| 1 | use core::{cmp::Ordering, fmt, hash, iter::FromIterator, mem::MaybeUninit, ops, ptr, slice}; |
| 2 | |
| 3 | /// A fixed capacity [`Vec`](https://doc.rust-lang.org/std/vec/struct.Vec.html) |
| 4 | /// |
| 5 | /// # Examples |
| 6 | /// |
| 7 | /// ``` |
| 8 | /// use heapless::Vec; |
| 9 | /// |
| 10 | /// |
| 11 | /// // A vector with a fixed capacity of 8 elements allocated on the stack |
| 12 | /// let mut vec = Vec::<_, 8>::new(); |
| 13 | /// vec.push(1); |
| 14 | /// vec.push(2); |
| 15 | /// |
| 16 | /// assert_eq!(vec.len(), 2); |
| 17 | /// assert_eq!(vec[0], 1); |
| 18 | /// |
| 19 | /// assert_eq!(vec.pop(), Some(2)); |
| 20 | /// assert_eq!(vec.len(), 1); |
| 21 | /// |
| 22 | /// vec[0] = 7; |
| 23 | /// assert_eq!(vec[0], 7); |
| 24 | /// |
| 25 | /// vec.extend([1, 2, 3].iter().cloned()); |
| 26 | /// |
| 27 | /// for x in &vec { |
| 28 | /// println!("{}" , x); |
| 29 | /// } |
| 30 | /// assert_eq!(*vec, [7, 1, 2, 3]); |
| 31 | /// ``` |
| 32 | pub struct Vec<T, const N: usize> { |
| 33 | // NOTE order is important for optimizations. the `len` first layout lets the compiler optimize |
| 34 | // `new` to: reserve stack space and zero the first word. With the fields in the reverse order |
| 35 | // the compiler optimizes `new` to `memclr`-ing the *entire* stack space, including the `buffer` |
| 36 | // field which should be left uninitialized. Optimizations were last checked with Rust 1.60 |
| 37 | len: usize, |
| 38 | |
| 39 | buffer: [MaybeUninit<T>; N], |
| 40 | } |
| 41 | |
| 42 | impl<T, const N: usize> Vec<T, N> { |
| 43 | const ELEM: MaybeUninit<T> = MaybeUninit::uninit(); |
| 44 | const INIT: [MaybeUninit<T>; N] = [Self::ELEM; N]; // important for optimization of `new` |
| 45 | |
| 46 | /// Constructs a new, empty vector with a fixed capacity of `N` |
| 47 | /// |
| 48 | /// # Examples |
| 49 | /// |
| 50 | /// ``` |
| 51 | /// use heapless::Vec; |
| 52 | /// |
| 53 | /// // allocate the vector on the stack |
| 54 | /// let mut x: Vec<u8, 16> = Vec::new(); |
| 55 | /// |
| 56 | /// // allocate the vector in a static variable |
| 57 | /// static mut X: Vec<u8, 16> = Vec::new(); |
| 58 | /// ``` |
| 59 | /// `Vec` `const` constructor; wrap the returned value in [`Vec`]. |
| 60 | pub const fn new() -> Self { |
| 61 | Self { |
| 62 | len: 0, |
| 63 | buffer: Self::INIT, |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | /// Constructs a new vector with a fixed capacity of `N` and fills it |
| 68 | /// with the provided slice. |
| 69 | /// |
| 70 | /// This is equivalent to the following code: |
| 71 | /// |
| 72 | /// ``` |
| 73 | /// use heapless::Vec; |
| 74 | /// |
| 75 | /// let mut v: Vec<u8, 16> = Vec::new(); |
| 76 | /// v.extend_from_slice(&[1, 2, 3]).unwrap(); |
| 77 | /// ``` |
| 78 | #[inline ] |
| 79 | pub fn from_slice(other: &[T]) -> Result<Self, ()> |
| 80 | where |
| 81 | T: Clone, |
| 82 | { |
| 83 | let mut v = Vec::new(); |
| 84 | v.extend_from_slice(other)?; |
| 85 | Ok(v) |
| 86 | } |
| 87 | |
| 88 | /// Clones a vec into a new vec |
| 89 | pub(crate) fn clone(&self) -> Self |
| 90 | where |
| 91 | T: Clone, |
| 92 | { |
| 93 | let mut new = Self::new(); |
| 94 | // avoid `extend_from_slice` as that introduces a runtime check / panicking branch |
| 95 | for elem in self { |
| 96 | unsafe { |
| 97 | new.push_unchecked(elem.clone()); |
| 98 | } |
| 99 | } |
| 100 | new |
| 101 | } |
| 102 | |
| 103 | /// Returns a raw pointer to the vector’s buffer. |
| 104 | pub fn as_ptr(&self) -> *const T { |
| 105 | self.buffer.as_ptr() as *const T |
| 106 | } |
| 107 | |
| 108 | /// Returns a raw pointer to the vector’s buffer, which may be mutated through. |
| 109 | pub fn as_mut_ptr(&mut self) -> *mut T { |
| 110 | self.buffer.as_mut_ptr() as *mut T |
| 111 | } |
| 112 | |
| 113 | /// Extracts a slice containing the entire vector. |
| 114 | /// |
| 115 | /// Equivalent to `&s[..]`. |
| 116 | /// |
| 117 | /// # Examples |
| 118 | /// |
| 119 | /// ``` |
| 120 | /// use heapless::Vec; |
| 121 | /// let buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap(); |
| 122 | /// assert_eq!(buffer.as_slice(), &[1, 2, 3, 5, 8]); |
| 123 | /// ``` |
| 124 | pub fn as_slice(&self) -> &[T] { |
| 125 | // NOTE(unsafe) avoid bound checks in the slicing operation |
| 126 | // &buffer[..self.len] |
| 127 | unsafe { slice::from_raw_parts(self.buffer.as_ptr() as *const T, self.len) } |
| 128 | } |
| 129 | |
| 130 | /// Returns the contents of the vector as an array of length `M` if the length |
| 131 | /// of the vector is exactly `M`, otherwise returns `Err(self)`. |
| 132 | /// |
| 133 | /// # Examples |
| 134 | /// |
| 135 | /// ``` |
| 136 | /// use heapless::Vec; |
| 137 | /// let buffer: Vec<u8, 42> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap(); |
| 138 | /// let array: [u8; 5] = buffer.into_array().unwrap(); |
| 139 | /// assert_eq!(array, [1, 2, 3, 5, 8]); |
| 140 | /// ``` |
| 141 | pub fn into_array<const M: usize>(self) -> Result<[T; M], Self> { |
| 142 | if self.len() == M { |
| 143 | // This is how the unstable `MaybeUninit::array_assume_init` method does it |
| 144 | let array = unsafe { (&self.buffer as *const _ as *const [T; M]).read() }; |
| 145 | |
| 146 | // We don't want `self`'s destructor to be called because that would drop all the |
| 147 | // items in the array |
| 148 | core::mem::forget(self); |
| 149 | |
| 150 | Ok(array) |
| 151 | } else { |
| 152 | Err(self) |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | /// Extracts a mutable slice containing the entire vector. |
| 157 | /// |
| 158 | /// Equivalent to `&mut s[..]`. |
| 159 | /// |
| 160 | /// # Examples |
| 161 | /// |
| 162 | /// ``` |
| 163 | /// use heapless::Vec; |
| 164 | /// let mut buffer: Vec<u8, 5> = Vec::from_slice(&[1, 2, 3, 5, 8]).unwrap(); |
| 165 | /// buffer[0] = 9; |
| 166 | /// assert_eq!(buffer.as_slice(), &[9, 2, 3, 5, 8]); |
| 167 | /// ``` |
| 168 | pub fn as_mut_slice(&mut self) -> &mut [T] { |
| 169 | // NOTE(unsafe) avoid bound checks in the slicing operation |
| 170 | // &mut buffer[..self.len] |
| 171 | unsafe { slice::from_raw_parts_mut(self.buffer.as_mut_ptr() as *mut T, self.len) } |
| 172 | } |
| 173 | |
| 174 | /// Returns the maximum number of elements the vector can hold. |
| 175 | pub const fn capacity(&self) -> usize { |
| 176 | N |
| 177 | } |
| 178 | |
| 179 | /// Clears the vector, removing all values. |
| 180 | pub fn clear(&mut self) { |
| 181 | self.truncate(0); |
| 182 | } |
| 183 | |
| 184 | /// Extends the vec from an iterator. |
| 185 | /// |
| 186 | /// # Panic |
| 187 | /// |
| 188 | /// Panics if the vec cannot hold all elements of the iterator. |
| 189 | pub fn extend<I>(&mut self, iter: I) |
| 190 | where |
| 191 | I: IntoIterator<Item = T>, |
| 192 | { |
| 193 | for elem in iter { |
| 194 | self.push(elem).ok().unwrap() |
| 195 | } |
| 196 | } |
| 197 | |
| 198 | /// Clones and appends all elements in a slice to the `Vec`. |
| 199 | /// |
| 200 | /// Iterates over the slice `other`, clones each element, and then appends |
| 201 | /// it to this `Vec`. The `other` vector is traversed in-order. |
| 202 | /// |
| 203 | /// # Examples |
| 204 | /// |
| 205 | /// ``` |
| 206 | /// use heapless::Vec; |
| 207 | /// |
| 208 | /// let mut vec = Vec::<u8, 8>::new(); |
| 209 | /// vec.push(1).unwrap(); |
| 210 | /// vec.extend_from_slice(&[2, 3, 4]).unwrap(); |
| 211 | /// assert_eq!(*vec, [1, 2, 3, 4]); |
| 212 | /// ``` |
| 213 | pub fn extend_from_slice(&mut self, other: &[T]) -> Result<(), ()> |
| 214 | where |
| 215 | T: Clone, |
| 216 | { |
| 217 | if self.len + other.len() > self.capacity() { |
| 218 | // won't fit in the `Vec`; don't modify anything and return an error |
| 219 | Err(()) |
| 220 | } else { |
| 221 | for elem in other { |
| 222 | unsafe { |
| 223 | self.push_unchecked(elem.clone()); |
| 224 | } |
| 225 | } |
| 226 | Ok(()) |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | /// Removes the last element from a vector and returns it, or `None` if it's empty |
| 231 | pub fn pop(&mut self) -> Option<T> { |
| 232 | if self.len != 0 { |
| 233 | Some(unsafe { self.pop_unchecked() }) |
| 234 | } else { |
| 235 | None |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | /// Appends an `item` to the back of the collection |
| 240 | /// |
| 241 | /// Returns back the `item` if the vector is full |
| 242 | pub fn push(&mut self, item: T) -> Result<(), T> { |
| 243 | if self.len < self.capacity() { |
| 244 | unsafe { self.push_unchecked(item) } |
| 245 | Ok(()) |
| 246 | } else { |
| 247 | Err(item) |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | /// Removes the last element from a vector and returns it |
| 252 | /// |
| 253 | /// # Safety |
| 254 | /// |
| 255 | /// This assumes the vec to have at least one element. |
| 256 | pub unsafe fn pop_unchecked(&mut self) -> T { |
| 257 | debug_assert!(!self.is_empty()); |
| 258 | |
| 259 | self.len -= 1; |
| 260 | (self.buffer.get_unchecked_mut(self.len).as_ptr() as *const T).read() |
| 261 | } |
| 262 | |
| 263 | /// Appends an `item` to the back of the collection |
| 264 | /// |
| 265 | /// # Safety |
| 266 | /// |
| 267 | /// This assumes the vec is not full. |
| 268 | pub unsafe fn push_unchecked(&mut self, item: T) { |
| 269 | // NOTE(ptr::write) the memory slot that we are about to write to is uninitialized. We |
| 270 | // use `ptr::write` to avoid running `T`'s destructor on the uninitialized memory |
| 271 | debug_assert!(!self.is_full()); |
| 272 | |
| 273 | *self.buffer.get_unchecked_mut(self.len) = MaybeUninit::new(item); |
| 274 | |
| 275 | self.len += 1; |
| 276 | } |
| 277 | |
| 278 | /// Shortens the vector, keeping the first `len` elements and dropping the rest. |
| 279 | pub fn truncate(&mut self, len: usize) { |
| 280 | // This is safe because: |
| 281 | // |
| 282 | // * the slice passed to `drop_in_place` is valid; the `len > self.len` |
| 283 | // case avoids creating an invalid slice, and |
| 284 | // * the `len` of the vector is shrunk before calling `drop_in_place`, |
| 285 | // such that no value will be dropped twice in case `drop_in_place` |
| 286 | // were to panic once (if it panics twice, the program aborts). |
| 287 | unsafe { |
| 288 | // Note: It's intentional that this is `>` and not `>=`. |
| 289 | // Changing it to `>=` has negative performance |
| 290 | // implications in some cases. See rust-lang/rust#78884 for more. |
| 291 | if len > self.len { |
| 292 | return; |
| 293 | } |
| 294 | let remaining_len = self.len - len; |
| 295 | let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len); |
| 296 | self.len = len; |
| 297 | ptr::drop_in_place(s); |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | /// Resizes the Vec in-place so that len is equal to new_len. |
| 302 | /// |
| 303 | /// If new_len is greater than len, the Vec is extended by the |
| 304 | /// difference, with each additional slot filled with value. If |
| 305 | /// new_len is less than len, the Vec is simply truncated. |
| 306 | /// |
| 307 | /// See also [`resize_default`](Self::resize_default). |
| 308 | pub fn resize(&mut self, new_len: usize, value: T) -> Result<(), ()> |
| 309 | where |
| 310 | T: Clone, |
| 311 | { |
| 312 | if new_len > self.capacity() { |
| 313 | return Err(()); |
| 314 | } |
| 315 | |
| 316 | if new_len > self.len { |
| 317 | while self.len < new_len { |
| 318 | self.push(value.clone()).ok(); |
| 319 | } |
| 320 | } else { |
| 321 | self.truncate(new_len); |
| 322 | } |
| 323 | |
| 324 | Ok(()) |
| 325 | } |
| 326 | |
| 327 | /// Resizes the `Vec` in-place so that `len` is equal to `new_len`. |
| 328 | /// |
| 329 | /// If `new_len` is greater than `len`, the `Vec` is extended by the |
| 330 | /// difference, with each additional slot filled with `Default::default()`. |
| 331 | /// If `new_len` is less than `len`, the `Vec` is simply truncated. |
| 332 | /// |
| 333 | /// See also [`resize`](Self::resize). |
| 334 | pub fn resize_default(&mut self, new_len: usize) -> Result<(), ()> |
| 335 | where |
| 336 | T: Clone + Default, |
| 337 | { |
| 338 | self.resize(new_len, T::default()) |
| 339 | } |
| 340 | |
| 341 | /// Forces the length of the vector to `new_len`. |
| 342 | /// |
| 343 | /// This is a low-level operation that maintains none of the normal |
| 344 | /// invariants of the type. Normally changing the length of a vector |
| 345 | /// is done using one of the safe operations instead, such as |
| 346 | /// [`truncate`], [`resize`], [`extend`], or [`clear`]. |
| 347 | /// |
| 348 | /// [`truncate`]: Self::truncate |
| 349 | /// [`resize`]: Self::resize |
| 350 | /// [`extend`]: core::iter::Extend |
| 351 | /// [`clear`]: Self::clear |
| 352 | /// |
| 353 | /// # Safety |
| 354 | /// |
| 355 | /// - `new_len` must be less than or equal to [`capacity()`]. |
| 356 | /// - The elements at `old_len..new_len` must be initialized. |
| 357 | /// |
| 358 | /// [`capacity()`]: Self::capacity |
| 359 | /// |
| 360 | /// # Examples |
| 361 | /// |
| 362 | /// This method can be useful for situations in which the vector |
| 363 | /// is serving as a buffer for other code, particularly over FFI: |
| 364 | /// |
| 365 | /// ```no_run |
| 366 | /// # #![allow (dead_code)] |
| 367 | /// use heapless::Vec; |
| 368 | /// |
| 369 | /// # // This is just a minimal skeleton for the doc example; |
| 370 | /// # // don't use this as a starting point for a real library. |
| 371 | /// # pub struct StreamWrapper { strm: *mut core::ffi::c_void } |
| 372 | /// # const Z_OK: i32 = 0; |
| 373 | /// # extern "C" { |
| 374 | /// # fn deflateGetDictionary( |
| 375 | /// # strm: *mut core::ffi::c_void, |
| 376 | /// # dictionary: *mut u8, |
| 377 | /// # dictLength: *mut usize, |
| 378 | /// # ) -> i32; |
| 379 | /// # } |
| 380 | /// # impl StreamWrapper { |
| 381 | /// pub fn get_dictionary(&self) -> Option<Vec<u8, 32768>> { |
| 382 | /// // Per the FFI method's docs, "32768 bytes is always enough". |
| 383 | /// let mut dict = Vec::new(); |
| 384 | /// let mut dict_length = 0; |
| 385 | /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that: |
| 386 | /// // 1. `dict_length` elements were initialized. |
| 387 | /// // 2. `dict_length` <= the capacity (32_768) |
| 388 | /// // which makes `set_len` safe to call. |
| 389 | /// unsafe { |
| 390 | /// // Make the FFI call... |
| 391 | /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length); |
| 392 | /// if r == Z_OK { |
| 393 | /// // ...and update the length to what was initialized. |
| 394 | /// dict.set_len(dict_length); |
| 395 | /// Some(dict) |
| 396 | /// } else { |
| 397 | /// None |
| 398 | /// } |
| 399 | /// } |
| 400 | /// } |
| 401 | /// # } |
| 402 | /// ``` |
| 403 | /// |
| 404 | /// While the following example is sound, there is a memory leak since |
| 405 | /// the inner vectors were not freed prior to the `set_len` call: |
| 406 | /// |
| 407 | /// ``` |
| 408 | /// use core::iter::FromIterator; |
| 409 | /// use heapless::Vec; |
| 410 | /// |
| 411 | /// let mut vec = Vec::<Vec<u8, 3>, 3>::from_iter( |
| 412 | /// [ |
| 413 | /// Vec::from_iter([1, 0, 0].iter().cloned()), |
| 414 | /// Vec::from_iter([0, 1, 0].iter().cloned()), |
| 415 | /// Vec::from_iter([0, 0, 1].iter().cloned()), |
| 416 | /// ] |
| 417 | /// .iter() |
| 418 | /// .cloned() |
| 419 | /// ); |
| 420 | /// // SAFETY: |
| 421 | /// // 1. `old_len..0` is empty so no elements need to be initialized. |
| 422 | /// // 2. `0 <= capacity` always holds whatever `capacity` is. |
| 423 | /// unsafe { |
| 424 | /// vec.set_len(0); |
| 425 | /// } |
| 426 | /// ``` |
| 427 | /// |
| 428 | /// Normally, here, one would use [`clear`] instead to correctly drop |
| 429 | /// the contents and thus not leak memory. |
| 430 | pub unsafe fn set_len(&mut self, new_len: usize) { |
| 431 | debug_assert!(new_len <= self.capacity()); |
| 432 | |
| 433 | self.len = new_len |
| 434 | } |
| 435 | |
| 436 | /// Removes an element from the vector and returns it. |
| 437 | /// |
| 438 | /// The removed element is replaced by the last element of the vector. |
| 439 | /// |
| 440 | /// This does not preserve ordering, but is O(1). |
| 441 | /// |
| 442 | /// # Panics |
| 443 | /// |
| 444 | /// Panics if `index` is out of bounds. |
| 445 | /// |
| 446 | /// # Examples |
| 447 | /// |
| 448 | /// ``` |
| 449 | /// use heapless::Vec; |
| 450 | ///// use heapless::consts::*; |
| 451 | /// |
| 452 | /// let mut v: Vec<_, 8> = Vec::new(); |
| 453 | /// v.push("foo" ).unwrap(); |
| 454 | /// v.push("bar" ).unwrap(); |
| 455 | /// v.push("baz" ).unwrap(); |
| 456 | /// v.push("qux" ).unwrap(); |
| 457 | /// |
| 458 | /// assert_eq!(v.swap_remove(1), "bar" ); |
| 459 | /// assert_eq!(&*v, ["foo" , "qux" , "baz" ]); |
| 460 | /// |
| 461 | /// assert_eq!(v.swap_remove(0), "foo" ); |
| 462 | /// assert_eq!(&*v, ["baz" , "qux" ]); |
| 463 | /// ``` |
| 464 | pub fn swap_remove(&mut self, index: usize) -> T { |
| 465 | assert!(index < self.len); |
| 466 | unsafe { self.swap_remove_unchecked(index) } |
| 467 | } |
| 468 | |
| 469 | /// Removes an element from the vector and returns it. |
| 470 | /// |
| 471 | /// The removed element is replaced by the last element of the vector. |
| 472 | /// |
| 473 | /// This does not preserve ordering, but is O(1). |
| 474 | /// |
| 475 | /// # Safety |
| 476 | /// |
| 477 | /// Assumes `index` within bounds. |
| 478 | /// |
| 479 | /// # Examples |
| 480 | /// |
| 481 | /// ``` |
| 482 | /// use heapless::Vec; |
| 483 | /// |
| 484 | /// let mut v: Vec<_, 8> = Vec::new(); |
| 485 | /// v.push("foo" ).unwrap(); |
| 486 | /// v.push("bar" ).unwrap(); |
| 487 | /// v.push("baz" ).unwrap(); |
| 488 | /// v.push("qux" ).unwrap(); |
| 489 | /// |
| 490 | /// assert_eq!(unsafe { v.swap_remove_unchecked(1) }, "bar" ); |
| 491 | /// assert_eq!(&*v, ["foo" , "qux" , "baz" ]); |
| 492 | /// |
| 493 | /// assert_eq!(unsafe { v.swap_remove_unchecked(0) }, "foo" ); |
| 494 | /// assert_eq!(&*v, ["baz" , "qux" ]); |
| 495 | /// ``` |
| 496 | pub unsafe fn swap_remove_unchecked(&mut self, index: usize) -> T { |
| 497 | let length = self.len(); |
| 498 | debug_assert!(index < length); |
| 499 | let value = ptr::read(self.as_ptr().add(index)); |
| 500 | let base_ptr = self.as_mut_ptr(); |
| 501 | ptr::copy(base_ptr.add(length - 1), base_ptr.add(index), 1); |
| 502 | self.len -= 1; |
| 503 | value |
| 504 | } |
| 505 | |
| 506 | /// Returns true if the vec is full |
| 507 | #[inline ] |
| 508 | pub fn is_full(&self) -> bool { |
| 509 | self.len == self.capacity() |
| 510 | } |
| 511 | |
| 512 | /// Returns true if the vec is empty |
| 513 | #[inline ] |
| 514 | pub fn is_empty(&self) -> bool { |
| 515 | self.len == 0 |
| 516 | } |
| 517 | |
| 518 | /// Returns `true` if `needle` is a prefix of the Vec. |
| 519 | /// |
| 520 | /// Always returns `true` if `needle` is an empty slice. |
| 521 | /// |
| 522 | /// # Examples |
| 523 | /// |
| 524 | /// ``` |
| 525 | /// use heapless::Vec; |
| 526 | /// |
| 527 | /// let v: Vec<_, 8> = Vec::from_slice(b"abc" ).unwrap(); |
| 528 | /// assert_eq!(v.starts_with(b"" ), true); |
| 529 | /// assert_eq!(v.starts_with(b"ab" ), true); |
| 530 | /// assert_eq!(v.starts_with(b"bc" ), false); |
| 531 | /// ``` |
| 532 | #[inline ] |
| 533 | pub fn starts_with(&self, needle: &[T]) -> bool |
| 534 | where |
| 535 | T: PartialEq, |
| 536 | { |
| 537 | let n = needle.len(); |
| 538 | self.len >= n && needle == &self[..n] |
| 539 | } |
| 540 | |
| 541 | /// Returns `true` if `needle` is a suffix of the Vec. |
| 542 | /// |
| 543 | /// Always returns `true` if `needle` is an empty slice. |
| 544 | /// |
| 545 | /// # Examples |
| 546 | /// |
| 547 | /// ``` |
| 548 | /// use heapless::Vec; |
| 549 | /// |
| 550 | /// let v: Vec<_, 8> = Vec::from_slice(b"abc" ).unwrap(); |
| 551 | /// assert_eq!(v.ends_with(b"" ), true); |
| 552 | /// assert_eq!(v.ends_with(b"ab" ), false); |
| 553 | /// assert_eq!(v.ends_with(b"bc" ), true); |
| 554 | /// ``` |
| 555 | #[inline ] |
| 556 | pub fn ends_with(&self, needle: &[T]) -> bool |
| 557 | where |
| 558 | T: PartialEq, |
| 559 | { |
| 560 | let (v, n) = (self.len(), needle.len()); |
| 561 | v >= n && needle == &self[v - n..] |
| 562 | } |
| 563 | |
| 564 | /// Inserts an element at position `index` within the vector, shifting all |
| 565 | /// elements after it to the right. |
| 566 | /// |
| 567 | /// Returns back the `element` if the vector is full. |
| 568 | /// |
| 569 | /// # Panics |
| 570 | /// |
| 571 | /// Panics if `index > len`. |
| 572 | /// |
| 573 | /// # Examples |
| 574 | /// |
| 575 | /// ``` |
| 576 | /// use heapless::Vec; |
| 577 | /// |
| 578 | /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap(); |
| 579 | /// vec.insert(1, 4); |
| 580 | /// assert_eq!(vec, [1, 4, 2, 3]); |
| 581 | /// vec.insert(4, 5); |
| 582 | /// assert_eq!(vec, [1, 4, 2, 3, 5]); |
| 583 | /// ``` |
| 584 | pub fn insert(&mut self, index: usize, element: T) -> Result<(), T> { |
| 585 | let len = self.len(); |
| 586 | if index > len { |
| 587 | panic!( |
| 588 | "insertion index (is {}) should be <= len (is {})" , |
| 589 | index, len |
| 590 | ); |
| 591 | } |
| 592 | |
| 593 | // check there's space for the new element |
| 594 | if self.is_full() { |
| 595 | return Err(element); |
| 596 | } |
| 597 | |
| 598 | unsafe { |
| 599 | // infallible |
| 600 | // The spot to put the new value |
| 601 | { |
| 602 | let p = self.as_mut_ptr().add(index); |
| 603 | // Shift everything over to make space. (Duplicating the |
| 604 | // `index`th element into two consecutive places.) |
| 605 | ptr::copy(p, p.offset(1), len - index); |
| 606 | // Write it in, overwriting the first copy of the `index`th |
| 607 | // element. |
| 608 | ptr::write(p, element); |
| 609 | } |
| 610 | self.set_len(len + 1); |
| 611 | } |
| 612 | |
| 613 | Ok(()) |
| 614 | } |
| 615 | |
| 616 | /// Removes and returns the element at position `index` within the vector, |
| 617 | /// shifting all elements after it to the left. |
| 618 | /// |
| 619 | /// Note: Because this shifts over the remaining elements, it has a |
| 620 | /// worst-case performance of *O*(*n*). If you don't need the order of |
| 621 | /// elements to be preserved, use [`swap_remove`] instead. If you'd like to |
| 622 | /// remove elements from the beginning of the `Vec`, consider using |
| 623 | /// [`Deque::pop_front`] instead. |
| 624 | /// |
| 625 | /// [`swap_remove`]: Vec::swap_remove |
| 626 | /// [`Deque::pop_front`]: crate::Deque::pop_front |
| 627 | /// |
| 628 | /// # Panics |
| 629 | /// |
| 630 | /// Panics if `index` is out of bounds. |
| 631 | /// |
| 632 | /// # Examples |
| 633 | /// |
| 634 | /// ``` |
| 635 | /// use heapless::Vec; |
| 636 | /// |
| 637 | /// let mut v: Vec<_, 8> = Vec::from_slice(&[1, 2, 3]).unwrap(); |
| 638 | /// assert_eq!(v.remove(1), 2); |
| 639 | /// assert_eq!(v, [1, 3]); |
| 640 | /// ``` |
| 641 | pub fn remove(&mut self, index: usize) -> T { |
| 642 | let len = self.len(); |
| 643 | if index >= len { |
| 644 | panic!("removal index (is {}) should be < len (is {})" , index, len); |
| 645 | } |
| 646 | unsafe { |
| 647 | // infallible |
| 648 | let ret; |
| 649 | { |
| 650 | // the place we are taking from. |
| 651 | let ptr = self.as_mut_ptr().add(index); |
| 652 | // copy it out, unsafely having a copy of the value on |
| 653 | // the stack and in the vector at the same time. |
| 654 | ret = ptr::read(ptr); |
| 655 | |
| 656 | // Shift everything down to fill in that spot. |
| 657 | ptr::copy(ptr.offset(1), ptr, len - index - 1); |
| 658 | } |
| 659 | self.set_len(len - 1); |
| 660 | ret |
| 661 | } |
| 662 | } |
| 663 | |
| 664 | /// Retains only the elements specified by the predicate. |
| 665 | /// |
| 666 | /// In other words, remove all elements `e` for which `f(&e)` returns `false`. |
| 667 | /// This method operates in place, visiting each element exactly once in the |
| 668 | /// original order, and preserves the order of the retained elements. |
| 669 | /// |
| 670 | /// # Examples |
| 671 | /// |
| 672 | /// ``` |
| 673 | /// use heapless::Vec; |
| 674 | /// |
| 675 | /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap(); |
| 676 | /// vec.retain(|&x| x % 2 == 0); |
| 677 | /// assert_eq!(vec, [2, 4]); |
| 678 | /// ``` |
| 679 | /// |
| 680 | /// Because the elements are visited exactly once in the original order, |
| 681 | /// external state may be used to decide which elements to keep. |
| 682 | /// |
| 683 | /// ``` |
| 684 | /// use heapless::Vec; |
| 685 | /// |
| 686 | /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4, 5]).unwrap(); |
| 687 | /// let keep = [false, true, true, false, true]; |
| 688 | /// let mut iter = keep.iter(); |
| 689 | /// vec.retain(|_| *iter.next().unwrap()); |
| 690 | /// assert_eq!(vec, [2, 3, 5]); |
| 691 | /// ``` |
| 692 | pub fn retain<F>(&mut self, mut f: F) |
| 693 | where |
| 694 | F: FnMut(&T) -> bool, |
| 695 | { |
| 696 | self.retain_mut(|elem| f(elem)); |
| 697 | } |
| 698 | |
| 699 | /// Retains only the elements specified by the predicate, passing a mutable reference to it. |
| 700 | /// |
| 701 | /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`. |
| 702 | /// This method operates in place, visiting each element exactly once in the |
| 703 | /// original order, and preserves the order of the retained elements. |
| 704 | /// |
| 705 | /// # Examples |
| 706 | /// |
| 707 | /// ``` |
| 708 | /// use heapless::Vec; |
| 709 | /// |
| 710 | /// let mut vec: Vec<_, 8> = Vec::from_slice(&[1, 2, 3, 4]).unwrap(); |
| 711 | /// vec.retain_mut(|x| if *x <= 3 { |
| 712 | /// *x += 1; |
| 713 | /// true |
| 714 | /// } else { |
| 715 | /// false |
| 716 | /// }); |
| 717 | /// assert_eq!(vec, [2, 3, 4]); |
| 718 | /// ``` |
| 719 | pub fn retain_mut<F>(&mut self, mut f: F) |
| 720 | where |
| 721 | F: FnMut(&mut T) -> bool, |
| 722 | { |
| 723 | let original_len = self.len(); |
| 724 | // Avoid double drop if the drop guard is not executed, |
| 725 | // since we may make some holes during the process. |
| 726 | unsafe { self.set_len(0) }; |
| 727 | |
| 728 | // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked] |
| 729 | // |<- processed len ->| ^- next to check |
| 730 | // |<- deleted cnt ->| |
| 731 | // |<- original_len ->| |
| 732 | // Kept: Elements which predicate returns true on. |
| 733 | // Hole: Moved or dropped element slot. |
| 734 | // Unchecked: Unchecked valid elements. |
| 735 | // |
| 736 | // This drop guard will be invoked when predicate or `drop` of element panicked. |
| 737 | // It shifts unchecked elements to cover holes and `set_len` to the correct length. |
| 738 | // In cases when predicate and `drop` never panick, it will be optimized out. |
| 739 | struct BackshiftOnDrop<'a, T, const N: usize> { |
| 740 | v: &'a mut Vec<T, N>, |
| 741 | processed_len: usize, |
| 742 | deleted_cnt: usize, |
| 743 | original_len: usize, |
| 744 | } |
| 745 | |
| 746 | impl<T, const N: usize> Drop for BackshiftOnDrop<'_, T, N> { |
| 747 | fn drop(&mut self) { |
| 748 | if self.deleted_cnt > 0 { |
| 749 | // SAFETY: Trailing unchecked items must be valid since we never touch them. |
| 750 | unsafe { |
| 751 | ptr::copy( |
| 752 | self.v.as_ptr().add(self.processed_len), |
| 753 | self.v |
| 754 | .as_mut_ptr() |
| 755 | .add(self.processed_len - self.deleted_cnt), |
| 756 | self.original_len - self.processed_len, |
| 757 | ); |
| 758 | } |
| 759 | } |
| 760 | // SAFETY: After filling holes, all items are in contiguous memory. |
| 761 | unsafe { |
| 762 | self.v.set_len(self.original_len - self.deleted_cnt); |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | |
| 767 | let mut g = BackshiftOnDrop { |
| 768 | v: self, |
| 769 | processed_len: 0, |
| 770 | deleted_cnt: 0, |
| 771 | original_len, |
| 772 | }; |
| 773 | |
| 774 | fn process_loop<F, T, const N: usize, const DELETED: bool>( |
| 775 | original_len: usize, |
| 776 | f: &mut F, |
| 777 | g: &mut BackshiftOnDrop<'_, T, N>, |
| 778 | ) where |
| 779 | F: FnMut(&mut T) -> bool, |
| 780 | { |
| 781 | while g.processed_len != original_len { |
| 782 | let p = g.v.as_mut_ptr(); |
| 783 | // SAFETY: Unchecked element must be valid. |
| 784 | let cur = unsafe { &mut *p.add(g.processed_len) }; |
| 785 | if !f(cur) { |
| 786 | // Advance early to avoid double drop if `drop_in_place` panicked. |
| 787 | g.processed_len += 1; |
| 788 | g.deleted_cnt += 1; |
| 789 | // SAFETY: We never touch this element again after dropped. |
| 790 | unsafe { ptr::drop_in_place(cur) }; |
| 791 | // We already advanced the counter. |
| 792 | if DELETED { |
| 793 | continue; |
| 794 | } else { |
| 795 | break; |
| 796 | } |
| 797 | } |
| 798 | if DELETED { |
| 799 | // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element. |
| 800 | // We use copy for move, and never touch this element again. |
| 801 | unsafe { |
| 802 | let hole_slot = p.add(g.processed_len - g.deleted_cnt); |
| 803 | ptr::copy_nonoverlapping(cur, hole_slot, 1); |
| 804 | } |
| 805 | } |
| 806 | g.processed_len += 1; |
| 807 | } |
| 808 | } |
| 809 | |
| 810 | // Stage 1: Nothing was deleted. |
| 811 | process_loop::<F, T, N, false>(original_len, &mut f, &mut g); |
| 812 | |
| 813 | // Stage 2: Some elements were deleted. |
| 814 | process_loop::<F, T, N, true>(original_len, &mut f, &mut g); |
| 815 | |
| 816 | // All item are processed. This can be optimized to `set_len` by LLVM. |
| 817 | drop(g); |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | // Trait implementations |
| 822 | |
| 823 | impl<T, const N: usize> Default for Vec<T, N> { |
| 824 | fn default() -> Self { |
| 825 | Self::new() |
| 826 | } |
| 827 | } |
| 828 | |
| 829 | impl<T, const N: usize> fmt::Debug for Vec<T, N> |
| 830 | where |
| 831 | T: fmt::Debug, |
| 832 | { |
| 833 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 834 | <[T] as fmt::Debug>::fmt(self, f) |
| 835 | } |
| 836 | } |
| 837 | |
| 838 | impl<const N: usize> fmt::Write for Vec<u8, N> { |
| 839 | fn write_str(&mut self, s: &str) -> fmt::Result { |
| 840 | match self.extend_from_slice(s.as_bytes()) { |
| 841 | Ok(()) => Ok(()), |
| 842 | Err(_) => Err(fmt::Error), |
| 843 | } |
| 844 | } |
| 845 | } |
| 846 | |
| 847 | impl<T, const N: usize> Drop for Vec<T, N> { |
| 848 | fn drop(&mut self) { |
| 849 | // We drop each element used in the vector by turning into a &mut[T] |
| 850 | unsafe { |
| 851 | ptr::drop_in_place(self.as_mut_slice()); |
| 852 | } |
| 853 | } |
| 854 | } |
| 855 | |
| 856 | impl<'a, T: Clone, const N: usize> TryFrom<&'a [T]> for Vec<T, N> { |
| 857 | type Error = (); |
| 858 | |
| 859 | fn try_from(slice: &'a [T]) -> Result<Self, Self::Error> { |
| 860 | Vec::from_slice(slice) |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | impl<T, const N: usize> Extend<T> for Vec<T, N> { |
| 865 | fn extend<I>(&mut self, iter: I) |
| 866 | where |
| 867 | I: IntoIterator<Item = T>, |
| 868 | { |
| 869 | self.extend(iter) |
| 870 | } |
| 871 | } |
| 872 | |
| 873 | impl<'a, T, const N: usize> Extend<&'a T> for Vec<T, N> |
| 874 | where |
| 875 | T: 'a + Copy, |
| 876 | { |
| 877 | fn extend<I>(&mut self, iter: I) |
| 878 | where |
| 879 | I: IntoIterator<Item = &'a T>, |
| 880 | { |
| 881 | self.extend(iter.into_iter().cloned()) |
| 882 | } |
| 883 | } |
| 884 | |
| 885 | impl<T, const N: usize> hash::Hash for Vec<T, N> |
| 886 | where |
| 887 | T: core::hash::Hash, |
| 888 | { |
| 889 | fn hash<H: hash::Hasher>(&self, state: &mut H) { |
| 890 | <[T] as hash::Hash>::hash(self, state) |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | impl<'a, T, const N: usize> IntoIterator for &'a Vec<T, N> { |
| 895 | type Item = &'a T; |
| 896 | type IntoIter = slice::Iter<'a, T>; |
| 897 | |
| 898 | fn into_iter(self) -> Self::IntoIter { |
| 899 | self.iter() |
| 900 | } |
| 901 | } |
| 902 | |
| 903 | impl<'a, T, const N: usize> IntoIterator for &'a mut Vec<T, N> { |
| 904 | type Item = &'a mut T; |
| 905 | type IntoIter = slice::IterMut<'a, T>; |
| 906 | |
| 907 | fn into_iter(self) -> Self::IntoIter { |
| 908 | self.iter_mut() |
| 909 | } |
| 910 | } |
| 911 | |
| 912 | impl<T, const N: usize> FromIterator<T> for Vec<T, N> { |
| 913 | fn from_iter<I>(iter: I) -> Self |
| 914 | where |
| 915 | I: IntoIterator<Item = T>, |
| 916 | { |
| 917 | let mut vec: Vec = Vec::new(); |
| 918 | for i: T in iter { |
| 919 | vec.push(i).ok().expect(msg:"Vec::from_iter overflow" ); |
| 920 | } |
| 921 | vec |
| 922 | } |
| 923 | } |
| 924 | |
| 925 | /// An iterator that moves out of an [`Vec`][`Vec`]. |
| 926 | /// |
| 927 | /// This struct is created by calling the `into_iter` method on [`Vec`][`Vec`]. |
| 928 | pub struct IntoIter<T, const N: usize> { |
| 929 | vec: Vec<T, N>, |
| 930 | next: usize, |
| 931 | } |
| 932 | |
| 933 | impl<T, const N: usize> Iterator for IntoIter<T, N> { |
| 934 | type Item = T; |
| 935 | fn next(&mut self) -> Option<Self::Item> { |
| 936 | if self.next < self.vec.len() { |
| 937 | let item: T = unsafe { |
| 938 | (self.vec.buffer.get_unchecked_mut(self.next).as_ptr() as *const T).read() |
| 939 | }; |
| 940 | self.next += 1; |
| 941 | Some(item) |
| 942 | } else { |
| 943 | None |
| 944 | } |
| 945 | } |
| 946 | } |
| 947 | |
| 948 | impl<T, const N: usize> Clone for IntoIter<T, N> |
| 949 | where |
| 950 | T: Clone, |
| 951 | { |
| 952 | fn clone(&self) -> Self { |
| 953 | let mut vec: Vec = Vec::new(); |
| 954 | |
| 955 | if self.next < self.vec.len() { |
| 956 | let s: &[T] = unsafe { |
| 957 | slice::from_raw_parts( |
| 958 | (self.vec.buffer.as_ptr() as *const T).add(self.next), |
| 959 | self.vec.len() - self.next, |
| 960 | ) |
| 961 | }; |
| 962 | vec.extend_from_slice(s).ok(); |
| 963 | } |
| 964 | |
| 965 | Self { vec, next: 0 } |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | impl<T, const N: usize> Drop for IntoIter<T, N> { |
| 970 | fn drop(&mut self) { |
| 971 | unsafe { |
| 972 | // Drop all the elements that have not been moved out of vec |
| 973 | ptr::drop_in_place(&mut self.vec.as_mut_slice()[self.next..]); |
| 974 | // Prevent dropping of other elements |
| 975 | self.vec.len = 0; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | |
| 980 | impl<T, const N: usize> IntoIterator for Vec<T, N> { |
| 981 | type Item = T; |
| 982 | type IntoIter = IntoIter<T, N>; |
| 983 | |
| 984 | fn into_iter(self) -> Self::IntoIter { |
| 985 | IntoIter { vec: self, next: 0 } |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | impl<A, B, const N1: usize, const N2: usize> PartialEq<Vec<B, N2>> for Vec<A, N1> |
| 990 | where |
| 991 | A: PartialEq<B>, |
| 992 | { |
| 993 | fn eq(&self, other: &Vec<B, N2>) -> bool { |
| 994 | <[A]>::eq(self, &**other) |
| 995 | } |
| 996 | } |
| 997 | |
| 998 | // Vec<A, N> == [B] |
| 999 | impl<A, B, const N: usize> PartialEq<[B]> for Vec<A, N> |
| 1000 | where |
| 1001 | A: PartialEq<B>, |
| 1002 | { |
| 1003 | fn eq(&self, other: &[B]) -> bool { |
| 1004 | <[A]>::eq(self, &other[..]) |
| 1005 | } |
| 1006 | } |
| 1007 | |
| 1008 | // [B] == Vec<A, N> |
| 1009 | impl<A, B, const N: usize> PartialEq<Vec<A, N>> for [B] |
| 1010 | where |
| 1011 | A: PartialEq<B>, |
| 1012 | { |
| 1013 | fn eq(&self, other: &Vec<A, N>) -> bool { |
| 1014 | <[A]>::eq(self:other, &self[..]) |
| 1015 | } |
| 1016 | } |
| 1017 | |
| 1018 | // Vec<A, N> == &[B] |
| 1019 | impl<A, B, const N: usize> PartialEq<&[B]> for Vec<A, N> |
| 1020 | where |
| 1021 | A: PartialEq<B>, |
| 1022 | { |
| 1023 | fn eq(&self, other: &&[B]) -> bool { |
| 1024 | <[A]>::eq(self, &other[..]) |
| 1025 | } |
| 1026 | } |
| 1027 | |
| 1028 | // &[B] == Vec<A, N> |
| 1029 | impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &[B] |
| 1030 | where |
| 1031 | A: PartialEq<B>, |
| 1032 | { |
| 1033 | fn eq(&self, other: &Vec<A, N>) -> bool { |
| 1034 | <[A]>::eq(self:other, &self[..]) |
| 1035 | } |
| 1036 | } |
| 1037 | |
| 1038 | // Vec<A, N> == &mut [B] |
| 1039 | impl<A, B, const N: usize> PartialEq<&mut [B]> for Vec<A, N> |
| 1040 | where |
| 1041 | A: PartialEq<B>, |
| 1042 | { |
| 1043 | fn eq(&self, other: &&mut [B]) -> bool { |
| 1044 | <[A]>::eq(self, &other[..]) |
| 1045 | } |
| 1046 | } |
| 1047 | |
| 1048 | // &mut [B] == Vec<A, N> |
| 1049 | impl<A, B, const N: usize> PartialEq<Vec<A, N>> for &mut [B] |
| 1050 | where |
| 1051 | A: PartialEq<B>, |
| 1052 | { |
| 1053 | fn eq(&self, other: &Vec<A, N>) -> bool { |
| 1054 | <[A]>::eq(self:other, &self[..]) |
| 1055 | } |
| 1056 | } |
| 1057 | |
| 1058 | // Vec<A, N> == [B; M] |
| 1059 | // Equality does not require equal capacity |
| 1060 | impl<A, B, const N: usize, const M: usize> PartialEq<[B; M]> for Vec<A, N> |
| 1061 | where |
| 1062 | A: PartialEq<B>, |
| 1063 | { |
| 1064 | fn eq(&self, other: &[B; M]) -> bool { |
| 1065 | <[A]>::eq(self, &other[..]) |
| 1066 | } |
| 1067 | } |
| 1068 | |
| 1069 | // [B; M] == Vec<A, N> |
| 1070 | // Equality does not require equal capacity |
| 1071 | impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for [B; M] |
| 1072 | where |
| 1073 | A: PartialEq<B>, |
| 1074 | { |
| 1075 | fn eq(&self, other: &Vec<A, N>) -> bool { |
| 1076 | <[A]>::eq(self:other, &self[..]) |
| 1077 | } |
| 1078 | } |
| 1079 | |
| 1080 | // Vec<A, N> == &[B; M] |
| 1081 | // Equality does not require equal capacity |
| 1082 | impl<A, B, const N: usize, const M: usize> PartialEq<&[B; M]> for Vec<A, N> |
| 1083 | where |
| 1084 | A: PartialEq<B>, |
| 1085 | { |
| 1086 | fn eq(&self, other: &&[B; M]) -> bool { |
| 1087 | <[A]>::eq(self, &other[..]) |
| 1088 | } |
| 1089 | } |
| 1090 | |
| 1091 | // &[B; M] == Vec<A, N> |
| 1092 | // Equality does not require equal capacity |
| 1093 | impl<A, B, const N: usize, const M: usize> PartialEq<Vec<A, N>> for &[B; M] |
| 1094 | where |
| 1095 | A: PartialEq<B>, |
| 1096 | { |
| 1097 | fn eq(&self, other: &Vec<A, N>) -> bool { |
| 1098 | <[A]>::eq(self:other, &self[..]) |
| 1099 | } |
| 1100 | } |
| 1101 | |
| 1102 | // Implements Eq if underlying data is Eq |
| 1103 | impl<T, const N: usize> Eq for Vec<T, N> where T: Eq {} |
| 1104 | |
| 1105 | impl<T, const N1: usize, const N2: usize> PartialOrd<Vec<T, N2>> for Vec<T, N1> |
| 1106 | where |
| 1107 | T: PartialOrd, |
| 1108 | { |
| 1109 | fn partial_cmp(&self, other: &Vec<T, N2>) -> Option<Ordering> { |
| 1110 | PartialOrd::partial_cmp(&**self, &**other) |
| 1111 | } |
| 1112 | } |
| 1113 | |
| 1114 | impl<T, const N: usize> Ord for Vec<T, N> |
| 1115 | where |
| 1116 | T: Ord, |
| 1117 | { |
| 1118 | #[inline ] |
| 1119 | fn cmp(&self, other: &Self) -> Ordering { |
| 1120 | Ord::cmp(&**self, &**other) |
| 1121 | } |
| 1122 | } |
| 1123 | |
| 1124 | impl<T, const N: usize> ops::Deref for Vec<T, N> { |
| 1125 | type Target = [T]; |
| 1126 | |
| 1127 | fn deref(&self) -> &[T] { |
| 1128 | self.as_slice() |
| 1129 | } |
| 1130 | } |
| 1131 | |
| 1132 | impl<T, const N: usize> ops::DerefMut for Vec<T, N> { |
| 1133 | fn deref_mut(&mut self) -> &mut [T] { |
| 1134 | self.as_mut_slice() |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | impl<T, const N: usize> AsRef<Vec<T, N>> for Vec<T, N> { |
| 1139 | #[inline ] |
| 1140 | fn as_ref(&self) -> &Self { |
| 1141 | self |
| 1142 | } |
| 1143 | } |
| 1144 | |
| 1145 | impl<T, const N: usize> AsMut<Vec<T, N>> for Vec<T, N> { |
| 1146 | #[inline ] |
| 1147 | fn as_mut(&mut self) -> &mut Self { |
| 1148 | self |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | impl<T, const N: usize> AsRef<[T]> for Vec<T, N> { |
| 1153 | #[inline ] |
| 1154 | fn as_ref(&self) -> &[T] { |
| 1155 | self |
| 1156 | } |
| 1157 | } |
| 1158 | |
| 1159 | impl<T, const N: usize> AsMut<[T]> for Vec<T, N> { |
| 1160 | #[inline ] |
| 1161 | fn as_mut(&mut self) -> &mut [T] { |
| 1162 | self |
| 1163 | } |
| 1164 | } |
| 1165 | |
| 1166 | impl<T, const N: usize> Clone for Vec<T, N> |
| 1167 | where |
| 1168 | T: Clone, |
| 1169 | { |
| 1170 | fn clone(&self) -> Self { |
| 1171 | self.clone() |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | #[cfg (test)] |
| 1176 | mod tests { |
| 1177 | use crate::Vec; |
| 1178 | use core::fmt::Write; |
| 1179 | |
| 1180 | #[test ] |
| 1181 | fn static_new() { |
| 1182 | static mut _V: Vec<i32, 4> = Vec::new(); |
| 1183 | } |
| 1184 | |
| 1185 | #[test ] |
| 1186 | fn stack_new() { |
| 1187 | let mut _v: Vec<i32, 4> = Vec::new(); |
| 1188 | } |
| 1189 | |
| 1190 | #[test ] |
| 1191 | fn is_full_empty() { |
| 1192 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1193 | |
| 1194 | assert!(v.is_empty()); |
| 1195 | assert!(!v.is_full()); |
| 1196 | |
| 1197 | v.push(1).unwrap(); |
| 1198 | assert!(!v.is_empty()); |
| 1199 | assert!(!v.is_full()); |
| 1200 | |
| 1201 | v.push(1).unwrap(); |
| 1202 | assert!(!v.is_empty()); |
| 1203 | assert!(!v.is_full()); |
| 1204 | |
| 1205 | v.push(1).unwrap(); |
| 1206 | assert!(!v.is_empty()); |
| 1207 | assert!(!v.is_full()); |
| 1208 | |
| 1209 | v.push(1).unwrap(); |
| 1210 | assert!(!v.is_empty()); |
| 1211 | assert!(v.is_full()); |
| 1212 | } |
| 1213 | |
| 1214 | #[test ] |
| 1215 | fn drop() { |
| 1216 | droppable!(); |
| 1217 | |
| 1218 | { |
| 1219 | let mut v: Vec<Droppable, 2> = Vec::new(); |
| 1220 | v.push(Droppable::new()).ok().unwrap(); |
| 1221 | v.push(Droppable::new()).ok().unwrap(); |
| 1222 | v.pop().unwrap(); |
| 1223 | } |
| 1224 | |
| 1225 | assert_eq!(Droppable::count(), 0); |
| 1226 | |
| 1227 | { |
| 1228 | let mut v: Vec<Droppable, 2> = Vec::new(); |
| 1229 | v.push(Droppable::new()).ok().unwrap(); |
| 1230 | v.push(Droppable::new()).ok().unwrap(); |
| 1231 | } |
| 1232 | |
| 1233 | assert_eq!(Droppable::count(), 0); |
| 1234 | } |
| 1235 | |
| 1236 | #[test ] |
| 1237 | fn eq() { |
| 1238 | let mut xs: Vec<i32, 4> = Vec::new(); |
| 1239 | let mut ys: Vec<i32, 8> = Vec::new(); |
| 1240 | |
| 1241 | assert_eq!(xs, ys); |
| 1242 | |
| 1243 | xs.push(1).unwrap(); |
| 1244 | ys.push(1).unwrap(); |
| 1245 | |
| 1246 | assert_eq!(xs, ys); |
| 1247 | } |
| 1248 | |
| 1249 | #[test ] |
| 1250 | fn cmp() { |
| 1251 | let mut xs: Vec<i32, 4> = Vec::new(); |
| 1252 | let mut ys: Vec<i32, 4> = Vec::new(); |
| 1253 | |
| 1254 | assert_eq!(xs, ys); |
| 1255 | |
| 1256 | xs.push(1).unwrap(); |
| 1257 | ys.push(2).unwrap(); |
| 1258 | |
| 1259 | assert!(xs < ys); |
| 1260 | } |
| 1261 | |
| 1262 | #[test ] |
| 1263 | fn cmp_heterogenous_size() { |
| 1264 | let mut xs: Vec<i32, 4> = Vec::new(); |
| 1265 | let mut ys: Vec<i32, 8> = Vec::new(); |
| 1266 | |
| 1267 | assert_eq!(xs, ys); |
| 1268 | |
| 1269 | xs.push(1).unwrap(); |
| 1270 | ys.push(2).unwrap(); |
| 1271 | |
| 1272 | assert!(xs < ys); |
| 1273 | } |
| 1274 | |
| 1275 | #[test ] |
| 1276 | fn cmp_with_arrays_and_slices() { |
| 1277 | let mut xs: Vec<i32, 12> = Vec::new(); |
| 1278 | xs.push(1).unwrap(); |
| 1279 | |
| 1280 | let array = [1]; |
| 1281 | |
| 1282 | assert_eq!(xs, array); |
| 1283 | assert_eq!(array, xs); |
| 1284 | |
| 1285 | assert_eq!(xs, array.as_slice()); |
| 1286 | assert_eq!(array.as_slice(), xs); |
| 1287 | |
| 1288 | assert_eq!(xs, &array); |
| 1289 | assert_eq!(&array, xs); |
| 1290 | |
| 1291 | let longer_array = [1; 20]; |
| 1292 | |
| 1293 | assert_ne!(xs, longer_array); |
| 1294 | assert_ne!(longer_array, xs); |
| 1295 | } |
| 1296 | |
| 1297 | #[test ] |
| 1298 | fn full() { |
| 1299 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1300 | |
| 1301 | v.push(0).unwrap(); |
| 1302 | v.push(1).unwrap(); |
| 1303 | v.push(2).unwrap(); |
| 1304 | v.push(3).unwrap(); |
| 1305 | |
| 1306 | assert!(v.push(4).is_err()); |
| 1307 | } |
| 1308 | |
| 1309 | #[test ] |
| 1310 | fn iter() { |
| 1311 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1312 | |
| 1313 | v.push(0).unwrap(); |
| 1314 | v.push(1).unwrap(); |
| 1315 | v.push(2).unwrap(); |
| 1316 | v.push(3).unwrap(); |
| 1317 | |
| 1318 | let mut items = v.iter(); |
| 1319 | |
| 1320 | assert_eq!(items.next(), Some(&0)); |
| 1321 | assert_eq!(items.next(), Some(&1)); |
| 1322 | assert_eq!(items.next(), Some(&2)); |
| 1323 | assert_eq!(items.next(), Some(&3)); |
| 1324 | assert_eq!(items.next(), None); |
| 1325 | } |
| 1326 | |
| 1327 | #[test ] |
| 1328 | fn iter_mut() { |
| 1329 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1330 | |
| 1331 | v.push(0).unwrap(); |
| 1332 | v.push(1).unwrap(); |
| 1333 | v.push(2).unwrap(); |
| 1334 | v.push(3).unwrap(); |
| 1335 | |
| 1336 | let mut items = v.iter_mut(); |
| 1337 | |
| 1338 | assert_eq!(items.next(), Some(&mut 0)); |
| 1339 | assert_eq!(items.next(), Some(&mut 1)); |
| 1340 | assert_eq!(items.next(), Some(&mut 2)); |
| 1341 | assert_eq!(items.next(), Some(&mut 3)); |
| 1342 | assert_eq!(items.next(), None); |
| 1343 | } |
| 1344 | |
| 1345 | #[test ] |
| 1346 | fn collect_from_iter() { |
| 1347 | let slice = &[1, 2, 3]; |
| 1348 | let vec: Vec<i32, 4> = slice.iter().cloned().collect(); |
| 1349 | assert_eq!(&vec, slice); |
| 1350 | } |
| 1351 | |
| 1352 | #[test ] |
| 1353 | #[should_panic ] |
| 1354 | fn collect_from_iter_overfull() { |
| 1355 | let slice = &[1, 2, 3]; |
| 1356 | let _vec = slice.iter().cloned().collect::<Vec<_, 2>>(); |
| 1357 | } |
| 1358 | |
| 1359 | #[test ] |
| 1360 | fn iter_move() { |
| 1361 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1362 | v.push(0).unwrap(); |
| 1363 | v.push(1).unwrap(); |
| 1364 | v.push(2).unwrap(); |
| 1365 | v.push(3).unwrap(); |
| 1366 | |
| 1367 | let mut items = v.into_iter(); |
| 1368 | |
| 1369 | assert_eq!(items.next(), Some(0)); |
| 1370 | assert_eq!(items.next(), Some(1)); |
| 1371 | assert_eq!(items.next(), Some(2)); |
| 1372 | assert_eq!(items.next(), Some(3)); |
| 1373 | assert_eq!(items.next(), None); |
| 1374 | } |
| 1375 | |
| 1376 | #[test ] |
| 1377 | fn iter_move_drop() { |
| 1378 | droppable!(); |
| 1379 | |
| 1380 | { |
| 1381 | let mut vec: Vec<Droppable, 2> = Vec::new(); |
| 1382 | vec.push(Droppable::new()).ok().unwrap(); |
| 1383 | vec.push(Droppable::new()).ok().unwrap(); |
| 1384 | let mut items = vec.into_iter(); |
| 1385 | // Move all |
| 1386 | let _ = items.next(); |
| 1387 | let _ = items.next(); |
| 1388 | } |
| 1389 | |
| 1390 | assert_eq!(Droppable::count(), 0); |
| 1391 | |
| 1392 | { |
| 1393 | let mut vec: Vec<Droppable, 2> = Vec::new(); |
| 1394 | vec.push(Droppable::new()).ok().unwrap(); |
| 1395 | vec.push(Droppable::new()).ok().unwrap(); |
| 1396 | let _items = vec.into_iter(); |
| 1397 | // Move none |
| 1398 | } |
| 1399 | |
| 1400 | assert_eq!(Droppable::count(), 0); |
| 1401 | |
| 1402 | { |
| 1403 | let mut vec: Vec<Droppable, 2> = Vec::new(); |
| 1404 | vec.push(Droppable::new()).ok().unwrap(); |
| 1405 | vec.push(Droppable::new()).ok().unwrap(); |
| 1406 | let mut items = vec.into_iter(); |
| 1407 | let _ = items.next(); // Move partly |
| 1408 | } |
| 1409 | |
| 1410 | assert_eq!(Droppable::count(), 0); |
| 1411 | } |
| 1412 | |
| 1413 | #[test ] |
| 1414 | fn push_and_pop() { |
| 1415 | let mut v: Vec<i32, 4> = Vec::new(); |
| 1416 | assert_eq!(v.len(), 0); |
| 1417 | |
| 1418 | assert_eq!(v.pop(), None); |
| 1419 | assert_eq!(v.len(), 0); |
| 1420 | |
| 1421 | v.push(0).unwrap(); |
| 1422 | assert_eq!(v.len(), 1); |
| 1423 | |
| 1424 | assert_eq!(v.pop(), Some(0)); |
| 1425 | assert_eq!(v.len(), 0); |
| 1426 | |
| 1427 | assert_eq!(v.pop(), None); |
| 1428 | assert_eq!(v.len(), 0); |
| 1429 | } |
| 1430 | |
| 1431 | #[test ] |
| 1432 | fn resize_size_limit() { |
| 1433 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1434 | |
| 1435 | v.resize(0, 0).unwrap(); |
| 1436 | v.resize(4, 0).unwrap(); |
| 1437 | v.resize(5, 0).err().expect("full" ); |
| 1438 | } |
| 1439 | |
| 1440 | #[test ] |
| 1441 | fn resize_length_cases() { |
| 1442 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1443 | |
| 1444 | assert_eq!(v.len(), 0); |
| 1445 | |
| 1446 | // Grow by 1 |
| 1447 | v.resize(1, 0).unwrap(); |
| 1448 | assert_eq!(v.len(), 1); |
| 1449 | |
| 1450 | // Grow by 2 |
| 1451 | v.resize(3, 0).unwrap(); |
| 1452 | assert_eq!(v.len(), 3); |
| 1453 | |
| 1454 | // Resize to current size |
| 1455 | v.resize(3, 0).unwrap(); |
| 1456 | assert_eq!(v.len(), 3); |
| 1457 | |
| 1458 | // Shrink by 1 |
| 1459 | v.resize(2, 0).unwrap(); |
| 1460 | assert_eq!(v.len(), 2); |
| 1461 | |
| 1462 | // Shrink by 2 |
| 1463 | v.resize(0, 0).unwrap(); |
| 1464 | assert_eq!(v.len(), 0); |
| 1465 | } |
| 1466 | |
| 1467 | #[test ] |
| 1468 | fn resize_contents() { |
| 1469 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1470 | |
| 1471 | // New entries take supplied value when growing |
| 1472 | v.resize(1, 17).unwrap(); |
| 1473 | assert_eq!(v[0], 17); |
| 1474 | |
| 1475 | // Old values aren't changed when growing |
| 1476 | v.resize(2, 18).unwrap(); |
| 1477 | assert_eq!(v[0], 17); |
| 1478 | assert_eq!(v[1], 18); |
| 1479 | |
| 1480 | // Old values aren't changed when length unchanged |
| 1481 | v.resize(2, 0).unwrap(); |
| 1482 | assert_eq!(v[0], 17); |
| 1483 | assert_eq!(v[1], 18); |
| 1484 | |
| 1485 | // Old values aren't changed when shrinking |
| 1486 | v.resize(1, 0).unwrap(); |
| 1487 | assert_eq!(v[0], 17); |
| 1488 | } |
| 1489 | |
| 1490 | #[test ] |
| 1491 | fn resize_default() { |
| 1492 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1493 | |
| 1494 | // resize_default is implemented using resize, so just check the |
| 1495 | // correct value is being written. |
| 1496 | v.resize_default(1).unwrap(); |
| 1497 | assert_eq!(v[0], 0); |
| 1498 | } |
| 1499 | |
| 1500 | #[test ] |
| 1501 | fn write() { |
| 1502 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1503 | write!(v, "{:x}" , 1234).unwrap(); |
| 1504 | assert_eq!(&v[..], b"4d2" ); |
| 1505 | } |
| 1506 | |
| 1507 | #[test ] |
| 1508 | fn extend_from_slice() { |
| 1509 | let mut v: Vec<u8, 4> = Vec::new(); |
| 1510 | assert_eq!(v.len(), 0); |
| 1511 | v.extend_from_slice(&[1, 2]).unwrap(); |
| 1512 | assert_eq!(v.len(), 2); |
| 1513 | assert_eq!(v.as_slice(), &[1, 2]); |
| 1514 | v.extend_from_slice(&[3]).unwrap(); |
| 1515 | assert_eq!(v.len(), 3); |
| 1516 | assert_eq!(v.as_slice(), &[1, 2, 3]); |
| 1517 | assert!(v.extend_from_slice(&[4, 5]).is_err()); |
| 1518 | assert_eq!(v.len(), 3); |
| 1519 | assert_eq!(v.as_slice(), &[1, 2, 3]); |
| 1520 | } |
| 1521 | |
| 1522 | #[test ] |
| 1523 | fn from_slice() { |
| 1524 | // Successful construction |
| 1525 | let v: Vec<u8, 4> = Vec::from_slice(&[1, 2, 3]).unwrap(); |
| 1526 | assert_eq!(v.len(), 3); |
| 1527 | assert_eq!(v.as_slice(), &[1, 2, 3]); |
| 1528 | |
| 1529 | // Slice too large |
| 1530 | assert!(Vec::<u8, 2>::from_slice(&[1, 2, 3]).is_err()); |
| 1531 | } |
| 1532 | |
| 1533 | #[test ] |
| 1534 | fn starts_with() { |
| 1535 | let v: Vec<_, 8> = Vec::from_slice(b"ab" ).unwrap(); |
| 1536 | assert!(v.starts_with(&[])); |
| 1537 | assert!(v.starts_with(b"" )); |
| 1538 | assert!(v.starts_with(b"a" )); |
| 1539 | assert!(v.starts_with(b"ab" )); |
| 1540 | assert!(!v.starts_with(b"abc" )); |
| 1541 | assert!(!v.starts_with(b"ba" )); |
| 1542 | assert!(!v.starts_with(b"b" )); |
| 1543 | } |
| 1544 | |
| 1545 | #[test ] |
| 1546 | fn ends_with() { |
| 1547 | let v: Vec<_, 8> = Vec::from_slice(b"ab" ).unwrap(); |
| 1548 | assert!(v.ends_with(&[])); |
| 1549 | assert!(v.ends_with(b"" )); |
| 1550 | assert!(v.ends_with(b"b" )); |
| 1551 | assert!(v.ends_with(b"ab" )); |
| 1552 | assert!(!v.ends_with(b"abc" )); |
| 1553 | assert!(!v.ends_with(b"ba" )); |
| 1554 | assert!(!v.ends_with(b"a" )); |
| 1555 | } |
| 1556 | |
| 1557 | #[test ] |
| 1558 | fn zero_capacity() { |
| 1559 | let mut v: Vec<u8, 0> = Vec::new(); |
| 1560 | // Validate capacity |
| 1561 | assert_eq!(v.capacity(), 0); |
| 1562 | |
| 1563 | // Make sure there is no capacity |
| 1564 | assert!(v.push(1).is_err()); |
| 1565 | |
| 1566 | // Validate length |
| 1567 | assert_eq!(v.len(), 0); |
| 1568 | |
| 1569 | // Validate pop |
| 1570 | assert_eq!(v.pop(), None); |
| 1571 | |
| 1572 | // Validate slice |
| 1573 | assert_eq!(v.as_slice(), &[]); |
| 1574 | |
| 1575 | // Validate empty |
| 1576 | assert!(v.is_empty()); |
| 1577 | |
| 1578 | // Validate full |
| 1579 | assert!(v.is_full()); |
| 1580 | } |
| 1581 | } |
| 1582 | |