| 1 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
| 2 | #[allow (unused_imports)]
|
| 3 | use alloc::string::ToString;
|
| 4 | #[cfg (feature = "bytemuck" )]
|
| 5 | use bytemuck::{Pod, Zeroable};
|
| 6 | use core::{
|
| 7 | cmp::Ordering,
|
| 8 | iter::{Product, Sum},
|
| 9 | num::FpCategory,
|
| 10 | ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
|
| 11 | };
|
| 12 | #[cfg (not(target_arch = "spirv" ))]
|
| 13 | use core::{
|
| 14 | fmt::{
|
| 15 | Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
|
| 16 | },
|
| 17 | num::ParseFloatError,
|
| 18 | str::FromStr,
|
| 19 | };
|
| 20 | #[cfg (feature = "serde" )]
|
| 21 | use serde::{Deserialize, Serialize};
|
| 22 | #[cfg (feature = "zerocopy" )]
|
| 23 | use zerocopy::{FromBytes, Immutable, IntoBytes, KnownLayout};
|
| 24 |
|
| 25 | pub(crate) mod convert;
|
| 26 |
|
| 27 | /// A 16-bit floating point type implementing the [`bfloat16`] format.
|
| 28 | ///
|
| 29 | /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
|
| 30 | /// `binary32`, a.k.a [`f32`]. [`struct@bf16`] has approximately the same dynamic range as [`f32`] by
|
| 31 | /// having a lower precision than [`struct@f16`][crate::f16]. While [`struct@f16`][crate::f16] has a precision of
|
| 32 | /// 11 bits, [`struct@bf16`] has a precision of only 8 bits.
|
| 33 | ///
|
| 34 | /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
|
| 35 | #[allow (non_camel_case_types)]
|
| 36 | #[derive (Clone, Copy, Default)]
|
| 37 | #[repr (transparent)]
|
| 38 | #[cfg_attr (feature = "serde" , derive(Serialize))]
|
| 39 | #[cfg_attr (
|
| 40 | feature = "rkyv" ,
|
| 41 | derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize)
|
| 42 | )]
|
| 43 | #[cfg_attr (feature = "rkyv" , rkyv(resolver = Bf16Resolver))]
|
| 44 | #[cfg_attr (feature = "bytemuck" , derive(Zeroable, Pod))]
|
| 45 | #[cfg_attr (
|
| 46 | feature = "zerocopy" ,
|
| 47 | derive(FromBytes, Immutable, IntoBytes, KnownLayout)
|
| 48 | )]
|
| 49 | #[cfg_attr (kani, derive(kani::Arbitrary))]
|
| 50 | pub struct bf16(u16);
|
| 51 |
|
| 52 | impl bf16 {
|
| 53 | /// Constructs a [`struct@bf16`] value from the raw bits.
|
| 54 | #[inline ]
|
| 55 | #[must_use ]
|
| 56 | pub const fn from_bits(bits: u16) -> bf16 {
|
| 57 | bf16(bits)
|
| 58 | }
|
| 59 |
|
| 60 | /// Constructs a [`struct@bf16`] value from a 32-bit floating point value.
|
| 61 | ///
|
| 62 | /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values
|
| 63 | /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All
|
| 64 | /// other values are truncated and rounded to the nearest representable value.
|
| 65 | #[inline ]
|
| 66 | #[must_use ]
|
| 67 | pub fn from_f32(value: f32) -> bf16 {
|
| 68 | Self::from_f32_const(value)
|
| 69 | }
|
| 70 |
|
| 71 | /// Constructs a [`struct@bf16`] value from a 32-bit floating point value.
|
| 72 | ///
|
| 73 | /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware
|
| 74 | /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred
|
| 75 | /// in any non-`const` context.
|
| 76 | ///
|
| 77 | /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values
|
| 78 | /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All
|
| 79 | /// other values are truncated and rounded to the nearest representable value.
|
| 80 | #[inline ]
|
| 81 | #[must_use ]
|
| 82 | pub const fn from_f32_const(value: f32) -> bf16 {
|
| 83 | bf16(convert::f32_to_bf16(value))
|
| 84 | }
|
| 85 |
|
| 86 | /// Constructs a [`struct@bf16`] value from a 64-bit floating point value.
|
| 87 | ///
|
| 88 | /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values
|
| 89 | /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0.
|
| 90 | /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other
|
| 91 | /// values are truncated and rounded to the nearest representable value.
|
| 92 | #[inline ]
|
| 93 | #[must_use ]
|
| 94 | pub fn from_f64(value: f64) -> bf16 {
|
| 95 | Self::from_f64_const(value)
|
| 96 | }
|
| 97 |
|
| 98 | /// Constructs a [`struct@bf16`] value from a 64-bit floating point value.
|
| 99 | ///
|
| 100 | /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware
|
| 101 | /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred
|
| 102 | /// in any non-`const` context.
|
| 103 | ///
|
| 104 | /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values
|
| 105 | /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0.
|
| 106 | /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other
|
| 107 | /// values are truncated and rounded to the nearest representable value.
|
| 108 | #[inline ]
|
| 109 | #[must_use ]
|
| 110 | pub const fn from_f64_const(value: f64) -> bf16 {
|
| 111 | bf16(convert::f64_to_bf16(value))
|
| 112 | }
|
| 113 |
|
| 114 | /// Converts a [`struct@bf16`] into the underlying bit representation.
|
| 115 | #[inline ]
|
| 116 | #[must_use ]
|
| 117 | pub const fn to_bits(self) -> u16 {
|
| 118 | self.0
|
| 119 | }
|
| 120 |
|
| 121 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 122 | /// little-endian byte order.
|
| 123 | ///
|
| 124 | /// # Examples
|
| 125 | ///
|
| 126 | /// ```rust
|
| 127 | /// # use half::prelude::*;
|
| 128 | /// let bytes = bf16::from_f32(12.5).to_le_bytes();
|
| 129 | /// assert_eq!(bytes, [0x48, 0x41]);
|
| 130 | /// ```
|
| 131 | #[inline ]
|
| 132 | #[must_use ]
|
| 133 | pub const fn to_le_bytes(self) -> [u8; 2] {
|
| 134 | self.0.to_le_bytes()
|
| 135 | }
|
| 136 |
|
| 137 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 138 | /// big-endian (network) byte order.
|
| 139 | ///
|
| 140 | /// # Examples
|
| 141 | ///
|
| 142 | /// ```rust
|
| 143 | /// # use half::prelude::*;
|
| 144 | /// let bytes = bf16::from_f32(12.5).to_be_bytes();
|
| 145 | /// assert_eq!(bytes, [0x41, 0x48]);
|
| 146 | /// ```
|
| 147 | #[inline ]
|
| 148 | #[must_use ]
|
| 149 | pub const fn to_be_bytes(self) -> [u8; 2] {
|
| 150 | self.0.to_be_bytes()
|
| 151 | }
|
| 152 |
|
| 153 | /// Returns the memory representation of the underlying bit representation as a byte array in
|
| 154 | /// native byte order.
|
| 155 | ///
|
| 156 | /// As the target platform's native endianness is used, portable code should use
|
| 157 | /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
|
| 158 | /// instead.
|
| 159 | ///
|
| 160 | /// # Examples
|
| 161 | ///
|
| 162 | /// ```rust
|
| 163 | /// # use half::prelude::*;
|
| 164 | /// let bytes = bf16::from_f32(12.5).to_ne_bytes();
|
| 165 | /// assert_eq!(bytes, if cfg!(target_endian = "big" ) {
|
| 166 | /// [0x41, 0x48]
|
| 167 | /// } else {
|
| 168 | /// [0x48, 0x41]
|
| 169 | /// });
|
| 170 | /// ```
|
| 171 | #[inline ]
|
| 172 | #[must_use ]
|
| 173 | pub const fn to_ne_bytes(self) -> [u8; 2] {
|
| 174 | self.0.to_ne_bytes()
|
| 175 | }
|
| 176 |
|
| 177 | /// Creates a floating point value from its representation as a byte array in little endian.
|
| 178 | ///
|
| 179 | /// # Examples
|
| 180 | ///
|
| 181 | /// ```rust
|
| 182 | /// # use half::prelude::*;
|
| 183 | /// let value = bf16::from_le_bytes([0x48, 0x41]);
|
| 184 | /// assert_eq!(value, bf16::from_f32(12.5));
|
| 185 | /// ```
|
| 186 | #[inline ]
|
| 187 | #[must_use ]
|
| 188 | pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
|
| 189 | bf16::from_bits(u16::from_le_bytes(bytes))
|
| 190 | }
|
| 191 |
|
| 192 | /// Creates a floating point value from its representation as a byte array in big endian.
|
| 193 | ///
|
| 194 | /// # Examples
|
| 195 | ///
|
| 196 | /// ```rust
|
| 197 | /// # use half::prelude::*;
|
| 198 | /// let value = bf16::from_be_bytes([0x41, 0x48]);
|
| 199 | /// assert_eq!(value, bf16::from_f32(12.5));
|
| 200 | /// ```
|
| 201 | #[inline ]
|
| 202 | #[must_use ]
|
| 203 | pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
|
| 204 | bf16::from_bits(u16::from_be_bytes(bytes))
|
| 205 | }
|
| 206 |
|
| 207 | /// Creates a floating point value from its representation as a byte array in native endian.
|
| 208 | ///
|
| 209 | /// As the target platform's native endianness is used, portable code likely wants to use
|
| 210 | /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
|
| 211 | /// appropriate instead.
|
| 212 | ///
|
| 213 | /// # Examples
|
| 214 | ///
|
| 215 | /// ```rust
|
| 216 | /// # use half::prelude::*;
|
| 217 | /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big" ) {
|
| 218 | /// [0x41, 0x48]
|
| 219 | /// } else {
|
| 220 | /// [0x48, 0x41]
|
| 221 | /// });
|
| 222 | /// assert_eq!(value, bf16::from_f32(12.5));
|
| 223 | /// ```
|
| 224 | #[inline ]
|
| 225 | #[must_use ]
|
| 226 | pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
|
| 227 | bf16::from_bits(u16::from_ne_bytes(bytes))
|
| 228 | }
|
| 229 |
|
| 230 | /// Converts a [`struct@bf16`] value into an [`f32`] value.
|
| 231 | ///
|
| 232 | /// This conversion is lossless as all values can be represented exactly in [`f32`].
|
| 233 | #[inline ]
|
| 234 | #[must_use ]
|
| 235 | pub fn to_f32(self) -> f32 {
|
| 236 | self.to_f32_const()
|
| 237 | }
|
| 238 |
|
| 239 | /// Converts a [`struct@bf16`] value into an [`f32`] value.
|
| 240 | ///
|
| 241 | /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware
|
| 242 | /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred
|
| 243 | /// in any non-`const` context.
|
| 244 | ///
|
| 245 | /// This conversion is lossless as all values can be represented exactly in [`f32`].
|
| 246 | #[inline ]
|
| 247 | #[must_use ]
|
| 248 | pub const fn to_f32_const(self) -> f32 {
|
| 249 | convert::bf16_to_f32(self.0)
|
| 250 | }
|
| 251 |
|
| 252 | /// Converts a [`struct@bf16`] value into an [`f64`] value.
|
| 253 | ///
|
| 254 | /// This conversion is lossless as all values can be represented exactly in [`f64`].
|
| 255 | #[inline ]
|
| 256 | #[must_use ]
|
| 257 | pub fn to_f64(self) -> f64 {
|
| 258 | self.to_f64_const()
|
| 259 | }
|
| 260 |
|
| 261 | /// Converts a [`struct@bf16`] value into an [`f64`] value.
|
| 262 | ///
|
| 263 | /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware
|
| 264 | /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred
|
| 265 | /// in any non-`const` context.
|
| 266 | ///
|
| 267 | /// This conversion is lossless as all values can be represented exactly in [`f64`].
|
| 268 | #[inline ]
|
| 269 | #[must_use ]
|
| 270 | pub const fn to_f64_const(self) -> f64 {
|
| 271 | convert::bf16_to_f64(self.0)
|
| 272 | }
|
| 273 |
|
| 274 | /// Returns `true` if this value is NaN and `false` otherwise.
|
| 275 | ///
|
| 276 | /// # Examples
|
| 277 | ///
|
| 278 | /// ```rust
|
| 279 | /// # use half::prelude::*;
|
| 280 | ///
|
| 281 | /// let nan = bf16::NAN;
|
| 282 | /// let f = bf16::from_f32(7.0_f32);
|
| 283 | ///
|
| 284 | /// assert!(nan.is_nan());
|
| 285 | /// assert!(!f.is_nan());
|
| 286 | /// ```
|
| 287 | #[inline ]
|
| 288 | #[must_use ]
|
| 289 | pub const fn is_nan(self) -> bool {
|
| 290 | self.0 & 0x7FFFu16 > 0x7F80u16
|
| 291 | }
|
| 292 |
|
| 293 | /// Returns `true` if this value is ±∞ and `false` otherwise.
|
| 294 | ///
|
| 295 | /// # Examples
|
| 296 | ///
|
| 297 | /// ```rust
|
| 298 | /// # use half::prelude::*;
|
| 299 | ///
|
| 300 | /// let f = bf16::from_f32(7.0f32);
|
| 301 | /// let inf = bf16::INFINITY;
|
| 302 | /// let neg_inf = bf16::NEG_INFINITY;
|
| 303 | /// let nan = bf16::NAN;
|
| 304 | ///
|
| 305 | /// assert!(!f.is_infinite());
|
| 306 | /// assert!(!nan.is_infinite());
|
| 307 | ///
|
| 308 | /// assert!(inf.is_infinite());
|
| 309 | /// assert!(neg_inf.is_infinite());
|
| 310 | /// ```
|
| 311 | #[inline ]
|
| 312 | #[must_use ]
|
| 313 | pub const fn is_infinite(self) -> bool {
|
| 314 | self.0 & 0x7FFFu16 == 0x7F80u16
|
| 315 | }
|
| 316 |
|
| 317 | /// Returns `true` if this number is neither infinite nor NaN.
|
| 318 | ///
|
| 319 | /// # Examples
|
| 320 | ///
|
| 321 | /// ```rust
|
| 322 | /// # use half::prelude::*;
|
| 323 | ///
|
| 324 | /// let f = bf16::from_f32(7.0f32);
|
| 325 | /// let inf = bf16::INFINITY;
|
| 326 | /// let neg_inf = bf16::NEG_INFINITY;
|
| 327 | /// let nan = bf16::NAN;
|
| 328 | ///
|
| 329 | /// assert!(f.is_finite());
|
| 330 | ///
|
| 331 | /// assert!(!nan.is_finite());
|
| 332 | /// assert!(!inf.is_finite());
|
| 333 | /// assert!(!neg_inf.is_finite());
|
| 334 | /// ```
|
| 335 | #[inline ]
|
| 336 | #[must_use ]
|
| 337 | pub const fn is_finite(self) -> bool {
|
| 338 | self.0 & 0x7F80u16 != 0x7F80u16
|
| 339 | }
|
| 340 |
|
| 341 | /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
|
| 342 | ///
|
| 343 | /// # Examples
|
| 344 | ///
|
| 345 | /// ```rust
|
| 346 | /// # use half::prelude::*;
|
| 347 | ///
|
| 348 | /// let min = bf16::MIN_POSITIVE;
|
| 349 | /// let max = bf16::MAX;
|
| 350 | /// let lower_than_min = bf16::from_f32(1.0e-39_f32);
|
| 351 | /// let zero = bf16::from_f32(0.0_f32);
|
| 352 | ///
|
| 353 | /// assert!(min.is_normal());
|
| 354 | /// assert!(max.is_normal());
|
| 355 | ///
|
| 356 | /// assert!(!zero.is_normal());
|
| 357 | /// assert!(!bf16::NAN.is_normal());
|
| 358 | /// assert!(!bf16::INFINITY.is_normal());
|
| 359 | /// // Values between 0 and `min` are subnormal.
|
| 360 | /// assert!(!lower_than_min.is_normal());
|
| 361 | /// ```
|
| 362 | #[inline ]
|
| 363 | #[must_use ]
|
| 364 | pub const fn is_normal(self) -> bool {
|
| 365 | let exp = self.0 & 0x7F80u16;
|
| 366 | exp != 0x7F80u16 && exp != 0
|
| 367 | }
|
| 368 |
|
| 369 | /// Returns the floating point category of the number.
|
| 370 | ///
|
| 371 | /// If only one property is going to be tested, it is generally faster to use the specific
|
| 372 | /// predicate instead.
|
| 373 | ///
|
| 374 | /// # Examples
|
| 375 | ///
|
| 376 | /// ```rust
|
| 377 | /// use std::num::FpCategory;
|
| 378 | /// # use half::prelude::*;
|
| 379 | ///
|
| 380 | /// let num = bf16::from_f32(12.4_f32);
|
| 381 | /// let inf = bf16::INFINITY;
|
| 382 | ///
|
| 383 | /// assert_eq!(num.classify(), FpCategory::Normal);
|
| 384 | /// assert_eq!(inf.classify(), FpCategory::Infinite);
|
| 385 | /// ```
|
| 386 | #[must_use ]
|
| 387 | pub const fn classify(self) -> FpCategory {
|
| 388 | let exp = self.0 & 0x7F80u16;
|
| 389 | let man = self.0 & 0x007Fu16;
|
| 390 | match (exp, man) {
|
| 391 | (0, 0) => FpCategory::Zero,
|
| 392 | (0, _) => FpCategory::Subnormal,
|
| 393 | (0x7F80u16, 0) => FpCategory::Infinite,
|
| 394 | (0x7F80u16, _) => FpCategory::Nan,
|
| 395 | _ => FpCategory::Normal,
|
| 396 | }
|
| 397 | }
|
| 398 |
|
| 399 | /// Returns a number that represents the sign of `self`.
|
| 400 | ///
|
| 401 | /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
|
| 402 | /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
|
| 403 | /// * [`NAN`][bf16::NAN] if the number is NaN
|
| 404 | ///
|
| 405 | /// # Examples
|
| 406 | ///
|
| 407 | /// ```rust
|
| 408 | /// # use half::prelude::*;
|
| 409 | ///
|
| 410 | /// let f = bf16::from_f32(3.5_f32);
|
| 411 | ///
|
| 412 | /// assert_eq!(f.signum(), bf16::from_f32(1.0));
|
| 413 | /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
|
| 414 | ///
|
| 415 | /// assert!(bf16::NAN.signum().is_nan());
|
| 416 | /// ```
|
| 417 | #[must_use ]
|
| 418 | pub const fn signum(self) -> bf16 {
|
| 419 | if self.is_nan() {
|
| 420 | self
|
| 421 | } else if self.0 & 0x8000u16 != 0 {
|
| 422 | Self::NEG_ONE
|
| 423 | } else {
|
| 424 | Self::ONE
|
| 425 | }
|
| 426 | }
|
| 427 |
|
| 428 | /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
|
| 429 | /// positive sign bit and +∞.
|
| 430 | ///
|
| 431 | /// # Examples
|
| 432 | ///
|
| 433 | /// ```rust
|
| 434 | /// # use half::prelude::*;
|
| 435 | ///
|
| 436 | /// let nan = bf16::NAN;
|
| 437 | /// let f = bf16::from_f32(7.0_f32);
|
| 438 | /// let g = bf16::from_f32(-7.0_f32);
|
| 439 | ///
|
| 440 | /// assert!(f.is_sign_positive());
|
| 441 | /// assert!(!g.is_sign_positive());
|
| 442 | /// // NaN can be either positive or negative
|
| 443 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
| 444 | /// ```
|
| 445 | #[inline ]
|
| 446 | #[must_use ]
|
| 447 | pub const fn is_sign_positive(self) -> bool {
|
| 448 | self.0 & 0x8000u16 == 0
|
| 449 | }
|
| 450 |
|
| 451 | /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a
|
| 452 | /// negative sign bit and −∞.
|
| 453 | ///
|
| 454 | /// # Examples
|
| 455 | ///
|
| 456 | /// ```rust
|
| 457 | /// # use half::prelude::*;
|
| 458 | ///
|
| 459 | /// let nan = bf16::NAN;
|
| 460 | /// let f = bf16::from_f32(7.0f32);
|
| 461 | /// let g = bf16::from_f32(-7.0f32);
|
| 462 | ///
|
| 463 | /// assert!(!f.is_sign_negative());
|
| 464 | /// assert!(g.is_sign_negative());
|
| 465 | /// // NaN can be either positive or negative
|
| 466 | /// assert!(nan.is_sign_positive() != nan.is_sign_negative());
|
| 467 | /// ```
|
| 468 | #[inline ]
|
| 469 | #[must_use ]
|
| 470 | pub const fn is_sign_negative(self) -> bool {
|
| 471 | self.0 & 0x8000u16 != 0
|
| 472 | }
|
| 473 |
|
| 474 | /// Returns a number composed of the magnitude of `self` and the sign of `sign`.
|
| 475 | ///
|
| 476 | /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
|
| 477 | /// If `self` is NaN, then NaN with the sign of `sign` is returned.
|
| 478 | ///
|
| 479 | /// # Examples
|
| 480 | ///
|
| 481 | /// ```
|
| 482 | /// # use half::prelude::*;
|
| 483 | /// let f = bf16::from_f32(3.5);
|
| 484 | ///
|
| 485 | /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
|
| 486 | /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
|
| 487 | /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
|
| 488 | /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
|
| 489 | ///
|
| 490 | /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
|
| 491 | /// ```
|
| 492 | #[inline ]
|
| 493 | #[must_use ]
|
| 494 | pub const fn copysign(self, sign: bf16) -> bf16 {
|
| 495 | bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
|
| 496 | }
|
| 497 |
|
| 498 | /// Returns the maximum of the two numbers.
|
| 499 | ///
|
| 500 | /// If one of the arguments is NaN, then the other argument is returned.
|
| 501 | ///
|
| 502 | /// # Examples
|
| 503 | ///
|
| 504 | /// ```
|
| 505 | /// # use half::prelude::*;
|
| 506 | /// let x = bf16::from_f32(1.0);
|
| 507 | /// let y = bf16::from_f32(2.0);
|
| 508 | ///
|
| 509 | /// assert_eq!(x.max(y), y);
|
| 510 | /// ```
|
| 511 | #[inline ]
|
| 512 | #[must_use ]
|
| 513 | pub fn max(self, other: bf16) -> bf16 {
|
| 514 | if other > self && !other.is_nan() {
|
| 515 | other
|
| 516 | } else {
|
| 517 | self
|
| 518 | }
|
| 519 | }
|
| 520 |
|
| 521 | /// Returns the minimum of the two numbers.
|
| 522 | ///
|
| 523 | /// If one of the arguments is NaN, then the other argument is returned.
|
| 524 | ///
|
| 525 | /// # Examples
|
| 526 | ///
|
| 527 | /// ```
|
| 528 | /// # use half::prelude::*;
|
| 529 | /// let x = bf16::from_f32(1.0);
|
| 530 | /// let y = bf16::from_f32(2.0);
|
| 531 | ///
|
| 532 | /// assert_eq!(x.min(y), x);
|
| 533 | /// ```
|
| 534 | #[inline ]
|
| 535 | #[must_use ]
|
| 536 | pub fn min(self, other: bf16) -> bf16 {
|
| 537 | if other < self && !other.is_nan() {
|
| 538 | other
|
| 539 | } else {
|
| 540 | self
|
| 541 | }
|
| 542 | }
|
| 543 |
|
| 544 | /// Restrict a value to a certain interval unless it is NaN.
|
| 545 | ///
|
| 546 | /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
|
| 547 | /// Otherwise this returns `self`.
|
| 548 | ///
|
| 549 | /// Note that this function returns NaN if the initial value was NaN as well.
|
| 550 | ///
|
| 551 | /// # Panics
|
| 552 | /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
|
| 553 | ///
|
| 554 | /// # Examples
|
| 555 | ///
|
| 556 | /// ```
|
| 557 | /// # use half::prelude::*;
|
| 558 | /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
|
| 559 | /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
|
| 560 | /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
|
| 561 | /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
|
| 562 | /// ```
|
| 563 | #[inline ]
|
| 564 | #[must_use ]
|
| 565 | pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
|
| 566 | assert!(min <= max);
|
| 567 | let mut x = self;
|
| 568 | if x < min {
|
| 569 | x = min;
|
| 570 | }
|
| 571 | if x > max {
|
| 572 | x = max;
|
| 573 | }
|
| 574 | x
|
| 575 | }
|
| 576 |
|
| 577 | /// Returns the ordering between `self` and `other`.
|
| 578 | ///
|
| 579 | /// Unlike the standard partial comparison between floating point numbers,
|
| 580 | /// this comparison always produces an ordering in accordance to
|
| 581 | /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
|
| 582 | /// floating point standard. The values are ordered in the following sequence:
|
| 583 | ///
|
| 584 | /// - negative quiet NaN
|
| 585 | /// - negative signaling NaN
|
| 586 | /// - negative infinity
|
| 587 | /// - negative numbers
|
| 588 | /// - negative subnormal numbers
|
| 589 | /// - negative zero
|
| 590 | /// - positive zero
|
| 591 | /// - positive subnormal numbers
|
| 592 | /// - positive numbers
|
| 593 | /// - positive infinity
|
| 594 | /// - positive signaling NaN
|
| 595 | /// - positive quiet NaN.
|
| 596 | ///
|
| 597 | /// The ordering established by this function does not always agree with the
|
| 598 | /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example,
|
| 599 | /// they consider negative and positive zero equal, while `total_cmp`
|
| 600 | /// doesn't.
|
| 601 | ///
|
| 602 | /// The interpretation of the signaling NaN bit follows the definition in
|
| 603 | /// the IEEE 754 standard, which may not match the interpretation by some of
|
| 604 | /// the older, non-conformant (e.g. MIPS) hardware implementations.
|
| 605 | ///
|
| 606 | /// # Examples
|
| 607 | /// ```
|
| 608 | /// # use half::bf16;
|
| 609 | /// let mut v: Vec<bf16> = vec![];
|
| 610 | /// v.push(bf16::ONE);
|
| 611 | /// v.push(bf16::INFINITY);
|
| 612 | /// v.push(bf16::NEG_INFINITY);
|
| 613 | /// v.push(bf16::NAN);
|
| 614 | /// v.push(bf16::MAX_SUBNORMAL);
|
| 615 | /// v.push(-bf16::MAX_SUBNORMAL);
|
| 616 | /// v.push(bf16::ZERO);
|
| 617 | /// v.push(bf16::NEG_ZERO);
|
| 618 | /// v.push(bf16::NEG_ONE);
|
| 619 | /// v.push(bf16::MIN_POSITIVE);
|
| 620 | ///
|
| 621 | /// v.sort_by(|a, b| a.total_cmp(&b));
|
| 622 | ///
|
| 623 | /// assert!(v
|
| 624 | /// .into_iter()
|
| 625 | /// .zip(
|
| 626 | /// [
|
| 627 | /// bf16::NEG_INFINITY,
|
| 628 | /// bf16::NEG_ONE,
|
| 629 | /// -bf16::MAX_SUBNORMAL,
|
| 630 | /// bf16::NEG_ZERO,
|
| 631 | /// bf16::ZERO,
|
| 632 | /// bf16::MAX_SUBNORMAL,
|
| 633 | /// bf16::MIN_POSITIVE,
|
| 634 | /// bf16::ONE,
|
| 635 | /// bf16::INFINITY,
|
| 636 | /// bf16::NAN
|
| 637 | /// ]
|
| 638 | /// .iter()
|
| 639 | /// )
|
| 640 | /// .all(|(a, b)| a.to_bits() == b.to_bits()));
|
| 641 | /// ```
|
| 642 | // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp
|
| 643 | #[inline ]
|
| 644 | #[must_use ]
|
| 645 | pub fn total_cmp(&self, other: &Self) -> Ordering {
|
| 646 | let mut left = self.to_bits() as i16;
|
| 647 | let mut right = other.to_bits() as i16;
|
| 648 | left ^= (((left >> 15) as u16) >> 1) as i16;
|
| 649 | right ^= (((right >> 15) as u16) >> 1) as i16;
|
| 650 | left.cmp(&right)
|
| 651 | }
|
| 652 |
|
| 653 | /// Alternate serialize adapter for serializing as a float.
|
| 654 | ///
|
| 655 | /// By default, [`struct@bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
| 656 | /// implementation that serializes as an [`f32`] value. It is designed for use with
|
| 657 | /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by
|
| 658 | /// the default deserialize implementation.
|
| 659 | ///
|
| 660 | /// # Examples
|
| 661 | ///
|
| 662 | /// A demonstration on how to use this adapater:
|
| 663 | ///
|
| 664 | /// ```
|
| 665 | /// use serde::{Serialize, Deserialize};
|
| 666 | /// use half::bf16;
|
| 667 | ///
|
| 668 | /// #[derive(Serialize, Deserialize)]
|
| 669 | /// struct MyStruct {
|
| 670 | /// #[serde(serialize_with = "bf16::serialize_as_f32")]
|
| 671 | /// value: bf16 // Will be serialized as f32 instead of u16
|
| 672 | /// }
|
| 673 | /// ```
|
| 674 | #[cfg (feature = "serde" )]
|
| 675 | pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
|
| 676 | serializer.serialize_f32(self.to_f32())
|
| 677 | }
|
| 678 |
|
| 679 | /// Alternate serialize adapter for serializing as a string.
|
| 680 | ///
|
| 681 | /// By default, [`struct@bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize
|
| 682 | /// implementation that serializes as a string value. It is designed for use with
|
| 683 | /// `serialize_with` serde attributes. Deserialization from string values is already supported
|
| 684 | /// by the default deserialize implementation.
|
| 685 | ///
|
| 686 | /// # Examples
|
| 687 | ///
|
| 688 | /// A demonstration on how to use this adapater:
|
| 689 | ///
|
| 690 | /// ```
|
| 691 | /// use serde::{Serialize, Deserialize};
|
| 692 | /// use half::bf16;
|
| 693 | ///
|
| 694 | /// #[derive(Serialize, Deserialize)]
|
| 695 | /// struct MyStruct {
|
| 696 | /// #[serde(serialize_with = "bf16::serialize_as_string")]
|
| 697 | /// value: bf16 // Will be serialized as a string instead of u16
|
| 698 | /// }
|
| 699 | /// ```
|
| 700 | #[cfg (all(feature = "serde" , feature = "alloc" ))]
|
| 701 | pub fn serialize_as_string<S: serde::Serializer>(
|
| 702 | &self,
|
| 703 | serializer: S,
|
| 704 | ) -> Result<S::Ok, S::Error> {
|
| 705 | serializer.serialize_str(&self.to_string())
|
| 706 | }
|
| 707 |
|
| 708 | /// Approximate number of [`struct@bf16`] significant digits in base 10
|
| 709 | pub const DIGITS: u32 = 2;
|
| 710 | /// [`struct@bf16`]
|
| 711 | /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
|
| 712 | ///
|
| 713 | /// This is the difference between 1.0 and the next largest representable number.
|
| 714 | pub const EPSILON: bf16 = bf16(0x3C00u16);
|
| 715 | /// [`struct@bf16`] positive Infinity (+∞)
|
| 716 | pub const INFINITY: bf16 = bf16(0x7F80u16);
|
| 717 | /// Number of [`struct@bf16`] significant digits in base 2
|
| 718 | pub const MANTISSA_DIGITS: u32 = 8;
|
| 719 | /// Largest finite [`struct@bf16`] value
|
| 720 | pub const MAX: bf16 = bf16(0x7F7F);
|
| 721 | /// Maximum possible [`struct@bf16`] power of 10 exponent
|
| 722 | pub const MAX_10_EXP: i32 = 38;
|
| 723 | /// Maximum possible [`struct@bf16`] power of 2 exponent
|
| 724 | pub const MAX_EXP: i32 = 128;
|
| 725 | /// Smallest finite [`struct@bf16`] value
|
| 726 | pub const MIN: bf16 = bf16(0xFF7F);
|
| 727 | /// Minimum possible normal [`struct@bf16`] power of 10 exponent
|
| 728 | pub const MIN_10_EXP: i32 = -37;
|
| 729 | /// One greater than the minimum possible normal [`struct@bf16`] power of 2 exponent
|
| 730 | pub const MIN_EXP: i32 = -125;
|
| 731 | /// Smallest positive normal [`struct@bf16`] value
|
| 732 | pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
|
| 733 | /// [`struct@bf16`] Not a Number (NaN)
|
| 734 | pub const NAN: bf16 = bf16(0x7FC0u16);
|
| 735 | /// [`struct@bf16`] negative infinity (-∞).
|
| 736 | pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
|
| 737 | /// The radix or base of the internal representation of [`struct@bf16`]
|
| 738 | pub const RADIX: u32 = 2;
|
| 739 |
|
| 740 | /// Minimum positive subnormal [`struct@bf16`] value
|
| 741 | pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
|
| 742 | /// Maximum subnormal [`struct@bf16`] value
|
| 743 | pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
|
| 744 |
|
| 745 | /// [`struct@bf16`] 1
|
| 746 | pub const ONE: bf16 = bf16(0x3F80u16);
|
| 747 | /// [`struct@bf16`] 0
|
| 748 | pub const ZERO: bf16 = bf16(0x0000u16);
|
| 749 | /// [`struct@bf16`] -0
|
| 750 | pub const NEG_ZERO: bf16 = bf16(0x8000u16);
|
| 751 | /// [`struct@bf16`] -1
|
| 752 | pub const NEG_ONE: bf16 = bf16(0xBF80u16);
|
| 753 |
|
| 754 | /// [`struct@bf16`] Euler's number (ℯ)
|
| 755 | pub const E: bf16 = bf16(0x402Eu16);
|
| 756 | /// [`struct@bf16`] Archimedes' constant (π)
|
| 757 | pub const PI: bf16 = bf16(0x4049u16);
|
| 758 | /// [`struct@bf16`] 1/π
|
| 759 | pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
|
| 760 | /// [`struct@bf16`] 1/√2
|
| 761 | pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
|
| 762 | /// [`struct@bf16`] 2/π
|
| 763 | pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
|
| 764 | /// [`struct@bf16`] 2/√π
|
| 765 | pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
|
| 766 | /// [`struct@bf16`] π/2
|
| 767 | pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
|
| 768 | /// [`struct@bf16`] π/3
|
| 769 | pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
|
| 770 | /// [`struct@bf16`] π/4
|
| 771 | pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
|
| 772 | /// [`struct@bf16`] π/6
|
| 773 | pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
|
| 774 | /// [`struct@bf16`] π/8
|
| 775 | pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
|
| 776 | /// [`struct@bf16`] 𝗅𝗇 10
|
| 777 | pub const LN_10: bf16 = bf16(0x4013u16);
|
| 778 | /// [`struct@bf16`] 𝗅𝗇 2
|
| 779 | pub const LN_2: bf16 = bf16(0x3F31u16);
|
| 780 | /// [`struct@bf16`] 𝗅𝗈𝗀₁₀ℯ
|
| 781 | pub const LOG10_E: bf16 = bf16(0x3EDEu16);
|
| 782 | /// [`struct@bf16`] 𝗅𝗈𝗀₁₀2
|
| 783 | pub const LOG10_2: bf16 = bf16(0x3E9Au16);
|
| 784 | /// [`struct@bf16`] 𝗅𝗈𝗀₂ℯ
|
| 785 | pub const LOG2_E: bf16 = bf16(0x3FB9u16);
|
| 786 | /// [`struct@bf16`] 𝗅𝗈𝗀₂10
|
| 787 | pub const LOG2_10: bf16 = bf16(0x4055u16);
|
| 788 | /// [`struct@bf16`] √2
|
| 789 | pub const SQRT_2: bf16 = bf16(0x3FB5u16);
|
| 790 | }
|
| 791 |
|
| 792 | impl From<bf16> for f32 {
|
| 793 | #[inline ]
|
| 794 | fn from(x: bf16) -> f32 {
|
| 795 | x.to_f32()
|
| 796 | }
|
| 797 | }
|
| 798 |
|
| 799 | impl From<bf16> for f64 {
|
| 800 | #[inline ]
|
| 801 | fn from(x: bf16) -> f64 {
|
| 802 | x.to_f64()
|
| 803 | }
|
| 804 | }
|
| 805 |
|
| 806 | impl From<i8> for bf16 {
|
| 807 | #[inline ]
|
| 808 | fn from(x: i8) -> bf16 {
|
| 809 | // Convert to f32, then to bf16
|
| 810 | bf16::from_f32(f32::from(x))
|
| 811 | }
|
| 812 | }
|
| 813 |
|
| 814 | impl From<u8> for bf16 {
|
| 815 | #[inline ]
|
| 816 | fn from(x: u8) -> bf16 {
|
| 817 | // Convert to f32, then to f16
|
| 818 | bf16::from_f32(f32::from(x))
|
| 819 | }
|
| 820 | }
|
| 821 |
|
| 822 | impl PartialEq for bf16 {
|
| 823 | fn eq(&self, other: &bf16) -> bool {
|
| 824 | if self.is_nan() || other.is_nan() {
|
| 825 | false
|
| 826 | } else {
|
| 827 | (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
|
| 828 | }
|
| 829 | }
|
| 830 | }
|
| 831 |
|
| 832 | impl PartialOrd for bf16 {
|
| 833 | fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
|
| 834 | if self.is_nan() || other.is_nan() {
|
| 835 | None
|
| 836 | } else {
|
| 837 | let neg = self.0 & 0x8000u16 != 0;
|
| 838 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 839 | match (neg, other_neg) {
|
| 840 | (false, false) => Some(self.0.cmp(&other.0)),
|
| 841 | (false, true) => {
|
| 842 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
| 843 | Some(Ordering::Equal)
|
| 844 | } else {
|
| 845 | Some(Ordering::Greater)
|
| 846 | }
|
| 847 | }
|
| 848 | (true, false) => {
|
| 849 | if (self.0 | other.0) & 0x7FFFu16 == 0 {
|
| 850 | Some(Ordering::Equal)
|
| 851 | } else {
|
| 852 | Some(Ordering::Less)
|
| 853 | }
|
| 854 | }
|
| 855 | (true, true) => Some(other.0.cmp(&self.0)),
|
| 856 | }
|
| 857 | }
|
| 858 | }
|
| 859 |
|
| 860 | fn lt(&self, other: &bf16) -> bool {
|
| 861 | if self.is_nan() || other.is_nan() {
|
| 862 | false
|
| 863 | } else {
|
| 864 | let neg = self.0 & 0x8000u16 != 0;
|
| 865 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 866 | match (neg, other_neg) {
|
| 867 | (false, false) => self.0 < other.0,
|
| 868 | (false, true) => false,
|
| 869 | (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
| 870 | (true, true) => self.0 > other.0,
|
| 871 | }
|
| 872 | }
|
| 873 | }
|
| 874 |
|
| 875 | fn le(&self, other: &bf16) -> bool {
|
| 876 | if self.is_nan() || other.is_nan() {
|
| 877 | false
|
| 878 | } else {
|
| 879 | let neg = self.0 & 0x8000u16 != 0;
|
| 880 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 881 | match (neg, other_neg) {
|
| 882 | (false, false) => self.0 <= other.0,
|
| 883 | (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
| 884 | (true, false) => true,
|
| 885 | (true, true) => self.0 >= other.0,
|
| 886 | }
|
| 887 | }
|
| 888 | }
|
| 889 |
|
| 890 | fn gt(&self, other: &bf16) -> bool {
|
| 891 | if self.is_nan() || other.is_nan() {
|
| 892 | false
|
| 893 | } else {
|
| 894 | let neg = self.0 & 0x8000u16 != 0;
|
| 895 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 896 | match (neg, other_neg) {
|
| 897 | (false, false) => self.0 > other.0,
|
| 898 | (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
|
| 899 | (true, false) => false,
|
| 900 | (true, true) => self.0 < other.0,
|
| 901 | }
|
| 902 | }
|
| 903 | }
|
| 904 |
|
| 905 | fn ge(&self, other: &bf16) -> bool {
|
| 906 | if self.is_nan() || other.is_nan() {
|
| 907 | false
|
| 908 | } else {
|
| 909 | let neg = self.0 & 0x8000u16 != 0;
|
| 910 | let other_neg = other.0 & 0x8000u16 != 0;
|
| 911 | match (neg, other_neg) {
|
| 912 | (false, false) => self.0 >= other.0,
|
| 913 | (false, true) => true,
|
| 914 | (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
|
| 915 | (true, true) => self.0 <= other.0,
|
| 916 | }
|
| 917 | }
|
| 918 | }
|
| 919 | }
|
| 920 |
|
| 921 | #[cfg (not(target_arch = "spirv" ))]
|
| 922 | impl FromStr for bf16 {
|
| 923 | type Err = ParseFloatError;
|
| 924 | fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
|
| 925 | f32::from_str(src).map(op:bf16::from_f32)
|
| 926 | }
|
| 927 | }
|
| 928 |
|
| 929 | #[cfg (not(target_arch = "spirv" ))]
|
| 930 | impl Debug for bf16 {
|
| 931 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 932 | Debug::fmt(&self.to_f32(), f)
|
| 933 | }
|
| 934 | }
|
| 935 |
|
| 936 | #[cfg (not(target_arch = "spirv" ))]
|
| 937 | impl Display for bf16 {
|
| 938 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 939 | Display::fmt(&self.to_f32(), f)
|
| 940 | }
|
| 941 | }
|
| 942 |
|
| 943 | #[cfg (not(target_arch = "spirv" ))]
|
| 944 | impl LowerExp for bf16 {
|
| 945 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 946 | write!(f, " {:e}" , self.to_f32())
|
| 947 | }
|
| 948 | }
|
| 949 |
|
| 950 | #[cfg (not(target_arch = "spirv" ))]
|
| 951 | impl UpperExp for bf16 {
|
| 952 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 953 | write!(f, " {:E}" , self.to_f32())
|
| 954 | }
|
| 955 | }
|
| 956 |
|
| 957 | #[cfg (not(target_arch = "spirv" ))]
|
| 958 | impl Binary for bf16 {
|
| 959 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 960 | write!(f, " {:b}" , self.0)
|
| 961 | }
|
| 962 | }
|
| 963 |
|
| 964 | #[cfg (not(target_arch = "spirv" ))]
|
| 965 | impl Octal for bf16 {
|
| 966 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 967 | write!(f, " {:o}" , self.0)
|
| 968 | }
|
| 969 | }
|
| 970 |
|
| 971 | #[cfg (not(target_arch = "spirv" ))]
|
| 972 | impl LowerHex for bf16 {
|
| 973 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 974 | write!(f, " {:x}" , self.0)
|
| 975 | }
|
| 976 | }
|
| 977 |
|
| 978 | #[cfg (not(target_arch = "spirv" ))]
|
| 979 | impl UpperHex for bf16 {
|
| 980 | fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
|
| 981 | write!(f, " {:X}" , self.0)
|
| 982 | }
|
| 983 | }
|
| 984 |
|
| 985 | impl Neg for bf16 {
|
| 986 | type Output = Self;
|
| 987 |
|
| 988 | fn neg(self) -> Self::Output {
|
| 989 | Self(self.0 ^ 0x8000)
|
| 990 | }
|
| 991 | }
|
| 992 |
|
| 993 | impl Neg for &bf16 {
|
| 994 | type Output = <bf16 as Neg>::Output;
|
| 995 |
|
| 996 | #[inline ]
|
| 997 | fn neg(self) -> Self::Output {
|
| 998 | Neg::neg(*self)
|
| 999 | }
|
| 1000 | }
|
| 1001 |
|
| 1002 | impl Add for bf16 {
|
| 1003 | type Output = Self;
|
| 1004 |
|
| 1005 | fn add(self, rhs: Self) -> Self::Output {
|
| 1006 | Self::from_f32(Self::to_f32(self) + Self::to_f32(self:rhs))
|
| 1007 | }
|
| 1008 | }
|
| 1009 |
|
| 1010 | impl Add<&bf16> for bf16 {
|
| 1011 | type Output = <bf16 as Add<bf16>>::Output;
|
| 1012 |
|
| 1013 | #[inline ]
|
| 1014 | fn add(self, rhs: &bf16) -> Self::Output {
|
| 1015 | self.add(*rhs)
|
| 1016 | }
|
| 1017 | }
|
| 1018 |
|
| 1019 | impl Add<&bf16> for &bf16 {
|
| 1020 | type Output = <bf16 as Add<bf16>>::Output;
|
| 1021 |
|
| 1022 | #[inline ]
|
| 1023 | fn add(self, rhs: &bf16) -> Self::Output {
|
| 1024 | (*self).add(*rhs)
|
| 1025 | }
|
| 1026 | }
|
| 1027 |
|
| 1028 | impl Add<bf16> for &bf16 {
|
| 1029 | type Output = <bf16 as Add<bf16>>::Output;
|
| 1030 |
|
| 1031 | #[inline ]
|
| 1032 | fn add(self, rhs: bf16) -> Self::Output {
|
| 1033 | (*self).add(rhs)
|
| 1034 | }
|
| 1035 | }
|
| 1036 |
|
| 1037 | impl AddAssign for bf16 {
|
| 1038 | #[inline ]
|
| 1039 | fn add_assign(&mut self, rhs: Self) {
|
| 1040 | *self = (*self).add(rhs);
|
| 1041 | }
|
| 1042 | }
|
| 1043 |
|
| 1044 | impl AddAssign<&bf16> for bf16 {
|
| 1045 | #[inline ]
|
| 1046 | fn add_assign(&mut self, rhs: &bf16) {
|
| 1047 | *self = (*self).add(rhs);
|
| 1048 | }
|
| 1049 | }
|
| 1050 |
|
| 1051 | impl Sub for bf16 {
|
| 1052 | type Output = Self;
|
| 1053 |
|
| 1054 | fn sub(self, rhs: Self) -> Self::Output {
|
| 1055 | Self::from_f32(Self::to_f32(self) - Self::to_f32(self:rhs))
|
| 1056 | }
|
| 1057 | }
|
| 1058 |
|
| 1059 | impl Sub<&bf16> for bf16 {
|
| 1060 | type Output = <bf16 as Sub<bf16>>::Output;
|
| 1061 |
|
| 1062 | #[inline ]
|
| 1063 | fn sub(self, rhs: &bf16) -> Self::Output {
|
| 1064 | self.sub(*rhs)
|
| 1065 | }
|
| 1066 | }
|
| 1067 |
|
| 1068 | impl Sub<&bf16> for &bf16 {
|
| 1069 | type Output = <bf16 as Sub<bf16>>::Output;
|
| 1070 |
|
| 1071 | #[inline ]
|
| 1072 | fn sub(self, rhs: &bf16) -> Self::Output {
|
| 1073 | (*self).sub(*rhs)
|
| 1074 | }
|
| 1075 | }
|
| 1076 |
|
| 1077 | impl Sub<bf16> for &bf16 {
|
| 1078 | type Output = <bf16 as Sub<bf16>>::Output;
|
| 1079 |
|
| 1080 | #[inline ]
|
| 1081 | fn sub(self, rhs: bf16) -> Self::Output {
|
| 1082 | (*self).sub(rhs)
|
| 1083 | }
|
| 1084 | }
|
| 1085 |
|
| 1086 | impl SubAssign for bf16 {
|
| 1087 | #[inline ]
|
| 1088 | fn sub_assign(&mut self, rhs: Self) {
|
| 1089 | *self = (*self).sub(rhs);
|
| 1090 | }
|
| 1091 | }
|
| 1092 |
|
| 1093 | impl SubAssign<&bf16> for bf16 {
|
| 1094 | #[inline ]
|
| 1095 | fn sub_assign(&mut self, rhs: &bf16) {
|
| 1096 | *self = (*self).sub(rhs);
|
| 1097 | }
|
| 1098 | }
|
| 1099 |
|
| 1100 | impl Mul for bf16 {
|
| 1101 | type Output = Self;
|
| 1102 |
|
| 1103 | fn mul(self, rhs: Self) -> Self::Output {
|
| 1104 | Self::from_f32(Self::to_f32(self) * Self::to_f32(self:rhs))
|
| 1105 | }
|
| 1106 | }
|
| 1107 |
|
| 1108 | impl Mul<&bf16> for bf16 {
|
| 1109 | type Output = <bf16 as Mul<bf16>>::Output;
|
| 1110 |
|
| 1111 | #[inline ]
|
| 1112 | fn mul(self, rhs: &bf16) -> Self::Output {
|
| 1113 | self.mul(*rhs)
|
| 1114 | }
|
| 1115 | }
|
| 1116 |
|
| 1117 | impl Mul<&bf16> for &bf16 {
|
| 1118 | type Output = <bf16 as Mul<bf16>>::Output;
|
| 1119 |
|
| 1120 | #[inline ]
|
| 1121 | fn mul(self, rhs: &bf16) -> Self::Output {
|
| 1122 | (*self).mul(*rhs)
|
| 1123 | }
|
| 1124 | }
|
| 1125 |
|
| 1126 | impl Mul<bf16> for &bf16 {
|
| 1127 | type Output = <bf16 as Mul<bf16>>::Output;
|
| 1128 |
|
| 1129 | #[inline ]
|
| 1130 | fn mul(self, rhs: bf16) -> Self::Output {
|
| 1131 | (*self).mul(rhs)
|
| 1132 | }
|
| 1133 | }
|
| 1134 |
|
| 1135 | impl MulAssign for bf16 {
|
| 1136 | #[inline ]
|
| 1137 | fn mul_assign(&mut self, rhs: Self) {
|
| 1138 | *self = (*self).mul(rhs);
|
| 1139 | }
|
| 1140 | }
|
| 1141 |
|
| 1142 | impl MulAssign<&bf16> for bf16 {
|
| 1143 | #[inline ]
|
| 1144 | fn mul_assign(&mut self, rhs: &bf16) {
|
| 1145 | *self = (*self).mul(rhs);
|
| 1146 | }
|
| 1147 | }
|
| 1148 |
|
| 1149 | impl Div for bf16 {
|
| 1150 | type Output = Self;
|
| 1151 |
|
| 1152 | fn div(self, rhs: Self) -> Self::Output {
|
| 1153 | Self::from_f32(Self::to_f32(self) / Self::to_f32(self:rhs))
|
| 1154 | }
|
| 1155 | }
|
| 1156 |
|
| 1157 | impl Div<&bf16> for bf16 {
|
| 1158 | type Output = <bf16 as Div<bf16>>::Output;
|
| 1159 |
|
| 1160 | #[inline ]
|
| 1161 | fn div(self, rhs: &bf16) -> Self::Output {
|
| 1162 | self.div(*rhs)
|
| 1163 | }
|
| 1164 | }
|
| 1165 |
|
| 1166 | impl Div<&bf16> for &bf16 {
|
| 1167 | type Output = <bf16 as Div<bf16>>::Output;
|
| 1168 |
|
| 1169 | #[inline ]
|
| 1170 | fn div(self, rhs: &bf16) -> Self::Output {
|
| 1171 | (*self).div(*rhs)
|
| 1172 | }
|
| 1173 | }
|
| 1174 |
|
| 1175 | impl Div<bf16> for &bf16 {
|
| 1176 | type Output = <bf16 as Div<bf16>>::Output;
|
| 1177 |
|
| 1178 | #[inline ]
|
| 1179 | fn div(self, rhs: bf16) -> Self::Output {
|
| 1180 | (*self).div(rhs)
|
| 1181 | }
|
| 1182 | }
|
| 1183 |
|
| 1184 | impl DivAssign for bf16 {
|
| 1185 | #[inline ]
|
| 1186 | fn div_assign(&mut self, rhs: Self) {
|
| 1187 | *self = (*self).div(rhs);
|
| 1188 | }
|
| 1189 | }
|
| 1190 |
|
| 1191 | impl DivAssign<&bf16> for bf16 {
|
| 1192 | #[inline ]
|
| 1193 | fn div_assign(&mut self, rhs: &bf16) {
|
| 1194 | *self = (*self).div(rhs);
|
| 1195 | }
|
| 1196 | }
|
| 1197 |
|
| 1198 | impl Rem for bf16 {
|
| 1199 | type Output = Self;
|
| 1200 |
|
| 1201 | fn rem(self, rhs: Self) -> Self::Output {
|
| 1202 | Self::from_f32(Self::to_f32(self) % Self::to_f32(self:rhs))
|
| 1203 | }
|
| 1204 | }
|
| 1205 |
|
| 1206 | impl Rem<&bf16> for bf16 {
|
| 1207 | type Output = <bf16 as Rem<bf16>>::Output;
|
| 1208 |
|
| 1209 | #[inline ]
|
| 1210 | fn rem(self, rhs: &bf16) -> Self::Output {
|
| 1211 | self.rem(*rhs)
|
| 1212 | }
|
| 1213 | }
|
| 1214 |
|
| 1215 | impl Rem<&bf16> for &bf16 {
|
| 1216 | type Output = <bf16 as Rem<bf16>>::Output;
|
| 1217 |
|
| 1218 | #[inline ]
|
| 1219 | fn rem(self, rhs: &bf16) -> Self::Output {
|
| 1220 | (*self).rem(*rhs)
|
| 1221 | }
|
| 1222 | }
|
| 1223 |
|
| 1224 | impl Rem<bf16> for &bf16 {
|
| 1225 | type Output = <bf16 as Rem<bf16>>::Output;
|
| 1226 |
|
| 1227 | #[inline ]
|
| 1228 | fn rem(self, rhs: bf16) -> Self::Output {
|
| 1229 | (*self).rem(rhs)
|
| 1230 | }
|
| 1231 | }
|
| 1232 |
|
| 1233 | impl RemAssign for bf16 {
|
| 1234 | #[inline ]
|
| 1235 | fn rem_assign(&mut self, rhs: Self) {
|
| 1236 | *self = (*self).rem(rhs);
|
| 1237 | }
|
| 1238 | }
|
| 1239 |
|
| 1240 | impl RemAssign<&bf16> for bf16 {
|
| 1241 | #[inline ]
|
| 1242 | fn rem_assign(&mut self, rhs: &bf16) {
|
| 1243 | *self = (*self).rem(rhs);
|
| 1244 | }
|
| 1245 | }
|
| 1246 |
|
| 1247 | impl Product for bf16 {
|
| 1248 | #[inline ]
|
| 1249 | fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
|
| 1250 | bf16::from_f32(iter.map(|f: bf16| f.to_f32()).product())
|
| 1251 | }
|
| 1252 | }
|
| 1253 |
|
| 1254 | impl<'a> Product<&'a bf16> for bf16 {
|
| 1255 | #[inline ]
|
| 1256 | fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
|
| 1257 | bf16::from_f32(iter.map(|f: &'a bf16| f.to_f32()).product())
|
| 1258 | }
|
| 1259 | }
|
| 1260 |
|
| 1261 | impl Sum for bf16 {
|
| 1262 | #[inline ]
|
| 1263 | fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
|
| 1264 | bf16::from_f32(iter.map(|f: bf16| f.to_f32()).sum())
|
| 1265 | }
|
| 1266 | }
|
| 1267 |
|
| 1268 | impl<'a> Sum<&'a bf16> for bf16 {
|
| 1269 | #[inline ]
|
| 1270 | fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
|
| 1271 | bf16::from_f32(iter.map(|f: &'a bf16| f.to_f32()).sum())
|
| 1272 | }
|
| 1273 | }
|
| 1274 |
|
| 1275 | #[cfg (feature = "serde" )]
|
| 1276 | struct Visitor;
|
| 1277 |
|
| 1278 | #[cfg (feature = "serde" )]
|
| 1279 | impl<'de> Deserialize<'de> for bf16 {
|
| 1280 | fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error>
|
| 1281 | where
|
| 1282 | D: serde::de::Deserializer<'de>,
|
| 1283 | {
|
| 1284 | deserializer.deserialize_newtype_struct("bf16" , Visitor)
|
| 1285 | }
|
| 1286 | }
|
| 1287 |
|
| 1288 | #[cfg (feature = "serde" )]
|
| 1289 | impl<'de> serde::de::Visitor<'de> for Visitor {
|
| 1290 | type Value = bf16;
|
| 1291 |
|
| 1292 | fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result {
|
| 1293 | write!(formatter, "tuple struct bf16" )
|
| 1294 | }
|
| 1295 |
|
| 1296 | fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error>
|
| 1297 | where
|
| 1298 | D: serde::Deserializer<'de>,
|
| 1299 | {
|
| 1300 | Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?))
|
| 1301 | }
|
| 1302 |
|
| 1303 | fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
|
| 1304 | where
|
| 1305 | E: serde::de::Error,
|
| 1306 | {
|
| 1307 | v.parse().map_err(|_| {
|
| 1308 | serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string" )
|
| 1309 | })
|
| 1310 | }
|
| 1311 |
|
| 1312 | fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E>
|
| 1313 | where
|
| 1314 | E: serde::de::Error,
|
| 1315 | {
|
| 1316 | Ok(bf16::from_f32(v))
|
| 1317 | }
|
| 1318 |
|
| 1319 | fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E>
|
| 1320 | where
|
| 1321 | E: serde::de::Error,
|
| 1322 | {
|
| 1323 | Ok(bf16::from_f64(v))
|
| 1324 | }
|
| 1325 | }
|
| 1326 |
|
| 1327 | #[allow (
|
| 1328 | clippy::cognitive_complexity,
|
| 1329 | clippy::float_cmp,
|
| 1330 | clippy::neg_cmp_op_on_partial_ord
|
| 1331 | )]
|
| 1332 | #[cfg (test)]
|
| 1333 | mod test {
|
| 1334 | use super::*;
|
| 1335 | #[allow (unused_imports)]
|
| 1336 | use core::cmp::Ordering;
|
| 1337 | #[cfg (feature = "num-traits" )]
|
| 1338 | use num_traits::{AsPrimitive, FromBytes, FromPrimitive, ToBytes, ToPrimitive};
|
| 1339 | use quickcheck_macros::quickcheck;
|
| 1340 |
|
| 1341 | #[cfg (feature = "num-traits" )]
|
| 1342 | #[test ]
|
| 1343 | fn as_primitive() {
|
| 1344 | let two = bf16::from_f32(2.0);
|
| 1345 | assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
|
| 1346 | assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
|
| 1347 |
|
| 1348 | assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
|
| 1349 | assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
|
| 1350 |
|
| 1351 | assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
|
| 1352 | assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
|
| 1353 | }
|
| 1354 |
|
| 1355 | #[cfg (feature = "num-traits" )]
|
| 1356 | #[test ]
|
| 1357 | fn to_primitive() {
|
| 1358 | let two = bf16::from_f32(2.0);
|
| 1359 | assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
|
| 1360 | assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
|
| 1361 | assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
|
| 1362 | }
|
| 1363 |
|
| 1364 | #[cfg (feature = "num-traits" )]
|
| 1365 | #[test ]
|
| 1366 | fn from_primitive() {
|
| 1367 | let two = bf16::from_f32(2.0);
|
| 1368 | assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
|
| 1369 | assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
|
| 1370 | assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
|
| 1371 | }
|
| 1372 |
|
| 1373 | #[cfg (feature = "num-traits" )]
|
| 1374 | #[test ]
|
| 1375 | fn to_and_from_bytes() {
|
| 1376 | let two = bf16::from_f32(2.0);
|
| 1377 | assert_eq!(<bf16 as ToBytes>::to_le_bytes(&two), [0, 64]);
|
| 1378 | assert_eq!(<bf16 as FromBytes>::from_le_bytes(&[0, 64]), two);
|
| 1379 | assert_eq!(<bf16 as ToBytes>::to_be_bytes(&two), [64, 0]);
|
| 1380 | assert_eq!(<bf16 as FromBytes>::from_be_bytes(&[64, 0]), two);
|
| 1381 | }
|
| 1382 |
|
| 1383 | #[test ]
|
| 1384 | fn test_bf16_consts_from_f32() {
|
| 1385 | let one = bf16::from_f32(1.0);
|
| 1386 | let zero = bf16::from_f32(0.0);
|
| 1387 | let neg_zero = bf16::from_f32(-0.0);
|
| 1388 | let neg_one = bf16::from_f32(-1.0);
|
| 1389 | let inf = bf16::from_f32(core::f32::INFINITY);
|
| 1390 | let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
|
| 1391 | let nan = bf16::from_f32(core::f32::NAN);
|
| 1392 |
|
| 1393 | assert_eq!(bf16::ONE, one);
|
| 1394 | assert_eq!(bf16::ZERO, zero);
|
| 1395 | assert!(zero.is_sign_positive());
|
| 1396 | assert_eq!(bf16::NEG_ZERO, neg_zero);
|
| 1397 | assert!(neg_zero.is_sign_negative());
|
| 1398 | assert_eq!(bf16::NEG_ONE, neg_one);
|
| 1399 | assert!(neg_one.is_sign_negative());
|
| 1400 | assert_eq!(bf16::INFINITY, inf);
|
| 1401 | assert_eq!(bf16::NEG_INFINITY, neg_inf);
|
| 1402 | assert!(nan.is_nan());
|
| 1403 | assert!(bf16::NAN.is_nan());
|
| 1404 |
|
| 1405 | let e = bf16::from_f32(core::f32::consts::E);
|
| 1406 | let pi = bf16::from_f32(core::f32::consts::PI);
|
| 1407 | let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
|
| 1408 | let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
|
| 1409 | let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
|
| 1410 | let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
|
| 1411 | let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
|
| 1412 | let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
|
| 1413 | let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
|
| 1414 | let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
|
| 1415 | let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
|
| 1416 | let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
|
| 1417 | let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
|
| 1418 | let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
|
| 1419 | // core::f32::consts::LOG10_2 requires rustc 1.43.0
|
| 1420 | let log10_2 = bf16::from_f32(2f32.log10());
|
| 1421 | let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
|
| 1422 | // core::f32::consts::LOG2_10 requires rustc 1.43.0
|
| 1423 | let log2_10 = bf16::from_f32(10f32.log2());
|
| 1424 | let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
|
| 1425 |
|
| 1426 | assert_eq!(bf16::E, e);
|
| 1427 | assert_eq!(bf16::PI, pi);
|
| 1428 | assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
|
| 1429 | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
| 1430 | assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
|
| 1431 | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
| 1432 | assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
|
| 1433 | assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
|
| 1434 | assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
|
| 1435 | assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
|
| 1436 | assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
|
| 1437 | assert_eq!(bf16::LN_10, ln_10);
|
| 1438 | assert_eq!(bf16::LN_2, ln_2);
|
| 1439 | assert_eq!(bf16::LOG10_E, log10_e);
|
| 1440 | assert_eq!(bf16::LOG10_2, log10_2);
|
| 1441 | assert_eq!(bf16::LOG2_E, log2_e);
|
| 1442 | assert_eq!(bf16::LOG2_10, log2_10);
|
| 1443 | assert_eq!(bf16::SQRT_2, sqrt_2);
|
| 1444 | }
|
| 1445 |
|
| 1446 | #[test ]
|
| 1447 | fn test_bf16_consts_from_f64() {
|
| 1448 | let one = bf16::from_f64(1.0);
|
| 1449 | let zero = bf16::from_f64(0.0);
|
| 1450 | let neg_zero = bf16::from_f64(-0.0);
|
| 1451 | let inf = bf16::from_f64(core::f64::INFINITY);
|
| 1452 | let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
|
| 1453 | let nan = bf16::from_f64(core::f64::NAN);
|
| 1454 |
|
| 1455 | assert_eq!(bf16::ONE, one);
|
| 1456 | assert_eq!(bf16::ZERO, zero);
|
| 1457 | assert_eq!(bf16::NEG_ZERO, neg_zero);
|
| 1458 | assert_eq!(bf16::INFINITY, inf);
|
| 1459 | assert_eq!(bf16::NEG_INFINITY, neg_inf);
|
| 1460 | assert!(nan.is_nan());
|
| 1461 | assert!(bf16::NAN.is_nan());
|
| 1462 |
|
| 1463 | let e = bf16::from_f64(core::f64::consts::E);
|
| 1464 | let pi = bf16::from_f64(core::f64::consts::PI);
|
| 1465 | let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
|
| 1466 | let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
|
| 1467 | let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
|
| 1468 | let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
|
| 1469 | let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
|
| 1470 | let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
|
| 1471 | let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
|
| 1472 | let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
|
| 1473 | let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
|
| 1474 | let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
|
| 1475 | let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
|
| 1476 | let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
|
| 1477 | // core::f64::consts::LOG10_2 requires rustc 1.43.0
|
| 1478 | let log10_2 = bf16::from_f64(2f64.log10());
|
| 1479 | let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
|
| 1480 | // core::f64::consts::LOG2_10 requires rustc 1.43.0
|
| 1481 | let log2_10 = bf16::from_f64(10f64.log2());
|
| 1482 | let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
|
| 1483 |
|
| 1484 | assert_eq!(bf16::E, e);
|
| 1485 | assert_eq!(bf16::PI, pi);
|
| 1486 | assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
|
| 1487 | assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
|
| 1488 | assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
|
| 1489 | assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
|
| 1490 | assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
|
| 1491 | assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
|
| 1492 | assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
|
| 1493 | assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
|
| 1494 | assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
|
| 1495 | assert_eq!(bf16::LN_10, ln_10);
|
| 1496 | assert_eq!(bf16::LN_2, ln_2);
|
| 1497 | assert_eq!(bf16::LOG10_E, log10_e);
|
| 1498 | assert_eq!(bf16::LOG10_2, log10_2);
|
| 1499 | assert_eq!(bf16::LOG2_E, log2_e);
|
| 1500 | assert_eq!(bf16::LOG2_10, log2_10);
|
| 1501 | assert_eq!(bf16::SQRT_2, sqrt_2);
|
| 1502 | }
|
| 1503 |
|
| 1504 | #[test ]
|
| 1505 | fn test_nan_conversion_to_smaller() {
|
| 1506 | let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
|
| 1507 | let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
|
| 1508 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
| 1509 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
| 1510 | let nan32_from_64 = nan64 as f32;
|
| 1511 | let neg_nan32_from_64 = neg_nan64 as f32;
|
| 1512 | let nan16_from_64 = bf16::from_f64(nan64);
|
| 1513 | let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
|
| 1514 | let nan16_from_32 = bf16::from_f32(nan32);
|
| 1515 | let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
|
| 1516 |
|
| 1517 | assert!(nan64.is_nan() && nan64.is_sign_positive());
|
| 1518 | assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
|
| 1519 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
| 1520 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
| 1521 |
|
| 1522 | // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
| 1523 | assert!(neg_nan32_from_64.is_nan());
|
| 1524 | assert!(nan32_from_64.is_nan());
|
| 1525 | assert!(nan16_from_64.is_nan());
|
| 1526 | assert!(neg_nan16_from_64.is_nan());
|
| 1527 | assert!(nan16_from_32.is_nan());
|
| 1528 | assert!(neg_nan16_from_32.is_nan());
|
| 1529 | }
|
| 1530 |
|
| 1531 | #[test ]
|
| 1532 | fn test_nan_conversion_to_larger() {
|
| 1533 | let nan16 = bf16::from_bits(0x7F81u16);
|
| 1534 | let neg_nan16 = bf16::from_bits(0xFF81u16);
|
| 1535 | let nan32 = f32::from_bits(0x7F80_0001u32);
|
| 1536 | let neg_nan32 = f32::from_bits(0xFF80_0001u32);
|
| 1537 | let nan32_from_16 = f32::from(nan16);
|
| 1538 | let neg_nan32_from_16 = f32::from(neg_nan16);
|
| 1539 | let nan64_from_16 = f64::from(nan16);
|
| 1540 | let neg_nan64_from_16 = f64::from(neg_nan16);
|
| 1541 | let nan64_from_32 = f64::from(nan32);
|
| 1542 | let neg_nan64_from_32 = f64::from(neg_nan32);
|
| 1543 |
|
| 1544 | assert!(nan16.is_nan() && nan16.is_sign_positive());
|
| 1545 | assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
|
| 1546 | assert!(nan32.is_nan() && nan32.is_sign_positive());
|
| 1547 | assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
|
| 1548 |
|
| 1549 | // // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103
|
| 1550 | assert!(nan32_from_16.is_nan());
|
| 1551 | assert!(neg_nan32_from_16.is_nan());
|
| 1552 | assert!(nan64_from_16.is_nan());
|
| 1553 | assert!(neg_nan64_from_16.is_nan());
|
| 1554 | assert!(nan64_from_32.is_nan());
|
| 1555 | assert!(neg_nan64_from_32.is_nan());
|
| 1556 | }
|
| 1557 |
|
| 1558 | #[test ]
|
| 1559 | fn test_bf16_to_f32() {
|
| 1560 | let f = bf16::from_f32(7.0);
|
| 1561 | assert_eq!(f.to_f32(), 7.0f32);
|
| 1562 |
|
| 1563 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
| 1564 | let f = bf16::from_f32(7.1);
|
| 1565 | let diff = (f.to_f32() - 7.1f32).abs();
|
| 1566 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
| 1567 | assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
|
| 1568 |
|
| 1569 | let tiny32 = f32::from_bits(0x0001_0000u32);
|
| 1570 | assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
|
| 1571 | assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
|
| 1572 |
|
| 1573 | assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
|
| 1574 | assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
|
| 1575 | }
|
| 1576 |
|
| 1577 | #[test ]
|
| 1578 | fn test_bf16_to_f64() {
|
| 1579 | let f = bf16::from_f64(7.0);
|
| 1580 | assert_eq!(f.to_f64(), 7.0f64);
|
| 1581 |
|
| 1582 | // 7.1 is NOT exactly representable in 16-bit, it's rounded
|
| 1583 | let f = bf16::from_f64(7.1);
|
| 1584 | let diff = (f.to_f64() - 7.1f64).abs();
|
| 1585 | // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
|
| 1586 | assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
|
| 1587 |
|
| 1588 | let tiny64 = 2.0f64.powi(-133);
|
| 1589 | assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
|
| 1590 | assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
|
| 1591 |
|
| 1592 | assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
|
| 1593 | assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
|
| 1594 | }
|
| 1595 |
|
| 1596 | #[test ]
|
| 1597 | fn test_comparisons() {
|
| 1598 | let zero = bf16::from_f64(0.0);
|
| 1599 | let one = bf16::from_f64(1.0);
|
| 1600 | let neg_zero = bf16::from_f64(-0.0);
|
| 1601 | let neg_one = bf16::from_f64(-1.0);
|
| 1602 |
|
| 1603 | assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
|
| 1604 | assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
|
| 1605 | assert!(zero == neg_zero);
|
| 1606 | assert!(neg_zero == zero);
|
| 1607 | assert!(!(zero != neg_zero));
|
| 1608 | assert!(!(neg_zero != zero));
|
| 1609 | assert!(!(zero < neg_zero));
|
| 1610 | assert!(!(neg_zero < zero));
|
| 1611 | assert!(zero <= neg_zero);
|
| 1612 | assert!(neg_zero <= zero);
|
| 1613 | assert!(!(zero > neg_zero));
|
| 1614 | assert!(!(neg_zero > zero));
|
| 1615 | assert!(zero >= neg_zero);
|
| 1616 | assert!(neg_zero >= zero);
|
| 1617 |
|
| 1618 | assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
|
| 1619 | assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
|
| 1620 | assert!(!(one == neg_zero));
|
| 1621 | assert!(!(neg_zero == one));
|
| 1622 | assert!(one != neg_zero);
|
| 1623 | assert!(neg_zero != one);
|
| 1624 | assert!(!(one < neg_zero));
|
| 1625 | assert!(neg_zero < one);
|
| 1626 | assert!(!(one <= neg_zero));
|
| 1627 | assert!(neg_zero <= one);
|
| 1628 | assert!(one > neg_zero);
|
| 1629 | assert!(!(neg_zero > one));
|
| 1630 | assert!(one >= neg_zero);
|
| 1631 | assert!(!(neg_zero >= one));
|
| 1632 |
|
| 1633 | assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
|
| 1634 | assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
|
| 1635 | assert!(!(one == neg_one));
|
| 1636 | assert!(!(neg_one == one));
|
| 1637 | assert!(one != neg_one);
|
| 1638 | assert!(neg_one != one);
|
| 1639 | assert!(!(one < neg_one));
|
| 1640 | assert!(neg_one < one);
|
| 1641 | assert!(!(one <= neg_one));
|
| 1642 | assert!(neg_one <= one);
|
| 1643 | assert!(one > neg_one);
|
| 1644 | assert!(!(neg_one > one));
|
| 1645 | assert!(one >= neg_one);
|
| 1646 | assert!(!(neg_one >= one));
|
| 1647 | }
|
| 1648 |
|
| 1649 | #[test ]
|
| 1650 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
| 1651 | fn round_to_even_f32() {
|
| 1652 | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
|
| 1653 | let min_sub = bf16::from_bits(1);
|
| 1654 | let min_sub_f = (-133f32).exp2();
|
| 1655 | assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
|
| 1656 | assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
|
| 1657 |
|
| 1658 | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
|
| 1659 | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
|
| 1660 | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
|
| 1661 | assert_eq!(
|
| 1662 | bf16::from_f32(min_sub_f * 0.49).to_bits(),
|
| 1663 | min_sub.to_bits() * 0
|
| 1664 | );
|
| 1665 | assert_eq!(
|
| 1666 | bf16::from_f32(min_sub_f * 0.50).to_bits(),
|
| 1667 | min_sub.to_bits() * 0
|
| 1668 | );
|
| 1669 | assert_eq!(
|
| 1670 | bf16::from_f32(min_sub_f * 0.51).to_bits(),
|
| 1671 | min_sub.to_bits() * 1
|
| 1672 | );
|
| 1673 |
|
| 1674 | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
|
| 1675 | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
|
| 1676 | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
|
| 1677 | assert_eq!(
|
| 1678 | bf16::from_f32(min_sub_f * 1.49).to_bits(),
|
| 1679 | min_sub.to_bits() * 1
|
| 1680 | );
|
| 1681 | assert_eq!(
|
| 1682 | bf16::from_f32(min_sub_f * 1.50).to_bits(),
|
| 1683 | min_sub.to_bits() * 2
|
| 1684 | );
|
| 1685 | assert_eq!(
|
| 1686 | bf16::from_f32(min_sub_f * 1.51).to_bits(),
|
| 1687 | min_sub.to_bits() * 2
|
| 1688 | );
|
| 1689 |
|
| 1690 | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
|
| 1691 | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
|
| 1692 | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
|
| 1693 | assert_eq!(
|
| 1694 | bf16::from_f32(min_sub_f * 2.49).to_bits(),
|
| 1695 | min_sub.to_bits() * 2
|
| 1696 | );
|
| 1697 | assert_eq!(
|
| 1698 | bf16::from_f32(min_sub_f * 2.50).to_bits(),
|
| 1699 | min_sub.to_bits() * 2
|
| 1700 | );
|
| 1701 | assert_eq!(
|
| 1702 | bf16::from_f32(min_sub_f * 2.51).to_bits(),
|
| 1703 | min_sub.to_bits() * 3
|
| 1704 | );
|
| 1705 |
|
| 1706 | assert_eq!(
|
| 1707 | bf16::from_f32(250.49f32).to_bits(),
|
| 1708 | bf16::from_f32(250.0).to_bits()
|
| 1709 | );
|
| 1710 | assert_eq!(
|
| 1711 | bf16::from_f32(250.50f32).to_bits(),
|
| 1712 | bf16::from_f32(250.0).to_bits()
|
| 1713 | );
|
| 1714 | assert_eq!(
|
| 1715 | bf16::from_f32(250.51f32).to_bits(),
|
| 1716 | bf16::from_f32(251.0).to_bits()
|
| 1717 | );
|
| 1718 | assert_eq!(
|
| 1719 | bf16::from_f32(251.49f32).to_bits(),
|
| 1720 | bf16::from_f32(251.0).to_bits()
|
| 1721 | );
|
| 1722 | assert_eq!(
|
| 1723 | bf16::from_f32(251.50f32).to_bits(),
|
| 1724 | bf16::from_f32(252.0).to_bits()
|
| 1725 | );
|
| 1726 | assert_eq!(
|
| 1727 | bf16::from_f32(251.51f32).to_bits(),
|
| 1728 | bf16::from_f32(252.0).to_bits()
|
| 1729 | );
|
| 1730 | assert_eq!(
|
| 1731 | bf16::from_f32(252.49f32).to_bits(),
|
| 1732 | bf16::from_f32(252.0).to_bits()
|
| 1733 | );
|
| 1734 | assert_eq!(
|
| 1735 | bf16::from_f32(252.50f32).to_bits(),
|
| 1736 | bf16::from_f32(252.0).to_bits()
|
| 1737 | );
|
| 1738 | assert_eq!(
|
| 1739 | bf16::from_f32(252.51f32).to_bits(),
|
| 1740 | bf16::from_f32(253.0).to_bits()
|
| 1741 | );
|
| 1742 | }
|
| 1743 |
|
| 1744 | #[test ]
|
| 1745 | #[allow (clippy::erasing_op, clippy::identity_op)]
|
| 1746 | fn round_to_even_f64() {
|
| 1747 | // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
|
| 1748 | let min_sub = bf16::from_bits(1);
|
| 1749 | let min_sub_f = (-133f64).exp2();
|
| 1750 | assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
|
| 1751 | assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
|
| 1752 |
|
| 1753 | // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
|
| 1754 | // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
|
| 1755 | // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
|
| 1756 | assert_eq!(
|
| 1757 | bf16::from_f64(min_sub_f * 0.49).to_bits(),
|
| 1758 | min_sub.to_bits() * 0
|
| 1759 | );
|
| 1760 | assert_eq!(
|
| 1761 | bf16::from_f64(min_sub_f * 0.50).to_bits(),
|
| 1762 | min_sub.to_bits() * 0
|
| 1763 | );
|
| 1764 | assert_eq!(
|
| 1765 | bf16::from_f64(min_sub_f * 0.51).to_bits(),
|
| 1766 | min_sub.to_bits() * 1
|
| 1767 | );
|
| 1768 |
|
| 1769 | // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
|
| 1770 | // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
|
| 1771 | // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
|
| 1772 | assert_eq!(
|
| 1773 | bf16::from_f64(min_sub_f * 1.49).to_bits(),
|
| 1774 | min_sub.to_bits() * 1
|
| 1775 | );
|
| 1776 | assert_eq!(
|
| 1777 | bf16::from_f64(min_sub_f * 1.50).to_bits(),
|
| 1778 | min_sub.to_bits() * 2
|
| 1779 | );
|
| 1780 | assert_eq!(
|
| 1781 | bf16::from_f64(min_sub_f * 1.51).to_bits(),
|
| 1782 | min_sub.to_bits() * 2
|
| 1783 | );
|
| 1784 |
|
| 1785 | // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
|
| 1786 | // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
|
| 1787 | // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
|
| 1788 | assert_eq!(
|
| 1789 | bf16::from_f64(min_sub_f * 2.49).to_bits(),
|
| 1790 | min_sub.to_bits() * 2
|
| 1791 | );
|
| 1792 | assert_eq!(
|
| 1793 | bf16::from_f64(min_sub_f * 2.50).to_bits(),
|
| 1794 | min_sub.to_bits() * 2
|
| 1795 | );
|
| 1796 | assert_eq!(
|
| 1797 | bf16::from_f64(min_sub_f * 2.51).to_bits(),
|
| 1798 | min_sub.to_bits() * 3
|
| 1799 | );
|
| 1800 |
|
| 1801 | assert_eq!(
|
| 1802 | bf16::from_f64(250.49f64).to_bits(),
|
| 1803 | bf16::from_f64(250.0).to_bits()
|
| 1804 | );
|
| 1805 | assert_eq!(
|
| 1806 | bf16::from_f64(250.50f64).to_bits(),
|
| 1807 | bf16::from_f64(250.0).to_bits()
|
| 1808 | );
|
| 1809 | assert_eq!(
|
| 1810 | bf16::from_f64(250.51f64).to_bits(),
|
| 1811 | bf16::from_f64(251.0).to_bits()
|
| 1812 | );
|
| 1813 | assert_eq!(
|
| 1814 | bf16::from_f64(251.49f64).to_bits(),
|
| 1815 | bf16::from_f64(251.0).to_bits()
|
| 1816 | );
|
| 1817 | assert_eq!(
|
| 1818 | bf16::from_f64(251.50f64).to_bits(),
|
| 1819 | bf16::from_f64(252.0).to_bits()
|
| 1820 | );
|
| 1821 | assert_eq!(
|
| 1822 | bf16::from_f64(251.51f64).to_bits(),
|
| 1823 | bf16::from_f64(252.0).to_bits()
|
| 1824 | );
|
| 1825 | assert_eq!(
|
| 1826 | bf16::from_f64(252.49f64).to_bits(),
|
| 1827 | bf16::from_f64(252.0).to_bits()
|
| 1828 | );
|
| 1829 | assert_eq!(
|
| 1830 | bf16::from_f64(252.50f64).to_bits(),
|
| 1831 | bf16::from_f64(252.0).to_bits()
|
| 1832 | );
|
| 1833 | assert_eq!(
|
| 1834 | bf16::from_f64(252.51f64).to_bits(),
|
| 1835 | bf16::from_f64(253.0).to_bits()
|
| 1836 | );
|
| 1837 | }
|
| 1838 |
|
| 1839 | #[cfg (feature = "std" )]
|
| 1840 | #[test ]
|
| 1841 | fn formatting() {
|
| 1842 | let f = bf16::from_f32(0.1152344);
|
| 1843 |
|
| 1844 | assert_eq!(format!("{:.3}" , f), "0.115" );
|
| 1845 | assert_eq!(format!("{:.4}" , f), "0.1152" );
|
| 1846 | assert_eq!(format!("{:+.4}" , f), "+0.1152" );
|
| 1847 | assert_eq!(format!("{:>+10.4}" , f), " +0.1152" );
|
| 1848 |
|
| 1849 | assert_eq!(format!("{:.3?}" , f), "0.115" );
|
| 1850 | assert_eq!(format!("{:.4?}" , f), "0.1152" );
|
| 1851 | assert_eq!(format!("{:+.4?}" , f), "+0.1152" );
|
| 1852 | assert_eq!(format!("{:>+10.4?}" , f), " +0.1152" );
|
| 1853 | }
|
| 1854 |
|
| 1855 | impl quickcheck::Arbitrary for bf16 {
|
| 1856 | fn arbitrary(g: &mut quickcheck::Gen) -> Self {
|
| 1857 | bf16(u16::arbitrary(g))
|
| 1858 | }
|
| 1859 | }
|
| 1860 |
|
| 1861 | #[quickcheck]
|
| 1862 | fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
|
| 1863 | let roundtrip = bf16::from_f32(f.to_f32());
|
| 1864 | if f.is_nan() {
|
| 1865 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
| 1866 | } else {
|
| 1867 | f.0 == roundtrip.0
|
| 1868 | }
|
| 1869 | }
|
| 1870 |
|
| 1871 | #[quickcheck]
|
| 1872 | fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
|
| 1873 | let roundtrip = bf16::from_f64(f.to_f64());
|
| 1874 | if f.is_nan() {
|
| 1875 | roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
|
| 1876 | } else {
|
| 1877 | f.0 == roundtrip.0
|
| 1878 | }
|
| 1879 | }
|
| 1880 | }
|
| 1881 | |