1 | use std::cmp::Ordering; |
2 | use std::time::Duration; |
3 | |
4 | use crate::error::ImageResult; |
5 | use crate::RgbaImage; |
6 | |
7 | /// An implementation dependent iterator, reading the frames as requested |
8 | pub struct Frames<'a> { |
9 | iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>, |
10 | } |
11 | |
12 | impl<'a> Frames<'a> { |
13 | /// Creates a new `Frames` from an implementation specific iterator. |
14 | #[must_use ] |
15 | pub fn new(iterator: Box<dyn Iterator<Item = ImageResult<Frame>> + 'a>) -> Self { |
16 | Frames { iterator } |
17 | } |
18 | |
19 | /// Steps through the iterator from the current frame until the end and pushes each frame into |
20 | /// a `Vec`. |
21 | /// If en error is encountered that error is returned instead. |
22 | /// |
23 | /// Note: This is equivalent to `Frames::collect::<ImageResult<Vec<Frame>>>()` |
24 | pub fn collect_frames(self) -> ImageResult<Vec<Frame>> { |
25 | self.collect() |
26 | } |
27 | } |
28 | |
29 | impl Iterator for Frames<'_> { |
30 | type Item = ImageResult<Frame>; |
31 | |
32 | fn next(&mut self) -> Option<ImageResult<Frame>> { |
33 | self.iterator.next() |
34 | } |
35 | } |
36 | |
37 | /// A single animation frame |
38 | pub struct Frame { |
39 | /// Delay between the frames in milliseconds |
40 | delay: Delay, |
41 | /// x offset |
42 | left: u32, |
43 | /// y offset |
44 | top: u32, |
45 | buffer: RgbaImage, |
46 | } |
47 | |
48 | impl Clone for Frame { |
49 | fn clone(&self) -> Self { |
50 | Self { |
51 | delay: self.delay, |
52 | left: self.left, |
53 | top: self.top, |
54 | buffer: self.buffer.clone(), |
55 | } |
56 | } |
57 | |
58 | fn clone_from(&mut self, source: &Self) { |
59 | self.delay = source.delay; |
60 | self.left = source.left; |
61 | self.top = source.top; |
62 | self.buffer.clone_from(&source.buffer); |
63 | } |
64 | } |
65 | |
66 | /// The delay of a frame relative to the previous one. |
67 | #[derive (Clone, Copy, Debug, PartialEq, Eq, PartialOrd)] |
68 | pub struct Delay { |
69 | ratio: Ratio, |
70 | } |
71 | |
72 | impl Frame { |
73 | /// Constructs a new frame without any delay. |
74 | #[must_use ] |
75 | pub fn new(buffer: RgbaImage) -> Frame { |
76 | Frame { |
77 | delay: Delay::from_ratio(Ratio { numer: 0, denom: 1 }), |
78 | left: 0, |
79 | top: 0, |
80 | buffer, |
81 | } |
82 | } |
83 | |
84 | /// Constructs a new frame |
85 | #[must_use ] |
86 | pub fn from_parts(buffer: RgbaImage, left: u32, top: u32, delay: Delay) -> Frame { |
87 | Frame { |
88 | delay, |
89 | left, |
90 | top, |
91 | buffer, |
92 | } |
93 | } |
94 | |
95 | /// Delay of this frame |
96 | #[must_use ] |
97 | pub fn delay(&self) -> Delay { |
98 | self.delay |
99 | } |
100 | |
101 | /// Returns the image buffer |
102 | #[must_use ] |
103 | pub fn buffer(&self) -> &RgbaImage { |
104 | &self.buffer |
105 | } |
106 | |
107 | /// Returns a mutable image buffer |
108 | pub fn buffer_mut(&mut self) -> &mut RgbaImage { |
109 | &mut self.buffer |
110 | } |
111 | |
112 | /// Returns the image buffer |
113 | #[must_use ] |
114 | pub fn into_buffer(self) -> RgbaImage { |
115 | self.buffer |
116 | } |
117 | |
118 | /// Returns the x offset |
119 | #[must_use ] |
120 | pub fn left(&self) -> u32 { |
121 | self.left |
122 | } |
123 | |
124 | /// Returns the y offset |
125 | #[must_use ] |
126 | pub fn top(&self) -> u32 { |
127 | self.top |
128 | } |
129 | } |
130 | |
131 | impl Delay { |
132 | /// Create a delay from a ratio of milliseconds. |
133 | /// |
134 | /// # Examples |
135 | /// |
136 | /// ``` |
137 | /// use image::Delay; |
138 | /// let delay_10ms = Delay::from_numer_denom_ms(10, 1); |
139 | /// ``` |
140 | #[must_use ] |
141 | pub fn from_numer_denom_ms(numerator: u32, denominator: u32) -> Self { |
142 | Delay { |
143 | ratio: Ratio::new(numerator, denominator), |
144 | } |
145 | } |
146 | |
147 | /// Convert from a duration, clamped between 0 and an implemented defined maximum. |
148 | /// |
149 | /// The maximum is *at least* `i32::MAX` milliseconds. It should be noted that the accuracy of |
150 | /// the result may be relative and very large delays have a coarse resolution. |
151 | /// |
152 | /// # Examples |
153 | /// |
154 | /// ``` |
155 | /// use std::time::Duration; |
156 | /// use image::Delay; |
157 | /// |
158 | /// let duration = Duration::from_millis(20); |
159 | /// let delay = Delay::from_saturating_duration(duration); |
160 | /// ``` |
161 | #[must_use ] |
162 | pub fn from_saturating_duration(duration: Duration) -> Self { |
163 | // A few notes: The largest number we can represent as a ratio is u32::MAX but we can |
164 | // sometimes represent much smaller numbers. |
165 | // |
166 | // We can represent duration as `millis+a/b` (where a < b, b > 0). |
167 | // We must thus bound b with `bĀ·millis + (b-1) <= u32::MAX` or |
168 | // > `0 < b <= (u32::MAX + 1)/(millis + 1)` |
169 | // Corollary: millis <= u32::MAX |
170 | |
171 | const MILLIS_BOUND: u128 = u32::MAX as u128; |
172 | |
173 | let millis = duration.as_millis().min(MILLIS_BOUND); |
174 | let submillis = (duration.as_nanos() % 1_000_000) as u32; |
175 | |
176 | let max_b = if millis > 0 { |
177 | ((MILLIS_BOUND + 1) / (millis + 1)) as u32 |
178 | } else { |
179 | MILLIS_BOUND as u32 |
180 | }; |
181 | let millis = millis as u32; |
182 | |
183 | let (a, b) = Self::closest_bounded_fraction(max_b, submillis, 1_000_000); |
184 | Self::from_numer_denom_ms(a + b * millis, b) |
185 | } |
186 | |
187 | /// The numerator and denominator of the delay in milliseconds. |
188 | /// |
189 | /// This is guaranteed to be an exact conversion if the `Delay` was previously created with the |
190 | /// `from_numer_denom_ms` constructor. |
191 | #[must_use ] |
192 | pub fn numer_denom_ms(self) -> (u32, u32) { |
193 | (self.ratio.numer, self.ratio.denom) |
194 | } |
195 | |
196 | pub(crate) fn from_ratio(ratio: Ratio) -> Self { |
197 | Delay { ratio } |
198 | } |
199 | |
200 | pub(crate) fn into_ratio(self) -> Ratio { |
201 | self.ratio |
202 | } |
203 | |
204 | /// Given some fraction, compute an approximation with denominator bounded. |
205 | /// |
206 | /// Note that `denom_bound` bounds nominator and denominator of all intermediate |
207 | /// approximations and the end result. |
208 | fn closest_bounded_fraction(denom_bound: u32, nom: u32, denom: u32) -> (u32, u32) { |
209 | use std::cmp::Ordering::*; |
210 | assert!(0 < denom); |
211 | assert!(0 < denom_bound); |
212 | assert!(nom < denom); |
213 | |
214 | // Avoid a few type troubles. All intermediate results are bounded by `denom_bound` which |
215 | // is in turn bounded by u32::MAX. Representing with u64 allows multiplication of any two |
216 | // values without fears of overflow. |
217 | |
218 | // Compare two fractions whose parts fit into a u32. |
219 | fn compare_fraction((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> Ordering { |
220 | (an * bd).cmp(&(bn * ad)) |
221 | } |
222 | |
223 | // Computes the nominator of the absolute difference between two such fractions. |
224 | fn abs_diff_nom((an, ad): (u64, u64), (bn, bd): (u64, u64)) -> u64 { |
225 | let c0 = an * bd; |
226 | let c1 = ad * bn; |
227 | |
228 | let d0 = c0.max(c1); |
229 | let d1 = c0.min(c1); |
230 | d0 - d1 |
231 | } |
232 | |
233 | let exact = (u64::from(nom), u64::from(denom)); |
234 | // The lower bound fraction, numerator and denominator. |
235 | let mut lower = (0u64, 1u64); |
236 | // The upper bound fraction, numerator and denominator. |
237 | let mut upper = (1u64, 1u64); |
238 | // The closest approximation for now. |
239 | let mut guess = (u64::from(nom * 2 > denom), 1u64); |
240 | |
241 | // loop invariant: ad, bd <= denom_bound |
242 | // iterates the Farey sequence. |
243 | loop { |
244 | // Break if we are done. |
245 | if compare_fraction(guess, exact) == Equal { |
246 | break; |
247 | } |
248 | |
249 | // Break if next Farey number is out-of-range. |
250 | if u64::from(denom_bound) - lower.1 < upper.1 { |
251 | break; |
252 | } |
253 | |
254 | // Next Farey approximation n between a and b |
255 | let next = (lower.0 + upper.0, lower.1 + upper.1); |
256 | // if F < n then replace the upper bound, else replace lower. |
257 | if compare_fraction(exact, next) == Less { |
258 | upper = next; |
259 | } else { |
260 | lower = next; |
261 | } |
262 | |
263 | // Now correct the closest guess. |
264 | // In other words, if |c - f| > |n - f| then replace it with the new guess. |
265 | // This favors the guess with smaller denominator on equality. |
266 | |
267 | // |g - f| = |g_diff_nom|/(gd*fd); |
268 | let g_diff_nom = abs_diff_nom(guess, exact); |
269 | // |n - f| = |n_diff_nom|/(nd*fd); |
270 | let n_diff_nom = abs_diff_nom(next, exact); |
271 | |
272 | // The difference |n - f| is smaller than |g - f| if either the integral part of the |
273 | // fraction |n_diff_nom|/nd is smaller than the one of |g_diff_nom|/gd or if they are |
274 | // the same but the fractional part is larger. |
275 | if match (n_diff_nom / next.1).cmp(&(g_diff_nom / guess.1)) { |
276 | Less => true, |
277 | Greater => false, |
278 | // Note that the nominator for the fractional part is smaller than its denominator |
279 | // which is smaller than u32 and can't overflow the multiplication with the other |
280 | // denominator, that is we can compare these fractions by multiplication with the |
281 | // respective other denominator. |
282 | Equal => { |
283 | compare_fraction( |
284 | (n_diff_nom % next.1, next.1), |
285 | (g_diff_nom % guess.1, guess.1), |
286 | ) == Less |
287 | } |
288 | } { |
289 | guess = next; |
290 | } |
291 | } |
292 | |
293 | (guess.0 as u32, guess.1 as u32) |
294 | } |
295 | } |
296 | |
297 | impl From<Delay> for Duration { |
298 | fn from(delay: Delay) -> Self { |
299 | let ratio: Ratio = delay.into_ratio(); |
300 | let ms: u32 = ratio.to_integer(); |
301 | let rest: u32 = ratio.numer % ratio.denom; |
302 | let nanos: u64 = (u64::from(rest) * 1_000_000) / u64::from(ratio.denom); |
303 | Duration::from_millis(ms.into()) + Duration::from_nanos(nanos) |
304 | } |
305 | } |
306 | |
307 | #[derive (Copy, Clone, Debug)] |
308 | pub(crate) struct Ratio { |
309 | numer: u32, |
310 | denom: u32, |
311 | } |
312 | |
313 | impl Ratio { |
314 | #[inline ] |
315 | pub(crate) fn new(numerator: u32, denominator: u32) -> Self { |
316 | assert_ne!(denominator, 0); |
317 | Self { |
318 | numer: numerator, |
319 | denom: denominator, |
320 | } |
321 | } |
322 | |
323 | #[inline ] |
324 | pub(crate) fn to_integer(self) -> u32 { |
325 | self.numer / self.denom |
326 | } |
327 | } |
328 | |
329 | impl PartialEq for Ratio { |
330 | fn eq(&self, other: &Self) -> bool { |
331 | self.cmp(other) == Ordering::Equal |
332 | } |
333 | } |
334 | |
335 | impl Eq for Ratio {} |
336 | |
337 | impl PartialOrd for Ratio { |
338 | fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
339 | Some(self.cmp(other)) |
340 | } |
341 | } |
342 | |
343 | impl Ord for Ratio { |
344 | fn cmp(&self, other: &Self) -> Ordering { |
345 | // The following comparison can be simplified: |
346 | // a / b <cmp> c / d |
347 | // We multiply both sides by `b`: |
348 | // a <cmp> c * b / d |
349 | // We multiply both sides by `d`: |
350 | // a * d <cmp> c * b |
351 | |
352 | let a: u32 = self.numer; |
353 | let b: u32 = self.denom; |
354 | let c: u32 = other.numer; |
355 | let d: u32 = other.denom; |
356 | |
357 | // We cast the types from `u32` to `u64` in order |
358 | // to not overflow the multiplications. |
359 | |
360 | (u64::from(a) * u64::from(d)).cmp(&(u64::from(c) * u64::from(b))) |
361 | } |
362 | } |
363 | |
364 | #[cfg (test)] |
365 | mod tests { |
366 | use super::{Delay, Duration, Ratio}; |
367 | |
368 | #[test ] |
369 | fn simple() { |
370 | let second = Delay::from_numer_denom_ms(1000, 1); |
371 | assert_eq!(Duration::from(second), Duration::from_secs(1)); |
372 | } |
373 | |
374 | #[test ] |
375 | fn fps_30() { |
376 | let thirtieth = Delay::from_numer_denom_ms(1000, 30); |
377 | let duration = Duration::from(thirtieth); |
378 | assert_eq!(duration.as_secs(), 0); |
379 | assert_eq!(duration.subsec_millis(), 33); |
380 | assert_eq!(duration.subsec_nanos(), 33_333_333); |
381 | } |
382 | |
383 | #[test ] |
384 | fn duration_outlier() { |
385 | let oob = Duration::from_secs(0xFFFF_FFFF); |
386 | let delay = Delay::from_saturating_duration(oob); |
387 | assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); |
388 | } |
389 | |
390 | #[test ] |
391 | fn duration_approx() { |
392 | let oob = Duration::from_millis(0xFFFF_FFFF) + Duration::from_micros(1); |
393 | let delay = Delay::from_saturating_duration(oob); |
394 | assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); |
395 | |
396 | let inbounds = Duration::from_millis(0xFFFF_FFFF) - Duration::from_micros(1); |
397 | let delay = Delay::from_saturating_duration(inbounds); |
398 | assert_eq!(delay.numer_denom_ms(), (0xFFFF_FFFF, 1)); |
399 | |
400 | let fine = |
401 | Duration::from_millis(0xFFFF_FFFF / 1000) + Duration::from_micros(0xFFFF_FFFF % 1000); |
402 | let delay = Delay::from_saturating_duration(fine); |
403 | // Funnily, 0xFFFF_FFFF is divisble by 5, thus we compare with a `Ratio`. |
404 | assert_eq!(delay.into_ratio(), Ratio::new(0xFFFF_FFFF, 1000)); |
405 | } |
406 | |
407 | #[test ] |
408 | fn precise() { |
409 | // The ratio has only 32 bits in the numerator, too imprecise to get more than 11 digits |
410 | // correct. But it may be expressed as 1_000_000/3 instead. |
411 | let exceed = Duration::from_secs(333) + Duration::from_nanos(333_333_333); |
412 | let delay = Delay::from_saturating_duration(exceed); |
413 | assert_eq!(Duration::from(delay), exceed); |
414 | } |
415 | |
416 | #[test ] |
417 | fn small() { |
418 | // Not quite a delay of `1 ms`. |
419 | let delay = Delay::from_numer_denom_ms(1 << 16, (1 << 16) + 1); |
420 | let duration = Duration::from(delay); |
421 | assert_eq!(duration.as_millis(), 0); |
422 | // Not precisely the original but should be smaller than 0. |
423 | let delay = Delay::from_saturating_duration(duration); |
424 | assert_eq!(delay.into_ratio().to_integer(), 0); |
425 | } |
426 | } |
427 | |