| 1 | // Copyright 2014-2020 Optimal Computing (NZ) Ltd. |
| 2 | // Licensed under the MIT license. See LICENSE for details. |
| 3 | |
| 4 | use super::Ulps; |
| 5 | use core::{f32, f64}; |
| 6 | #[cfg (feature = "num-traits" )] |
| 7 | #[allow (unused_imports)] |
| 8 | use num_traits::float::FloatCore; |
| 9 | |
| 10 | /// A margin specifying a maximum distance two floating point values can be while |
| 11 | /// still being considered equal enough. |
| 12 | pub trait FloatMargin: Copy + Default { |
| 13 | /// A floating-point type used for epsilon values |
| 14 | type F; |
| 15 | |
| 16 | /// An integer type used for ulps values |
| 17 | type I; |
| 18 | |
| 19 | /// Zero margin |
| 20 | fn zero() -> Self; |
| 21 | |
| 22 | /// Set the epsilon value for this margin |
| 23 | fn epsilon(self, epsilon: Self::F) -> Self; |
| 24 | |
| 25 | /// Set the ulps value for this margin |
| 26 | fn ulps(self, ulps: Self::I) -> Self; |
| 27 | } |
| 28 | |
| 29 | /// A trait for approximate equality comparisons. |
| 30 | pub trait ApproxEq: Sized { |
| 31 | /// This type type defines a margin within which two values are to be |
| 32 | /// considered approximately equal. It must implement `Default` so that |
| 33 | /// `approx_eq()` can be called on unknown types. |
| 34 | type Margin: FloatMargin; |
| 35 | |
| 36 | /// This method tests that the `self` and `other` values are equal within `margin` |
| 37 | /// of each other. |
| 38 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool; |
| 39 | |
| 40 | /// This method tests that the `self` and `other` values are not within `margin` |
| 41 | /// of each other. |
| 42 | fn approx_ne<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 43 | !self.approx_eq(other, margin) |
| 44 | } |
| 45 | } |
| 46 | |
| 47 | /// This type defines a margin within two `f32` values might be considered equal, |
| 48 | /// and is intended as the associated type for the `ApproxEq` trait. |
| 49 | /// |
| 50 | /// Two tests are used to determine approximate equality. |
| 51 | /// |
| 52 | /// The first test considers two values approximately equal if they differ by <= |
| 53 | /// `epsilon`. This will only succeed for very small numbers. Note that it may |
| 54 | /// succeed even if the parameters are of differing signs, straddling zero. |
| 55 | /// |
| 56 | /// The second test considers how many ULPs (units of least precision, units in |
| 57 | /// the last place, which is the integer number of floating-point representations |
| 58 | /// that the parameters are separated by) different the parameters are and considers |
| 59 | /// them approximately equal if this is <= `ulps`. For large floating-point numbers, |
| 60 | /// an ULP can be a rather large gap, but this kind of comparison is necessary |
| 61 | /// because floating-point operations must round to the nearest representable value |
| 62 | /// and so larger floating-point values accumulate larger errors. |
| 63 | #[repr (C)] |
| 64 | #[derive (Debug, Clone, Copy)] |
| 65 | pub struct F32Margin { |
| 66 | pub epsilon: f32, |
| 67 | pub ulps: i32, |
| 68 | } |
| 69 | impl Default for F32Margin { |
| 70 | #[inline ] |
| 71 | fn default() -> F32Margin { |
| 72 | F32Margin { |
| 73 | epsilon: f32::EPSILON, |
| 74 | ulps: 4, |
| 75 | } |
| 76 | } |
| 77 | } |
| 78 | impl FloatMargin for F32Margin { |
| 79 | type F = f32; |
| 80 | type I = i32; |
| 81 | |
| 82 | #[inline ] |
| 83 | fn zero() -> F32Margin { |
| 84 | F32Margin { |
| 85 | epsilon: 0.0, |
| 86 | ulps: 0, |
| 87 | } |
| 88 | } |
| 89 | fn epsilon(self, epsilon: f32) -> Self { |
| 90 | F32Margin { epsilon, ..self } |
| 91 | } |
| 92 | fn ulps(self, ulps: i32) -> Self { |
| 93 | F32Margin { ulps, ..self } |
| 94 | } |
| 95 | } |
| 96 | impl From<(f32, i32)> for F32Margin { |
| 97 | fn from(m: (f32, i32)) -> F32Margin { |
| 98 | F32Margin { |
| 99 | epsilon: m.0, |
| 100 | ulps: m.1, |
| 101 | } |
| 102 | } |
| 103 | } |
| 104 | |
| 105 | // no-std compatible abs function |
| 106 | #[inline (always)] |
| 107 | fn f32abs(x: f32) -> f32 { |
| 108 | f32::from_bits(x.to_bits() & !(1 << 31)) |
| 109 | } |
| 110 | |
| 111 | impl ApproxEq for f32 { |
| 112 | type Margin = F32Margin; |
| 113 | |
| 114 | fn approx_eq<M: Into<Self::Margin>>(self, other: f32, margin: M) -> bool { |
| 115 | let margin = margin.into(); |
| 116 | |
| 117 | // Check for exact equality first. This is often true, and so we get the |
| 118 | // performance benefit of only doing one compare in most cases. |
| 119 | self == other || { |
| 120 | // Perform epsilon comparison next |
| 121 | let eps: f32 = f32abs(self - other); |
| 122 | (eps <= margin.epsilon) || { |
| 123 | // Perform ulps comparison last |
| 124 | let diff: i32 = self.ulps(&other); |
| 125 | saturating_abs_i32!(diff) <= margin.ulps |
| 126 | } |
| 127 | } |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | #[test ] |
| 132 | fn f32_approx_eq_test1() { |
| 133 | let f: f32 = 0.0_f32; |
| 134 | let g: f32 = -0.0000000000000005551115123125783_f32; |
| 135 | assert!(f != g); // Should not be directly equal |
| 136 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 137 | } |
| 138 | #[test ] |
| 139 | fn f32_approx_eq_test2() { |
| 140 | let f: f32 = 0.0_f32; |
| 141 | let g: f32 = -0.0_f32; |
| 142 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 143 | } |
| 144 | #[test ] |
| 145 | fn f32_approx_eq_test3() { |
| 146 | let f: f32 = 0.0_f32; |
| 147 | let g: f32 = 0.00000000000000001_f32; |
| 148 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == true); |
| 149 | } |
| 150 | #[test ] |
| 151 | fn f32_approx_eq_test4() { |
| 152 | let f: f32 = 0.00001_f32; |
| 153 | let g: f32 = 0.00000000000000001_f32; |
| 154 | assert!(f.approx_eq(g, (f32::EPSILON, 0)) == false); |
| 155 | } |
| 156 | #[test ] |
| 157 | fn f32_approx_eq_test5() { |
| 158 | let f: f32 = 0.1_f32; |
| 159 | let mut sum: f32 = 0.0_f32; |
| 160 | for _ in 0_isize..10_isize { |
| 161 | sum += f; |
| 162 | } |
| 163 | let product: f32 = f * 10.0_f32; |
| 164 | assert!(sum != product); // Should not be directly equal: |
| 165 | assert!(sum.approx_eq(product, (f32::EPSILON, 1)) == true); |
| 166 | assert!(sum.approx_eq(product, F32Margin::zero()) == false); |
| 167 | } |
| 168 | #[test ] |
| 169 | fn f32_approx_eq_test6() { |
| 170 | let x: f32 = 1000000_f32; |
| 171 | let y: f32 = 1000000.1_f32; |
| 172 | assert!(x != y); // Should not be directly equal |
| 173 | assert!(x.approx_eq(y, (0.0, 2)) == true); // 2 ulps does it |
| 174 | // epsilon method no good here: |
| 175 | assert!(x.approx_eq(y, (1000.0 * f32::EPSILON, 0)) == false); |
| 176 | } |
| 177 | |
| 178 | /// This type defines a margin within two `f64` values might be considered equal, |
| 179 | /// and is intended as the associated type for the `ApproxEq` trait. |
| 180 | /// |
| 181 | /// Two tests are used to determine approximate equality. |
| 182 | /// |
| 183 | /// The first test considers two values approximately equal if they differ by <= |
| 184 | /// `epsilon`. This will only succeed for very small numbers. Note that it may |
| 185 | /// succeed even if the parameters are of differing signs, straddling zero. |
| 186 | /// |
| 187 | /// The second test considers how many ULPs (units of least precision, units in |
| 188 | /// the last place, which is the integer number of floating-point representations |
| 189 | /// that the parameters are separated by) different the parameters are and considers |
| 190 | /// them approximately equal if this is <= `ulps`. For large floating-point numbers, |
| 191 | /// an ULP can be a rather large gap, but this kind of comparison is necessary |
| 192 | /// because floating-point operations must round to the nearest representable value |
| 193 | /// and so larger floating-point values accumulate larger errors. |
| 194 | #[derive (Debug, Clone, Copy)] |
| 195 | pub struct F64Margin { |
| 196 | pub epsilon: f64, |
| 197 | pub ulps: i64, |
| 198 | } |
| 199 | impl Default for F64Margin { |
| 200 | #[inline ] |
| 201 | fn default() -> F64Margin { |
| 202 | F64Margin { |
| 203 | epsilon: f64::EPSILON, |
| 204 | ulps: 4, |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | impl FloatMargin for F64Margin { |
| 209 | type F = f64; |
| 210 | type I = i64; |
| 211 | |
| 212 | #[inline ] |
| 213 | fn zero() -> F64Margin { |
| 214 | F64Margin { |
| 215 | epsilon: 0.0, |
| 216 | ulps: 0, |
| 217 | } |
| 218 | } |
| 219 | fn epsilon(self, epsilon: f64) -> Self { |
| 220 | F64Margin { epsilon, ..self } |
| 221 | } |
| 222 | fn ulps(self, ulps: i64) -> Self { |
| 223 | F64Margin { ulps, ..self } |
| 224 | } |
| 225 | } |
| 226 | impl From<(f64, i64)> for F64Margin { |
| 227 | fn from(m: (f64, i64)) -> F64Margin { |
| 228 | F64Margin { |
| 229 | epsilon: m.0, |
| 230 | ulps: m.1, |
| 231 | } |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | // no-std compatible abs function |
| 236 | #[inline (always)] |
| 237 | fn f64abs(x: f64) -> f64 { |
| 238 | f64::from_bits(x.to_bits() & !(1 << 63)) |
| 239 | } |
| 240 | |
| 241 | impl ApproxEq for f64 { |
| 242 | type Margin = F64Margin; |
| 243 | |
| 244 | fn approx_eq<M: Into<Self::Margin>>(self, other: f64, margin: M) -> bool { |
| 245 | let margin = margin.into(); |
| 246 | |
| 247 | // Check for exact equality first. This is often true, and so we get the |
| 248 | // performance benefit of only doing one compare in most cases. |
| 249 | self == other || { |
| 250 | // Perform epsilon comparison next |
| 251 | let eps: f64 = f64abs(self - other); |
| 252 | (eps <= margin.epsilon) || { |
| 253 | // Perform ulps comparison last |
| 254 | let diff: i64 = self.ulps(&other); |
| 255 | saturating_abs_i64!(diff) <= margin.ulps |
| 256 | } |
| 257 | } |
| 258 | } |
| 259 | } |
| 260 | |
| 261 | #[test ] |
| 262 | fn f64_approx_eq_test1() { |
| 263 | let f: f64 = 0.0_f64; |
| 264 | let g: f64 = -0.0000000000000005551115123125783_f64; |
| 265 | assert!(f != g); // Should not be precisely equal. |
| 266 | assert!(f.approx_eq(g, (3.0 * f64::EPSILON, 0)) == true); // 3e is enough. |
| 267 | // ULPs test won't ever call these equal. |
| 268 | } |
| 269 | #[test ] |
| 270 | fn f64_approx_eq_test2() { |
| 271 | let f: f64 = 0.0_f64; |
| 272 | let g: f64 = -0.0_f64; |
| 273 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true); |
| 274 | } |
| 275 | #[test ] |
| 276 | fn f64_approx_eq_test3() { |
| 277 | let f: f64 = 0.0_f64; |
| 278 | let g: f64 = 1e-17_f64; |
| 279 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == true); |
| 280 | } |
| 281 | #[test ] |
| 282 | fn f64_approx_eq_test4() { |
| 283 | let f: f64 = 0.00001_f64; |
| 284 | let g: f64 = 0.00000000000000001_f64; |
| 285 | assert!(f.approx_eq(g, (f64::EPSILON, 0)) == false); |
| 286 | } |
| 287 | #[test ] |
| 288 | fn f64_approx_eq_test5() { |
| 289 | let f: f64 = 0.1_f64; |
| 290 | let mut sum: f64 = 0.0_f64; |
| 291 | for _ in 0_isize..10_isize { |
| 292 | sum += f; |
| 293 | } |
| 294 | let product: f64 = f * 10.0_f64; |
| 295 | assert!(sum != product); // Should not be precisely equally. |
| 296 | assert!(sum.approx_eq(product, (f64::EPSILON, 0)) == true); |
| 297 | assert!(sum.approx_eq(product, (0.0, 1)) == true); |
| 298 | } |
| 299 | #[test ] |
| 300 | fn f64_approx_eq_test6() { |
| 301 | let x: f64 = 1000000_f64; |
| 302 | let y: f64 = 1000000.0000000003_f64; |
| 303 | assert!(x != y); // Should not be precisely equal. |
| 304 | assert!(x.approx_eq(y, (0.0, 3)) == true); |
| 305 | } |
| 306 | #[test ] |
| 307 | fn f64_code_triggering_issue_20() { |
| 308 | assert_eq!((-25.0f64).approx_eq(25.0, (0.00390625, 1)), false); |
| 309 | } |
| 310 | |
| 311 | impl<T> ApproxEq for &[T] |
| 312 | where |
| 313 | T: Copy + ApproxEq, |
| 314 | { |
| 315 | type Margin = <T as ApproxEq>::Margin; |
| 316 | |
| 317 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 318 | let margin = margin.into(); |
| 319 | if self.len() != other.len() { |
| 320 | return false; |
| 321 | } |
| 322 | self.iter() |
| 323 | .zip(other.iter()) |
| 324 | .all(|(a: &T, b: &T)| a.approx_eq(*b, margin)) |
| 325 | } |
| 326 | } |
| 327 | |
| 328 | #[test ] |
| 329 | fn test_slices() { |
| 330 | assert!([1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64))); |
| 331 | assert!(![1.33, 2.4, 2.6].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64))); |
| 332 | assert!(![1.33, 2.4].approx_eq(&[1.33, 2.4, 2.5], (0.0, 0_i64))); |
| 333 | assert!(![1.33, 2.4, 2.5].approx_eq(&[1.33, 2.4], (0.0, 0_i64))); |
| 334 | } |
| 335 | |
| 336 | impl<T> ApproxEq for Option<T> |
| 337 | where |
| 338 | T: Copy + ApproxEq, |
| 339 | { |
| 340 | type Margin = <T as ApproxEq>::Margin; |
| 341 | |
| 342 | fn approx_eq<M: Into<Self::Margin>>(self, other: Self, margin: M) -> bool { |
| 343 | let margin = margin.into(); |
| 344 | match (self, other) { |
| 345 | (None, None) => true, |
| 346 | (Some(slf: T), Some(oth: T)) => slf.approx_eq(other:oth, margin), |
| 347 | _ => false, |
| 348 | } |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | #[test ] |
| 353 | fn test_option() { |
| 354 | let x: Option<f32> = None; |
| 355 | assert!(x.approx_eq(None, (0.0, 0_i32))); |
| 356 | assert!(Some(5.3_f32).approx_eq(Some(5.3), (0.0, 0_i32))); |
| 357 | assert!(Some(5.3_f32).approx_ne(Some(5.7), (0.0, 0_i32))); |
| 358 | assert!(Some(5.3_f32).approx_ne(None, (0.0, 0_i32))); |
| 359 | assert!(x.approx_ne(Some(5.3), (0.0, 0_i32))); |
| 360 | } |
| 361 | |