| 1 | //! A priority queue implemented with a binary heap. |
| 2 | //! |
| 3 | //! Insertion and popping the largest element have `O(log n)` time complexity. Checking the largest |
| 4 | //! / smallest element is `O(1)`. |
| 5 | |
| 6 | // TODO not yet implemented |
| 7 | // Converting a vector to a binary heap can be done in-place, and has `O(n)` complexity. A binary |
| 8 | // heap can also be converted to a sorted vector in-place, allowing it to be used for an `O(n log |
| 9 | // n)` in-place heapsort. |
| 10 | |
| 11 | use core::{ |
| 12 | cmp::Ordering, |
| 13 | fmt, |
| 14 | marker::PhantomData, |
| 15 | mem::{self, ManuallyDrop}, |
| 16 | ops::{Deref, DerefMut}, |
| 17 | ptr, slice, |
| 18 | }; |
| 19 | |
| 20 | use crate::vec::Vec; |
| 21 | |
| 22 | /// Min-heap |
| 23 | pub enum Min {} |
| 24 | |
| 25 | /// Max-heap |
| 26 | pub enum Max {} |
| 27 | |
| 28 | /// The binary heap kind: min-heap or max-heap |
| 29 | pub trait Kind: private::Sealed { |
| 30 | #[doc (hidden)] |
| 31 | fn ordering() -> Ordering; |
| 32 | } |
| 33 | |
| 34 | impl Kind for Min { |
| 35 | fn ordering() -> Ordering { |
| 36 | Ordering::Less |
| 37 | } |
| 38 | } |
| 39 | |
| 40 | impl Kind for Max { |
| 41 | fn ordering() -> Ordering { |
| 42 | Ordering::Greater |
| 43 | } |
| 44 | } |
| 45 | |
| 46 | /// Sealed traits |
| 47 | mod private { |
| 48 | pub trait Sealed {} |
| 49 | } |
| 50 | |
| 51 | impl private::Sealed for Max {} |
| 52 | impl private::Sealed for Min {} |
| 53 | |
| 54 | /// A priority queue implemented with a binary heap. |
| 55 | /// |
| 56 | /// This can be either a min-heap or a max-heap. |
| 57 | /// |
| 58 | /// It is a logic error for an item to be modified in such a way that the item's ordering relative |
| 59 | /// to any other item, as determined by the `Ord` trait, changes while it is in the heap. This is |
| 60 | /// normally only possible through `Cell`, `RefCell`, global state, I/O, or unsafe code. |
| 61 | /// |
| 62 | /// ``` |
| 63 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 64 | /// |
| 65 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 66 | /// |
| 67 | /// // We can use peek to look at the next item in the heap. In this case, |
| 68 | /// // there's no items in there yet so we get None. |
| 69 | /// assert_eq!(heap.peek(), None); |
| 70 | /// |
| 71 | /// // Let's add some scores... |
| 72 | /// heap.push(1).unwrap(); |
| 73 | /// heap.push(5).unwrap(); |
| 74 | /// heap.push(2).unwrap(); |
| 75 | /// |
| 76 | /// // Now peek shows the most important item in the heap. |
| 77 | /// assert_eq!(heap.peek(), Some(&5)); |
| 78 | /// |
| 79 | /// // We can check the length of a heap. |
| 80 | /// assert_eq!(heap.len(), 3); |
| 81 | /// |
| 82 | /// // We can iterate over the items in the heap, although they are returned in |
| 83 | /// // a random order. |
| 84 | /// for x in &heap { |
| 85 | /// println!("{}" , x); |
| 86 | /// } |
| 87 | /// |
| 88 | /// // If we instead pop these scores, they should come back in order. |
| 89 | /// assert_eq!(heap.pop(), Some(5)); |
| 90 | /// assert_eq!(heap.pop(), Some(2)); |
| 91 | /// assert_eq!(heap.pop(), Some(1)); |
| 92 | /// assert_eq!(heap.pop(), None); |
| 93 | /// |
| 94 | /// // We can clear the heap of any remaining items. |
| 95 | /// heap.clear(); |
| 96 | /// |
| 97 | /// // The heap should now be empty. |
| 98 | /// assert!(heap.is_empty()) |
| 99 | /// ``` |
| 100 | |
| 101 | pub struct BinaryHeap<T, K, const N: usize> { |
| 102 | pub(crate) _kind: PhantomData<K>, |
| 103 | pub(crate) data: Vec<T, N>, |
| 104 | } |
| 105 | |
| 106 | impl<T, K, const N: usize> BinaryHeap<T, K, N> { |
| 107 | /* Constructors */ |
| 108 | /// Creates an empty BinaryHeap as a $K-heap. |
| 109 | /// |
| 110 | /// ``` |
| 111 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 112 | /// |
| 113 | /// // allocate the binary heap on the stack |
| 114 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 115 | /// heap.push(4).unwrap(); |
| 116 | /// |
| 117 | /// // allocate the binary heap in a static variable |
| 118 | /// static mut HEAP: BinaryHeap<i32, Max, 8> = BinaryHeap::new(); |
| 119 | /// ``` |
| 120 | pub const fn new() -> Self { |
| 121 | Self { |
| 122 | _kind: PhantomData, |
| 123 | data: Vec::new(), |
| 124 | } |
| 125 | } |
| 126 | } |
| 127 | |
| 128 | impl<T, K, const N: usize> BinaryHeap<T, K, N> |
| 129 | where |
| 130 | T: Ord, |
| 131 | K: Kind, |
| 132 | { |
| 133 | /* Public API */ |
| 134 | /// Returns the capacity of the binary heap. |
| 135 | pub fn capacity(&self) -> usize { |
| 136 | self.data.capacity() |
| 137 | } |
| 138 | |
| 139 | /// Drops all items from the binary heap. |
| 140 | /// |
| 141 | /// ``` |
| 142 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 143 | /// |
| 144 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 145 | /// heap.push(1).unwrap(); |
| 146 | /// heap.push(3).unwrap(); |
| 147 | /// |
| 148 | /// assert!(!heap.is_empty()); |
| 149 | /// |
| 150 | /// heap.clear(); |
| 151 | /// |
| 152 | /// assert!(heap.is_empty()); |
| 153 | /// ``` |
| 154 | pub fn clear(&mut self) { |
| 155 | self.data.clear() |
| 156 | } |
| 157 | |
| 158 | /// Returns the length of the binary heap. |
| 159 | /// |
| 160 | /// ``` |
| 161 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 162 | /// |
| 163 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 164 | /// heap.push(1).unwrap(); |
| 165 | /// heap.push(3).unwrap(); |
| 166 | /// |
| 167 | /// assert_eq!(heap.len(), 2); |
| 168 | /// ``` |
| 169 | pub fn len(&self) -> usize { |
| 170 | self.data.len() |
| 171 | } |
| 172 | |
| 173 | /// Checks if the binary heap is empty. |
| 174 | /// |
| 175 | /// ``` |
| 176 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 177 | /// |
| 178 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 179 | /// |
| 180 | /// assert!(heap.is_empty()); |
| 181 | /// |
| 182 | /// heap.push(3).unwrap(); |
| 183 | /// heap.push(5).unwrap(); |
| 184 | /// heap.push(1).unwrap(); |
| 185 | /// |
| 186 | /// assert!(!heap.is_empty()); |
| 187 | /// ``` |
| 188 | pub fn is_empty(&self) -> bool { |
| 189 | self.len() == 0 |
| 190 | } |
| 191 | |
| 192 | /// Returns an iterator visiting all values in the underlying vector, in arbitrary order. |
| 193 | /// |
| 194 | /// ``` |
| 195 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 196 | /// |
| 197 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 198 | /// heap.push(1).unwrap(); |
| 199 | /// heap.push(2).unwrap(); |
| 200 | /// heap.push(3).unwrap(); |
| 201 | /// heap.push(4).unwrap(); |
| 202 | /// |
| 203 | /// // Print 1, 2, 3, 4 in arbitrary order |
| 204 | /// for x in heap.iter() { |
| 205 | /// println!("{}" , x); |
| 206 | /// |
| 207 | /// } |
| 208 | /// ``` |
| 209 | pub fn iter(&self) -> slice::Iter<'_, T> { |
| 210 | self.data.as_slice().iter() |
| 211 | } |
| 212 | |
| 213 | /// Returns a mutable iterator visiting all values in the underlying vector, in arbitrary order. |
| 214 | /// |
| 215 | /// **WARNING** Mutating the items in the binary heap can leave the heap in an inconsistent |
| 216 | /// state. |
| 217 | pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> { |
| 218 | self.data.as_mut_slice().iter_mut() |
| 219 | } |
| 220 | |
| 221 | /// Returns the *top* (greatest if max-heap, smallest if min-heap) item in the binary heap, or |
| 222 | /// None if it is empty. |
| 223 | /// |
| 224 | /// ``` |
| 225 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 226 | /// |
| 227 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 228 | /// assert_eq!(heap.peek(), None); |
| 229 | /// |
| 230 | /// heap.push(1).unwrap(); |
| 231 | /// heap.push(5).unwrap(); |
| 232 | /// heap.push(2).unwrap(); |
| 233 | /// assert_eq!(heap.peek(), Some(&5)); |
| 234 | /// ``` |
| 235 | pub fn peek(&self) -> Option<&T> { |
| 236 | self.data.as_slice().get(0) |
| 237 | } |
| 238 | |
| 239 | /// Returns a mutable reference to the greatest item in the binary heap, or |
| 240 | /// `None` if it is empty. |
| 241 | /// |
| 242 | /// Note: If the `PeekMut` value is leaked, the heap may be in an |
| 243 | /// inconsistent state. |
| 244 | /// |
| 245 | /// # Examples |
| 246 | /// |
| 247 | /// Basic usage: |
| 248 | /// |
| 249 | /// ``` |
| 250 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 251 | /// |
| 252 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 253 | /// assert!(heap.peek_mut().is_none()); |
| 254 | /// |
| 255 | /// heap.push(1); |
| 256 | /// heap.push(5); |
| 257 | /// heap.push(2); |
| 258 | /// { |
| 259 | /// let mut val = heap.peek_mut().unwrap(); |
| 260 | /// *val = 0; |
| 261 | /// } |
| 262 | /// |
| 263 | /// assert_eq!(heap.peek(), Some(&2)); |
| 264 | /// ``` |
| 265 | pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T, K, N>> { |
| 266 | if self.is_empty() { |
| 267 | None |
| 268 | } else { |
| 269 | Some(PeekMut { |
| 270 | heap: self, |
| 271 | sift: true, |
| 272 | }) |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | /// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and |
| 277 | /// returns it, or None if it is empty. |
| 278 | /// |
| 279 | /// ``` |
| 280 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 281 | /// |
| 282 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 283 | /// heap.push(1).unwrap(); |
| 284 | /// heap.push(3).unwrap(); |
| 285 | /// |
| 286 | /// assert_eq!(heap.pop(), Some(3)); |
| 287 | /// assert_eq!(heap.pop(), Some(1)); |
| 288 | /// assert_eq!(heap.pop(), None); |
| 289 | /// ``` |
| 290 | pub fn pop(&mut self) -> Option<T> { |
| 291 | if self.is_empty() { |
| 292 | None |
| 293 | } else { |
| 294 | Some(unsafe { self.pop_unchecked() }) |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /// Removes the *top* (greatest if max-heap, smallest if min-heap) item from the binary heap and |
| 299 | /// returns it, without checking if the binary heap is empty. |
| 300 | pub unsafe fn pop_unchecked(&mut self) -> T { |
| 301 | let mut item = self.data.pop_unchecked(); |
| 302 | |
| 303 | if !self.is_empty() { |
| 304 | mem::swap(&mut item, self.data.as_mut_slice().get_unchecked_mut(0)); |
| 305 | self.sift_down_to_bottom(0); |
| 306 | } |
| 307 | item |
| 308 | } |
| 309 | |
| 310 | /// Pushes an item onto the binary heap. |
| 311 | /// |
| 312 | /// ``` |
| 313 | /// use heapless::binary_heap::{BinaryHeap, Max}; |
| 314 | /// |
| 315 | /// let mut heap: BinaryHeap<_, Max, 8> = BinaryHeap::new(); |
| 316 | /// heap.push(3).unwrap(); |
| 317 | /// heap.push(5).unwrap(); |
| 318 | /// heap.push(1).unwrap(); |
| 319 | /// |
| 320 | /// assert_eq!(heap.len(), 3); |
| 321 | /// assert_eq!(heap.peek(), Some(&5)); |
| 322 | /// ``` |
| 323 | pub fn push(&mut self, item: T) -> Result<(), T> { |
| 324 | if self.data.is_full() { |
| 325 | return Err(item); |
| 326 | } |
| 327 | |
| 328 | unsafe { self.push_unchecked(item) } |
| 329 | Ok(()) |
| 330 | } |
| 331 | |
| 332 | /// Pushes an item onto the binary heap without first checking if it's full. |
| 333 | pub unsafe fn push_unchecked(&mut self, item: T) { |
| 334 | let old_len = self.len(); |
| 335 | self.data.push_unchecked(item); |
| 336 | self.sift_up(0, old_len); |
| 337 | } |
| 338 | |
| 339 | /// Returns the underlying ```Vec<T,N>```. Order is arbitrary and time is O(1). |
| 340 | pub fn into_vec(self) -> Vec<T, N> { |
| 341 | self.data |
| 342 | } |
| 343 | |
| 344 | /* Private API */ |
| 345 | fn sift_down_to_bottom(&mut self, mut pos: usize) { |
| 346 | let end = self.len(); |
| 347 | let start = pos; |
| 348 | unsafe { |
| 349 | let mut hole = Hole::new(self.data.as_mut_slice(), pos); |
| 350 | let mut child = 2 * pos + 1; |
| 351 | while child < end { |
| 352 | let right = child + 1; |
| 353 | // compare with the greater of the two children |
| 354 | if right < end && hole.get(child).cmp(hole.get(right)) != K::ordering() { |
| 355 | child = right; |
| 356 | } |
| 357 | hole.move_to(child); |
| 358 | child = 2 * hole.pos() + 1; |
| 359 | } |
| 360 | pos = hole.pos; |
| 361 | } |
| 362 | self.sift_up(start, pos); |
| 363 | } |
| 364 | |
| 365 | fn sift_up(&mut self, start: usize, pos: usize) -> usize { |
| 366 | unsafe { |
| 367 | // Take out the value at `pos` and create a hole. |
| 368 | let mut hole = Hole::new(self.data.as_mut_slice(), pos); |
| 369 | |
| 370 | while hole.pos() > start { |
| 371 | let parent = (hole.pos() - 1) / 2; |
| 372 | if hole.element().cmp(hole.get(parent)) != K::ordering() { |
| 373 | break; |
| 374 | } |
| 375 | hole.move_to(parent); |
| 376 | } |
| 377 | hole.pos() |
| 378 | } |
| 379 | } |
| 380 | } |
| 381 | |
| 382 | /// Hole represents a hole in a slice i.e. an index without valid value |
| 383 | /// (because it was moved from or duplicated). |
| 384 | /// In drop, `Hole` will restore the slice by filling the hole |
| 385 | /// position with the value that was originally removed. |
| 386 | struct Hole<'a, T> { |
| 387 | data: &'a mut [T], |
| 388 | /// `elt` is always `Some` from new until drop. |
| 389 | elt: ManuallyDrop<T>, |
| 390 | pos: usize, |
| 391 | } |
| 392 | |
| 393 | impl<'a, T> Hole<'a, T> { |
| 394 | /// Create a new Hole at index `pos`. |
| 395 | /// |
| 396 | /// Unsafe because pos must be within the data slice. |
| 397 | #[inline ] |
| 398 | unsafe fn new(data: &'a mut [T], pos: usize) -> Self { |
| 399 | debug_assert!(pos < data.len()); |
| 400 | let elt = ptr::read(data.get_unchecked(pos)); |
| 401 | Hole { |
| 402 | data, |
| 403 | elt: ManuallyDrop::new(elt), |
| 404 | pos, |
| 405 | } |
| 406 | } |
| 407 | |
| 408 | #[inline ] |
| 409 | fn pos(&self) -> usize { |
| 410 | self.pos |
| 411 | } |
| 412 | |
| 413 | /// Returns a reference to the element removed. |
| 414 | #[inline ] |
| 415 | fn element(&self) -> &T { |
| 416 | &self.elt |
| 417 | } |
| 418 | |
| 419 | /// Returns a reference to the element at `index`. |
| 420 | /// |
| 421 | /// Unsafe because index must be within the data slice and not equal to pos. |
| 422 | #[inline ] |
| 423 | unsafe fn get(&self, index: usize) -> &T { |
| 424 | debug_assert!(index != self.pos); |
| 425 | debug_assert!(index < self.data.len()); |
| 426 | self.data.get_unchecked(index) |
| 427 | } |
| 428 | |
| 429 | /// Move hole to new location |
| 430 | /// |
| 431 | /// Unsafe because index must be within the data slice and not equal to pos. |
| 432 | #[inline ] |
| 433 | unsafe fn move_to(&mut self, index: usize) { |
| 434 | debug_assert!(index != self.pos); |
| 435 | debug_assert!(index < self.data.len()); |
| 436 | let ptr = self.data.as_mut_ptr(); |
| 437 | let index_ptr: *const _ = ptr.add(index); |
| 438 | let hole_ptr = ptr.add(self.pos); |
| 439 | ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); |
| 440 | self.pos = index; |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | /// Structure wrapping a mutable reference to the greatest item on a |
| 445 | /// `BinaryHeap`. |
| 446 | /// |
| 447 | /// This `struct` is created by [`BinaryHeap::peek_mut`]. |
| 448 | /// See its documentation for more. |
| 449 | pub struct PeekMut<'a, T, K, const N: usize> |
| 450 | where |
| 451 | T: Ord, |
| 452 | K: Kind, |
| 453 | { |
| 454 | heap: &'a mut BinaryHeap<T, K, N>, |
| 455 | sift: bool, |
| 456 | } |
| 457 | |
| 458 | impl<T, K, const N: usize> Drop for PeekMut<'_, T, K, N> |
| 459 | where |
| 460 | T: Ord, |
| 461 | K: Kind, |
| 462 | { |
| 463 | fn drop(&mut self) { |
| 464 | if self.sift { |
| 465 | self.heap.sift_down_to_bottom(pos:0); |
| 466 | } |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | impl<T, K, const N: usize> Deref for PeekMut<'_, T, K, N> |
| 471 | where |
| 472 | T: Ord, |
| 473 | K: Kind, |
| 474 | { |
| 475 | type Target = T; |
| 476 | fn deref(&self) -> &T { |
| 477 | debug_assert!(!self.heap.is_empty()); |
| 478 | // SAFE: PeekMut is only instantiated for non-empty heaps |
| 479 | unsafe { self.heap.data.as_slice().get_unchecked(index:0) } |
| 480 | } |
| 481 | } |
| 482 | |
| 483 | impl<T, K, const N: usize> DerefMut for PeekMut<'_, T, K, N> |
| 484 | where |
| 485 | T: Ord, |
| 486 | K: Kind, |
| 487 | { |
| 488 | fn deref_mut(&mut self) -> &mut T { |
| 489 | debug_assert!(!self.heap.is_empty()); |
| 490 | // SAFE: PeekMut is only instantiated for non-empty heaps |
| 491 | unsafe { self.heap.data.as_mut_slice().get_unchecked_mut(index:0) } |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | impl<'a, T, K, const N: usize> PeekMut<'a, T, K, N> |
| 496 | where |
| 497 | T: Ord, |
| 498 | K: Kind, |
| 499 | { |
| 500 | /// Removes the peeked value from the heap and returns it. |
| 501 | pub fn pop(mut this: PeekMut<'a, T, K, N>) -> T { |
| 502 | let value: T = this.heap.pop().unwrap(); |
| 503 | this.sift = false; |
| 504 | value |
| 505 | } |
| 506 | } |
| 507 | |
| 508 | impl<'a, T> Drop for Hole<'a, T> { |
| 509 | #[inline ] |
| 510 | fn drop(&mut self) { |
| 511 | // fill the hole again |
| 512 | unsafe { |
| 513 | let pos: usize = self.pos; |
| 514 | ptr::write(self.data.get_unchecked_mut(pos), src:ptr::read(&*self.elt)); |
| 515 | } |
| 516 | } |
| 517 | } |
| 518 | |
| 519 | impl<T, K, const N: usize> Default for BinaryHeap<T, K, N> |
| 520 | where |
| 521 | T: Ord, |
| 522 | K: Kind, |
| 523 | { |
| 524 | fn default() -> Self { |
| 525 | Self::new() |
| 526 | } |
| 527 | } |
| 528 | |
| 529 | impl<T, K, const N: usize> Clone for BinaryHeap<T, K, N> |
| 530 | where |
| 531 | K: Kind, |
| 532 | T: Ord + Clone, |
| 533 | { |
| 534 | fn clone(&self) -> Self { |
| 535 | Self { |
| 536 | _kind: self._kind, |
| 537 | data: self.data.clone(), |
| 538 | } |
| 539 | } |
| 540 | } |
| 541 | |
| 542 | impl<T, K, const N: usize> fmt::Debug for BinaryHeap<T, K, N> |
| 543 | where |
| 544 | K: Kind, |
| 545 | T: Ord + fmt::Debug, |
| 546 | { |
| 547 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 548 | f.debug_list().entries(self.iter()).finish() |
| 549 | } |
| 550 | } |
| 551 | |
| 552 | impl<'a, T, K, const N: usize> IntoIterator for &'a BinaryHeap<T, K, N> |
| 553 | where |
| 554 | K: Kind, |
| 555 | T: Ord, |
| 556 | { |
| 557 | type Item = &'a T; |
| 558 | type IntoIter = slice::Iter<'a, T>; |
| 559 | |
| 560 | fn into_iter(self) -> Self::IntoIter { |
| 561 | self.iter() |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | #[cfg (test)] |
| 566 | mod tests { |
| 567 | use std::vec::Vec; |
| 568 | |
| 569 | use crate::binary_heap::{BinaryHeap, Max, Min}; |
| 570 | |
| 571 | #[test ] |
| 572 | fn static_new() { |
| 573 | static mut _B: BinaryHeap<i32, Min, 16> = BinaryHeap::new(); |
| 574 | } |
| 575 | |
| 576 | #[test ] |
| 577 | fn drop() { |
| 578 | droppable!(); |
| 579 | |
| 580 | { |
| 581 | let mut v: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new(); |
| 582 | v.push(Droppable::new()).ok().unwrap(); |
| 583 | v.push(Droppable::new()).ok().unwrap(); |
| 584 | v.pop().unwrap(); |
| 585 | } |
| 586 | |
| 587 | assert_eq!(Droppable::count(), 0); |
| 588 | |
| 589 | { |
| 590 | let mut v: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new(); |
| 591 | v.push(Droppable::new()).ok().unwrap(); |
| 592 | v.push(Droppable::new()).ok().unwrap(); |
| 593 | } |
| 594 | |
| 595 | assert_eq!(Droppable::count(), 0); |
| 596 | |
| 597 | { |
| 598 | let mut v: BinaryHeap<Droppable, Min, 2> = BinaryHeap::new(); |
| 599 | v.push(Droppable::new()).ok().unwrap(); |
| 600 | v.push(Droppable::new()).ok().unwrap(); |
| 601 | v.pop().unwrap(); |
| 602 | } |
| 603 | |
| 604 | assert_eq!(Droppable::count(), 0); |
| 605 | |
| 606 | { |
| 607 | let mut v: BinaryHeap<Droppable, Min, 2> = BinaryHeap::new(); |
| 608 | v.push(Droppable::new()).ok().unwrap(); |
| 609 | v.push(Droppable::new()).ok().unwrap(); |
| 610 | } |
| 611 | |
| 612 | assert_eq!(Droppable::count(), 0); |
| 613 | } |
| 614 | |
| 615 | #[test ] |
| 616 | fn into_vec() { |
| 617 | droppable!(); |
| 618 | |
| 619 | let mut h: BinaryHeap<Droppable, Max, 2> = BinaryHeap::new(); |
| 620 | h.push(Droppable::new()).ok().unwrap(); |
| 621 | h.push(Droppable::new()).ok().unwrap(); |
| 622 | h.pop().unwrap(); |
| 623 | |
| 624 | assert_eq!(Droppable::count(), 1); |
| 625 | |
| 626 | let v = h.into_vec(); |
| 627 | |
| 628 | assert_eq!(Droppable::count(), 1); |
| 629 | |
| 630 | core::mem::drop(v); |
| 631 | |
| 632 | assert_eq!(Droppable::count(), 0); |
| 633 | } |
| 634 | |
| 635 | #[test ] |
| 636 | fn min() { |
| 637 | let mut heap = BinaryHeap::<_, Min, 16>::new(); |
| 638 | heap.push(1).unwrap(); |
| 639 | heap.push(2).unwrap(); |
| 640 | heap.push(3).unwrap(); |
| 641 | heap.push(17).unwrap(); |
| 642 | heap.push(19).unwrap(); |
| 643 | heap.push(36).unwrap(); |
| 644 | heap.push(7).unwrap(); |
| 645 | heap.push(25).unwrap(); |
| 646 | heap.push(100).unwrap(); |
| 647 | |
| 648 | assert_eq!( |
| 649 | heap.iter().cloned().collect::<Vec<_>>(), |
| 650 | [1, 2, 3, 17, 19, 36, 7, 25, 100] |
| 651 | ); |
| 652 | |
| 653 | assert_eq!(heap.pop(), Some(1)); |
| 654 | |
| 655 | assert_eq!( |
| 656 | heap.iter().cloned().collect::<Vec<_>>(), |
| 657 | [2, 17, 3, 25, 19, 36, 7, 100] |
| 658 | ); |
| 659 | |
| 660 | assert_eq!(heap.pop(), Some(2)); |
| 661 | assert_eq!(heap.pop(), Some(3)); |
| 662 | assert_eq!(heap.pop(), Some(7)); |
| 663 | assert_eq!(heap.pop(), Some(17)); |
| 664 | assert_eq!(heap.pop(), Some(19)); |
| 665 | assert_eq!(heap.pop(), Some(25)); |
| 666 | assert_eq!(heap.pop(), Some(36)); |
| 667 | assert_eq!(heap.pop(), Some(100)); |
| 668 | assert_eq!(heap.pop(), None); |
| 669 | |
| 670 | assert!(heap.peek_mut().is_none()); |
| 671 | |
| 672 | heap.push(1).unwrap(); |
| 673 | heap.push(2).unwrap(); |
| 674 | heap.push(10).unwrap(); |
| 675 | |
| 676 | { |
| 677 | let mut val = heap.peek_mut().unwrap(); |
| 678 | *val = 7; |
| 679 | } |
| 680 | |
| 681 | assert_eq!(heap.pop(), Some(2)); |
| 682 | assert_eq!(heap.pop(), Some(7)); |
| 683 | assert_eq!(heap.pop(), Some(10)); |
| 684 | assert_eq!(heap.pop(), None); |
| 685 | } |
| 686 | |
| 687 | #[test ] |
| 688 | fn max() { |
| 689 | let mut heap = BinaryHeap::<_, Max, 16>::new(); |
| 690 | heap.push(1).unwrap(); |
| 691 | heap.push(2).unwrap(); |
| 692 | heap.push(3).unwrap(); |
| 693 | heap.push(17).unwrap(); |
| 694 | heap.push(19).unwrap(); |
| 695 | heap.push(36).unwrap(); |
| 696 | heap.push(7).unwrap(); |
| 697 | heap.push(25).unwrap(); |
| 698 | heap.push(100).unwrap(); |
| 699 | |
| 700 | assert_eq!( |
| 701 | heap.iter().cloned().collect::<Vec<_>>(), |
| 702 | [100, 36, 19, 25, 3, 2, 7, 1, 17] |
| 703 | ); |
| 704 | |
| 705 | assert_eq!(heap.pop(), Some(100)); |
| 706 | |
| 707 | assert_eq!( |
| 708 | heap.iter().cloned().collect::<Vec<_>>(), |
| 709 | [36, 25, 19, 17, 3, 2, 7, 1] |
| 710 | ); |
| 711 | |
| 712 | assert_eq!(heap.pop(), Some(36)); |
| 713 | assert_eq!(heap.pop(), Some(25)); |
| 714 | assert_eq!(heap.pop(), Some(19)); |
| 715 | assert_eq!(heap.pop(), Some(17)); |
| 716 | assert_eq!(heap.pop(), Some(7)); |
| 717 | assert_eq!(heap.pop(), Some(3)); |
| 718 | assert_eq!(heap.pop(), Some(2)); |
| 719 | assert_eq!(heap.pop(), Some(1)); |
| 720 | assert_eq!(heap.pop(), None); |
| 721 | |
| 722 | assert!(heap.peek_mut().is_none()); |
| 723 | |
| 724 | heap.push(1).unwrap(); |
| 725 | heap.push(9).unwrap(); |
| 726 | heap.push(10).unwrap(); |
| 727 | |
| 728 | { |
| 729 | let mut val = heap.peek_mut().unwrap(); |
| 730 | *val = 7; |
| 731 | } |
| 732 | |
| 733 | assert_eq!(heap.pop(), Some(9)); |
| 734 | assert_eq!(heap.pop(), Some(7)); |
| 735 | assert_eq!(heap.pop(), Some(1)); |
| 736 | assert_eq!(heap.pop(), None); |
| 737 | } |
| 738 | } |
| 739 | |