1 | use crate::alloc::alloc::{handle_alloc_error, Layout}; |
2 | use crate::scopeguard::{guard, ScopeGuard}; |
3 | use crate::TryReserveError; |
4 | use core::iter::FusedIterator; |
5 | use core::marker::PhantomData; |
6 | use core::mem; |
7 | use core::mem::ManuallyDrop; |
8 | use core::mem::MaybeUninit; |
9 | use core::ptr::NonNull; |
10 | use core::{hint, ptr}; |
11 | |
12 | cfg_if! { |
13 | // Use the SSE2 implementation if possible: it allows us to scan 16 buckets |
14 | // at once instead of 8. We don't bother with AVX since it would require |
15 | // runtime dispatch and wouldn't gain us much anyways: the probability of |
16 | // finding a match drops off drastically after the first few buckets. |
17 | // |
18 | // I attempted an implementation on ARM using NEON instructions, but it |
19 | // turns out that most NEON instructions have multi-cycle latency, which in |
20 | // the end outweighs any gains over the generic implementation. |
21 | if #[cfg(all( |
22 | target_feature = "sse2" , |
23 | any(target_arch = "x86" , target_arch = "x86_64" ), |
24 | not(miri) |
25 | ))] { |
26 | mod sse2; |
27 | use sse2 as imp; |
28 | } else { |
29 | #[path = "generic.rs" ] |
30 | mod generic; |
31 | use generic as imp; |
32 | } |
33 | } |
34 | |
35 | mod alloc; |
36 | pub(crate) use self::alloc::{do_alloc, Allocator, Global}; |
37 | |
38 | mod bitmask; |
39 | |
40 | use self::bitmask::{BitMask, BitMaskIter}; |
41 | use self::imp::Group; |
42 | |
43 | // Branch prediction hint. This is currently only available on nightly but it |
44 | // consistently improves performance by 10-15%. |
45 | #[cfg (feature = "nightly" )] |
46 | use core::intrinsics::{likely, unlikely}; |
47 | |
48 | // On stable we can use #[cold] to get a equivalent effect: this attributes |
49 | // suggests that the function is unlikely to be called |
50 | #[cfg (not(feature = "nightly" ))] |
51 | #[inline ] |
52 | #[cold ] |
53 | fn cold() {} |
54 | |
55 | #[cfg (not(feature = "nightly" ))] |
56 | #[inline ] |
57 | fn likely(b: bool) -> bool { |
58 | if !b { |
59 | cold(); |
60 | } |
61 | b |
62 | } |
63 | #[cfg (not(feature = "nightly" ))] |
64 | #[inline ] |
65 | fn unlikely(b: bool) -> bool { |
66 | if b { |
67 | cold(); |
68 | } |
69 | b |
70 | } |
71 | |
72 | #[inline ] |
73 | unsafe fn offset_from<T>(to: *const T, from: *const T) -> usize { |
74 | to.offset_from(origin:from) as usize |
75 | } |
76 | |
77 | /// Whether memory allocation errors should return an error or abort. |
78 | #[derive (Copy, Clone)] |
79 | enum Fallibility { |
80 | Fallible, |
81 | Infallible, |
82 | } |
83 | |
84 | impl Fallibility { |
85 | /// Error to return on capacity overflow. |
86 | #[cfg_attr (feature = "inline-more" , inline)] |
87 | fn capacity_overflow(self) -> TryReserveError { |
88 | match self { |
89 | Fallibility::Fallible => TryReserveError::CapacityOverflow, |
90 | Fallibility::Infallible => panic!("Hash table capacity overflow" ), |
91 | } |
92 | } |
93 | |
94 | /// Error to return on allocation error. |
95 | #[cfg_attr (feature = "inline-more" , inline)] |
96 | fn alloc_err(self, layout: Layout) -> TryReserveError { |
97 | match self { |
98 | Fallibility::Fallible => TryReserveError::AllocError { layout }, |
99 | Fallibility::Infallible => handle_alloc_error(layout), |
100 | } |
101 | } |
102 | } |
103 | |
104 | /// Control byte value for an empty bucket. |
105 | const EMPTY: u8 = 0b1111_1111; |
106 | |
107 | /// Control byte value for a deleted bucket. |
108 | const DELETED: u8 = 0b1000_0000; |
109 | |
110 | /// Checks whether a control byte represents a full bucket (top bit is clear). |
111 | #[inline ] |
112 | fn is_full(ctrl: u8) -> bool { |
113 | ctrl & 0x80 == 0 |
114 | } |
115 | |
116 | /// Checks whether a control byte represents a special value (top bit is set). |
117 | #[inline ] |
118 | fn is_special(ctrl: u8) -> bool { |
119 | ctrl & 0x80 != 0 |
120 | } |
121 | |
122 | /// Checks whether a special control value is EMPTY (just check 1 bit). |
123 | #[inline ] |
124 | fn special_is_empty(ctrl: u8) -> bool { |
125 | debug_assert!(is_special(ctrl)); |
126 | ctrl & 0x01 != 0 |
127 | } |
128 | |
129 | /// Primary hash function, used to select the initial bucket to probe from. |
130 | #[inline ] |
131 | #[allow (clippy::cast_possible_truncation)] |
132 | fn h1(hash: u64) -> usize { |
133 | // On 32-bit platforms we simply ignore the higher hash bits. |
134 | hash as usize |
135 | } |
136 | |
137 | /// Secondary hash function, saved in the low 7 bits of the control byte. |
138 | #[inline ] |
139 | #[allow (clippy::cast_possible_truncation)] |
140 | fn h2(hash: u64) -> u8 { |
141 | // Grab the top 7 bits of the hash. While the hash is normally a full 64-bit |
142 | // value, some hash functions (such as FxHash) produce a usize result |
143 | // instead, which means that the top 32 bits are 0 on 32-bit platforms. |
144 | let hash_len: usize = usize::min(self:mem::size_of::<usize>(), other:mem::size_of::<u64>()); |
145 | let top7: u64 = hash >> (hash_len * 8 - 7); |
146 | (top7 & 0x7f) as u8 // truncation |
147 | } |
148 | |
149 | /// Probe sequence based on triangular numbers, which is guaranteed (since our |
150 | /// table size is a power of two) to visit every group of elements exactly once. |
151 | /// |
152 | /// A triangular probe has us jump by 1 more group every time. So first we |
153 | /// jump by 1 group (meaning we just continue our linear scan), then 2 groups |
154 | /// (skipping over 1 group), then 3 groups (skipping over 2 groups), and so on. |
155 | /// |
156 | /// Proof that the probe will visit every group in the table: |
157 | /// <https://fgiesen.wordpress.com/2015/02/22/triangular-numbers-mod-2n/> |
158 | struct ProbeSeq { |
159 | pos: usize, |
160 | stride: usize, |
161 | } |
162 | |
163 | impl ProbeSeq { |
164 | #[inline ] |
165 | fn move_next(&mut self, bucket_mask: usize) { |
166 | // We should have found an empty bucket by now and ended the probe. |
167 | debug_assert!( |
168 | self.stride <= bucket_mask, |
169 | "Went past end of probe sequence" |
170 | ); |
171 | |
172 | self.stride += Group::WIDTH; |
173 | self.pos += self.stride; |
174 | self.pos &= bucket_mask; |
175 | } |
176 | } |
177 | |
178 | /// Returns the number of buckets needed to hold the given number of items, |
179 | /// taking the maximum load factor into account. |
180 | /// |
181 | /// Returns `None` if an overflow occurs. |
182 | // Workaround for emscripten bug emscripten-core/emscripten-fastcomp#258 |
183 | #[cfg_attr (target_os = "emscripten" , inline(never))] |
184 | #[cfg_attr (not(target_os = "emscripten" ), inline)] |
185 | fn capacity_to_buckets(cap: usize) -> Option<usize> { |
186 | debug_assert_ne!(cap, 0); |
187 | |
188 | // For small tables we require at least 1 empty bucket so that lookups are |
189 | // guaranteed to terminate if an element doesn't exist in the table. |
190 | if cap < 8 { |
191 | // We don't bother with a table size of 2 buckets since that can only |
192 | // hold a single element. Instead we skip directly to a 4 bucket table |
193 | // which can hold 3 elements. |
194 | return Some(if cap < 4 { 4 } else { 8 }); |
195 | } |
196 | |
197 | // Otherwise require 1/8 buckets to be empty (87.5% load) |
198 | // |
199 | // Be careful when modifying this, calculate_layout relies on the |
200 | // overflow check here. |
201 | let adjusted_cap: usize = cap.checked_mul(8)? / 7; |
202 | |
203 | // Any overflows will have been caught by the checked_mul. Also, any |
204 | // rounding errors from the division above will be cleaned up by |
205 | // next_power_of_two (which can't overflow because of the previous division). |
206 | Some(adjusted_cap.next_power_of_two()) |
207 | } |
208 | |
209 | /// Returns the maximum effective capacity for the given bucket mask, taking |
210 | /// the maximum load factor into account. |
211 | #[inline ] |
212 | fn bucket_mask_to_capacity(bucket_mask: usize) -> usize { |
213 | if bucket_mask < 8 { |
214 | // For tables with 1/2/4/8 buckets, we always reserve one empty slot. |
215 | // Keep in mind that the bucket mask is one less than the bucket count. |
216 | bucket_mask |
217 | } else { |
218 | // For larger tables we reserve 12.5% of the slots as empty. |
219 | ((bucket_mask + 1) / 8) * 7 |
220 | } |
221 | } |
222 | |
223 | /// Helper which allows the max calculation for ctrl_align to be statically computed for each T |
224 | /// while keeping the rest of `calculate_layout_for` independent of `T` |
225 | #[derive (Copy, Clone)] |
226 | struct TableLayout { |
227 | size: usize, |
228 | ctrl_align: usize, |
229 | } |
230 | |
231 | impl TableLayout { |
232 | #[inline ] |
233 | fn new<T>() -> Self { |
234 | let layout = Layout::new::<T>(); |
235 | Self { |
236 | size: layout.size(), |
237 | ctrl_align: usize::max(layout.align(), Group::WIDTH), |
238 | } |
239 | } |
240 | |
241 | #[inline ] |
242 | fn calculate_layout_for(self, buckets: usize) -> Option<(Layout, usize)> { |
243 | debug_assert!(buckets.is_power_of_two()); |
244 | |
245 | let TableLayout { size, ctrl_align } = self; |
246 | // Manual layout calculation since Layout methods are not yet stable. |
247 | let ctrl_offset = |
248 | size.checked_mul(buckets)?.checked_add(ctrl_align - 1)? & !(ctrl_align - 1); |
249 | let len = ctrl_offset.checked_add(buckets + Group::WIDTH)?; |
250 | |
251 | Some(( |
252 | unsafe { Layout::from_size_align_unchecked(len, ctrl_align) }, |
253 | ctrl_offset, |
254 | )) |
255 | } |
256 | } |
257 | |
258 | /// Returns a Layout which describes the allocation required for a hash table, |
259 | /// and the offset of the control bytes in the allocation. |
260 | /// (the offset is also one past last element of buckets) |
261 | /// |
262 | /// Returns `None` if an overflow occurs. |
263 | #[cfg_attr (feature = "inline-more" , inline)] |
264 | fn calculate_layout<T>(buckets: usize) -> Option<(Layout, usize)> { |
265 | TableLayout::new::<T>().calculate_layout_for(buckets) |
266 | } |
267 | |
268 | /// A reference to a hash table bucket containing a `T`. |
269 | /// |
270 | /// This is usually just a pointer to the element itself. However if the element |
271 | /// is a ZST, then we instead track the index of the element in the table so |
272 | /// that `erase` works properly. |
273 | pub struct Bucket<T> { |
274 | // Actually it is pointer to next element than element itself |
275 | // this is needed to maintain pointer arithmetic invariants |
276 | // keeping direct pointer to element introduces difficulty. |
277 | // Using `NonNull` for variance and niche layout |
278 | ptr: NonNull<T>, |
279 | } |
280 | |
281 | // This Send impl is needed for rayon support. This is safe since Bucket is |
282 | // never exposed in a public API. |
283 | unsafe impl<T> Send for Bucket<T> {} |
284 | |
285 | impl<T> Clone for Bucket<T> { |
286 | #[inline ] |
287 | fn clone(&self) -> Self { |
288 | Self { ptr: self.ptr } |
289 | } |
290 | } |
291 | |
292 | impl<T> Bucket<T> { |
293 | #[inline ] |
294 | unsafe fn from_base_index(base: NonNull<T>, index: usize) -> Self { |
295 | let ptr = if mem::size_of::<T>() == 0 { |
296 | // won't overflow because index must be less than length |
297 | (index + 1) as *mut T |
298 | } else { |
299 | base.as_ptr().sub(index) |
300 | }; |
301 | Self { |
302 | ptr: NonNull::new_unchecked(ptr), |
303 | } |
304 | } |
305 | #[inline ] |
306 | unsafe fn to_base_index(&self, base: NonNull<T>) -> usize { |
307 | if mem::size_of::<T>() == 0 { |
308 | self.ptr.as_ptr() as usize - 1 |
309 | } else { |
310 | offset_from(base.as_ptr(), self.ptr.as_ptr()) |
311 | } |
312 | } |
313 | #[inline ] |
314 | pub fn as_ptr(&self) -> *mut T { |
315 | if mem::size_of::<T>() == 0 { |
316 | // Just return an arbitrary ZST pointer which is properly aligned |
317 | mem::align_of::<T>() as *mut T |
318 | } else { |
319 | unsafe { self.ptr.as_ptr().sub(1) } |
320 | } |
321 | } |
322 | #[inline ] |
323 | unsafe fn next_n(&self, offset: usize) -> Self { |
324 | let ptr = if mem::size_of::<T>() == 0 { |
325 | (self.ptr.as_ptr() as usize + offset) as *mut T |
326 | } else { |
327 | self.ptr.as_ptr().sub(offset) |
328 | }; |
329 | Self { |
330 | ptr: NonNull::new_unchecked(ptr), |
331 | } |
332 | } |
333 | #[cfg_attr (feature = "inline-more" , inline)] |
334 | pub unsafe fn drop(&self) { |
335 | self.as_ptr().drop_in_place(); |
336 | } |
337 | #[inline ] |
338 | pub unsafe fn read(&self) -> T { |
339 | self.as_ptr().read() |
340 | } |
341 | #[inline ] |
342 | pub unsafe fn write(&self, val: T) { |
343 | self.as_ptr().write(val); |
344 | } |
345 | #[inline ] |
346 | pub unsafe fn as_ref<'a>(&self) -> &'a T { |
347 | &*self.as_ptr() |
348 | } |
349 | #[inline ] |
350 | pub unsafe fn as_mut<'a>(&self) -> &'a mut T { |
351 | &mut *self.as_ptr() |
352 | } |
353 | #[cfg (feature = "raw" )] |
354 | #[inline ] |
355 | pub unsafe fn copy_from_nonoverlapping(&self, other: &Self) { |
356 | self.as_ptr().copy_from_nonoverlapping(other.as_ptr(), 1); |
357 | } |
358 | } |
359 | |
360 | /// A raw hash table with an unsafe API. |
361 | pub struct RawTable<T, A: Allocator + Clone = Global> { |
362 | table: RawTableInner<A>, |
363 | // Tell dropck that we own instances of T. |
364 | marker: PhantomData<T>, |
365 | } |
366 | |
367 | /// Non-generic part of `RawTable` which allows functions to be instantiated only once regardless |
368 | /// of how many different key-value types are used. |
369 | struct RawTableInner<A> { |
370 | // Mask to get an index from a hash value. The value is one less than the |
371 | // number of buckets in the table. |
372 | bucket_mask: usize, |
373 | |
374 | // [Padding], T1, T2, ..., Tlast, C1, C2, ... |
375 | // ^ points here |
376 | ctrl: NonNull<u8>, |
377 | |
378 | // Number of elements that can be inserted before we need to grow the table |
379 | growth_left: usize, |
380 | |
381 | // Number of elements in the table, only really used by len() |
382 | items: usize, |
383 | |
384 | alloc: A, |
385 | } |
386 | |
387 | impl<T> RawTable<T, Global> { |
388 | /// Creates a new empty hash table without allocating any memory. |
389 | /// |
390 | /// In effect this returns a table with exactly 1 bucket. However we can |
391 | /// leave the data pointer dangling since that bucket is never written to |
392 | /// due to our load factor forcing us to always have at least 1 free bucket. |
393 | #[inline ] |
394 | pub const fn new() -> Self { |
395 | Self { |
396 | table: RawTableInner::new_in(Global), |
397 | marker: PhantomData, |
398 | } |
399 | } |
400 | |
401 | /// Attempts to allocate a new hash table with at least enough capacity |
402 | /// for inserting the given number of elements without reallocating. |
403 | #[cfg (feature = "raw" )] |
404 | pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> { |
405 | Self::try_with_capacity_in(capacity, Global) |
406 | } |
407 | |
408 | /// Allocates a new hash table with at least enough capacity for inserting |
409 | /// the given number of elements without reallocating. |
410 | pub fn with_capacity(capacity: usize) -> Self { |
411 | Self::with_capacity_in(capacity, Global) |
412 | } |
413 | } |
414 | |
415 | impl<T, A: Allocator + Clone> RawTable<T, A> { |
416 | /// Creates a new empty hash table without allocating any memory, using the |
417 | /// given allocator. |
418 | /// |
419 | /// In effect this returns a table with exactly 1 bucket. However we can |
420 | /// leave the data pointer dangling since that bucket is never written to |
421 | /// due to our load factor forcing us to always have at least 1 free bucket. |
422 | #[inline ] |
423 | pub fn new_in(alloc: A) -> Self { |
424 | Self { |
425 | table: RawTableInner::new_in(alloc), |
426 | marker: PhantomData, |
427 | } |
428 | } |
429 | |
430 | /// Allocates a new hash table with the given number of buckets. |
431 | /// |
432 | /// The control bytes are left uninitialized. |
433 | #[cfg_attr (feature = "inline-more" , inline)] |
434 | unsafe fn new_uninitialized( |
435 | alloc: A, |
436 | buckets: usize, |
437 | fallibility: Fallibility, |
438 | ) -> Result<Self, TryReserveError> { |
439 | debug_assert!(buckets.is_power_of_two()); |
440 | |
441 | Ok(Self { |
442 | table: RawTableInner::new_uninitialized( |
443 | alloc, |
444 | TableLayout::new::<T>(), |
445 | buckets, |
446 | fallibility, |
447 | )?, |
448 | marker: PhantomData, |
449 | }) |
450 | } |
451 | |
452 | /// Attempts to allocate a new hash table with at least enough capacity |
453 | /// for inserting the given number of elements without reallocating. |
454 | fn fallible_with_capacity( |
455 | alloc: A, |
456 | capacity: usize, |
457 | fallibility: Fallibility, |
458 | ) -> Result<Self, TryReserveError> { |
459 | Ok(Self { |
460 | table: RawTableInner::fallible_with_capacity( |
461 | alloc, |
462 | TableLayout::new::<T>(), |
463 | capacity, |
464 | fallibility, |
465 | )?, |
466 | marker: PhantomData, |
467 | }) |
468 | } |
469 | |
470 | /// Attempts to allocate a new hash table using the given allocator, with at least enough |
471 | /// capacity for inserting the given number of elements without reallocating. |
472 | #[cfg (feature = "raw" )] |
473 | pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> { |
474 | Self::fallible_with_capacity(alloc, capacity, Fallibility::Fallible) |
475 | } |
476 | |
477 | /// Allocates a new hash table using the given allocator, with at least enough capacity for |
478 | /// inserting the given number of elements without reallocating. |
479 | pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
480 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
481 | match Self::fallible_with_capacity(alloc, capacity, Fallibility::Infallible) { |
482 | Ok(capacity) => capacity, |
483 | Err(_) => unsafe { hint::unreachable_unchecked() }, |
484 | } |
485 | } |
486 | |
487 | /// Returns a reference to the underlying allocator. |
488 | #[inline ] |
489 | pub fn allocator(&self) -> &A { |
490 | &self.table.alloc |
491 | } |
492 | |
493 | /// Deallocates the table without dropping any entries. |
494 | #[cfg_attr (feature = "inline-more" , inline)] |
495 | unsafe fn free_buckets(&mut self) { |
496 | self.table.free_buckets(TableLayout::new::<T>()); |
497 | } |
498 | |
499 | /// Returns pointer to one past last element of data table. |
500 | #[inline ] |
501 | pub unsafe fn data_end(&self) -> NonNull<T> { |
502 | NonNull::new_unchecked(self.table.ctrl.as_ptr().cast()) |
503 | } |
504 | |
505 | /// Returns pointer to start of data table. |
506 | #[inline ] |
507 | #[cfg (feature = "nightly" )] |
508 | pub unsafe fn data_start(&self) -> *mut T { |
509 | self.data_end().as_ptr().wrapping_sub(self.buckets()) |
510 | } |
511 | |
512 | /// Returns the index of a bucket from a `Bucket`. |
513 | #[inline ] |
514 | pub unsafe fn bucket_index(&self, bucket: &Bucket<T>) -> usize { |
515 | bucket.to_base_index(self.data_end()) |
516 | } |
517 | |
518 | /// Returns a pointer to an element in the table. |
519 | #[inline ] |
520 | pub unsafe fn bucket(&self, index: usize) -> Bucket<T> { |
521 | debug_assert_ne!(self.table.bucket_mask, 0); |
522 | debug_assert!(index < self.buckets()); |
523 | Bucket::from_base_index(self.data_end(), index) |
524 | } |
525 | |
526 | /// Erases an element from the table without dropping it. |
527 | #[cfg_attr (feature = "inline-more" , inline)] |
528 | #[deprecated (since = "0.8.1" , note = "use erase or remove instead" )] |
529 | pub unsafe fn erase_no_drop(&mut self, item: &Bucket<T>) { |
530 | let index = self.bucket_index(item); |
531 | self.table.erase(index); |
532 | } |
533 | |
534 | /// Erases an element from the table, dropping it in place. |
535 | #[cfg_attr (feature = "inline-more" , inline)] |
536 | #[allow (clippy::needless_pass_by_value)] |
537 | #[allow (deprecated)] |
538 | pub unsafe fn erase(&mut self, item: Bucket<T>) { |
539 | // Erase the element from the table first since drop might panic. |
540 | self.erase_no_drop(&item); |
541 | item.drop(); |
542 | } |
543 | |
544 | /// Finds and erases an element from the table, dropping it in place. |
545 | /// Returns true if an element was found. |
546 | #[cfg (feature = "raw" )] |
547 | #[cfg_attr (feature = "inline-more" , inline)] |
548 | pub fn erase_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> bool { |
549 | // Avoid `Option::map` because it bloats LLVM IR. |
550 | if let Some(bucket) = self.find(hash, eq) { |
551 | unsafe { |
552 | self.erase(bucket); |
553 | } |
554 | true |
555 | } else { |
556 | false |
557 | } |
558 | } |
559 | |
560 | /// Removes an element from the table, returning it. |
561 | #[cfg_attr (feature = "inline-more" , inline)] |
562 | #[allow (clippy::needless_pass_by_value)] |
563 | #[allow (deprecated)] |
564 | pub unsafe fn remove(&mut self, item: Bucket<T>) -> T { |
565 | self.erase_no_drop(&item); |
566 | item.read() |
567 | } |
568 | |
569 | /// Finds and removes an element from the table, returning it. |
570 | #[cfg_attr (feature = "inline-more" , inline)] |
571 | pub fn remove_entry(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<T> { |
572 | // Avoid `Option::map` because it bloats LLVM IR. |
573 | match self.find(hash, eq) { |
574 | Some(bucket) => Some(unsafe { self.remove(bucket) }), |
575 | None => None, |
576 | } |
577 | } |
578 | |
579 | /// Marks all table buckets as empty without dropping their contents. |
580 | #[cfg_attr (feature = "inline-more" , inline)] |
581 | pub fn clear_no_drop(&mut self) { |
582 | self.table.clear_no_drop(); |
583 | } |
584 | |
585 | /// Removes all elements from the table without freeing the backing memory. |
586 | #[cfg_attr (feature = "inline-more" , inline)] |
587 | pub fn clear(&mut self) { |
588 | // Ensure that the table is reset even if one of the drops panic |
589 | let mut self_ = guard(self, |self_| self_.clear_no_drop()); |
590 | unsafe { |
591 | self_.drop_elements(); |
592 | } |
593 | } |
594 | |
595 | unsafe fn drop_elements(&mut self) { |
596 | if mem::needs_drop::<T>() && !self.is_empty() { |
597 | for item in self.iter() { |
598 | item.drop(); |
599 | } |
600 | } |
601 | } |
602 | |
603 | /// Shrinks the table to fit `max(self.len(), min_size)` elements. |
604 | #[cfg_attr (feature = "inline-more" , inline)] |
605 | pub fn shrink_to(&mut self, min_size: usize, hasher: impl Fn(&T) -> u64) { |
606 | // Calculate the minimal number of elements that we need to reserve |
607 | // space for. |
608 | let min_size = usize::max(self.table.items, min_size); |
609 | if min_size == 0 { |
610 | *self = Self::new_in(self.table.alloc.clone()); |
611 | return; |
612 | } |
613 | |
614 | // Calculate the number of buckets that we need for this number of |
615 | // elements. If the calculation overflows then the requested bucket |
616 | // count must be larger than what we have right and nothing needs to be |
617 | // done. |
618 | let min_buckets = match capacity_to_buckets(min_size) { |
619 | Some(buckets) => buckets, |
620 | None => return, |
621 | }; |
622 | |
623 | // If we have more buckets than we need, shrink the table. |
624 | if min_buckets < self.buckets() { |
625 | // Fast path if the table is empty |
626 | if self.table.items == 0 { |
627 | *self = Self::with_capacity_in(min_size, self.table.alloc.clone()); |
628 | } else { |
629 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
630 | if self |
631 | .resize(min_size, hasher, Fallibility::Infallible) |
632 | .is_err() |
633 | { |
634 | unsafe { hint::unreachable_unchecked() } |
635 | } |
636 | } |
637 | } |
638 | } |
639 | |
640 | /// Ensures that at least `additional` items can be inserted into the table |
641 | /// without reallocation. |
642 | #[cfg_attr (feature = "inline-more" , inline)] |
643 | pub fn reserve(&mut self, additional: usize, hasher: impl Fn(&T) -> u64) { |
644 | if additional > self.table.growth_left { |
645 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
646 | if self |
647 | .reserve_rehash(additional, hasher, Fallibility::Infallible) |
648 | .is_err() |
649 | { |
650 | unsafe { hint::unreachable_unchecked() } |
651 | } |
652 | } |
653 | } |
654 | |
655 | /// Tries to ensure that at least `additional` items can be inserted into |
656 | /// the table without reallocation. |
657 | #[cfg_attr (feature = "inline-more" , inline)] |
658 | pub fn try_reserve( |
659 | &mut self, |
660 | additional: usize, |
661 | hasher: impl Fn(&T) -> u64, |
662 | ) -> Result<(), TryReserveError> { |
663 | if additional > self.table.growth_left { |
664 | self.reserve_rehash(additional, hasher, Fallibility::Fallible) |
665 | } else { |
666 | Ok(()) |
667 | } |
668 | } |
669 | |
670 | /// Out-of-line slow path for `reserve` and `try_reserve`. |
671 | #[cold ] |
672 | #[inline (never)] |
673 | fn reserve_rehash( |
674 | &mut self, |
675 | additional: usize, |
676 | hasher: impl Fn(&T) -> u64, |
677 | fallibility: Fallibility, |
678 | ) -> Result<(), TryReserveError> { |
679 | unsafe { |
680 | self.table.reserve_rehash_inner( |
681 | additional, |
682 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
683 | fallibility, |
684 | TableLayout::new::<T>(), |
685 | if mem::needs_drop::<T>() { |
686 | Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) |
687 | } else { |
688 | None |
689 | }, |
690 | ) |
691 | } |
692 | } |
693 | |
694 | /// Allocates a new table of a different size and moves the contents of the |
695 | /// current table into it. |
696 | fn resize( |
697 | &mut self, |
698 | capacity: usize, |
699 | hasher: impl Fn(&T) -> u64, |
700 | fallibility: Fallibility, |
701 | ) -> Result<(), TryReserveError> { |
702 | unsafe { |
703 | self.table.resize_inner( |
704 | capacity, |
705 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
706 | fallibility, |
707 | TableLayout::new::<T>(), |
708 | ) |
709 | } |
710 | } |
711 | |
712 | /// Inserts a new element into the table, and returns its raw bucket. |
713 | /// |
714 | /// This does not check if the given element already exists in the table. |
715 | #[cfg_attr (feature = "inline-more" , inline)] |
716 | pub fn insert(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> Bucket<T> { |
717 | unsafe { |
718 | let mut index = self.table.find_insert_slot(hash); |
719 | |
720 | // We can avoid growing the table once we have reached our load |
721 | // factor if we are replacing a tombstone. This works since the |
722 | // number of EMPTY slots does not change in this case. |
723 | let old_ctrl = *self.table.ctrl(index); |
724 | if unlikely(self.table.growth_left == 0 && special_is_empty(old_ctrl)) { |
725 | self.reserve(1, hasher); |
726 | index = self.table.find_insert_slot(hash); |
727 | } |
728 | |
729 | self.table.record_item_insert_at(index, old_ctrl, hash); |
730 | |
731 | let bucket = self.bucket(index); |
732 | bucket.write(value); |
733 | bucket |
734 | } |
735 | } |
736 | |
737 | /// Attempts to insert a new element without growing the table and return its raw bucket. |
738 | /// |
739 | /// Returns an `Err` containing the given element if inserting it would require growing the |
740 | /// table. |
741 | /// |
742 | /// This does not check if the given element already exists in the table. |
743 | #[cfg (feature = "raw" )] |
744 | #[cfg_attr (feature = "inline-more" , inline)] |
745 | pub fn try_insert_no_grow(&mut self, hash: u64, value: T) -> Result<Bucket<T>, T> { |
746 | unsafe { |
747 | match self.table.prepare_insert_no_grow(hash) { |
748 | Ok(index) => { |
749 | let bucket = self.bucket(index); |
750 | bucket.write(value); |
751 | Ok(bucket) |
752 | } |
753 | Err(()) => Err(value), |
754 | } |
755 | } |
756 | } |
757 | |
758 | /// Inserts a new element into the table, and returns a mutable reference to it. |
759 | /// |
760 | /// This does not check if the given element already exists in the table. |
761 | #[cfg_attr (feature = "inline-more" , inline)] |
762 | pub fn insert_entry(&mut self, hash: u64, value: T, hasher: impl Fn(&T) -> u64) -> &mut T { |
763 | unsafe { self.insert(hash, value, hasher).as_mut() } |
764 | } |
765 | |
766 | /// Inserts a new element into the table, without growing the table. |
767 | /// |
768 | /// There must be enough space in the table to insert the new element. |
769 | /// |
770 | /// This does not check if the given element already exists in the table. |
771 | #[cfg_attr (feature = "inline-more" , inline)] |
772 | #[cfg (any(feature = "raw" , feature = "rustc-internal-api" ))] |
773 | pub unsafe fn insert_no_grow(&mut self, hash: u64, value: T) -> Bucket<T> { |
774 | let (index, old_ctrl) = self.table.prepare_insert_slot(hash); |
775 | let bucket = self.table.bucket(index); |
776 | |
777 | // If we are replacing a DELETED entry then we don't need to update |
778 | // the load counter. |
779 | self.table.growth_left -= special_is_empty(old_ctrl) as usize; |
780 | |
781 | bucket.write(value); |
782 | self.table.items += 1; |
783 | bucket |
784 | } |
785 | |
786 | /// Temporary removes a bucket, applying the given function to the removed |
787 | /// element and optionally put back the returned value in the same bucket. |
788 | /// |
789 | /// Returns `true` if the bucket still contains an element |
790 | /// |
791 | /// This does not check if the given bucket is actually occupied. |
792 | #[cfg_attr (feature = "inline-more" , inline)] |
793 | pub unsafe fn replace_bucket_with<F>(&mut self, bucket: Bucket<T>, f: F) -> bool |
794 | where |
795 | F: FnOnce(T) -> Option<T>, |
796 | { |
797 | let index = self.bucket_index(&bucket); |
798 | let old_ctrl = *self.table.ctrl(index); |
799 | debug_assert!(is_full(old_ctrl)); |
800 | let old_growth_left = self.table.growth_left; |
801 | let item = self.remove(bucket); |
802 | if let Some(new_item) = f(item) { |
803 | self.table.growth_left = old_growth_left; |
804 | self.table.set_ctrl(index, old_ctrl); |
805 | self.table.items += 1; |
806 | self.bucket(index).write(new_item); |
807 | true |
808 | } else { |
809 | false |
810 | } |
811 | } |
812 | |
813 | /// Searches for an element in the table. |
814 | #[inline ] |
815 | pub fn find(&self, hash: u64, mut eq: impl FnMut(&T) -> bool) -> Option<Bucket<T>> { |
816 | let result = self.table.find_inner(hash, &mut |index| unsafe { |
817 | eq(self.bucket(index).as_ref()) |
818 | }); |
819 | |
820 | // Avoid `Option::map` because it bloats LLVM IR. |
821 | match result { |
822 | Some(index) => Some(unsafe { self.bucket(index) }), |
823 | None => None, |
824 | } |
825 | } |
826 | |
827 | /// Gets a reference to an element in the table. |
828 | #[inline ] |
829 | pub fn get(&self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&T> { |
830 | // Avoid `Option::map` because it bloats LLVM IR. |
831 | match self.find(hash, eq) { |
832 | Some(bucket) => Some(unsafe { bucket.as_ref() }), |
833 | None => None, |
834 | } |
835 | } |
836 | |
837 | /// Gets a mutable reference to an element in the table. |
838 | #[inline ] |
839 | pub fn get_mut(&mut self, hash: u64, eq: impl FnMut(&T) -> bool) -> Option<&mut T> { |
840 | // Avoid `Option::map` because it bloats LLVM IR. |
841 | match self.find(hash, eq) { |
842 | Some(bucket) => Some(unsafe { bucket.as_mut() }), |
843 | None => None, |
844 | } |
845 | } |
846 | |
847 | /// Attempts to get mutable references to `N` entries in the table at once. |
848 | /// |
849 | /// Returns an array of length `N` with the results of each query. |
850 | /// |
851 | /// At most one mutable reference will be returned to any entry. `None` will be returned if any |
852 | /// of the hashes are duplicates. `None` will be returned if the hash is not found. |
853 | /// |
854 | /// The `eq` argument should be a closure such that `eq(i, k)` returns true if `k` is equal to |
855 | /// the `i`th key to be looked up. |
856 | pub fn get_many_mut<const N: usize>( |
857 | &mut self, |
858 | hashes: [u64; N], |
859 | eq: impl FnMut(usize, &T) -> bool, |
860 | ) -> Option<[&'_ mut T; N]> { |
861 | unsafe { |
862 | let ptrs = self.get_many_mut_pointers(hashes, eq)?; |
863 | |
864 | for (i, &cur) in ptrs.iter().enumerate() { |
865 | if ptrs[..i].iter().any(|&prev| ptr::eq::<T>(prev, cur)) { |
866 | return None; |
867 | } |
868 | } |
869 | // All bucket are distinct from all previous buckets so we're clear to return the result |
870 | // of the lookup. |
871 | |
872 | // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. |
873 | Some(mem::transmute_copy(&ptrs)) |
874 | } |
875 | } |
876 | |
877 | pub unsafe fn get_many_unchecked_mut<const N: usize>( |
878 | &mut self, |
879 | hashes: [u64; N], |
880 | eq: impl FnMut(usize, &T) -> bool, |
881 | ) -> Option<[&'_ mut T; N]> { |
882 | let ptrs = self.get_many_mut_pointers(hashes, eq)?; |
883 | Some(mem::transmute_copy(&ptrs)) |
884 | } |
885 | |
886 | unsafe fn get_many_mut_pointers<const N: usize>( |
887 | &mut self, |
888 | hashes: [u64; N], |
889 | mut eq: impl FnMut(usize, &T) -> bool, |
890 | ) -> Option<[*mut T; N]> { |
891 | // TODO use `MaybeUninit::uninit_array` here instead once that's stable. |
892 | let mut outs: MaybeUninit<[*mut T; N]> = MaybeUninit::uninit(); |
893 | let outs_ptr = outs.as_mut_ptr(); |
894 | |
895 | for (i, &hash) in hashes.iter().enumerate() { |
896 | let cur = self.find(hash, |k| eq(i, k))?; |
897 | *(*outs_ptr).get_unchecked_mut(i) = cur.as_mut(); |
898 | } |
899 | |
900 | // TODO use `MaybeUninit::array_assume_init` here instead once that's stable. |
901 | Some(outs.assume_init()) |
902 | } |
903 | |
904 | /// Returns the number of elements the map can hold without reallocating. |
905 | /// |
906 | /// This number is a lower bound; the table might be able to hold |
907 | /// more, but is guaranteed to be able to hold at least this many. |
908 | #[inline ] |
909 | pub fn capacity(&self) -> usize { |
910 | self.table.items + self.table.growth_left |
911 | } |
912 | |
913 | /// Returns the number of elements in the table. |
914 | #[inline ] |
915 | pub fn len(&self) -> usize { |
916 | self.table.items |
917 | } |
918 | |
919 | /// Returns `true` if the table contains no elements. |
920 | #[inline ] |
921 | pub fn is_empty(&self) -> bool { |
922 | self.len() == 0 |
923 | } |
924 | |
925 | /// Returns the number of buckets in the table. |
926 | #[inline ] |
927 | pub fn buckets(&self) -> usize { |
928 | self.table.bucket_mask + 1 |
929 | } |
930 | |
931 | /// Returns an iterator over every element in the table. It is up to |
932 | /// the caller to ensure that the `RawTable` outlives the `RawIter`. |
933 | /// Because we cannot make the `next` method unsafe on the `RawIter` |
934 | /// struct, we have to make the `iter` method unsafe. |
935 | #[inline ] |
936 | pub unsafe fn iter(&self) -> RawIter<T> { |
937 | let data = Bucket::from_base_index(self.data_end(), 0); |
938 | RawIter { |
939 | iter: RawIterRange::new(self.table.ctrl.as_ptr(), data, self.table.buckets()), |
940 | items: self.table.items, |
941 | } |
942 | } |
943 | |
944 | /// Returns an iterator over occupied buckets that could match a given hash. |
945 | /// |
946 | /// `RawTable` only stores 7 bits of the hash value, so this iterator may |
947 | /// return items that have a hash value different than the one provided. You |
948 | /// should always validate the returned values before using them. |
949 | /// |
950 | /// It is up to the caller to ensure that the `RawTable` outlives the |
951 | /// `RawIterHash`. Because we cannot make the `next` method unsafe on the |
952 | /// `RawIterHash` struct, we have to make the `iter_hash` method unsafe. |
953 | #[cfg_attr (feature = "inline-more" , inline)] |
954 | #[cfg (feature = "raw" )] |
955 | pub unsafe fn iter_hash(&self, hash: u64) -> RawIterHash<'_, T, A> { |
956 | RawIterHash::new(self, hash) |
957 | } |
958 | |
959 | /// Returns an iterator which removes all elements from the table without |
960 | /// freeing the memory. |
961 | #[cfg_attr (feature = "inline-more" , inline)] |
962 | pub fn drain(&mut self) -> RawDrain<'_, T, A> { |
963 | unsafe { |
964 | let iter = self.iter(); |
965 | self.drain_iter_from(iter) |
966 | } |
967 | } |
968 | |
969 | /// Returns an iterator which removes all elements from the table without |
970 | /// freeing the memory. |
971 | /// |
972 | /// Iteration starts at the provided iterator's current location. |
973 | /// |
974 | /// It is up to the caller to ensure that the iterator is valid for this |
975 | /// `RawTable` and covers all items that remain in the table. |
976 | #[cfg_attr (feature = "inline-more" , inline)] |
977 | pub unsafe fn drain_iter_from(&mut self, iter: RawIter<T>) -> RawDrain<'_, T, A> { |
978 | debug_assert_eq!(iter.len(), self.len()); |
979 | RawDrain { |
980 | iter, |
981 | table: ManuallyDrop::new(mem::replace(self, Self::new_in(self.table.alloc.clone()))), |
982 | orig_table: NonNull::from(self), |
983 | marker: PhantomData, |
984 | } |
985 | } |
986 | |
987 | /// Returns an iterator which consumes all elements from the table. |
988 | /// |
989 | /// Iteration starts at the provided iterator's current location. |
990 | /// |
991 | /// It is up to the caller to ensure that the iterator is valid for this |
992 | /// `RawTable` and covers all items that remain in the table. |
993 | pub unsafe fn into_iter_from(self, iter: RawIter<T>) -> RawIntoIter<T, A> { |
994 | debug_assert_eq!(iter.len(), self.len()); |
995 | |
996 | let alloc = self.table.alloc.clone(); |
997 | let allocation = self.into_allocation(); |
998 | RawIntoIter { |
999 | iter, |
1000 | allocation, |
1001 | marker: PhantomData, |
1002 | alloc, |
1003 | } |
1004 | } |
1005 | |
1006 | /// Converts the table into a raw allocation. The contents of the table |
1007 | /// should be dropped using a `RawIter` before freeing the allocation. |
1008 | #[cfg_attr (feature = "inline-more" , inline)] |
1009 | pub(crate) fn into_allocation(self) -> Option<(NonNull<u8>, Layout)> { |
1010 | let alloc = if self.table.is_empty_singleton() { |
1011 | None |
1012 | } else { |
1013 | // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. |
1014 | let (layout, ctrl_offset) = match calculate_layout::<T>(self.table.buckets()) { |
1015 | Some(lco) => lco, |
1016 | None => unsafe { hint::unreachable_unchecked() }, |
1017 | }; |
1018 | Some(( |
1019 | unsafe { NonNull::new_unchecked(self.table.ctrl.as_ptr().sub(ctrl_offset)) }, |
1020 | layout, |
1021 | )) |
1022 | }; |
1023 | mem::forget(self); |
1024 | alloc |
1025 | } |
1026 | } |
1027 | |
1028 | unsafe impl<T, A: Allocator + Clone> Send for RawTable<T, A> |
1029 | where |
1030 | T: Send, |
1031 | A: Send, |
1032 | { |
1033 | } |
1034 | unsafe impl<T, A: Allocator + Clone> Sync for RawTable<T, A> |
1035 | where |
1036 | T: Sync, |
1037 | A: Sync, |
1038 | { |
1039 | } |
1040 | |
1041 | impl<A> RawTableInner<A> { |
1042 | #[inline ] |
1043 | const fn new_in(alloc: A) -> Self { |
1044 | Self { |
1045 | // Be careful to cast the entire slice to a raw pointer. |
1046 | ctrl: unsafe { NonNull::new_unchecked(ptr:Group::static_empty() as *const _ as *mut u8) }, |
1047 | bucket_mask: 0, |
1048 | items: 0, |
1049 | growth_left: 0, |
1050 | alloc, |
1051 | } |
1052 | } |
1053 | } |
1054 | |
1055 | impl<A: Allocator + Clone> RawTableInner<A> { |
1056 | #[cfg_attr (feature = "inline-more" , inline)] |
1057 | unsafe fn new_uninitialized( |
1058 | alloc: A, |
1059 | table_layout: TableLayout, |
1060 | buckets: usize, |
1061 | fallibility: Fallibility, |
1062 | ) -> Result<Self, TryReserveError> { |
1063 | debug_assert!(buckets.is_power_of_two()); |
1064 | |
1065 | // Avoid `Option::ok_or_else` because it bloats LLVM IR. |
1066 | let (layout, ctrl_offset) = match table_layout.calculate_layout_for(buckets) { |
1067 | Some(lco) => lco, |
1068 | None => return Err(fallibility.capacity_overflow()), |
1069 | }; |
1070 | |
1071 | // We need an additional check to ensure that the allocation doesn't |
1072 | // exceed `isize::MAX`. We can skip this check on 64-bit systems since |
1073 | // such allocations will never succeed anyways. |
1074 | // |
1075 | // This mirrors what Vec does in the standard library. |
1076 | if mem::size_of::<usize>() < 8 && layout.size() > isize::MAX as usize { |
1077 | return Err(fallibility.capacity_overflow()); |
1078 | } |
1079 | |
1080 | let ptr: NonNull<u8> = match do_alloc(&alloc, layout) { |
1081 | Ok(block) => block.cast(), |
1082 | Err(_) => return Err(fallibility.alloc_err(layout)), |
1083 | }; |
1084 | |
1085 | let ctrl = NonNull::new_unchecked(ptr.as_ptr().add(ctrl_offset)); |
1086 | Ok(Self { |
1087 | ctrl, |
1088 | bucket_mask: buckets - 1, |
1089 | items: 0, |
1090 | growth_left: bucket_mask_to_capacity(buckets - 1), |
1091 | alloc, |
1092 | }) |
1093 | } |
1094 | |
1095 | #[inline ] |
1096 | fn fallible_with_capacity( |
1097 | alloc: A, |
1098 | table_layout: TableLayout, |
1099 | capacity: usize, |
1100 | fallibility: Fallibility, |
1101 | ) -> Result<Self, TryReserveError> { |
1102 | if capacity == 0 { |
1103 | Ok(Self::new_in(alloc)) |
1104 | } else { |
1105 | unsafe { |
1106 | let buckets = |
1107 | capacity_to_buckets(capacity).ok_or_else(|| fallibility.capacity_overflow())?; |
1108 | |
1109 | let result = Self::new_uninitialized(alloc, table_layout, buckets, fallibility)?; |
1110 | result.ctrl(0).write_bytes(EMPTY, result.num_ctrl_bytes()); |
1111 | |
1112 | Ok(result) |
1113 | } |
1114 | } |
1115 | } |
1116 | |
1117 | /// Searches for an empty or deleted bucket which is suitable for inserting |
1118 | /// a new element and sets the hash for that slot. |
1119 | /// |
1120 | /// There must be at least 1 empty bucket in the table. |
1121 | #[inline ] |
1122 | unsafe fn prepare_insert_slot(&self, hash: u64) -> (usize, u8) { |
1123 | let index = self.find_insert_slot(hash); |
1124 | let old_ctrl = *self.ctrl(index); |
1125 | self.set_ctrl_h2(index, hash); |
1126 | (index, old_ctrl) |
1127 | } |
1128 | |
1129 | /// Searches for an empty or deleted bucket which is suitable for inserting |
1130 | /// a new element. |
1131 | /// |
1132 | /// There must be at least 1 empty bucket in the table. |
1133 | #[inline ] |
1134 | fn find_insert_slot(&self, hash: u64) -> usize { |
1135 | let mut probe_seq = self.probe_seq(hash); |
1136 | loop { |
1137 | unsafe { |
1138 | let group = Group::load(self.ctrl(probe_seq.pos)); |
1139 | if let Some(bit) = group.match_empty_or_deleted().lowest_set_bit() { |
1140 | let result = (probe_seq.pos + bit) & self.bucket_mask; |
1141 | |
1142 | // In tables smaller than the group width, trailing control |
1143 | // bytes outside the range of the table are filled with |
1144 | // EMPTY entries. These will unfortunately trigger a |
1145 | // match, but once masked may point to a full bucket that |
1146 | // is already occupied. We detect this situation here and |
1147 | // perform a second scan starting at the beginning of the |
1148 | // table. This second scan is guaranteed to find an empty |
1149 | // slot (due to the load factor) before hitting the trailing |
1150 | // control bytes (containing EMPTY). |
1151 | if unlikely(is_full(*self.ctrl(result))) { |
1152 | debug_assert!(self.bucket_mask < Group::WIDTH); |
1153 | debug_assert_ne!(probe_seq.pos, 0); |
1154 | return Group::load_aligned(self.ctrl(0)) |
1155 | .match_empty_or_deleted() |
1156 | .lowest_set_bit_nonzero(); |
1157 | } |
1158 | |
1159 | return result; |
1160 | } |
1161 | } |
1162 | probe_seq.move_next(self.bucket_mask); |
1163 | } |
1164 | } |
1165 | |
1166 | /// Searches for an element in the table. This uses dynamic dispatch to reduce the amount of |
1167 | /// code generated, but it is eliminated by LLVM optimizations. |
1168 | #[inline ] |
1169 | fn find_inner(&self, hash: u64, eq: &mut dyn FnMut(usize) -> bool) -> Option<usize> { |
1170 | let h2_hash = h2(hash); |
1171 | let mut probe_seq = self.probe_seq(hash); |
1172 | |
1173 | loop { |
1174 | let group = unsafe { Group::load(self.ctrl(probe_seq.pos)) }; |
1175 | |
1176 | for bit in group.match_byte(h2_hash) { |
1177 | let index = (probe_seq.pos + bit) & self.bucket_mask; |
1178 | |
1179 | if likely(eq(index)) { |
1180 | return Some(index); |
1181 | } |
1182 | } |
1183 | |
1184 | if likely(group.match_empty().any_bit_set()) { |
1185 | return None; |
1186 | } |
1187 | |
1188 | probe_seq.move_next(self.bucket_mask); |
1189 | } |
1190 | } |
1191 | |
1192 | #[allow (clippy::mut_mut)] |
1193 | #[inline ] |
1194 | unsafe fn prepare_rehash_in_place(&mut self) { |
1195 | // Bulk convert all full control bytes to DELETED, and all DELETED |
1196 | // control bytes to EMPTY. This effectively frees up all buckets |
1197 | // containing a DELETED entry. |
1198 | for i in (0..self.buckets()).step_by(Group::WIDTH) { |
1199 | let group = Group::load_aligned(self.ctrl(i)); |
1200 | let group = group.convert_special_to_empty_and_full_to_deleted(); |
1201 | group.store_aligned(self.ctrl(i)); |
1202 | } |
1203 | |
1204 | // Fix up the trailing control bytes. See the comments in set_ctrl |
1205 | // for the handling of tables smaller than the group width. |
1206 | if self.buckets() < Group::WIDTH { |
1207 | self.ctrl(0) |
1208 | .copy_to(self.ctrl(Group::WIDTH), self.buckets()); |
1209 | } else { |
1210 | self.ctrl(0) |
1211 | .copy_to(self.ctrl(self.buckets()), Group::WIDTH); |
1212 | } |
1213 | } |
1214 | |
1215 | #[inline ] |
1216 | unsafe fn bucket<T>(&self, index: usize) -> Bucket<T> { |
1217 | debug_assert_ne!(self.bucket_mask, 0); |
1218 | debug_assert!(index < self.buckets()); |
1219 | Bucket::from_base_index(self.data_end(), index) |
1220 | } |
1221 | |
1222 | #[inline ] |
1223 | unsafe fn bucket_ptr(&self, index: usize, size_of: usize) -> *mut u8 { |
1224 | debug_assert_ne!(self.bucket_mask, 0); |
1225 | debug_assert!(index < self.buckets()); |
1226 | let base: *mut u8 = self.data_end().as_ptr(); |
1227 | base.sub((index + 1) * size_of) |
1228 | } |
1229 | |
1230 | #[inline ] |
1231 | unsafe fn data_end<T>(&self) -> NonNull<T> { |
1232 | NonNull::new_unchecked(self.ctrl.as_ptr().cast()) |
1233 | } |
1234 | |
1235 | /// Returns an iterator-like object for a probe sequence on the table. |
1236 | /// |
1237 | /// This iterator never terminates, but is guaranteed to visit each bucket |
1238 | /// group exactly once. The loop using `probe_seq` must terminate upon |
1239 | /// reaching a group containing an empty bucket. |
1240 | #[inline ] |
1241 | fn probe_seq(&self, hash: u64) -> ProbeSeq { |
1242 | ProbeSeq { |
1243 | pos: h1(hash) & self.bucket_mask, |
1244 | stride: 0, |
1245 | } |
1246 | } |
1247 | |
1248 | /// Returns the index of a bucket for which a value must be inserted if there is enough rooom |
1249 | /// in the table, otherwise returns error |
1250 | #[cfg (feature = "raw" )] |
1251 | #[inline ] |
1252 | unsafe fn prepare_insert_no_grow(&mut self, hash: u64) -> Result<usize, ()> { |
1253 | let index = self.find_insert_slot(hash); |
1254 | let old_ctrl = *self.ctrl(index); |
1255 | if unlikely(self.growth_left == 0 && special_is_empty(old_ctrl)) { |
1256 | Err(()) |
1257 | } else { |
1258 | self.record_item_insert_at(index, old_ctrl, hash); |
1259 | Ok(index) |
1260 | } |
1261 | } |
1262 | |
1263 | #[inline ] |
1264 | unsafe fn record_item_insert_at(&mut self, index: usize, old_ctrl: u8, hash: u64) { |
1265 | self.growth_left -= usize::from(special_is_empty(old_ctrl)); |
1266 | self.set_ctrl_h2(index, hash); |
1267 | self.items += 1; |
1268 | } |
1269 | |
1270 | #[inline ] |
1271 | fn is_in_same_group(&self, i: usize, new_i: usize, hash: u64) -> bool { |
1272 | let probe_seq_pos = self.probe_seq(hash).pos; |
1273 | let probe_index = |
1274 | |pos: usize| (pos.wrapping_sub(probe_seq_pos) & self.bucket_mask) / Group::WIDTH; |
1275 | probe_index(i) == probe_index(new_i) |
1276 | } |
1277 | |
1278 | /// Sets a control byte to the hash, and possibly also the replicated control byte at |
1279 | /// the end of the array. |
1280 | #[inline ] |
1281 | unsafe fn set_ctrl_h2(&self, index: usize, hash: u64) { |
1282 | self.set_ctrl(index, h2(hash)); |
1283 | } |
1284 | |
1285 | #[inline ] |
1286 | unsafe fn replace_ctrl_h2(&self, index: usize, hash: u64) -> u8 { |
1287 | let prev_ctrl = *self.ctrl(index); |
1288 | self.set_ctrl_h2(index, hash); |
1289 | prev_ctrl |
1290 | } |
1291 | |
1292 | /// Sets a control byte, and possibly also the replicated control byte at |
1293 | /// the end of the array. |
1294 | #[inline ] |
1295 | unsafe fn set_ctrl(&self, index: usize, ctrl: u8) { |
1296 | // Replicate the first Group::WIDTH control bytes at the end of |
1297 | // the array without using a branch: |
1298 | // - If index >= Group::WIDTH then index == index2. |
1299 | // - Otherwise index2 == self.bucket_mask + 1 + index. |
1300 | // |
1301 | // The very last replicated control byte is never actually read because |
1302 | // we mask the initial index for unaligned loads, but we write it |
1303 | // anyways because it makes the set_ctrl implementation simpler. |
1304 | // |
1305 | // If there are fewer buckets than Group::WIDTH then this code will |
1306 | // replicate the buckets at the end of the trailing group. For example |
1307 | // with 2 buckets and a group size of 4, the control bytes will look |
1308 | // like this: |
1309 | // |
1310 | // Real | Replicated |
1311 | // --------------------------------------------- |
1312 | // | [A] | [B] | [EMPTY] | [EMPTY] | [A] | [B] | |
1313 | // --------------------------------------------- |
1314 | let index2 = ((index.wrapping_sub(Group::WIDTH)) & self.bucket_mask) + Group::WIDTH; |
1315 | |
1316 | *self.ctrl(index) = ctrl; |
1317 | *self.ctrl(index2) = ctrl; |
1318 | } |
1319 | |
1320 | /// Returns a pointer to a control byte. |
1321 | #[inline ] |
1322 | unsafe fn ctrl(&self, index: usize) -> *mut u8 { |
1323 | debug_assert!(index < self.num_ctrl_bytes()); |
1324 | self.ctrl.as_ptr().add(index) |
1325 | } |
1326 | |
1327 | #[inline ] |
1328 | fn buckets(&self) -> usize { |
1329 | self.bucket_mask + 1 |
1330 | } |
1331 | |
1332 | #[inline ] |
1333 | fn num_ctrl_bytes(&self) -> usize { |
1334 | self.bucket_mask + 1 + Group::WIDTH |
1335 | } |
1336 | |
1337 | #[inline ] |
1338 | fn is_empty_singleton(&self) -> bool { |
1339 | self.bucket_mask == 0 |
1340 | } |
1341 | |
1342 | #[allow (clippy::mut_mut)] |
1343 | #[inline ] |
1344 | unsafe fn prepare_resize( |
1345 | &self, |
1346 | table_layout: TableLayout, |
1347 | capacity: usize, |
1348 | fallibility: Fallibility, |
1349 | ) -> Result<crate::scopeguard::ScopeGuard<Self, impl FnMut(&mut Self)>, TryReserveError> { |
1350 | debug_assert!(self.items <= capacity); |
1351 | |
1352 | // Allocate and initialize the new table. |
1353 | let mut new_table = RawTableInner::fallible_with_capacity( |
1354 | self.alloc.clone(), |
1355 | table_layout, |
1356 | capacity, |
1357 | fallibility, |
1358 | )?; |
1359 | new_table.growth_left -= self.items; |
1360 | new_table.items = self.items; |
1361 | |
1362 | // The hash function may panic, in which case we simply free the new |
1363 | // table without dropping any elements that may have been copied into |
1364 | // it. |
1365 | // |
1366 | // This guard is also used to free the old table on success, see |
1367 | // the comment at the bottom of this function. |
1368 | Ok(guard(new_table, move |self_| { |
1369 | if !self_.is_empty_singleton() { |
1370 | self_.free_buckets(table_layout); |
1371 | } |
1372 | })) |
1373 | } |
1374 | |
1375 | /// Reserves or rehashes to make room for `additional` more elements. |
1376 | /// |
1377 | /// This uses dynamic dispatch to reduce the amount of |
1378 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
1379 | #[allow (clippy::inline_always)] |
1380 | #[inline (always)] |
1381 | unsafe fn reserve_rehash_inner( |
1382 | &mut self, |
1383 | additional: usize, |
1384 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
1385 | fallibility: Fallibility, |
1386 | layout: TableLayout, |
1387 | drop: Option<fn(*mut u8)>, |
1388 | ) -> Result<(), TryReserveError> { |
1389 | // Avoid `Option::ok_or_else` because it bloats LLVM IR. |
1390 | let new_items = match self.items.checked_add(additional) { |
1391 | Some(new_items) => new_items, |
1392 | None => return Err(fallibility.capacity_overflow()), |
1393 | }; |
1394 | let full_capacity = bucket_mask_to_capacity(self.bucket_mask); |
1395 | if new_items <= full_capacity / 2 { |
1396 | // Rehash in-place without re-allocating if we have plenty of spare |
1397 | // capacity that is locked up due to DELETED entries. |
1398 | self.rehash_in_place(hasher, layout.size, drop); |
1399 | Ok(()) |
1400 | } else { |
1401 | // Otherwise, conservatively resize to at least the next size up |
1402 | // to avoid churning deletes into frequent rehashes. |
1403 | self.resize_inner( |
1404 | usize::max(new_items, full_capacity + 1), |
1405 | hasher, |
1406 | fallibility, |
1407 | layout, |
1408 | ) |
1409 | } |
1410 | } |
1411 | |
1412 | /// Allocates a new table of a different size and moves the contents of the |
1413 | /// current table into it. |
1414 | /// |
1415 | /// This uses dynamic dispatch to reduce the amount of |
1416 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
1417 | #[allow (clippy::inline_always)] |
1418 | #[inline (always)] |
1419 | unsafe fn resize_inner( |
1420 | &mut self, |
1421 | capacity: usize, |
1422 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
1423 | fallibility: Fallibility, |
1424 | layout: TableLayout, |
1425 | ) -> Result<(), TryReserveError> { |
1426 | let mut new_table = self.prepare_resize(layout, capacity, fallibility)?; |
1427 | |
1428 | // Copy all elements to the new table. |
1429 | for i in 0..self.buckets() { |
1430 | if !is_full(*self.ctrl(i)) { |
1431 | continue; |
1432 | } |
1433 | |
1434 | // This may panic. |
1435 | let hash = hasher(self, i); |
1436 | |
1437 | // We can use a simpler version of insert() here since: |
1438 | // - there are no DELETED entries. |
1439 | // - we know there is enough space in the table. |
1440 | // - all elements are unique. |
1441 | let (index, _) = new_table.prepare_insert_slot(hash); |
1442 | |
1443 | ptr::copy_nonoverlapping( |
1444 | self.bucket_ptr(i, layout.size), |
1445 | new_table.bucket_ptr(index, layout.size), |
1446 | layout.size, |
1447 | ); |
1448 | } |
1449 | |
1450 | // We successfully copied all elements without panicking. Now replace |
1451 | // self with the new table. The old table will have its memory freed but |
1452 | // the items will not be dropped (since they have been moved into the |
1453 | // new table). |
1454 | mem::swap(self, &mut new_table); |
1455 | |
1456 | Ok(()) |
1457 | } |
1458 | |
1459 | /// Rehashes the contents of the table in place (i.e. without changing the |
1460 | /// allocation). |
1461 | /// |
1462 | /// If `hasher` panics then some the table's contents may be lost. |
1463 | /// |
1464 | /// This uses dynamic dispatch to reduce the amount of |
1465 | /// code generated, but it is eliminated by LLVM optimizations when inlined. |
1466 | #[allow (clippy::inline_always)] |
1467 | #[cfg_attr (feature = "inline-more" , inline(always))] |
1468 | #[cfg_attr (not(feature = "inline-more" ), inline)] |
1469 | unsafe fn rehash_in_place( |
1470 | &mut self, |
1471 | hasher: &dyn Fn(&mut Self, usize) -> u64, |
1472 | size_of: usize, |
1473 | drop: Option<fn(*mut u8)>, |
1474 | ) { |
1475 | // If the hash function panics then properly clean up any elements |
1476 | // that we haven't rehashed yet. We unfortunately can't preserve the |
1477 | // element since we lost their hash and have no way of recovering it |
1478 | // without risking another panic. |
1479 | self.prepare_rehash_in_place(); |
1480 | |
1481 | let mut guard = guard(self, move |self_| { |
1482 | if let Some(drop) = drop { |
1483 | for i in 0..self_.buckets() { |
1484 | if *self_.ctrl(i) == DELETED { |
1485 | self_.set_ctrl(i, EMPTY); |
1486 | drop(self_.bucket_ptr(i, size_of)); |
1487 | self_.items -= 1; |
1488 | } |
1489 | } |
1490 | } |
1491 | self_.growth_left = bucket_mask_to_capacity(self_.bucket_mask) - self_.items; |
1492 | }); |
1493 | |
1494 | // At this point, DELETED elements are elements that we haven't |
1495 | // rehashed yet. Find them and re-insert them at their ideal |
1496 | // position. |
1497 | 'outer: for i in 0..guard.buckets() { |
1498 | if *guard.ctrl(i) != DELETED { |
1499 | continue; |
1500 | } |
1501 | |
1502 | let i_p = guard.bucket_ptr(i, size_of); |
1503 | |
1504 | 'inner: loop { |
1505 | // Hash the current item |
1506 | let hash = hasher(*guard, i); |
1507 | |
1508 | // Search for a suitable place to put it |
1509 | let new_i = guard.find_insert_slot(hash); |
1510 | let new_i_p = guard.bucket_ptr(new_i, size_of); |
1511 | |
1512 | // Probing works by scanning through all of the control |
1513 | // bytes in groups, which may not be aligned to the group |
1514 | // size. If both the new and old position fall within the |
1515 | // same unaligned group, then there is no benefit in moving |
1516 | // it and we can just continue to the next item. |
1517 | if likely(guard.is_in_same_group(i, new_i, hash)) { |
1518 | guard.set_ctrl_h2(i, hash); |
1519 | continue 'outer; |
1520 | } |
1521 | |
1522 | // We are moving the current item to a new position. Write |
1523 | // our H2 to the control byte of the new position. |
1524 | let prev_ctrl = guard.replace_ctrl_h2(new_i, hash); |
1525 | if prev_ctrl == EMPTY { |
1526 | guard.set_ctrl(i, EMPTY); |
1527 | // If the target slot is empty, simply move the current |
1528 | // element into the new slot and clear the old control |
1529 | // byte. |
1530 | ptr::copy_nonoverlapping(i_p, new_i_p, size_of); |
1531 | continue 'outer; |
1532 | } else { |
1533 | // If the target slot is occupied, swap the two elements |
1534 | // and then continue processing the element that we just |
1535 | // swapped into the old slot. |
1536 | debug_assert_eq!(prev_ctrl, DELETED); |
1537 | ptr::swap_nonoverlapping(i_p, new_i_p, size_of); |
1538 | continue 'inner; |
1539 | } |
1540 | } |
1541 | } |
1542 | |
1543 | guard.growth_left = bucket_mask_to_capacity(guard.bucket_mask) - guard.items; |
1544 | |
1545 | mem::forget(guard); |
1546 | } |
1547 | |
1548 | #[inline ] |
1549 | unsafe fn free_buckets(&mut self, table_layout: TableLayout) { |
1550 | // Avoid `Option::unwrap_or_else` because it bloats LLVM IR. |
1551 | let (layout, ctrl_offset) = match table_layout.calculate_layout_for(self.buckets()) { |
1552 | Some(lco) => lco, |
1553 | None => hint::unreachable_unchecked(), |
1554 | }; |
1555 | self.alloc.deallocate( |
1556 | NonNull::new_unchecked(self.ctrl.as_ptr().sub(ctrl_offset)), |
1557 | layout, |
1558 | ); |
1559 | } |
1560 | |
1561 | /// Marks all table buckets as empty without dropping their contents. |
1562 | #[inline ] |
1563 | fn clear_no_drop(&mut self) { |
1564 | if !self.is_empty_singleton() { |
1565 | unsafe { |
1566 | self.ctrl(0).write_bytes(EMPTY, self.num_ctrl_bytes()); |
1567 | } |
1568 | } |
1569 | self.items = 0; |
1570 | self.growth_left = bucket_mask_to_capacity(self.bucket_mask); |
1571 | } |
1572 | |
1573 | #[inline ] |
1574 | unsafe fn erase(&mut self, index: usize) { |
1575 | debug_assert!(is_full(*self.ctrl(index))); |
1576 | let index_before = index.wrapping_sub(Group::WIDTH) & self.bucket_mask; |
1577 | let empty_before = Group::load(self.ctrl(index_before)).match_empty(); |
1578 | let empty_after = Group::load(self.ctrl(index)).match_empty(); |
1579 | |
1580 | // If we are inside a continuous block of Group::WIDTH full or deleted |
1581 | // cells then a probe window may have seen a full block when trying to |
1582 | // insert. We therefore need to keep that block non-empty so that |
1583 | // lookups will continue searching to the next probe window. |
1584 | // |
1585 | // Note that in this context `leading_zeros` refers to the bytes at the |
1586 | // end of a group, while `trailing_zeros` refers to the bytes at the |
1587 | // beginning of a group. |
1588 | let ctrl = if empty_before.leading_zeros() + empty_after.trailing_zeros() >= Group::WIDTH { |
1589 | DELETED |
1590 | } else { |
1591 | self.growth_left += 1; |
1592 | EMPTY |
1593 | }; |
1594 | self.set_ctrl(index, ctrl); |
1595 | self.items -= 1; |
1596 | } |
1597 | } |
1598 | |
1599 | impl<T: Clone, A: Allocator + Clone> Clone for RawTable<T, A> { |
1600 | fn clone(&self) -> Self { |
1601 | if self.table.is_empty_singleton() { |
1602 | Self::new_in(self.table.alloc.clone()) |
1603 | } else { |
1604 | unsafe { |
1605 | // Avoid `Result::ok_or_else` because it bloats LLVM IR. |
1606 | let new_table = match Self::new_uninitialized( |
1607 | self.table.alloc.clone(), |
1608 | self.table.buckets(), |
1609 | Fallibility::Infallible, |
1610 | ) { |
1611 | Ok(table) => table, |
1612 | Err(_) => hint::unreachable_unchecked(), |
1613 | }; |
1614 | |
1615 | // If cloning fails then we need to free the allocation for the |
1616 | // new table. However we don't run its drop since its control |
1617 | // bytes are not initialized yet. |
1618 | let mut guard = guard(ManuallyDrop::new(new_table), |new_table| { |
1619 | new_table.free_buckets(); |
1620 | }); |
1621 | |
1622 | guard.clone_from_spec(self); |
1623 | |
1624 | // Disarm the scope guard and return the newly created table. |
1625 | ManuallyDrop::into_inner(ScopeGuard::into_inner(guard)) |
1626 | } |
1627 | } |
1628 | } |
1629 | |
1630 | fn clone_from(&mut self, source: &Self) { |
1631 | if source.table.is_empty_singleton() { |
1632 | *self = Self::new_in(self.table.alloc.clone()); |
1633 | } else { |
1634 | unsafe { |
1635 | // Make sure that if any panics occurs, we clear the table and |
1636 | // leave it in an empty state. |
1637 | let mut self_ = guard(self, |self_| { |
1638 | self_.clear_no_drop(); |
1639 | }); |
1640 | |
1641 | // First, drop all our elements without clearing the control |
1642 | // bytes. If this panics then the scope guard will clear the |
1643 | // table, leaking any elements that were not dropped yet. |
1644 | // |
1645 | // This leak is unavoidable: we can't try dropping more elements |
1646 | // since this could lead to another panic and abort the process. |
1647 | self_.drop_elements(); |
1648 | |
1649 | // If necessary, resize our table to match the source. |
1650 | if self_.buckets() != source.buckets() { |
1651 | // Skip our drop by using ptr::write. |
1652 | if !self_.table.is_empty_singleton() { |
1653 | self_.free_buckets(); |
1654 | } |
1655 | (&mut **self_ as *mut Self).write( |
1656 | // Avoid `Result::unwrap_or_else` because it bloats LLVM IR. |
1657 | match Self::new_uninitialized( |
1658 | self_.table.alloc.clone(), |
1659 | source.buckets(), |
1660 | Fallibility::Infallible, |
1661 | ) { |
1662 | Ok(table) => table, |
1663 | Err(_) => hint::unreachable_unchecked(), |
1664 | }, |
1665 | ); |
1666 | } |
1667 | |
1668 | self_.clone_from_spec(source); |
1669 | |
1670 | // Disarm the scope guard if cloning was successful. |
1671 | ScopeGuard::into_inner(self_); |
1672 | } |
1673 | } |
1674 | } |
1675 | } |
1676 | |
1677 | /// Specialization of `clone_from` for `Copy` types |
1678 | trait RawTableClone { |
1679 | unsafe fn clone_from_spec(&mut self, source: &Self); |
1680 | } |
1681 | impl<T: Clone, A: Allocator + Clone> RawTableClone for RawTable<T, A> { |
1682 | default_fn! { |
1683 | #[cfg_attr (feature = "inline-more" , inline)] |
1684 | unsafe fn clone_from_spec(&mut self, source: &Self) { |
1685 | self.clone_from_impl(source); |
1686 | } |
1687 | } |
1688 | } |
1689 | #[cfg (feature = "nightly" )] |
1690 | impl<T: Copy, A: Allocator + Clone> RawTableClone for RawTable<T, A> { |
1691 | #[cfg_attr (feature = "inline-more" , inline)] |
1692 | unsafe fn clone_from_spec(&mut self, source: &Self) { |
1693 | source |
1694 | .table |
1695 | .ctrl(0) |
1696 | .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); |
1697 | source |
1698 | .data_start() |
1699 | .copy_to_nonoverlapping(self.data_start(), self.table.buckets()); |
1700 | |
1701 | self.table.items = source.table.items; |
1702 | self.table.growth_left = source.table.growth_left; |
1703 | } |
1704 | } |
1705 | |
1706 | impl<T: Clone, A: Allocator + Clone> RawTable<T, A> { |
1707 | /// Common code for clone and clone_from. Assumes: |
1708 | /// - `self.buckets() == source.buckets()`. |
1709 | /// - Any existing elements have been dropped. |
1710 | /// - The control bytes are not initialized yet. |
1711 | #[cfg_attr (feature = "inline-more" , inline)] |
1712 | unsafe fn clone_from_impl(&mut self, source: &Self) { |
1713 | // Copy the control bytes unchanged. We do this in a single pass |
1714 | source |
1715 | .table |
1716 | .ctrl(0) |
1717 | .copy_to_nonoverlapping(self.table.ctrl(0), self.table.num_ctrl_bytes()); |
1718 | |
1719 | // The cloning of elements may panic, in which case we need |
1720 | // to make sure we drop only the elements that have been |
1721 | // cloned so far. |
1722 | let mut guard = guard((0, &mut *self), |(index, self_)| { |
1723 | if mem::needs_drop::<T>() && !self_.is_empty() { |
1724 | for i in 0..=*index { |
1725 | if is_full(*self_.table.ctrl(i)) { |
1726 | self_.bucket(i).drop(); |
1727 | } |
1728 | } |
1729 | } |
1730 | }); |
1731 | |
1732 | for from in source.iter() { |
1733 | let index = source.bucket_index(&from); |
1734 | let to = guard.1.bucket(index); |
1735 | to.write(from.as_ref().clone()); |
1736 | |
1737 | // Update the index in case we need to unwind. |
1738 | guard.0 = index; |
1739 | } |
1740 | |
1741 | // Successfully cloned all items, no need to clean up. |
1742 | mem::forget(guard); |
1743 | |
1744 | self.table.items = source.table.items; |
1745 | self.table.growth_left = source.table.growth_left; |
1746 | } |
1747 | |
1748 | /// Variant of `clone_from` to use when a hasher is available. |
1749 | #[cfg (feature = "raw" )] |
1750 | pub fn clone_from_with_hasher(&mut self, source: &Self, hasher: impl Fn(&T) -> u64) { |
1751 | // If we have enough capacity in the table, just clear it and insert |
1752 | // elements one by one. We don't do this if we have the same number of |
1753 | // buckets as the source since we can just copy the contents directly |
1754 | // in that case. |
1755 | if self.table.buckets() != source.table.buckets() |
1756 | && bucket_mask_to_capacity(self.table.bucket_mask) >= source.len() |
1757 | { |
1758 | self.clear(); |
1759 | |
1760 | let guard_self = guard(&mut *self, |self_| { |
1761 | // Clear the partially copied table if a panic occurs, otherwise |
1762 | // items and growth_left will be out of sync with the contents |
1763 | // of the table. |
1764 | self_.clear(); |
1765 | }); |
1766 | |
1767 | unsafe { |
1768 | for item in source.iter() { |
1769 | // This may panic. |
1770 | let item = item.as_ref().clone(); |
1771 | let hash = hasher(&item); |
1772 | |
1773 | // We can use a simpler version of insert() here since: |
1774 | // - there are no DELETED entries. |
1775 | // - we know there is enough space in the table. |
1776 | // - all elements are unique. |
1777 | let (index, _) = guard_self.table.prepare_insert_slot(hash); |
1778 | guard_self.bucket(index).write(item); |
1779 | } |
1780 | } |
1781 | |
1782 | // Successfully cloned all items, no need to clean up. |
1783 | mem::forget(guard_self); |
1784 | |
1785 | self.table.items = source.table.items; |
1786 | self.table.growth_left -= source.table.items; |
1787 | } else { |
1788 | self.clone_from(source); |
1789 | } |
1790 | } |
1791 | } |
1792 | |
1793 | impl<T, A: Allocator + Clone + Default> Default for RawTable<T, A> { |
1794 | #[inline ] |
1795 | fn default() -> Self { |
1796 | Self::new_in(alloc:Default::default()) |
1797 | } |
1798 | } |
1799 | |
1800 | #[cfg (feature = "nightly" )] |
1801 | unsafe impl<#[may_dangle ] T, A: Allocator + Clone> Drop for RawTable<T, A> { |
1802 | #[cfg_attr (feature = "inline-more" , inline)] |
1803 | fn drop(&mut self) { |
1804 | if !self.table.is_empty_singleton() { |
1805 | unsafe { |
1806 | self.drop_elements(); |
1807 | self.free_buckets(); |
1808 | } |
1809 | } |
1810 | } |
1811 | } |
1812 | #[cfg (not(feature = "nightly" ))] |
1813 | impl<T, A: Allocator + Clone> Drop for RawTable<T, A> { |
1814 | #[cfg_attr (feature = "inline-more" , inline)] |
1815 | fn drop(&mut self) { |
1816 | if !self.table.is_empty_singleton() { |
1817 | unsafe { |
1818 | self.drop_elements(); |
1819 | self.free_buckets(); |
1820 | } |
1821 | } |
1822 | } |
1823 | } |
1824 | |
1825 | impl<T, A: Allocator + Clone> IntoIterator for RawTable<T, A> { |
1826 | type Item = T; |
1827 | type IntoIter = RawIntoIter<T, A>; |
1828 | |
1829 | #[cfg_attr (feature = "inline-more" , inline)] |
1830 | fn into_iter(self) -> RawIntoIter<T, A> { |
1831 | unsafe { |
1832 | let iter: RawIter = self.iter(); |
1833 | self.into_iter_from(iter) |
1834 | } |
1835 | } |
1836 | } |
1837 | |
1838 | /// Iterator over a sub-range of a table. Unlike `RawIter` this iterator does |
1839 | /// not track an item count. |
1840 | pub(crate) struct RawIterRange<T> { |
1841 | // Mask of full buckets in the current group. Bits are cleared from this |
1842 | // mask as each element is processed. |
1843 | current_group: BitMask, |
1844 | |
1845 | // Pointer to the buckets for the current group. |
1846 | data: Bucket<T>, |
1847 | |
1848 | // Pointer to the next group of control bytes, |
1849 | // Must be aligned to the group size. |
1850 | next_ctrl: *const u8, |
1851 | |
1852 | // Pointer one past the last control byte of this range. |
1853 | end: *const u8, |
1854 | } |
1855 | |
1856 | impl<T> RawIterRange<T> { |
1857 | /// Returns a `RawIterRange` covering a subset of a table. |
1858 | /// |
1859 | /// The control byte address must be aligned to the group size. |
1860 | #[cfg_attr (feature = "inline-more" , inline)] |
1861 | unsafe fn new(ctrl: *const u8, data: Bucket<T>, len: usize) -> Self { |
1862 | debug_assert_ne!(len, 0); |
1863 | debug_assert_eq!(ctrl as usize % Group::WIDTH, 0); |
1864 | let end = ctrl.add(len); |
1865 | |
1866 | // Load the first group and advance ctrl to point to the next group |
1867 | let current_group = Group::load_aligned(ctrl).match_full(); |
1868 | let next_ctrl = ctrl.add(Group::WIDTH); |
1869 | |
1870 | Self { |
1871 | current_group, |
1872 | data, |
1873 | next_ctrl, |
1874 | end, |
1875 | } |
1876 | } |
1877 | |
1878 | /// Splits a `RawIterRange` into two halves. |
1879 | /// |
1880 | /// Returns `None` if the remaining range is smaller than or equal to the |
1881 | /// group width. |
1882 | #[cfg_attr (feature = "inline-more" , inline)] |
1883 | #[cfg (feature = "rayon" )] |
1884 | pub(crate) fn split(mut self) -> (Self, Option<RawIterRange<T>>) { |
1885 | unsafe { |
1886 | if self.end <= self.next_ctrl { |
1887 | // Nothing to split if the group that we are current processing |
1888 | // is the last one. |
1889 | (self, None) |
1890 | } else { |
1891 | // len is the remaining number of elements after the group that |
1892 | // we are currently processing. It must be a multiple of the |
1893 | // group size (small tables are caught by the check above). |
1894 | let len = offset_from(self.end, self.next_ctrl); |
1895 | debug_assert_eq!(len % Group::WIDTH, 0); |
1896 | |
1897 | // Split the remaining elements into two halves, but round the |
1898 | // midpoint down in case there is an odd number of groups |
1899 | // remaining. This ensures that: |
1900 | // - The tail is at least 1 group long. |
1901 | // - The split is roughly even considering we still have the |
1902 | // current group to process. |
1903 | let mid = (len / 2) & !(Group::WIDTH - 1); |
1904 | |
1905 | let tail = Self::new( |
1906 | self.next_ctrl.add(mid), |
1907 | self.data.next_n(Group::WIDTH).next_n(mid), |
1908 | len - mid, |
1909 | ); |
1910 | debug_assert_eq!( |
1911 | self.data.next_n(Group::WIDTH).next_n(mid).ptr, |
1912 | tail.data.ptr |
1913 | ); |
1914 | debug_assert_eq!(self.end, tail.end); |
1915 | self.end = self.next_ctrl.add(mid); |
1916 | debug_assert_eq!(self.end.add(Group::WIDTH), tail.next_ctrl); |
1917 | (self, Some(tail)) |
1918 | } |
1919 | } |
1920 | } |
1921 | |
1922 | /// # Safety |
1923 | /// If DO_CHECK_PTR_RANGE is false, caller must ensure that we never try to iterate |
1924 | /// after yielding all elements. |
1925 | #[cfg_attr (feature = "inline-more" , inline)] |
1926 | unsafe fn next_impl<const DO_CHECK_PTR_RANGE: bool>(&mut self) -> Option<Bucket<T>> { |
1927 | loop { |
1928 | if let Some(index) = self.current_group.lowest_set_bit() { |
1929 | self.current_group = self.current_group.remove_lowest_bit(); |
1930 | return Some(self.data.next_n(index)); |
1931 | } |
1932 | |
1933 | if DO_CHECK_PTR_RANGE && self.next_ctrl >= self.end { |
1934 | return None; |
1935 | } |
1936 | |
1937 | // We might read past self.end up to the next group boundary, |
1938 | // but this is fine because it only occurs on tables smaller |
1939 | // than the group size where the trailing control bytes are all |
1940 | // EMPTY. On larger tables self.end is guaranteed to be aligned |
1941 | // to the group size (since tables are power-of-two sized). |
1942 | self.current_group = Group::load_aligned(self.next_ctrl).match_full(); |
1943 | self.data = self.data.next_n(Group::WIDTH); |
1944 | self.next_ctrl = self.next_ctrl.add(Group::WIDTH); |
1945 | } |
1946 | } |
1947 | } |
1948 | |
1949 | // We make raw iterators unconditionally Send and Sync, and let the PhantomData |
1950 | // in the actual iterator implementations determine the real Send/Sync bounds. |
1951 | unsafe impl<T> Send for RawIterRange<T> {} |
1952 | unsafe impl<T> Sync for RawIterRange<T> {} |
1953 | |
1954 | impl<T> Clone for RawIterRange<T> { |
1955 | #[cfg_attr (feature = "inline-more" , inline)] |
1956 | fn clone(&self) -> Self { |
1957 | Self { |
1958 | data: self.data.clone(), |
1959 | next_ctrl: self.next_ctrl, |
1960 | current_group: self.current_group, |
1961 | end: self.end, |
1962 | } |
1963 | } |
1964 | } |
1965 | |
1966 | impl<T> Iterator for RawIterRange<T> { |
1967 | type Item = Bucket<T>; |
1968 | |
1969 | #[cfg_attr (feature = "inline-more" , inline)] |
1970 | fn next(&mut self) -> Option<Bucket<T>> { |
1971 | unsafe { |
1972 | // SAFETY: We set checker flag to true. |
1973 | self.next_impl::<true>() |
1974 | } |
1975 | } |
1976 | |
1977 | #[inline ] |
1978 | fn size_hint(&self) -> (usize, Option<usize>) { |
1979 | // We don't have an item count, so just guess based on the range size. |
1980 | let remaining_buckets: usize = if self.end > self.next_ctrl { |
1981 | unsafe { offset_from(self.end, self.next_ctrl) } |
1982 | } else { |
1983 | 0 |
1984 | }; |
1985 | |
1986 | // Add a group width to include the group we are currently processing. |
1987 | (0, Some(Group::WIDTH + remaining_buckets)) |
1988 | } |
1989 | } |
1990 | |
1991 | impl<T> FusedIterator for RawIterRange<T> {} |
1992 | |
1993 | /// Iterator which returns a raw pointer to every full bucket in the table. |
1994 | /// |
1995 | /// For maximum flexibility this iterator is not bound by a lifetime, but you |
1996 | /// must observe several rules when using it: |
1997 | /// - You must not free the hash table while iterating (including via growing/shrinking). |
1998 | /// - It is fine to erase a bucket that has been yielded by the iterator. |
1999 | /// - Erasing a bucket that has not yet been yielded by the iterator may still |
2000 | /// result in the iterator yielding that bucket (unless `reflect_remove` is called). |
2001 | /// - It is unspecified whether an element inserted after the iterator was |
2002 | /// created will be yielded by that iterator (unless `reflect_insert` is called). |
2003 | /// - The order in which the iterator yields bucket is unspecified and may |
2004 | /// change in the future. |
2005 | pub struct RawIter<T> { |
2006 | pub(crate) iter: RawIterRange<T>, |
2007 | items: usize, |
2008 | } |
2009 | |
2010 | impl<T> RawIter<T> { |
2011 | /// Refresh the iterator so that it reflects a removal from the given bucket. |
2012 | /// |
2013 | /// For the iterator to remain valid, this method must be called once |
2014 | /// for each removed bucket before `next` is called again. |
2015 | /// |
2016 | /// This method should be called _before_ the removal is made. It is not necessary to call this |
2017 | /// method if you are removing an item that this iterator yielded in the past. |
2018 | #[cfg (feature = "raw" )] |
2019 | pub fn reflect_remove(&mut self, b: &Bucket<T>) { |
2020 | self.reflect_toggle_full(b, false); |
2021 | } |
2022 | |
2023 | /// Refresh the iterator so that it reflects an insertion into the given bucket. |
2024 | /// |
2025 | /// For the iterator to remain valid, this method must be called once |
2026 | /// for each insert before `next` is called again. |
2027 | /// |
2028 | /// This method does not guarantee that an insertion of a bucket with a greater |
2029 | /// index than the last one yielded will be reflected in the iterator. |
2030 | /// |
2031 | /// This method should be called _after_ the given insert is made. |
2032 | #[cfg (feature = "raw" )] |
2033 | pub fn reflect_insert(&mut self, b: &Bucket<T>) { |
2034 | self.reflect_toggle_full(b, true); |
2035 | } |
2036 | |
2037 | /// Refresh the iterator so that it reflects a change to the state of the given bucket. |
2038 | #[cfg (feature = "raw" )] |
2039 | fn reflect_toggle_full(&mut self, b: &Bucket<T>, is_insert: bool) { |
2040 | unsafe { |
2041 | if b.as_ptr() > self.iter.data.as_ptr() { |
2042 | // The iterator has already passed the bucket's group. |
2043 | // So the toggle isn't relevant to this iterator. |
2044 | return; |
2045 | } |
2046 | |
2047 | if self.iter.next_ctrl < self.iter.end |
2048 | && b.as_ptr() <= self.iter.data.next_n(Group::WIDTH).as_ptr() |
2049 | { |
2050 | // The iterator has not yet reached the bucket's group. |
2051 | // We don't need to reload anything, but we do need to adjust the item count. |
2052 | |
2053 | if cfg!(debug_assertions) { |
2054 | // Double-check that the user isn't lying to us by checking the bucket state. |
2055 | // To do that, we need to find its control byte. We know that self.iter.data is |
2056 | // at self.iter.next_ctrl - Group::WIDTH, so we work from there: |
2057 | let offset = offset_from(self.iter.data.as_ptr(), b.as_ptr()); |
2058 | let ctrl = self.iter.next_ctrl.sub(Group::WIDTH).add(offset); |
2059 | // This method should be called _before_ a removal, or _after_ an insert, |
2060 | // so in both cases the ctrl byte should indicate that the bucket is full. |
2061 | assert!(is_full(*ctrl)); |
2062 | } |
2063 | |
2064 | if is_insert { |
2065 | self.items += 1; |
2066 | } else { |
2067 | self.items -= 1; |
2068 | } |
2069 | |
2070 | return; |
2071 | } |
2072 | |
2073 | // The iterator is at the bucket group that the toggled bucket is in. |
2074 | // We need to do two things: |
2075 | // |
2076 | // - Determine if the iterator already yielded the toggled bucket. |
2077 | // If it did, we're done. |
2078 | // - Otherwise, update the iterator cached group so that it won't |
2079 | // yield a to-be-removed bucket, or _will_ yield a to-be-added bucket. |
2080 | // We'll also need to update the item count accordingly. |
2081 | if let Some(index) = self.iter.current_group.lowest_set_bit() { |
2082 | let next_bucket = self.iter.data.next_n(index); |
2083 | if b.as_ptr() > next_bucket.as_ptr() { |
2084 | // The toggled bucket is "before" the bucket the iterator would yield next. We |
2085 | // therefore don't need to do anything --- the iterator has already passed the |
2086 | // bucket in question. |
2087 | // |
2088 | // The item count must already be correct, since a removal or insert "prior" to |
2089 | // the iterator's position wouldn't affect the item count. |
2090 | } else { |
2091 | // The removed bucket is an upcoming bucket. We need to make sure it does _not_ |
2092 | // get yielded, and also that it's no longer included in the item count. |
2093 | // |
2094 | // NOTE: We can't just reload the group here, both since that might reflect |
2095 | // inserts we've already passed, and because that might inadvertently unset the |
2096 | // bits for _other_ removals. If we do that, we'd have to also decrement the |
2097 | // item count for those other bits that we unset. But the presumably subsequent |
2098 | // call to reflect for those buckets might _also_ decrement the item count. |
2099 | // Instead, we _just_ flip the bit for the particular bucket the caller asked |
2100 | // us to reflect. |
2101 | let our_bit = offset_from(self.iter.data.as_ptr(), b.as_ptr()); |
2102 | let was_full = self.iter.current_group.flip(our_bit); |
2103 | debug_assert_ne!(was_full, is_insert); |
2104 | |
2105 | if is_insert { |
2106 | self.items += 1; |
2107 | } else { |
2108 | self.items -= 1; |
2109 | } |
2110 | |
2111 | if cfg!(debug_assertions) { |
2112 | if b.as_ptr() == next_bucket.as_ptr() { |
2113 | // The removed bucket should no longer be next |
2114 | debug_assert_ne!(self.iter.current_group.lowest_set_bit(), Some(index)); |
2115 | } else { |
2116 | // We should not have changed what bucket comes next. |
2117 | debug_assert_eq!(self.iter.current_group.lowest_set_bit(), Some(index)); |
2118 | } |
2119 | } |
2120 | } |
2121 | } else { |
2122 | // We must have already iterated past the removed item. |
2123 | } |
2124 | } |
2125 | } |
2126 | |
2127 | unsafe fn drop_elements(&mut self) { |
2128 | if mem::needs_drop::<T>() && self.len() != 0 { |
2129 | for item in self { |
2130 | item.drop(); |
2131 | } |
2132 | } |
2133 | } |
2134 | } |
2135 | |
2136 | impl<T> Clone for RawIter<T> { |
2137 | #[cfg_attr (feature = "inline-more" , inline)] |
2138 | fn clone(&self) -> Self { |
2139 | Self { |
2140 | iter: self.iter.clone(), |
2141 | items: self.items, |
2142 | } |
2143 | } |
2144 | } |
2145 | |
2146 | impl<T> Iterator for RawIter<T> { |
2147 | type Item = Bucket<T>; |
2148 | |
2149 | #[cfg_attr (feature = "inline-more" , inline)] |
2150 | fn next(&mut self) -> Option<Bucket<T>> { |
2151 | // Inner iterator iterates over buckets |
2152 | // so it can do unnecessary work if we already yielded all items. |
2153 | if self.items == 0 { |
2154 | return None; |
2155 | } |
2156 | |
2157 | let nxt = unsafe { |
2158 | // SAFETY: We check number of items to yield using `items` field. |
2159 | self.iter.next_impl::<false>() |
2160 | }; |
2161 | |
2162 | if nxt.is_some() { |
2163 | self.items -= 1; |
2164 | } |
2165 | |
2166 | nxt |
2167 | } |
2168 | |
2169 | #[inline ] |
2170 | fn size_hint(&self) -> (usize, Option<usize>) { |
2171 | (self.items, Some(self.items)) |
2172 | } |
2173 | } |
2174 | |
2175 | impl<T> ExactSizeIterator for RawIter<T> {} |
2176 | impl<T> FusedIterator for RawIter<T> {} |
2177 | |
2178 | /// Iterator which consumes a table and returns elements. |
2179 | pub struct RawIntoIter<T, A: Allocator + Clone = Global> { |
2180 | iter: RawIter<T>, |
2181 | allocation: Option<(NonNull<u8>, Layout)>, |
2182 | marker: PhantomData<T>, |
2183 | alloc: A, |
2184 | } |
2185 | |
2186 | impl<T, A: Allocator + Clone> RawIntoIter<T, A> { |
2187 | #[cfg_attr (feature = "inline-more" , inline)] |
2188 | pub fn iter(&self) -> RawIter<T> { |
2189 | self.iter.clone() |
2190 | } |
2191 | } |
2192 | |
2193 | unsafe impl<T, A: Allocator + Clone> Send for RawIntoIter<T, A> |
2194 | where |
2195 | T: Send, |
2196 | A: Send, |
2197 | { |
2198 | } |
2199 | unsafe impl<T, A: Allocator + Clone> Sync for RawIntoIter<T, A> |
2200 | where |
2201 | T: Sync, |
2202 | A: Sync, |
2203 | { |
2204 | } |
2205 | |
2206 | #[cfg (feature = "nightly" )] |
2207 | unsafe impl<#[may_dangle ] T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { |
2208 | #[cfg_attr (feature = "inline-more" , inline)] |
2209 | fn drop(&mut self) { |
2210 | unsafe { |
2211 | // Drop all remaining elements |
2212 | self.iter.drop_elements(); |
2213 | |
2214 | // Free the table |
2215 | if let Some((ptr, layout)) = self.allocation { |
2216 | self.alloc.deallocate(ptr, layout); |
2217 | } |
2218 | } |
2219 | } |
2220 | } |
2221 | #[cfg (not(feature = "nightly" ))] |
2222 | impl<T, A: Allocator + Clone> Drop for RawIntoIter<T, A> { |
2223 | #[cfg_attr (feature = "inline-more" , inline)] |
2224 | fn drop(&mut self) { |
2225 | unsafe { |
2226 | // Drop all remaining elements |
2227 | self.iter.drop_elements(); |
2228 | |
2229 | // Free the table |
2230 | if let Some((ptr: NonNull, layout: Layout)) = self.allocation { |
2231 | self.alloc.deallocate(ptr, layout); |
2232 | } |
2233 | } |
2234 | } |
2235 | } |
2236 | |
2237 | impl<T, A: Allocator + Clone> Iterator for RawIntoIter<T, A> { |
2238 | type Item = T; |
2239 | |
2240 | #[cfg_attr (feature = "inline-more" , inline)] |
2241 | fn next(&mut self) -> Option<T> { |
2242 | unsafe { Some(self.iter.next()?.read()) } |
2243 | } |
2244 | |
2245 | #[inline ] |
2246 | fn size_hint(&self) -> (usize, Option<usize>) { |
2247 | self.iter.size_hint() |
2248 | } |
2249 | } |
2250 | |
2251 | impl<T, A: Allocator + Clone> ExactSizeIterator for RawIntoIter<T, A> {} |
2252 | impl<T, A: Allocator + Clone> FusedIterator for RawIntoIter<T, A> {} |
2253 | |
2254 | /// Iterator which consumes elements without freeing the table storage. |
2255 | pub struct RawDrain<'a, T, A: Allocator + Clone = Global> { |
2256 | iter: RawIter<T>, |
2257 | |
2258 | // The table is moved into the iterator for the duration of the drain. This |
2259 | // ensures that an empty table is left if the drain iterator is leaked |
2260 | // without dropping. |
2261 | table: ManuallyDrop<RawTable<T, A>>, |
2262 | orig_table: NonNull<RawTable<T, A>>, |
2263 | |
2264 | // We don't use a &'a mut RawTable<T> because we want RawDrain to be |
2265 | // covariant over T. |
2266 | marker: PhantomData<&'a RawTable<T, A>>, |
2267 | } |
2268 | |
2269 | impl<T, A: Allocator + Clone> RawDrain<'_, T, A> { |
2270 | #[cfg_attr (feature = "inline-more" , inline)] |
2271 | pub fn iter(&self) -> RawIter<T> { |
2272 | self.iter.clone() |
2273 | } |
2274 | } |
2275 | |
2276 | unsafe impl<T, A: Allocator + Copy> Send for RawDrain<'_, T, A> |
2277 | where |
2278 | T: Send, |
2279 | A: Send, |
2280 | { |
2281 | } |
2282 | unsafe impl<T, A: Allocator + Copy> Sync for RawDrain<'_, T, A> |
2283 | where |
2284 | T: Sync, |
2285 | A: Sync, |
2286 | { |
2287 | } |
2288 | |
2289 | impl<T, A: Allocator + Clone> Drop for RawDrain<'_, T, A> { |
2290 | #[cfg_attr (feature = "inline-more" , inline)] |
2291 | fn drop(&mut self) { |
2292 | unsafe { |
2293 | // Drop all remaining elements. Note that this may panic. |
2294 | self.iter.drop_elements(); |
2295 | |
2296 | // Reset the contents of the table now that all elements have been |
2297 | // dropped. |
2298 | self.table.clear_no_drop(); |
2299 | |
2300 | // Move the now empty table back to its original location. |
2301 | self.orig_table |
2302 | .as_ptr() |
2303 | .copy_from_nonoverlapping(&*self.table, count:1); |
2304 | } |
2305 | } |
2306 | } |
2307 | |
2308 | impl<T, A: Allocator + Clone> Iterator for RawDrain<'_, T, A> { |
2309 | type Item = T; |
2310 | |
2311 | #[cfg_attr (feature = "inline-more" , inline)] |
2312 | fn next(&mut self) -> Option<T> { |
2313 | unsafe { |
2314 | let item: Bucket = self.iter.next()?; |
2315 | Some(item.read()) |
2316 | } |
2317 | } |
2318 | |
2319 | #[inline ] |
2320 | fn size_hint(&self) -> (usize, Option<usize>) { |
2321 | self.iter.size_hint() |
2322 | } |
2323 | } |
2324 | |
2325 | impl<T, A: Allocator + Clone> ExactSizeIterator for RawDrain<'_, T, A> {} |
2326 | impl<T, A: Allocator + Clone> FusedIterator for RawDrain<'_, T, A> {} |
2327 | |
2328 | /// Iterator over occupied buckets that could match a given hash. |
2329 | /// |
2330 | /// `RawTable` only stores 7 bits of the hash value, so this iterator may return |
2331 | /// items that have a hash value different than the one provided. You should |
2332 | /// always validate the returned values before using them. |
2333 | pub struct RawIterHash<'a, T, A: Allocator + Clone = Global> { |
2334 | inner: RawIterHashInner<'a, A>, |
2335 | _marker: PhantomData<T>, |
2336 | } |
2337 | |
2338 | struct RawIterHashInner<'a, A: Allocator + Clone> { |
2339 | table: &'a RawTableInner<A>, |
2340 | |
2341 | // The top 7 bits of the hash. |
2342 | h2_hash: u8, |
2343 | |
2344 | // The sequence of groups to probe in the search. |
2345 | probe_seq: ProbeSeq, |
2346 | |
2347 | group: Group, |
2348 | |
2349 | // The elements within the group with a matching h2-hash. |
2350 | bitmask: BitMaskIter, |
2351 | } |
2352 | |
2353 | impl<'a, T, A: Allocator + Clone> RawIterHash<'a, T, A> { |
2354 | #[cfg_attr (feature = "inline-more" , inline)] |
2355 | #[cfg (feature = "raw" )] |
2356 | fn new(table: &'a RawTable<T, A>, hash: u64) -> Self { |
2357 | RawIterHash { |
2358 | inner: RawIterHashInner::new(&table.table, hash), |
2359 | _marker: PhantomData, |
2360 | } |
2361 | } |
2362 | } |
2363 | impl<'a, A: Allocator + Clone> RawIterHashInner<'a, A> { |
2364 | #[cfg_attr (feature = "inline-more" , inline)] |
2365 | #[cfg (feature = "raw" )] |
2366 | fn new(table: &'a RawTableInner<A>, hash: u64) -> Self { |
2367 | unsafe { |
2368 | let h2_hash: u8 = h2(hash); |
2369 | let probe_seq: ProbeSeq = table.probe_seq(hash); |
2370 | let group: Group = Group::load(ptr:table.ctrl(index:probe_seq.pos)); |
2371 | let bitmask: BitMaskIter = group.match_byte(h2_hash).into_iter(); |
2372 | |
2373 | RawIterHashInner { |
2374 | table, |
2375 | h2_hash, |
2376 | probe_seq, |
2377 | group, |
2378 | bitmask, |
2379 | } |
2380 | } |
2381 | } |
2382 | } |
2383 | |
2384 | impl<'a, T, A: Allocator + Clone> Iterator for RawIterHash<'a, T, A> { |
2385 | type Item = Bucket<T>; |
2386 | |
2387 | fn next(&mut self) -> Option<Bucket<T>> { |
2388 | unsafe { |
2389 | match self.inner.next() { |
2390 | Some(index: usize) => Some(self.inner.table.bucket(index)), |
2391 | None => None, |
2392 | } |
2393 | } |
2394 | } |
2395 | } |
2396 | |
2397 | impl<'a, A: Allocator + Clone> Iterator for RawIterHashInner<'a, A> { |
2398 | type Item = usize; |
2399 | |
2400 | fn next(&mut self) -> Option<Self::Item> { |
2401 | unsafe { |
2402 | loop { |
2403 | if let Some(bit: usize) = self.bitmask.next() { |
2404 | let index: usize = (self.probe_seq.pos + bit) & self.table.bucket_mask; |
2405 | return Some(index); |
2406 | } |
2407 | if likely(self.group.match_empty().any_bit_set()) { |
2408 | return None; |
2409 | } |
2410 | self.probe_seq.move_next(self.table.bucket_mask); |
2411 | self.group = Group::load(self.table.ctrl(self.probe_seq.pos)); |
2412 | self.bitmask = self.group.match_byte(self.h2_hash).into_iter(); |
2413 | } |
2414 | } |
2415 | } |
2416 | } |
2417 | |
2418 | #[cfg (test)] |
2419 | mod test_map { |
2420 | use super::*; |
2421 | |
2422 | fn rehash_in_place<T>(table: &mut RawTable<T>, hasher: impl Fn(&T) -> u64) { |
2423 | unsafe { |
2424 | table.table.rehash_in_place( |
2425 | &|table, index| hasher(table.bucket::<T>(index).as_ref()), |
2426 | mem::size_of::<T>(), |
2427 | if mem::needs_drop::<T>() { |
2428 | Some(mem::transmute(ptr::drop_in_place::<T> as unsafe fn(*mut T))) |
2429 | } else { |
2430 | None |
2431 | }, |
2432 | ); |
2433 | } |
2434 | } |
2435 | |
2436 | #[test ] |
2437 | fn rehash() { |
2438 | let mut table = RawTable::new(); |
2439 | let hasher = |i: &u64| *i; |
2440 | for i in 0..100 { |
2441 | table.insert(i, i, hasher); |
2442 | } |
2443 | |
2444 | for i in 0..100 { |
2445 | unsafe { |
2446 | assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); |
2447 | } |
2448 | assert!(table.find(i + 100, |x| *x == i + 100).is_none()); |
2449 | } |
2450 | |
2451 | rehash_in_place(&mut table, hasher); |
2452 | |
2453 | for i in 0..100 { |
2454 | unsafe { |
2455 | assert_eq!(table.find(i, |x| *x == i).map(|b| b.read()), Some(i)); |
2456 | } |
2457 | assert!(table.find(i + 100, |x| *x == i + 100).is_none()); |
2458 | } |
2459 | } |
2460 | } |
2461 | |