct BlockHeader { |
| 50 | hlit: usize, |
| 51 | hdist: usize, |
| 52 | hclen: usize, |
| 53 | num_lengths_read: usize, |
| 54 | |
| 55 | /// Low 3-bits are code length code length, high 5-bits are code length code. |
| 56 | table: [u32; 128], |
| 57 | code_lengths: [u8; 320], |
| 58 | } |
| 59 | |
| 60 | pub const LITERAL_ENTRY: u32 = 0x8000; |
| 61 | pub const EXCEPTIONAL_ENTRY: u32 = 0x4000; |
| 62 | pub const SECONDARY_TABLE_ENTRY: u32 = 0x2000; |
| 63 | |
| 64 | /// The Decompressor state for a compressed block. |
| 65 | #[derive (Eq, PartialEq, Debug)] |
| 66 | struct CompressedBlock { |
| 67 | litlen_table: Box<[u32; 4096]>, |
| 68 | secondary_table: Vec<u16>, |
| 69 | |
| 70 | dist_table: Box<[u32; 512]>, |
| 71 | dist_secondary_table: Vec<u16>, |
| 72 | |
| 73 | eof_code: u16, |
| 74 | eof_mask: u16, |
| 75 | eof_bits: u8, |
| 76 | } |
| 77 | |
| 78 | #[derive (Debug, Copy, Clone, Eq, PartialEq)] |
| 79 | enum State { |
| 80 | ZlibHeader, |
| 81 | BlockHeader, |
| 82 | CodeLengthCodes, |
| 83 | CodeLengths, |
| 84 | CompressedData, |
| 85 | UncompressedData, |
| 86 | Checksum, |
| 87 | Done, |
| 88 | } |
| 89 | |
| 90 | /// Decompressor for arbitrary zlib streams. |
| 91 | pub struct Decompressor { |
| 92 | /// State for decoding a compressed block. |
| 93 | compression: CompressedBlock, |
| 94 | // State for decoding a block header. |
| 95 | header: BlockHeader, |
| 96 | // Number of bytes left for uncompressed block. |
| 97 | uncompressed_bytes_left: u16, |
| 98 | |
| 99 | buffer: u64, |
| 100 | nbits: u8, |
| 101 | |
| 102 | queued_rle: Option<(u8, usize)>, |
| 103 | queued_backref: Option<(usize, usize)>, |
| 104 | last_block: bool, |
| 105 | fixed_table: bool, |
| 106 | |
| 107 | state: State, |
| 108 | checksum: Adler32, |
| 109 | ignore_adler32: bool, |
| 110 | } |
| 111 | |
| 112 | impl Default for Decompressor { |
| 113 | fn default() -> Self { |
| 114 | Self::new() |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | impl Decompressor { |
| 119 | /// Create a new decompressor. |
| 120 | pub fn new() -> Self { |
| 121 | Self { |
| 122 | buffer: 0, |
| 123 | nbits: 0, |
| 124 | compression: CompressedBlock { |
| 125 | litlen_table: Box::new([0; 4096]), |
| 126 | dist_table: Box::new([0; 512]), |
| 127 | secondary_table: Vec::new(), |
| 128 | dist_secondary_table: Vec::new(), |
| 129 | eof_code: 0, |
| 130 | eof_mask: 0, |
| 131 | eof_bits: 0, |
| 132 | }, |
| 133 | header: BlockHeader { |
| 134 | hlit: 0, |
| 135 | hdist: 0, |
| 136 | hclen: 0, |
| 137 | table: [0; 128], |
| 138 | num_lengths_read: 0, |
| 139 | code_lengths: [0; 320], |
| 140 | }, |
| 141 | uncompressed_bytes_left: 0, |
| 142 | queued_rle: None, |
| 143 | queued_backref: None, |
| 144 | checksum: Adler32::new(), |
| 145 | state: State::ZlibHeader, |
| 146 | last_block: false, |
| 147 | ignore_adler32: false, |
| 148 | fixed_table: false, |
| 149 | } |
| 150 | } |
| 151 | |
| 152 | /// Ignore the checksum at the end of the stream. |
| 153 | pub fn ignore_adler32(&mut self) { |
| 154 | self.ignore_adler32 = true; |
| 155 | } |
| 156 | |
| 157 | fn fill_buffer(&mut self, input: &mut &[u8]) { |
| 158 | if input.len() >= 8 { |
| 159 | self.buffer |= u64::from_le_bytes(input[..8].try_into().unwrap()) << self.nbits; |
| 160 | *input = &input[(63 - self.nbits as usize) / 8..]; |
| 161 | self.nbits |= 56; |
| 162 | } else { |
| 163 | let nbytes = input.len().min((63 - self.nbits as usize) / 8); |
| 164 | let mut input_data = [0; 8]; |
| 165 | input_data[..nbytes].copy_from_slice(&input[..nbytes]); |
| 166 | self.buffer |= u64::from_le_bytes(input_data) |
| 167 | .checked_shl(self.nbits as u32) |
| 168 | .unwrap_or(0); |
| 169 | self.nbits += nbytes as u8 * 8; |
| 170 | *input = &input[nbytes..]; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | fn peak_bits(&mut self, nbits: u8) -> u64 { |
| 175 | debug_assert!(nbits <= 56 && nbits <= self.nbits); |
| 176 | self.buffer & ((1u64 << nbits) - 1) |
| 177 | } |
| 178 | fn consume_bits(&mut self, nbits: u8) { |
| 179 | debug_assert!(self.nbits >= nbits); |
| 180 | self.buffer >>= nbits; |
| 181 | self.nbits -= nbits; |
| 182 | } |
| 183 | |
| 184 | fn read_block_header(&mut self, remaining_input: &mut &[u8]) -> Result<(), DecompressionError> { |
| 185 | self.fill_buffer(remaining_input); |
| 186 | if self.nbits < 10 { |
| 187 | return Ok(()); |
| 188 | } |
| 189 | |
| 190 | let start = self.peak_bits(3); |
| 191 | self.last_block = start & 1 != 0; |
| 192 | match start >> 1 { |
| 193 | 0b00 => { |
| 194 | let align_bits = (self.nbits - 3) % 8; |
| 195 | let header_bits = 3 + 32 + align_bits; |
| 196 | if self.nbits < header_bits { |
| 197 | return Ok(()); |
| 198 | } |
| 199 | |
| 200 | let len = (self.peak_bits(align_bits + 19) >> (align_bits + 3)) as u16; |
| 201 | let nlen = (self.peak_bits(header_bits) >> (align_bits + 19)) as u16; |
| 202 | if nlen != !len { |
| 203 | return Err(DecompressionError::InvalidUncompressedBlockLength); |
| 204 | } |
| 205 | |
| 206 | self.state = State::UncompressedData; |
| 207 | self.uncompressed_bytes_left = len; |
| 208 | self.consume_bits(header_bits); |
| 209 | Ok(()) |
| 210 | } |
| 211 | 0b01 => { |
| 212 | self.consume_bits(3); |
| 213 | |
| 214 | // Check for an entirely empty blocks which can happen if there are "partial |
| 215 | // flushes" in the deflate stream. With fixed huffman codes, the EOF symbol is |
| 216 | // 7-bits of zeros so we peak ahead and see if the next 7-bits are all zero. |
| 217 | if self.peak_bits(7) == 0 { |
| 218 | self.consume_bits(7); |
| 219 | if self.last_block { |
| 220 | self.state = State::Checksum; |
| 221 | return Ok(()); |
| 222 | } |
| 223 | |
| 224 | // At this point we've consumed the entire block and need to read the next block |
| 225 | // header. If tail call optimization were guaranteed, we could just recurse |
| 226 | // here. But without it, a long sequence of empty fixed-blocks might cause a |
| 227 | // stack overflow. Instead, we consume all empty blocks in a loop and then |
| 228 | // recurse. This is the only recursive call this function, and thus is safe. |
| 229 | while self.nbits >= 10 && self.peak_bits(10) == 0b010 { |
| 230 | self.consume_bits(10); |
| 231 | self.fill_buffer(remaining_input); |
| 232 | } |
| 233 | return self.read_block_header(remaining_input); |
| 234 | } |
| 235 | |
| 236 | // Build decoding tables if the previous block wasn't also a fixed block. |
| 237 | if !self.fixed_table { |
| 238 | self.fixed_table = true; |
| 239 | for chunk in self.compression.litlen_table.chunks_exact_mut(512) { |
| 240 | chunk.copy_from_slice(&FIXED_LITLEN_TABLE); |
| 241 | } |
| 242 | for chunk in self.compression.dist_table.chunks_exact_mut(32) { |
| 243 | chunk.copy_from_slice(&FIXED_DIST_TABLE); |
| 244 | } |
| 245 | self.compression.eof_bits = 7; |
| 246 | self.compression.eof_code = 0; |
| 247 | self.compression.eof_mask = 0x7f; |
| 248 | } |
| 249 | |
| 250 | self.state = State::CompressedData; |
| 251 | Ok(()) |
| 252 | } |
| 253 | 0b10 => { |
| 254 | if self.nbits < 17 { |
| 255 | return Ok(()); |
| 256 | } |
| 257 | |
| 258 | self.header.hlit = (self.peak_bits(8) >> 3) as usize + 257; |
| 259 | self.header.hdist = (self.peak_bits(13) >> 8) as usize + 1; |
| 260 | self.header.hclen = (self.peak_bits(17) >> 13) as usize + 4; |
| 261 | if self.header.hlit > 286 { |
| 262 | return Err(DecompressionError::InvalidHlit); |
| 263 | } |
| 264 | if self.header.hdist > 30 { |
| 265 | return Err(DecompressionError::InvalidHdist); |
| 266 | } |
| 267 | |
| 268 | self.consume_bits(17); |
| 269 | self.state = State::CodeLengthCodes; |
| 270 | self.fixed_table = false; |
| 271 | Ok(()) |
| 272 | } |
| 273 | 0b11 => Err(DecompressionError::InvalidBlockType), |
| 274 | _ => unreachable!(), |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | fn read_code_length_codes( |
| 279 | &mut self, |
| 280 | remaining_input: &mut &[u8], |
| 281 | ) -> Result<(), DecompressionError> { |
| 282 | self.fill_buffer(remaining_input); |
| 283 | if self.nbits as usize + remaining_input.len() * 8 < 3 * self.header.hclen { |
| 284 | return Ok(()); |
| 285 | } |
| 286 | |
| 287 | let mut code_length_lengths = [0; 19]; |
| 288 | for i in 0..self.header.hclen { |
| 289 | code_length_lengths[CLCL_ORDER[i]] = self.peak_bits(3) as u8; |
| 290 | self.consume_bits(3); |
| 291 | |
| 292 | // We need to refill the buffer after reading 3 * 18 = 54 bits since the buffer holds |
| 293 | // between 56 and 63 bits total. |
| 294 | if i == 17 { |
| 295 | self.fill_buffer(remaining_input); |
| 296 | } |
| 297 | } |
| 298 | |
| 299 | let mut codes = [0; 19]; |
| 300 | if !build_table( |
| 301 | &code_length_lengths, |
| 302 | &[], |
| 303 | &mut codes, |
| 304 | &mut self.header.table, |
| 305 | &mut Vec::new(), |
| 306 | false, |
| 307 | false, |
| 308 | ) { |
| 309 | return Err(DecompressionError::BadCodeLengthHuffmanTree); |
| 310 | } |
| 311 | |
| 312 | self.state = State::CodeLengths; |
| 313 | self.header.num_lengths_read = 0; |
| 314 | Ok(()) |
| 315 | } |
| 316 | |
| 317 | fn read_code_lengths(&mut self, remaining_input: &mut &[u8]) -> Result<(), DecompressionError> { |
| 318 | let total_lengths = self.header.hlit + self.header.hdist; |
| 319 | while self.header.num_lengths_read < total_lengths { |
| 320 | self.fill_buffer(remaining_input); |
| 321 | if self.nbits < 7 { |
| 322 | return Ok(()); |
| 323 | } |
| 324 | |
| 325 | let code = self.peak_bits(7); |
| 326 | let entry = self.header.table[code as usize]; |
| 327 | let length = (entry & 0x7) as u8; |
| 328 | let symbol = (entry >> 16) as u8; |
| 329 | |
| 330 | debug_assert!(length != 0); |
| 331 | match symbol { |
| 332 | 0..=15 => { |
| 333 | self.header.code_lengths[self.header.num_lengths_read] = symbol; |
| 334 | self.header.num_lengths_read += 1; |
| 335 | self.consume_bits(length); |
| 336 | } |
| 337 | 16..=18 => { |
| 338 | let (base_repeat, extra_bits) = match symbol { |
| 339 | 16 => (3, 2), |
| 340 | 17 => (3, 3), |
| 341 | 18 => (11, 7), |
| 342 | _ => unreachable!(), |
| 343 | }; |
| 344 | |
| 345 | if self.nbits < length + extra_bits { |
| 346 | return Ok(()); |
| 347 | } |
| 348 | |
| 349 | let value = match symbol { |
| 350 | 16 => { |
| 351 | self.header.code_lengths[self |
| 352 | .header |
| 353 | .num_lengths_read |
| 354 | .checked_sub(1) |
| 355 | .ok_or(DecompressionError::InvalidCodeLengthRepeat)?] |
| 356 | // TODO: is this right? |
| 357 | } |
| 358 | 17 => 0, |
| 359 | 18 => 0, |
| 360 | _ => unreachable!(), |
| 361 | }; |
| 362 | |
| 363 | let repeat = |
| 364 | (self.peak_bits(length + extra_bits) >> length) as usize + base_repeat; |
| 365 | if self.header.num_lengths_read + repeat > total_lengths { |
| 366 | return Err(DecompressionError::InvalidCodeLengthRepeat); |
| 367 | } |
| 368 | |
| 369 | for i in 0..repeat { |
| 370 | self.header.code_lengths[self.header.num_lengths_read + i] = value; |
| 371 | } |
| 372 | self.header.num_lengths_read += repeat; |
| 373 | self.consume_bits(length + extra_bits); |
| 374 | } |
| 375 | _ => unreachable!(), |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | self.header |
| 380 | .code_lengths |
| 381 | .copy_within(self.header.hlit..total_lengths, 288); |
| 382 | for i in self.header.hlit..288 { |
| 383 | self.header.code_lengths[i] = 0; |
| 384 | } |
| 385 | for i in 288 + self.header.hdist..320 { |
| 386 | self.header.code_lengths[i] = 0; |
| 387 | } |
| 388 | |
| 389 | Self::build_tables( |
| 390 | self.header.hlit, |
| 391 | &self.header.code_lengths, |
| 392 | &mut self.compression, |
| 393 | )?; |
| 394 | self.state = State::CompressedData; |
| 395 | Ok(()) |
| 396 | } |
| 397 | |
| 398 | fn build_tables( |
| 399 | hlit: usize, |
| 400 | code_lengths: &[u8], |
| 401 | compression: &mut CompressedBlock, |
| 402 | ) -> Result<(), DecompressionError> { |
| 403 | // If there is no code assigned for the EOF symbol then the bitstream is invalid. |
| 404 | if code_lengths[256] == 0 { |
| 405 | // TODO: Return a dedicated error in this case. |
| 406 | return Err(DecompressionError::BadLiteralLengthHuffmanTree); |
| 407 | } |
| 408 | |
| 409 | let mut codes = [0; 288]; |
| 410 | compression.secondary_table.clear(); |
| 411 | if !huffman::build_table( |
| 412 | &code_lengths[..hlit], |
| 413 | &LITLEN_TABLE_ENTRIES, |
| 414 | &mut codes[..hlit], |
| 415 | &mut *compression.litlen_table, |
| 416 | &mut compression.secondary_table, |
| 417 | false, |
| 418 | true, |
| 419 | ) { |
| 420 | return Err(DecompressionError::BadCodeLengthHuffmanTree); |
| 421 | } |
| 422 | |
| 423 | compression.eof_code = codes[256]; |
| 424 | compression.eof_mask = (1 << code_lengths[256]) - 1; |
| 425 | compression.eof_bits = code_lengths[256]; |
| 426 | |
| 427 | // Build the distance code table. |
| 428 | let lengths = &code_lengths[288..320]; |
| 429 | if lengths == [0; 32] { |
| 430 | compression.dist_table.fill(0); |
| 431 | } else { |
| 432 | let mut dist_codes = [0; 32]; |
| 433 | if !huffman::build_table( |
| 434 | lengths, |
| 435 | &tables::DISTANCE_TABLE_ENTRIES, |
| 436 | &mut dist_codes, |
| 437 | &mut *compression.dist_table, |
| 438 | &mut compression.dist_secondary_table, |
| 439 | true, |
| 440 | false, |
| 441 | ) { |
| 442 | return Err(DecompressionError::BadDistanceHuffmanTree); |
| 443 | } |
| 444 | } |
| 445 | |
| 446 | Ok(()) |
| 447 | } |
| 448 | |
| 449 | fn read_compressed( |
| 450 | &mut self, |
| 451 | remaining_input: &mut &[u8], |
| 452 | output: &mut [u8], |
| 453 | mut output_index: usize, |
| 454 | ) -> Result<usize, DecompressionError> { |
| 455 | // Fast decoding loop. |
| 456 | // |
| 457 | // This loop is optimized for speed and is the main decoding loop for the decompressor, |
| 458 | // which is used when there are at least 8 bytes of input and output data available. It |
| 459 | // assumes that the bitbuffer is full (nbits >= 56) and that litlen_entry has been loaded. |
| 460 | // |
| 461 | // These assumptions enable a few optimizations: |
| 462 | // - Nearly all checks for nbits are avoided. |
| 463 | // - Checking the input size is optimized out in the refill function call. |
| 464 | // - The litlen_entry for the next loop iteration can be loaded in parallel with refilling |
| 465 | // the bit buffer. This is because when the input is non-empty, the bit buffer actually |
| 466 | // has 64-bits of valid data (even though nbits will be in 56..=63). |
| 467 | self.fill_buffer(remaining_input); |
| 468 | let mut litlen_entry = self.compression.litlen_table[(self.buffer & 0xfff) as usize]; |
| 469 | while self.state == State::CompressedData |
| 470 | && output_index + 8 <= output.len() |
| 471 | && remaining_input.len() >= 8 |
| 472 | { |
| 473 | // First check whether the next symbol is a literal. This code does up to 2 additional |
| 474 | // table lookups to decode more literals. |
| 475 | let mut bits; |
| 476 | let mut litlen_code_bits = litlen_entry as u8; |
| 477 | if litlen_entry & LITERAL_ENTRY != 0 { |
| 478 | let litlen_entry2 = self.compression.litlen_table |
| 479 | [(self.buffer >> litlen_code_bits & 0xfff) as usize]; |
| 480 | let litlen_code_bits2 = litlen_entry2 as u8; |
| 481 | let litlen_entry3 = self.compression.litlen_table |
| 482 | [(self.buffer >> (litlen_code_bits + litlen_code_bits2) & 0xfff) as usize]; |
| 483 | let litlen_code_bits3 = litlen_entry3 as u8; |
| 484 | let litlen_entry4 = self.compression.litlen_table[(self.buffer |
| 485 | >> (litlen_code_bits + litlen_code_bits2 + litlen_code_bits3) |
| 486 | & 0xfff) |
| 487 | as usize]; |
| 488 | |
| 489 | let advance_output_bytes = ((litlen_entry & 0xf00) >> 8) as usize; |
| 490 | output[output_index] = (litlen_entry >> 16) as u8; |
| 491 | output[output_index + 1] = (litlen_entry >> 24) as u8; |
| 492 | output_index += advance_output_bytes; |
| 493 | |
| 494 | if litlen_entry2 & LITERAL_ENTRY != 0 { |
| 495 | let advance_output_bytes2 = ((litlen_entry2 & 0xf00) >> 8) as usize; |
| 496 | output[output_index] = (litlen_entry2 >> 16) as u8; |
| 497 | output[output_index + 1] = (litlen_entry2 >> 24) as u8; |
| 498 | output_index += advance_output_bytes2; |
| 499 | |
| 500 | if litlen_entry3 & LITERAL_ENTRY != 0 { |
| 501 | let advance_output_bytes3 = ((litlen_entry3 & 0xf00) >> 8) as usize; |
| 502 | output[output_index] = (litlen_entry3 >> 16) as u8; |
| 503 | output[output_index + 1] = (litlen_entry3 >> 24) as u8; |
| 504 | output_index += advance_output_bytes3; |
| 505 | |
| 506 | litlen_entry = litlen_entry4; |
| 507 | self.consume_bits(litlen_code_bits + litlen_code_bits2 + litlen_code_bits3); |
| 508 | self.fill_buffer(remaining_input); |
| 509 | continue; |
| 510 | } else { |
| 511 | self.consume_bits(litlen_code_bits + litlen_code_bits2); |
| 512 | litlen_entry = litlen_entry3; |
| 513 | litlen_code_bits = litlen_code_bits3; |
| 514 | self.fill_buffer(remaining_input); |
| 515 | bits = self.buffer; |
| 516 | } |
| 517 | } else { |
| 518 | self.consume_bits(litlen_code_bits); |
| 519 | bits = self.buffer; |
| 520 | litlen_entry = litlen_entry2; |
| 521 | litlen_code_bits = litlen_code_bits2; |
| 522 | if self.nbits < 48 { |
| 523 | self.fill_buffer(remaining_input); |
| 524 | } |
| 525 | } |
| 526 | } else { |
| 527 | bits = self.buffer; |
| 528 | } |
| 529 | |
| 530 | // The next symbol is either a 13+ bit literal, back-reference, or an EOF symbol. |
| 531 | let (length_base, length_extra_bits, litlen_code_bits) = |
| 532 | if litlen_entry & EXCEPTIONAL_ENTRY == 0 { |
| 533 | ( |
| 534 | litlen_entry >> 16, |
| 535 | (litlen_entry >> 8) as u8, |
| 536 | litlen_code_bits, |
| 537 | ) |
| 538 | } else if litlen_entry & SECONDARY_TABLE_ENTRY != 0 { |
| 539 | let secondary_table_index = |
| 540 | (litlen_entry >> 16) + ((bits >> 12) as u32 & (litlen_entry & 0xff)); |
| 541 | let secondary_entry = |
| 542 | self.compression.secondary_table[secondary_table_index as usize]; |
| 543 | let litlen_symbol = secondary_entry >> 4; |
| 544 | let litlen_code_bits = (secondary_entry & 0xf) as u8; |
| 545 | |
| 546 | match litlen_symbol { |
| 547 | 0..=255 => { |
| 548 | self.consume_bits(litlen_code_bits); |
| 549 | litlen_entry = |
| 550 | self.compression.litlen_table[(self.buffer & 0xfff) as usize]; |
| 551 | self.fill_buffer(remaining_input); |
| 552 | output[output_index] = litlen_symbol as u8; |
| 553 | output_index += 1; |
| 554 | continue; |
| 555 | } |
| 556 | 256 => { |
| 557 | self.consume_bits(litlen_code_bits); |
| 558 | self.state = match self.last_block { |
| 559 | true => State::Checksum, |
| 560 | false => State::BlockHeader, |
| 561 | }; |
| 562 | break; |
| 563 | } |
| 564 | _ => ( |
| 565 | LEN_SYM_TO_LEN_BASE[litlen_symbol as usize - 257] as u32, |
| 566 | LEN_SYM_TO_LEN_EXTRA[litlen_symbol as usize - 257], |
| 567 | litlen_code_bits, |
| 568 | ), |
| 569 | } |
| 570 | } else if litlen_code_bits == 0 { |
| 571 | return Err(DecompressionError::InvalidLiteralLengthCode); |
| 572 | } else { |
| 573 | self.consume_bits(litlen_code_bits); |
| 574 | self.state = match self.last_block { |
| 575 | true => State::Checksum, |
| 576 | false => State::BlockHeader, |
| 577 | }; |
| 578 | break; |
| 579 | }; |
| 580 | bits >>= litlen_code_bits; |
| 581 | |
| 582 | let length_extra_mask = (1 << length_extra_bits) - 1; |
| 583 | let length = length_base as usize + (bits & length_extra_mask) as usize; |
| 584 | bits >>= length_extra_bits; |
| 585 | |
| 586 | let dist_entry = self.compression.dist_table[(bits & 0x1ff) as usize]; |
| 587 | let (dist_base, dist_extra_bits, dist_code_bits) = if dist_entry & LITERAL_ENTRY != 0 { |
| 588 | ( |
| 589 | (dist_entry >> 16) as u16, |
| 590 | (dist_entry >> 8) as u8 & 0xf, |
| 591 | dist_entry as u8, |
| 592 | ) |
| 593 | } else if dist_entry >> 8 == 0 { |
| 594 | return Err(DecompressionError::InvalidDistanceCode); |
| 595 | } else { |
| 596 | let secondary_table_index = |
| 597 | (dist_entry >> 16) + ((bits >> 9) as u32 & (dist_entry & 0xff)); |
| 598 | let secondary_entry = |
| 599 | self.compression.dist_secondary_table[secondary_table_index as usize]; |
| 600 | let dist_symbol = (secondary_entry >> 4) as usize; |
| 601 | if dist_symbol >= 30 { |
| 602 | return Err(DecompressionError::InvalidDistanceCode); |
| 603 | } |
| 604 | |
| 605 | ( |
| 606 | DIST_SYM_TO_DIST_BASE[dist_symbol], |
| 607 | DIST_SYM_TO_DIST_EXTRA[dist_symbol], |
| 608 | (secondary_entry & 0xf) as u8, |
| 609 | ) |
| 610 | }; |
| 611 | bits >>= dist_code_bits; |
| 612 | |
| 613 | let dist = dist_base as usize + (bits & ((1 << dist_extra_bits) - 1)) as usize; |
| 614 | if dist > output_index { |
| 615 | return Err(DecompressionError::DistanceTooFarBack); |
| 616 | } |
| 617 | |
| 618 | self.consume_bits( |
| 619 | litlen_code_bits + length_extra_bits + dist_code_bits + dist_extra_bits, |
| 620 | ); |
| 621 | self.fill_buffer(remaining_input); |
| 622 | litlen_entry = self.compression.litlen_table[(self.buffer & 0xfff) as usize]; |
| 623 | |
| 624 | let copy_length = length.min(output.len() - output_index); |
| 625 | if dist == 1 { |
| 626 | let last = output[output_index - 1]; |
| 627 | output[output_index..][..copy_length].fill(last); |
| 628 | |
| 629 | if copy_length < length { |
| 630 | self.queued_rle = Some((last, length - copy_length)); |
| 631 | output_index = output.len(); |
| 632 | break; |
| 633 | } |
| 634 | } else if output_index + length + 15 <= output.len() { |
| 635 | let start = output_index - dist; |
| 636 | output.copy_within(start..start + 16, output_index); |
| 637 | |
| 638 | if length > 16 || dist < 16 { |
| 639 | for i in (0..length).step_by(dist.min(16)).skip(1) { |
| 640 | output.copy_within(start + i..start + i + 16, output_index + i); |
| 641 | } |
| 642 | } |
| 643 | } else { |
| 644 | if dist < copy_length { |
| 645 | for i in 0..copy_length { |
| 646 | output[output_index + i] = output[output_index + i - dist]; |
| 647 | } |
| 648 | } else { |
| 649 | output.copy_within( |
| 650 | output_index - dist..output_index + copy_length - dist, |
| 651 | output_index, |
| 652 | ) |
| 653 | } |
| 654 | |
| 655 | if copy_length < length { |
| 656 | self.queued_backref = Some((dist, length - copy_length)); |
| 657 | output_index = output.len(); |
| 658 | break; |
| 659 | } |
| 660 | } |
| 661 | output_index += copy_length; |
| 662 | } |
| 663 | |
| 664 | // Careful decoding loop. |
| 665 | // |
| 666 | // This loop processes the remaining input when we're too close to the end of the input or |
| 667 | // output to use the fast loop. |
| 668 | while let State::CompressedData = self.state { |
| 669 | self.fill_buffer(remaining_input); |
| 670 | if output_index == output.len() { |
| 671 | break; |
| 672 | } |
| 673 | |
| 674 | let mut bits = self.buffer; |
| 675 | let litlen_entry = self.compression.litlen_table[(bits & 0xfff) as usize]; |
| 676 | let litlen_code_bits = litlen_entry as u8; |
| 677 | |
| 678 | if litlen_entry & LITERAL_ENTRY != 0 { |
| 679 | // Fast path: the next symbol is <= 12 bits and a literal, the table specifies the |
| 680 | // output bytes and we can directly write them to the output buffer. |
| 681 | let advance_output_bytes = ((litlen_entry & 0xf00) >> 8) as usize; |
| 682 | |
| 683 | if self.nbits < litlen_code_bits { |
| 684 | break; |
| 685 | } else if output_index + 1 < output.len() { |
| 686 | output[output_index] = (litlen_entry >> 16) as u8; |
| 687 | output[output_index + 1] = (litlen_entry >> 24) as u8; |
| 688 | output_index += advance_output_bytes; |
| 689 | self.consume_bits(litlen_code_bits); |
| 690 | continue; |
| 691 | } else if output_index + advance_output_bytes == output.len() { |
| 692 | debug_assert_eq!(advance_output_bytes, 1); |
| 693 | output[output_index] = (litlen_entry >> 16) as u8; |
| 694 | output_index += 1; |
| 695 | self.consume_bits(litlen_code_bits); |
| 696 | break; |
| 697 | } else { |
| 698 | debug_assert_eq!(advance_output_bytes, 2); |
| 699 | output[output_index] = (litlen_entry >> 16) as u8; |
| 700 | self.queued_rle = Some(((litlen_entry >> 24) as u8, 1)); |
| 701 | output_index += 1; |
| 702 | self.consume_bits(litlen_code_bits); |
| 703 | break; |
| 704 | } |
| 705 | } |
| 706 | |
| 707 | let (length_base, length_extra_bits, litlen_code_bits) = |
| 708 | if litlen_entry & EXCEPTIONAL_ENTRY == 0 { |
| 709 | ( |
| 710 | litlen_entry >> 16, |
| 711 | (litlen_entry >> 8) as u8, |
| 712 | litlen_code_bits, |
| 713 | ) |
| 714 | } else if litlen_entry & SECONDARY_TABLE_ENTRY != 0 { |
| 715 | let secondary_table_index = |
| 716 | (litlen_entry >> 16) + ((bits >> 12) as u32 & (litlen_entry & 0xff)); |
| 717 | let secondary_entry = |
| 718 | self.compression.secondary_table[secondary_table_index as usize]; |
| 719 | let litlen_symbol = secondary_entry >> 4; |
| 720 | let litlen_code_bits = (secondary_entry & 0xf) as u8; |
| 721 | |
| 722 | if self.nbits < litlen_code_bits { |
| 723 | break; |
| 724 | } else if litlen_symbol < 256 { |
| 725 | self.consume_bits(litlen_code_bits); |
| 726 | output[output_index] = litlen_symbol as u8; |
| 727 | output_index += 1; |
| 728 | continue; |
| 729 | } else if litlen_symbol == 256 { |
| 730 | self.consume_bits(litlen_code_bits); |
| 731 | self.state = match self.last_block { |
| 732 | true => State::Checksum, |
| 733 | false => State::BlockHeader, |
| 734 | }; |
| 735 | break; |
| 736 | } |
| 737 | |
| 738 | ( |
| 739 | LEN_SYM_TO_LEN_BASE[litlen_symbol as usize - 257] as u32, |
| 740 | LEN_SYM_TO_LEN_EXTRA[litlen_symbol as usize - 257], |
| 741 | litlen_code_bits, |
| 742 | ) |
| 743 | } else if litlen_code_bits == 0 { |
| 744 | return Err(DecompressionError::InvalidLiteralLengthCode); |
| 745 | } else { |
| 746 | if self.nbits < litlen_code_bits { |
| 747 | break; |
| 748 | } |
| 749 | self.consume_bits(litlen_code_bits); |
| 750 | self.state = match self.last_block { |
| 751 | true => State::Checksum, |
| 752 | false => State::BlockHeader, |
| 753 | }; |
| 754 | break; |
| 755 | }; |
| 756 | bits >>= litlen_code_bits; |
| 757 | |
| 758 | let length_extra_mask = (1 << length_extra_bits) - 1; |
| 759 | let length = length_base as usize + (bits & length_extra_mask) as usize; |
| 760 | bits >>= length_extra_bits; |
| 761 | |
| 762 | let dist_entry = self.compression.dist_table[(bits & 0x1ff) as usize]; |
| 763 | let (dist_base, dist_extra_bits, dist_code_bits) = if dist_entry & LITERAL_ENTRY != 0 { |
| 764 | ( |
| 765 | (dist_entry >> 16) as u16, |
| 766 | (dist_entry >> 8) as u8 & 0xf, |
| 767 | dist_entry as u8, |
| 768 | ) |
| 769 | } else if self.nbits > litlen_code_bits + length_extra_bits + 9 { |
| 770 | if dist_entry >> 8 == 0 { |
| 771 | return Err(DecompressionError::InvalidDistanceCode); |
| 772 | } |
| 773 | |
| 774 | let secondary_table_index = |
| 775 | (dist_entry >> 16) + ((bits >> 9) as u32 & (dist_entry & 0xff)); |
| 776 | let secondary_entry = |
| 777 | self.compression.dist_secondary_table[secondary_table_index as usize]; |
| 778 | let dist_symbol = (secondary_entry >> 4) as usize; |
| 779 | if dist_symbol >= 30 { |
| 780 | return Err(DecompressionError::InvalidDistanceCode); |
| 781 | } |
| 782 | |
| 783 | ( |
| 784 | DIST_SYM_TO_DIST_BASE[dist_symbol], |
| 785 | DIST_SYM_TO_DIST_EXTRA[dist_symbol], |
| 786 | (secondary_entry & 0xf) as u8, |
| 787 | ) |
| 788 | } else { |
| 789 | break; |
| 790 | }; |
| 791 | bits >>= dist_code_bits; |
| 792 | |
| 793 | let dist = dist_base as usize + (bits & ((1 << dist_extra_bits) - 1)) as usize; |
| 794 | let total_bits = |
| 795 | litlen_code_bits + length_extra_bits + dist_code_bits + dist_extra_bits; |
| 796 | |
| 797 | if self.nbits < total_bits { |
| 798 | break; |
| 799 | } else if dist > output_index { |
| 800 | return Err(DecompressionError::DistanceTooFarBack); |
| 801 | } |
| 802 | |
| 803 | self.consume_bits(total_bits); |
| 804 | |
| 805 | let copy_length = length.min(output.len() - output_index); |
| 806 | if dist == 1 { |
| 807 | let last = output[output_index - 1]; |
| 808 | output[output_index..][..copy_length].fill(last); |
| 809 | |
| 810 | if copy_length < length { |
| 811 | self.queued_rle = Some((last, length - copy_length)); |
| 812 | output_index = output.len(); |
| 813 | break; |
| 814 | } |
| 815 | } else if output_index + length + 15 <= output.len() { |
| 816 | let start = output_index - dist; |
| 817 | output.copy_within(start..start + 16, output_index); |
| 818 | |
| 819 | if length > 16 || dist < 16 { |
| 820 | for i in (0..length).step_by(dist.min(16)).skip(1) { |
| 821 | output.copy_within(start + i..start + i + 16, output_index + i); |
| 822 | } |
| 823 | } |
| 824 | } else { |
| 825 | if dist < copy_length { |
| 826 | for i in 0..copy_length { |
| 827 | output[output_index + i] = output[output_index + i - dist]; |
| 828 | } |
| 829 | } else { |
| 830 | output.copy_within( |
| 831 | output_index - dist..output_index + copy_length - dist, |
| 832 | output_index, |
| 833 | ) |
| 834 | } |
| 835 | |
| 836 | if copy_length < length { |
| 837 | self.queued_backref = Some((dist, length - copy_length)); |
| 838 | output_index = output.len(); |
| 839 | break; |
| 840 | } |
| 841 | } |
| 842 | output_index += copy_length; |
| 843 | } |
| 844 | |
| 845 | if self.state == State::CompressedData |
| 846 | && self.queued_backref.is_none() |
| 847 | && self.queued_rle.is_none() |
| 848 | && self.nbits >= 15 |
| 849 | && self.peak_bits(15) as u16 & self.compression.eof_mask == self.compression.eof_code |
| 850 | { |
| 851 | self.consume_bits(self.compression.eof_bits); |
| 852 | self.state = match self.last_block { |
| 853 | true => State::Checksum, |
| 854 | false => State::BlockHeader, |
| 855 | }; |
| 856 | } |
| 857 | |
| 858 | Ok(output_index) |
| 859 | } |
| 860 | |
| 861 | /// Decompresses a chunk of data. |
| 862 | /// |
| 863 | /// Returns the number of bytes read from `input` and the number of bytes written to `output`, |
| 864 | /// or an error if the deflate stream is not valid. `input` is the compressed data. `output` is |
| 865 | /// the buffer to write the decompressed data to, starting at index `output_position`. |
| 866 | /// `end_of_input` indicates whether more data may be available in the future. |
| 867 | /// |
| 868 | /// The contents of `output` after `output_position` are ignored. However, this function may |
| 869 | /// write additional data to `output` past what is indicated by the return value. |
| 870 | /// |
| 871 | /// When this function returns `Ok`, at least one of the following is true: |
| 872 | /// - The input is fully consumed. |
| 873 | /// - The output is full but there are more bytes to output. |
| 874 | /// - The deflate stream is complete (and `is_done` will return true). |
| 875 | /// |
| 876 | /// # Panics |
| 877 | /// |
| 878 | /// This function will panic if `output_position` is out of bounds. |
| 879 | pub fn read( |
| 880 | &mut self, |
| 881 | input: &[u8], |
| 882 | output: &mut [u8], |
| 883 | output_position: usize, |
| 884 | end_of_input: bool, |
| 885 | ) -> Result<(usize, usize), DecompressionError> { |
| 886 | if let State::Done = self.state { |
| 887 | return Ok((0, 0)); |
| 888 | } |
| 889 | |
| 890 | assert!(output_position <= output.len()); |
| 891 | |
| 892 | let mut remaining_input = input; |
| 893 | let mut output_index = output_position; |
| 894 | |
| 895 | if let Some((data, len)) = self.queued_rle.take() { |
| 896 | let n = len.min(output.len() - output_index); |
| 897 | output[output_index..][..n].fill(data); |
| 898 | output_index += n; |
| 899 | if n < len { |
| 900 | self.queued_rle = Some((data, len - n)); |
| 901 | return Ok((0, n)); |
| 902 | } |
| 903 | } |
| 904 | if let Some((dist, len)) = self.queued_backref.take() { |
| 905 | let n = len.min(output.len() - output_index); |
| 906 | for i in 0..n { |
| 907 | output[output_index + i] = output[output_index + i - dist]; |
| 908 | } |
| 909 | output_index += n; |
| 910 | if n < len { |
| 911 | self.queued_backref = Some((dist, len - n)); |
| 912 | return Ok((0, n)); |
| 913 | } |
| 914 | } |
| 915 | |
| 916 | // Main decoding state machine. |
| 917 | let mut last_state = None; |
| 918 | while last_state != Some(self.state) { |
| 919 | last_state = Some(self.state); |
| 920 | match self.state { |
| 921 | State::ZlibHeader => { |
| 922 | self.fill_buffer(&mut remaining_input); |
| 923 | if self.nbits < 16 { |
| 924 | break; |
| 925 | } |
| 926 | |
| 927 | let input0 = self.peak_bits(8); |
| 928 | let input1 = self.peak_bits(16) >> 8 & 0xff; |
| 929 | if input0 & 0x0f != 0x08 |
| 930 | || (input0 & 0xf0) > 0x70 |
| 931 | || input1 & 0x20 != 0 |
| 932 | || (input0 << 8 | input1) % 31 != 0 |
| 933 | { |
| 934 | return Err(DecompressionError::BadZlibHeader); |
| 935 | } |
| 936 | |
| 937 | self.consume_bits(16); |
| 938 | self.state = State::BlockHeader; |
| 939 | } |
| 940 | State::BlockHeader => { |
| 941 | self.read_block_header(&mut remaining_input)?; |
| 942 | } |
| 943 | State::CodeLengthCodes => { |
| 944 | self.read_code_length_codes(&mut remaining_input)?; |
| 945 | } |
| 946 | State::CodeLengths => { |
| 947 | self.read_code_lengths(&mut remaining_input)?; |
| 948 | } |
| 949 | State::CompressedData => { |
| 950 | output_index = |
| 951 | self.read_compressed(&mut remaining_input, output, output_index)? |
| 952 | } |
| 953 | State::UncompressedData => { |
| 954 | // Drain any bytes from our buffer. |
| 955 | debug_assert_eq!(self.nbits % 8, 0); |
| 956 | while self.nbits > 0 |
| 957 | && self.uncompressed_bytes_left > 0 |
| 958 | && output_index < output.len() |
| 959 | { |
| 960 | output[output_index] = self.peak_bits(8) as u8; |
| 961 | self.consume_bits(8); |
| 962 | output_index += 1; |
| 963 | self.uncompressed_bytes_left -= 1; |
| 964 | } |
| 965 | // Buffer may contain one additional byte. Clear it to avoid confusion. |
| 966 | if self.nbits == 0 { |
| 967 | self.buffer = 0; |
| 968 | } |
| 969 | |
| 970 | // Copy subsequent bytes directly from the input. |
| 971 | let copy_bytes = (self.uncompressed_bytes_left as usize) |
| 972 | .min(remaining_input.len()) |
| 973 | .min(output.len() - output_index); |
| 974 | output[output_index..][..copy_bytes] |
| 975 | .copy_from_slice(&remaining_input[..copy_bytes]); |
| 976 | remaining_input = &remaining_input[copy_bytes..]; |
| 977 | output_index += copy_bytes; |
| 978 | self.uncompressed_bytes_left -= copy_bytes as u16; |
| 979 | |
| 980 | if self.uncompressed_bytes_left == 0 { |
| 981 | self.state = if self.last_block { |
| 982 | State::Checksum |
| 983 | } else { |
| 984 | State::BlockHeader |
| 985 | }; |
| 986 | } |
| 987 | } |
| 988 | State::Checksum => { |
| 989 | self.fill_buffer(&mut remaining_input); |
| 990 | |
| 991 | let align_bits = self.nbits % 8; |
| 992 | if self.nbits >= 32 + align_bits { |
| 993 | self.checksum.write(&output[output_position..output_index]); |
| 994 | if align_bits != 0 { |
| 995 | self.consume_bits(align_bits); |
| 996 | } |
| 997 | #[cfg (not(fuzzing))] |
| 998 | if !self.ignore_adler32 |
| 999 | && (self.peak_bits(32) as u32).swap_bytes() != self.checksum.finish() |
| 1000 | { |
| 1001 | return Err(DecompressionError::WrongChecksum); |
| 1002 | } |
| 1003 | self.state = State::Done; |
| 1004 | self.consume_bits(32); |
| 1005 | break; |
| 1006 | } |
| 1007 | } |
| 1008 | State::Done => unreachable!(), |
| 1009 | } |
| 1010 | } |
| 1011 | |
| 1012 | if !self.ignore_adler32 && self.state != State::Done { |
| 1013 | self.checksum.write(&output[output_position..output_index]); |
| 1014 | } |
| 1015 | |
| 1016 | if self.state == State::Done || !end_of_input || output_index == output.len() { |
| 1017 | let input_left = remaining_input.len(); |
| 1018 | Ok((input.len() - input_left, output_index - output_position)) |
| 1019 | } else { |
| 1020 | Err(DecompressionError::InsufficientInput) |
| 1021 | } |
| 1022 | } |
| 1023 | |
| 1024 | /// Returns true if the decompressor has finished decompressing the input. |
| 1025 | pub fn is_done(&self) -> bool { |
| 1026 | self.state == State::Done |
| 1027 | } |
| 1028 | } |
| 1029 | |
| 1030 | /// Decompress the given data. |
| 1031 | pub fn decompress_to_vec(input: &[u8]) -> Result<Vec<u8>, DecompressionError> { |
| 1032 | match decompress_to_vec_bounded(input, maxlen:usize::MAX) { |
| 1033 | Ok(output: Vec) => Ok(output), |
| 1034 | Err(BoundedDecompressionError::DecompressionError { inner: DecompressionError }) => Err(inner), |
| 1035 | Err(BoundedDecompressionError::OutputTooLarge { .. }) => { |
| 1036 | unreachable!("Impossible to allocate more than isize::MAX bytes" ) |
| 1037 | } |
| 1038 | } |
| 1039 | } |
| 1040 | |
| 1041 | /// An error encountered while decompressing a deflate stream given a bounded maximum output. |
| 1042 | pub enum BoundedDecompressionError { |
| 1043 | /// The input is not a valid deflate stream. |
| 1044 | DecompressionError { |
| 1045 | /// The underlying error. |
| 1046 | inner: DecompressionError, |
| 1047 | }, |
| 1048 | |
| 1049 | /// The output is too large. |
| 1050 | OutputTooLarge { |
| 1051 | /// The output decoded so far. |
| 1052 | partial_output: Vec<u8>, |
| 1053 | }, |
| 1054 | } |
| 1055 | impl From<DecompressionError> for BoundedDecompressionError { |
| 1056 | fn from(inner: DecompressionError) -> Self { |
| 1057 | BoundedDecompressionError::DecompressionError { inner } |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | /// Decompress the given data, returning an error if the output is larger than |
| 1062 | /// `maxlen` bytes. |
| 1063 | pub fn decompress_to_vec_bounded( |
| 1064 | input: &[u8], |
| 1065 | maxlen: usize, |
| 1066 | ) -> Result<Vec<u8>, BoundedDecompressionError> { |
| 1067 | let mut decoder = Decompressor::new(); |
| 1068 | let mut output = vec![0; 1024.min(maxlen)]; |
| 1069 | let mut input_index = 0; |
| 1070 | let mut output_index = 0; |
| 1071 | loop { |
| 1072 | let (consumed, produced) = |
| 1073 | decoder.read(&input[input_index..], &mut output, output_index, true)?; |
| 1074 | input_index += consumed; |
| 1075 | output_index += produced; |
| 1076 | if decoder.is_done() || output_index == maxlen { |
| 1077 | break; |
| 1078 | } |
| 1079 | output.resize((output_index + 32 * 1024).min(maxlen), 0); |
| 1080 | } |
| 1081 | output.resize(output_index, 0); |
| 1082 | |
| 1083 | if decoder.is_done() { |
| 1084 | Ok(output) |
| 1085 | } else { |
| 1086 | Err(BoundedDecompressionError::OutputTooLarge { |
| 1087 | partial_output: output, |
| 1088 | }) |
| 1089 | } |
| 1090 | } |
| 1091 | |
| 1092 | #[cfg (test)] |
| 1093 | mod tests { |
| 1094 | use crate::tables::{LENGTH_TO_LEN_EXTRA, LENGTH_TO_SYMBOL}; |
| 1095 | |
| 1096 | use super::*; |
| 1097 | use rand::Rng; |
| 1098 | |
| 1099 | fn roundtrip(data: &[u8]) { |
| 1100 | let compressed = crate::compress_to_vec(data); |
| 1101 | let decompressed = decompress_to_vec(&compressed).unwrap(); |
| 1102 | assert_eq!(&decompressed, data); |
| 1103 | } |
| 1104 | |
| 1105 | fn roundtrip_miniz_oxide(data: &[u8]) { |
| 1106 | let compressed = miniz_oxide::deflate::compress_to_vec_zlib(data, 3); |
| 1107 | let decompressed = decompress_to_vec(&compressed).unwrap(); |
| 1108 | assert_eq!(decompressed.len(), data.len()); |
| 1109 | for (i, (a, b)) in decompressed.chunks(1).zip(data.chunks(1)).enumerate() { |
| 1110 | assert_eq!(a, b, "chunk {}..{}" , i, i + 1); |
| 1111 | } |
| 1112 | assert_eq!(&decompressed, data); |
| 1113 | } |
| 1114 | |
| 1115 | #[allow (unused)] |
| 1116 | fn compare_decompression(data: &[u8]) { |
| 1117 | // let decompressed0 = flate2::read::ZlibDecoder::new(std::io::Cursor::new(&data)) |
| 1118 | // .bytes() |
| 1119 | // .collect::<Result<Vec<_>, _>>() |
| 1120 | // .unwrap(); |
| 1121 | let decompressed = decompress_to_vec(data).unwrap(); |
| 1122 | let decompressed2 = miniz_oxide::inflate::decompress_to_vec_zlib(data).unwrap(); |
| 1123 | for i in 0..decompressed.len().min(decompressed2.len()) { |
| 1124 | if decompressed[i] != decompressed2[i] { |
| 1125 | panic!( |
| 1126 | "mismatch at index {} {:?} {:?}" , |
| 1127 | i, |
| 1128 | &decompressed[i.saturating_sub(1)..(i + 16).min(decompressed.len())], |
| 1129 | &decompressed2[i.saturating_sub(1)..(i + 16).min(decompressed2.len())] |
| 1130 | ); |
| 1131 | } |
| 1132 | } |
| 1133 | if decompressed != decompressed2 { |
| 1134 | panic!( |
| 1135 | "length mismatch {} {} {:x?}" , |
| 1136 | decompressed.len(), |
| 1137 | decompressed2.len(), |
| 1138 | &decompressed2[decompressed.len()..][..16] |
| 1139 | ); |
| 1140 | } |
| 1141 | //assert_eq!(decompressed, decompressed2); |
| 1142 | } |
| 1143 | |
| 1144 | #[test ] |
| 1145 | fn tables() { |
| 1146 | for (i, &bits) in LEN_SYM_TO_LEN_EXTRA.iter().enumerate() { |
| 1147 | let len_base = LEN_SYM_TO_LEN_BASE[i]; |
| 1148 | for j in 0..(1 << bits) { |
| 1149 | if i == 27 && j == 31 { |
| 1150 | continue; |
| 1151 | } |
| 1152 | assert_eq!(LENGTH_TO_LEN_EXTRA[len_base + j - 3], bits, "{} {}" , i, j); |
| 1153 | assert_eq!( |
| 1154 | LENGTH_TO_SYMBOL[len_base + j - 3], |
| 1155 | i as u16 + 257, |
| 1156 | "{} {}" , |
| 1157 | i, |
| 1158 | j |
| 1159 | ); |
| 1160 | } |
| 1161 | } |
| 1162 | } |
| 1163 | |
| 1164 | #[test ] |
| 1165 | fn fixed_tables() { |
| 1166 | let mut compression = CompressedBlock { |
| 1167 | litlen_table: Box::new([0; 4096]), |
| 1168 | dist_table: Box::new([0; 512]), |
| 1169 | secondary_table: Vec::new(), |
| 1170 | dist_secondary_table: Vec::new(), |
| 1171 | eof_code: 0, |
| 1172 | eof_mask: 0, |
| 1173 | eof_bits: 0, |
| 1174 | }; |
| 1175 | Decompressor::build_tables(288, &FIXED_CODE_LENGTHS, &mut compression).unwrap(); |
| 1176 | |
| 1177 | assert_eq!(compression.litlen_table[..512], FIXED_LITLEN_TABLE); |
| 1178 | assert_eq!(compression.dist_table[..32], FIXED_DIST_TABLE); |
| 1179 | } |
| 1180 | |
| 1181 | #[test ] |
| 1182 | fn it_works() { |
| 1183 | roundtrip(b"Hello world!" ); |
| 1184 | } |
| 1185 | |
| 1186 | #[test ] |
| 1187 | fn constant() { |
| 1188 | roundtrip_miniz_oxide(&[0; 50]); |
| 1189 | roundtrip_miniz_oxide(&vec![5; 2048]); |
| 1190 | roundtrip_miniz_oxide(&vec![128; 2048]); |
| 1191 | roundtrip_miniz_oxide(&vec![254; 2048]); |
| 1192 | } |
| 1193 | |
| 1194 | #[test ] |
| 1195 | fn random() { |
| 1196 | let mut rng = rand::thread_rng(); |
| 1197 | let mut data = vec![0; 50000]; |
| 1198 | for _ in 0..10 { |
| 1199 | for byte in &mut data { |
| 1200 | *byte = rng.gen::<u8>() % 5; |
| 1201 | } |
| 1202 | println!("Random data: {:?}" , data); |
| 1203 | roundtrip_miniz_oxide(&data); |
| 1204 | } |
| 1205 | } |
| 1206 | |
| 1207 | #[test ] |
| 1208 | fn ignore_adler32() { |
| 1209 | let mut compressed = crate::compress_to_vec(b"Hello world!" ); |
| 1210 | let last_byte = compressed.len() - 1; |
| 1211 | compressed[last_byte] = compressed[last_byte].wrapping_add(1); |
| 1212 | |
| 1213 | match decompress_to_vec(&compressed) { |
| 1214 | Err(DecompressionError::WrongChecksum) => {} |
| 1215 | r => panic!("expected WrongChecksum, got {:?}" , r), |
| 1216 | } |
| 1217 | |
| 1218 | let mut decompressor = Decompressor::new(); |
| 1219 | decompressor.ignore_adler32(); |
| 1220 | let mut decompressed = vec![0; 1024]; |
| 1221 | let decompressed_len = decompressor |
| 1222 | .read(&compressed, &mut decompressed, 0, true) |
| 1223 | .unwrap() |
| 1224 | .1; |
| 1225 | assert_eq!(&decompressed[..decompressed_len], b"Hello world!" ); |
| 1226 | } |
| 1227 | |
| 1228 | #[test ] |
| 1229 | fn checksum_after_eof() { |
| 1230 | let input = b"Hello world!" ; |
| 1231 | let compressed = crate::compress_to_vec(input); |
| 1232 | |
| 1233 | let mut decompressor = Decompressor::new(); |
| 1234 | let mut decompressed = vec![0; 1024]; |
| 1235 | let (input_consumed, output_written) = decompressor |
| 1236 | .read( |
| 1237 | &compressed[..compressed.len() - 1], |
| 1238 | &mut decompressed, |
| 1239 | 0, |
| 1240 | false, |
| 1241 | ) |
| 1242 | .unwrap(); |
| 1243 | assert_eq!(output_written, input.len()); |
| 1244 | assert_eq!(input_consumed, compressed.len() - 1); |
| 1245 | |
| 1246 | let (input_consumed, output_written) = decompressor |
| 1247 | .read( |
| 1248 | &compressed[input_consumed..], |
| 1249 | &mut decompressed[..output_written], |
| 1250 | output_written, |
| 1251 | true, |
| 1252 | ) |
| 1253 | .unwrap(); |
| 1254 | assert!(decompressor.is_done()); |
| 1255 | assert_eq!(input_consumed, 1); |
| 1256 | assert_eq!(output_written, 0); |
| 1257 | |
| 1258 | assert_eq!(&decompressed[..input.len()], input); |
| 1259 | } |
| 1260 | |
| 1261 | #[test ] |
| 1262 | fn zero_length() { |
| 1263 | let mut compressed = crate::compress_to_vec(b"" ).to_vec(); |
| 1264 | |
| 1265 | // Splice in zero-length non-compressed blocks. |
| 1266 | for _ in 0..10 { |
| 1267 | println!("compressed len: {}" , compressed.len()); |
| 1268 | compressed.splice(2..2, [0u8, 0, 0, 0xff, 0xff].into_iter()); |
| 1269 | } |
| 1270 | |
| 1271 | // Ensure that the full input is decompressed, regardless of whether |
| 1272 | // `end_of_input` is set. |
| 1273 | for end_of_input in [true, false] { |
| 1274 | let mut decompressor = Decompressor::new(); |
| 1275 | let (input_consumed, output_written) = decompressor |
| 1276 | .read(&compressed, &mut [], 0, end_of_input) |
| 1277 | .unwrap(); |
| 1278 | |
| 1279 | assert!(decompressor.is_done()); |
| 1280 | assert_eq!(input_consumed, compressed.len()); |
| 1281 | assert_eq!(output_written, 0); |
| 1282 | } |
| 1283 | } |
| 1284 | |
| 1285 | mod test_utils; |
| 1286 | use tables::FIXED_CODE_LENGTHS; |
| 1287 | use test_utils::{decompress_by_chunks, TestDecompressionError}; |
| 1288 | |
| 1289 | fn verify_no_sensitivity_to_input_chunking( |
| 1290 | input: &[u8], |
| 1291 | ) -> Result<Vec<u8>, TestDecompressionError> { |
| 1292 | let r_whole = decompress_by_chunks(input, vec![input.len()], false); |
| 1293 | let r_bytewise = decompress_by_chunks(input, std::iter::repeat(1), false); |
| 1294 | assert_eq!(r_whole, r_bytewise); |
| 1295 | r_whole // Returning an arbitrary result, since this is equal to `r_bytewise`. |
| 1296 | } |
| 1297 | |
| 1298 | /// This is a regression test found by the `buf_independent` fuzzer from the `png` crate. When |
| 1299 | /// this test case was found, the results were unexpectedly different when 1) decompressing the |
| 1300 | /// whole input (successful result) vs 2) decompressing byte-by-byte |
| 1301 | /// (`Err(InvalidDistanceCode)`). |
| 1302 | #[test ] |
| 1303 | fn test_input_chunking_sensitivity_when_handling_distance_codes() { |
| 1304 | let result = verify_no_sensitivity_to_input_chunking(include_bytes!( |
| 1305 | "../tests/input-chunking-sensitivity-example1.zz" |
| 1306 | )) |
| 1307 | .unwrap(); |
| 1308 | assert_eq!(result.len(), 281); |
| 1309 | assert_eq!(simd_adler32::adler32(&result.as_slice()), 751299); |
| 1310 | } |
| 1311 | |
| 1312 | /// This is a regression test found by the `inflate_bytewise3` fuzzer from the `fdeflate` |
| 1313 | /// crate. When this test case was found, the results were unexpectedly different when 1) |
| 1314 | /// decompressing the whole input (`Err(DistanceTooFarBack)`) vs 2) decompressing byte-by-byte |
| 1315 | /// (successful result)`). |
| 1316 | #[test ] |
| 1317 | fn test_input_chunking_sensitivity_when_no_end_of_block_symbol_example1() { |
| 1318 | let err = verify_no_sensitivity_to_input_chunking(include_bytes!( |
| 1319 | "../tests/input-chunking-sensitivity-example2.zz" |
| 1320 | )) |
| 1321 | .unwrap_err(); |
| 1322 | assert_eq!( |
| 1323 | err, |
| 1324 | TestDecompressionError::ProdError(DecompressionError::BadLiteralLengthHuffmanTree) |
| 1325 | ); |
| 1326 | } |
| 1327 | |
| 1328 | /// This is a regression test found by the `inflate_bytewise3` fuzzer from the `fdeflate` |
| 1329 | /// crate. When this test case was found, the results were unexpectedly different when 1) |
| 1330 | /// decompressing the whole input (`Err(InvalidDistanceCode)`) vs 2) decompressing byte-by-byte |
| 1331 | /// (successful result)`). |
| 1332 | #[test ] |
| 1333 | fn test_input_chunking_sensitivity_when_no_end_of_block_symbol_example2() { |
| 1334 | let err = verify_no_sensitivity_to_input_chunking(include_bytes!( |
| 1335 | "../tests/input-chunking-sensitivity-example3.zz" |
| 1336 | )) |
| 1337 | .unwrap_err(); |
| 1338 | assert_eq!( |
| 1339 | err, |
| 1340 | TestDecompressionError::ProdError(DecompressionError::BadLiteralLengthHuffmanTree) |
| 1341 | ); |
| 1342 | } |
| 1343 | } |
| 1344 | |