| 1 | use crate::decoder::DecodingError; |
| 2 | |
| 3 | use super::vp8::TreeNode; |
| 4 | |
| 5 | #[must_use ] |
| 6 | #[repr (transparent)] |
| 7 | pub(crate) struct BitResult<T> { |
| 8 | value_if_not_past_eof: T, |
| 9 | } |
| 10 | |
| 11 | #[must_use ] |
| 12 | pub(crate) struct BitResultAccumulator; |
| 13 | |
| 14 | impl<T> BitResult<T> { |
| 15 | const fn ok(value: T) -> Self { |
| 16 | Self { |
| 17 | value_if_not_past_eof: value, |
| 18 | } |
| 19 | } |
| 20 | |
| 21 | /// Instead of checking this result now, accumulate the burden of checking |
| 22 | /// into an accumulator. This accumulator must be checked in the end. |
| 23 | #[inline (always)] |
| 24 | pub(crate) fn or_accumulate(self, acc: &mut BitResultAccumulator) -> T { |
| 25 | let _ = acc; |
| 26 | self.value_if_not_past_eof |
| 27 | } |
| 28 | } |
| 29 | |
| 30 | impl<T: Default> BitResult<T> { |
| 31 | fn err() -> Self { |
| 32 | Self { |
| 33 | value_if_not_past_eof: T::default(), |
| 34 | } |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | #[cfg_attr (test, derive(Debug))] |
| 39 | pub(crate) struct ArithmeticDecoder { |
| 40 | chunks: Box<[[u8; 4]]>, |
| 41 | state: State, |
| 42 | final_bytes: [u8; 3], |
| 43 | final_bytes_remaining: i8, |
| 44 | } |
| 45 | |
| 46 | #[cfg_attr (test, derive(Debug))] |
| 47 | #[derive (Clone, Copy)] |
| 48 | struct State { |
| 49 | chunk_index: usize, |
| 50 | value: u64, |
| 51 | range: u32, |
| 52 | bit_count: i32, |
| 53 | } |
| 54 | |
| 55 | #[cfg_attr (test, derive(Debug))] |
| 56 | struct FastDecoder<'a> { |
| 57 | chunks: &'a [[u8; 4]], |
| 58 | uncommitted_state: State, |
| 59 | save_state: &'a mut State, |
| 60 | } |
| 61 | |
| 62 | impl ArithmeticDecoder { |
| 63 | pub(crate) fn new() -> ArithmeticDecoder { |
| 64 | let state = State { |
| 65 | chunk_index: 0, |
| 66 | value: 0, |
| 67 | range: 255, |
| 68 | bit_count: -8, |
| 69 | }; |
| 70 | ArithmeticDecoder { |
| 71 | chunks: Box::new([]), |
| 72 | state, |
| 73 | final_bytes: [0; 3], |
| 74 | final_bytes_remaining: Self::FINAL_BYTES_REMAINING_EOF, |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | pub(crate) fn init(&mut self, mut buf: Vec<[u8; 4]>, len: usize) -> Result<(), DecodingError> { |
| 79 | let mut final_bytes = [0; 3]; |
| 80 | let final_bytes_remaining = if len == 4 * buf.len() { |
| 81 | 0 |
| 82 | } else { |
| 83 | // Pop the last chunk (which is partial), then get length. |
| 84 | let Some(last_chunk) = buf.pop() else { |
| 85 | return Err(DecodingError::NotEnoughInitData); |
| 86 | }; |
| 87 | let len_rounded_down = 4 * buf.len(); |
| 88 | let num_bytes_popped = len - len_rounded_down; |
| 89 | debug_assert!(num_bytes_popped <= 3); |
| 90 | final_bytes[..num_bytes_popped].copy_from_slice(&last_chunk[..num_bytes_popped]); |
| 91 | for i in num_bytes_popped..4 { |
| 92 | debug_assert_eq!(last_chunk[i], 0, "unexpected {last_chunk:?}" ); |
| 93 | } |
| 94 | num_bytes_popped as i8 |
| 95 | }; |
| 96 | |
| 97 | let chunks = buf.into_boxed_slice(); |
| 98 | let state = State { |
| 99 | chunk_index: 0, |
| 100 | value: 0, |
| 101 | range: 255, |
| 102 | bit_count: -8, |
| 103 | }; |
| 104 | *self = Self { |
| 105 | chunks, |
| 106 | state, |
| 107 | final_bytes, |
| 108 | final_bytes_remaining, |
| 109 | }; |
| 110 | Ok(()) |
| 111 | } |
| 112 | |
| 113 | /// Start a span of reading operations from the buffer, without stopping |
| 114 | /// when the buffer runs out. For all valid webp images, the buffer will not |
| 115 | /// run out prematurely. Conversely if the buffer ends early, the webp image |
| 116 | /// cannot be correctly decoded and any intermediate results need to be |
| 117 | /// discarded anyway. |
| 118 | /// |
| 119 | /// Each call to `start_accumulated_result` must be followed by a call to |
| 120 | /// `check` on the *same* `ArithmeticDecoder`. |
| 121 | #[inline (always)] |
| 122 | pub(crate) fn start_accumulated_result(&mut self) -> BitResultAccumulator { |
| 123 | BitResultAccumulator |
| 124 | } |
| 125 | |
| 126 | /// Check that the read operations done so far were all valid. |
| 127 | #[inline (always)] |
| 128 | pub(crate) fn check<T>( |
| 129 | &self, |
| 130 | acc: BitResultAccumulator, |
| 131 | value_if_not_past_eof: T, |
| 132 | ) -> Result<T, DecodingError> { |
| 133 | // The accumulator does not store any state because doing so is |
| 134 | // too computationally expensive. Passing it around is a bit of |
| 135 | // formality (that is optimized out) to ensure we call `check` . |
| 136 | // Instead we check whether we have read past the end of the file. |
| 137 | let BitResultAccumulator = acc; |
| 138 | |
| 139 | if self.is_past_eof() { |
| 140 | Err(DecodingError::BitStreamError) |
| 141 | } else { |
| 142 | Ok(value_if_not_past_eof) |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | fn keep_accumulating<T>( |
| 147 | &self, |
| 148 | acc: BitResultAccumulator, |
| 149 | value_if_not_past_eof: T, |
| 150 | ) -> BitResult<T> { |
| 151 | // The BitResult will be checked later by a different accumulator. |
| 152 | // Because it does not carry state, that is fine. |
| 153 | let BitResultAccumulator = acc; |
| 154 | |
| 155 | BitResult::ok(value_if_not_past_eof) |
| 156 | } |
| 157 | |
| 158 | // Do not inline this because inlining seems to worsen performance. |
| 159 | #[inline (never)] |
| 160 | pub(crate) fn read_bool(&mut self, probability: u8) -> BitResult<bool> { |
| 161 | if let Some(b) = self.fast().read_bool(probability) { |
| 162 | return BitResult::ok(b); |
| 163 | } |
| 164 | |
| 165 | self.cold_read_bool(probability) |
| 166 | } |
| 167 | |
| 168 | // Do not inline this because inlining seems to worsen performance. |
| 169 | #[inline (never)] |
| 170 | pub(crate) fn read_flag(&mut self) -> BitResult<bool> { |
| 171 | if let Some(b) = self.fast().read_flag() { |
| 172 | return BitResult::ok(b); |
| 173 | } |
| 174 | |
| 175 | self.cold_read_flag() |
| 176 | } |
| 177 | |
| 178 | // Do not inline this because inlining seems to worsen performance. |
| 179 | #[inline (never)] |
| 180 | pub(crate) fn read_literal(&mut self, n: u8) -> BitResult<u8> { |
| 181 | if let Some(v) = self.fast().read_literal(n) { |
| 182 | return BitResult::ok(v); |
| 183 | } |
| 184 | |
| 185 | self.cold_read_literal(n) |
| 186 | } |
| 187 | |
| 188 | // Do not inline this because inlining seems to worsen performance. |
| 189 | #[inline (never)] |
| 190 | pub(crate) fn read_optional_signed_value(&mut self, n: u8) -> BitResult<i32> { |
| 191 | if let Some(v) = self.fast().read_optional_signed_value(n) { |
| 192 | return BitResult::ok(v); |
| 193 | } |
| 194 | |
| 195 | self.cold_read_optional_signed_value(n) |
| 196 | } |
| 197 | |
| 198 | // This is generic and inlined just to skip the first bounds check. |
| 199 | #[inline ] |
| 200 | pub(crate) fn read_with_tree<const N: usize>(&mut self, tree: &[TreeNode; N]) -> BitResult<i8> { |
| 201 | let first_node = tree[0]; |
| 202 | self.read_with_tree_with_first_node(tree, first_node) |
| 203 | } |
| 204 | |
| 205 | // Do not inline this because inlining significantly worsens performance. |
| 206 | #[inline (never)] |
| 207 | pub(crate) fn read_with_tree_with_first_node( |
| 208 | &mut self, |
| 209 | tree: &[TreeNode], |
| 210 | first_node: TreeNode, |
| 211 | ) -> BitResult<i8> { |
| 212 | if let Some(v) = self.fast().read_with_tree(tree, first_node) { |
| 213 | return BitResult::ok(v); |
| 214 | } |
| 215 | |
| 216 | self.cold_read_with_tree(tree, usize::from(first_node.index)) |
| 217 | } |
| 218 | |
| 219 | // As a similar (but different) speedup to BitResult, the FastDecoder reads |
| 220 | // bits under an assumption and validates it at the end. |
| 221 | // |
| 222 | // The idea here is that for normal-sized webp images, the vast majority |
| 223 | // of bits are somewhere other than in the last four bytes. Therefore we |
| 224 | // can pretend the buffer has infinite size. After we are done reading, |
| 225 | // we check if we actually read past the end of `self.chunks`. |
| 226 | // If so, we backtrack (or rather we discard `uncommitted_state`) |
| 227 | // and try again with the slow approach. This might result in doing double |
| 228 | // work for those last few bytes -- in fact we even keep retrying the fast |
| 229 | // method to save an if-statement --, but more than make up for that by |
| 230 | // speeding up reading from the other thousands or millions of bytes. |
| 231 | fn fast(&mut self) -> FastDecoder<'_> { |
| 232 | FastDecoder { |
| 233 | chunks: &self.chunks, |
| 234 | uncommitted_state: self.state, |
| 235 | save_state: &mut self.state, |
| 236 | } |
| 237 | } |
| 238 | |
| 239 | const FINAL_BYTES_REMAINING_EOF: i8 = -0xE; |
| 240 | |
| 241 | fn load_from_final_bytes(&mut self) { |
| 242 | match self.final_bytes_remaining { |
| 243 | 1.. => { |
| 244 | self.final_bytes_remaining -= 1; |
| 245 | let byte = self.final_bytes[0]; |
| 246 | self.final_bytes.rotate_left(1); |
| 247 | self.state.value <<= 8; |
| 248 | self.state.value |= u64::from(byte); |
| 249 | self.state.bit_count += 8; |
| 250 | } |
| 251 | 0 => { |
| 252 | // libwebp seems to (sometimes?) allow bitstreams that read one byte past the end. |
| 253 | // This replicates that logic. |
| 254 | self.final_bytes_remaining -= 1; |
| 255 | self.state.value <<= 8; |
| 256 | self.state.bit_count += 8; |
| 257 | } |
| 258 | _ => { |
| 259 | self.final_bytes_remaining = Self::FINAL_BYTES_REMAINING_EOF; |
| 260 | } |
| 261 | } |
| 262 | } |
| 263 | |
| 264 | fn is_past_eof(&self) -> bool { |
| 265 | self.final_bytes_remaining == Self::FINAL_BYTES_REMAINING_EOF |
| 266 | } |
| 267 | |
| 268 | fn cold_read_bit(&mut self, probability: u8) -> BitResult<bool> { |
| 269 | if self.state.bit_count < 0 { |
| 270 | if let Some(chunk) = self.chunks.get(self.state.chunk_index).copied() { |
| 271 | let v = u32::from_be_bytes(chunk); |
| 272 | self.state.chunk_index += 1; |
| 273 | self.state.value <<= 32; |
| 274 | self.state.value |= u64::from(v); |
| 275 | self.state.bit_count += 32; |
| 276 | } else { |
| 277 | self.load_from_final_bytes(); |
| 278 | if self.is_past_eof() { |
| 279 | return BitResult::err(); |
| 280 | } |
| 281 | } |
| 282 | } |
| 283 | debug_assert!(self.state.bit_count >= 0); |
| 284 | |
| 285 | let probability = u32::from(probability); |
| 286 | let split = 1 + (((self.state.range - 1) * probability) >> 8); |
| 287 | let bigsplit = u64::from(split) << self.state.bit_count; |
| 288 | |
| 289 | let retval = if let Some(new_value) = self.state.value.checked_sub(bigsplit) { |
| 290 | self.state.range -= split; |
| 291 | self.state.value = new_value; |
| 292 | true |
| 293 | } else { |
| 294 | self.state.range = split; |
| 295 | false |
| 296 | }; |
| 297 | debug_assert!(self.state.range > 0); |
| 298 | |
| 299 | // Compute shift required to satisfy `self.state.range >= 128`. |
| 300 | // Apply that shift to `self.state.range` and `self.state.bitcount`. |
| 301 | // |
| 302 | // Subtract 24 because we only care about leading zeros in the |
| 303 | // lowest byte of `self.state.range` which is a `u32`. |
| 304 | let shift = self.state.range.leading_zeros().saturating_sub(24); |
| 305 | self.state.range <<= shift; |
| 306 | self.state.bit_count -= shift as i32; |
| 307 | debug_assert!(self.state.range >= 128); |
| 308 | |
| 309 | BitResult::ok(retval) |
| 310 | } |
| 311 | |
| 312 | #[cold ] |
| 313 | #[inline (never)] |
| 314 | fn cold_read_bool(&mut self, probability: u8) -> BitResult<bool> { |
| 315 | self.cold_read_bit(probability) |
| 316 | } |
| 317 | |
| 318 | #[cold ] |
| 319 | #[inline (never)] |
| 320 | fn cold_read_flag(&mut self) -> BitResult<bool> { |
| 321 | self.cold_read_bit(128) |
| 322 | } |
| 323 | |
| 324 | #[cold ] |
| 325 | #[inline (never)] |
| 326 | fn cold_read_literal(&mut self, n: u8) -> BitResult<u8> { |
| 327 | let mut v = 0u8; |
| 328 | let mut res = self.start_accumulated_result(); |
| 329 | |
| 330 | for _ in 0..n { |
| 331 | let b = self.cold_read_flag().or_accumulate(&mut res); |
| 332 | v = (v << 1) + u8::from(b); |
| 333 | } |
| 334 | |
| 335 | self.keep_accumulating(res, v) |
| 336 | } |
| 337 | |
| 338 | #[cold ] |
| 339 | #[inline (never)] |
| 340 | fn cold_read_optional_signed_value(&mut self, n: u8) -> BitResult<i32> { |
| 341 | let mut res = self.start_accumulated_result(); |
| 342 | let flag = self.cold_read_flag().or_accumulate(&mut res); |
| 343 | if !flag { |
| 344 | // We should not read further bits if the flag is not set. |
| 345 | return self.keep_accumulating(res, 0); |
| 346 | } |
| 347 | let magnitude = self.cold_read_literal(n).or_accumulate(&mut res); |
| 348 | let sign = self.cold_read_flag().or_accumulate(&mut res); |
| 349 | |
| 350 | let value = if sign { |
| 351 | -i32::from(magnitude) |
| 352 | } else { |
| 353 | i32::from(magnitude) |
| 354 | }; |
| 355 | self.keep_accumulating(res, value) |
| 356 | } |
| 357 | |
| 358 | #[cold ] |
| 359 | #[inline (never)] |
| 360 | fn cold_read_with_tree(&mut self, tree: &[TreeNode], start: usize) -> BitResult<i8> { |
| 361 | let mut index = start; |
| 362 | let mut res = self.start_accumulated_result(); |
| 363 | |
| 364 | loop { |
| 365 | let node = tree[index]; |
| 366 | let prob = node.prob; |
| 367 | let b = self.cold_read_bit(prob).or_accumulate(&mut res); |
| 368 | let t = if b { node.right } else { node.left }; |
| 369 | let new_index = usize::from(t); |
| 370 | if new_index < tree.len() { |
| 371 | index = new_index; |
| 372 | } else { |
| 373 | let value = TreeNode::value_from_branch(t); |
| 374 | return self.keep_accumulating(res, value); |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | impl FastDecoder<'_> { |
| 381 | fn commit_if_valid<T>(self, value_if_not_past_eof: T) -> Option<T> { |
| 382 | // If `chunk_index > self.chunks.len()`, it means we used zeroes |
| 383 | // instead of an actual chunk and `value_if_not_past_eof` is nonsense. |
| 384 | if self.uncommitted_state.chunk_index <= self.chunks.len() { |
| 385 | *self.save_state = self.uncommitted_state; |
| 386 | Some(value_if_not_past_eof) |
| 387 | } else { |
| 388 | None |
| 389 | } |
| 390 | } |
| 391 | |
| 392 | fn read_bool(mut self, probability: u8) -> Option<bool> { |
| 393 | let bit = self.fast_read_bit(probability); |
| 394 | self.commit_if_valid(bit) |
| 395 | } |
| 396 | |
| 397 | fn read_flag(mut self) -> Option<bool> { |
| 398 | let value = self.fast_read_flag(); |
| 399 | self.commit_if_valid(value) |
| 400 | } |
| 401 | |
| 402 | fn read_literal(mut self, n: u8) -> Option<u8> { |
| 403 | let value = self.fast_read_literal(n); |
| 404 | self.commit_if_valid(value) |
| 405 | } |
| 406 | |
| 407 | fn read_optional_signed_value(mut self, n: u8) -> Option<i32> { |
| 408 | let flag = self.fast_read_flag(); |
| 409 | if !flag { |
| 410 | // We should not read further bits if the flag is not set. |
| 411 | return self.commit_if_valid(0); |
| 412 | } |
| 413 | let magnitude = self.fast_read_literal(n); |
| 414 | let sign = self.fast_read_flag(); |
| 415 | let value = if sign { |
| 416 | -i32::from(magnitude) |
| 417 | } else { |
| 418 | i32::from(magnitude) |
| 419 | }; |
| 420 | self.commit_if_valid(value) |
| 421 | } |
| 422 | |
| 423 | fn read_with_tree(mut self, tree: &[TreeNode], first_node: TreeNode) -> Option<i8> { |
| 424 | let value = self.fast_read_with_tree(tree, first_node); |
| 425 | self.commit_if_valid(value) |
| 426 | } |
| 427 | |
| 428 | fn fast_read_bit(&mut self, probability: u8) -> bool { |
| 429 | let State { |
| 430 | mut chunk_index, |
| 431 | mut value, |
| 432 | mut range, |
| 433 | mut bit_count, |
| 434 | } = self.uncommitted_state; |
| 435 | |
| 436 | if bit_count < 0 { |
| 437 | let chunk = self.chunks.get(chunk_index).copied(); |
| 438 | // We ignore invalid data inside the `fast_` functions, |
| 439 | // but we increase `chunk_index` below, so we can check |
| 440 | // whether we read invalid data in `commit_if_valid`. |
| 441 | let chunk = chunk.unwrap_or_default(); |
| 442 | |
| 443 | let v = u32::from_be_bytes(chunk); |
| 444 | chunk_index += 1; |
| 445 | value <<= 32; |
| 446 | value |= u64::from(v); |
| 447 | bit_count += 32; |
| 448 | } |
| 449 | debug_assert!(bit_count >= 0); |
| 450 | |
| 451 | let probability = u32::from(probability); |
| 452 | let split = 1 + (((range - 1) * probability) >> 8); |
| 453 | let bigsplit = u64::from(split) << bit_count; |
| 454 | |
| 455 | let retval = if let Some(new_value) = value.checked_sub(bigsplit) { |
| 456 | range -= split; |
| 457 | value = new_value; |
| 458 | true |
| 459 | } else { |
| 460 | range = split; |
| 461 | false |
| 462 | }; |
| 463 | debug_assert!(range > 0); |
| 464 | |
| 465 | // Compute shift required to satisfy `range >= 128`. |
| 466 | // Apply that shift to `range` and `self.bitcount`. |
| 467 | // |
| 468 | // Subtract 24 because we only care about leading zeros in the |
| 469 | // lowest byte of `range` which is a `u32`. |
| 470 | let shift = range.leading_zeros().saturating_sub(24); |
| 471 | range <<= shift; |
| 472 | bit_count -= shift as i32; |
| 473 | debug_assert!(range >= 128); |
| 474 | |
| 475 | self.uncommitted_state = State { |
| 476 | chunk_index, |
| 477 | value, |
| 478 | range, |
| 479 | bit_count, |
| 480 | }; |
| 481 | retval |
| 482 | } |
| 483 | |
| 484 | fn fast_read_flag(&mut self) -> bool { |
| 485 | let State { |
| 486 | mut chunk_index, |
| 487 | mut value, |
| 488 | mut range, |
| 489 | mut bit_count, |
| 490 | } = self.uncommitted_state; |
| 491 | |
| 492 | if bit_count < 0 { |
| 493 | let chunk = self.chunks.get(chunk_index).copied(); |
| 494 | // We ignore invalid data inside the `fast_` functions, |
| 495 | // but we increase `chunk_index` below, so we can check |
| 496 | // whether we read invalid data in `commit_if_valid`. |
| 497 | let chunk = chunk.unwrap_or_default(); |
| 498 | |
| 499 | let v = u32::from_be_bytes(chunk); |
| 500 | chunk_index += 1; |
| 501 | value <<= 32; |
| 502 | value |= u64::from(v); |
| 503 | bit_count += 32; |
| 504 | } |
| 505 | debug_assert!(bit_count >= 0); |
| 506 | |
| 507 | let half_range = range / 2; |
| 508 | let split = range - half_range; |
| 509 | let bigsplit = u64::from(split) << bit_count; |
| 510 | |
| 511 | let retval = if let Some(new_value) = value.checked_sub(bigsplit) { |
| 512 | range = half_range; |
| 513 | value = new_value; |
| 514 | true |
| 515 | } else { |
| 516 | range = split; |
| 517 | false |
| 518 | }; |
| 519 | debug_assert!(range > 0); |
| 520 | |
| 521 | // Compute shift required to satisfy `range >= 128`. |
| 522 | // Apply that shift to `range` and `self.bitcount`. |
| 523 | // |
| 524 | // Subtract 24 because we only care about leading zeros in the |
| 525 | // lowest byte of `range` which is a `u32`. |
| 526 | let shift = range.leading_zeros().saturating_sub(24); |
| 527 | range <<= shift; |
| 528 | bit_count -= shift as i32; |
| 529 | debug_assert!(range >= 128); |
| 530 | |
| 531 | self.uncommitted_state = State { |
| 532 | chunk_index, |
| 533 | value, |
| 534 | range, |
| 535 | bit_count, |
| 536 | }; |
| 537 | retval |
| 538 | } |
| 539 | |
| 540 | fn fast_read_literal(&mut self, n: u8) -> u8 { |
| 541 | let mut v = 0u8; |
| 542 | for _ in 0..n { |
| 543 | let b = self.fast_read_flag(); |
| 544 | v = (v << 1) + u8::from(b); |
| 545 | } |
| 546 | v |
| 547 | } |
| 548 | |
| 549 | fn fast_read_with_tree(&mut self, tree: &[TreeNode], mut node: TreeNode) -> i8 { |
| 550 | loop { |
| 551 | let prob = node.prob; |
| 552 | let b = self.fast_read_bit(prob); |
| 553 | let i = if b { node.right } else { node.left }; |
| 554 | let Some(next_node) = tree.get(usize::from(i)) else { |
| 555 | return TreeNode::value_from_branch(i); |
| 556 | }; |
| 557 | node = *next_node; |
| 558 | } |
| 559 | } |
| 560 | } |
| 561 | |
| 562 | #[cfg (test)] |
| 563 | mod tests { |
| 564 | use super::*; |
| 565 | |
| 566 | #[test ] |
| 567 | fn test_arithmetic_decoder_hello_short() { |
| 568 | let mut decoder = ArithmeticDecoder::new(); |
| 569 | let data = b"hel" ; |
| 570 | let size = data.len(); |
| 571 | let mut buf = vec![[0u8; 4]; 1]; |
| 572 | buf.as_mut_slice().as_flattened_mut()[..size].copy_from_slice(&data[..]); |
| 573 | decoder.init(buf, size).unwrap(); |
| 574 | let mut res = decoder.start_accumulated_result(); |
| 575 | assert_eq!(false, decoder.read_flag().or_accumulate(&mut res)); |
| 576 | assert_eq!(true, decoder.read_bool(10).or_accumulate(&mut res)); |
| 577 | assert_eq!(false, decoder.read_bool(250).or_accumulate(&mut res)); |
| 578 | assert_eq!(1, decoder.read_literal(1).or_accumulate(&mut res)); |
| 579 | assert_eq!(5, decoder.read_literal(3).or_accumulate(&mut res)); |
| 580 | assert_eq!(64, decoder.read_literal(8).or_accumulate(&mut res)); |
| 581 | assert_eq!(185, decoder.read_literal(8).or_accumulate(&mut res)); |
| 582 | decoder.check(res, ()).unwrap(); |
| 583 | } |
| 584 | |
| 585 | #[test ] |
| 586 | fn test_arithmetic_decoder_hello_long() { |
| 587 | let mut decoder = ArithmeticDecoder::new(); |
| 588 | let data = b"hello world" ; |
| 589 | let size = data.len(); |
| 590 | let mut buf = vec![[0u8; 4]; (size + 3) / 4]; |
| 591 | buf.as_mut_slice().as_flattened_mut()[..size].copy_from_slice(&data[..]); |
| 592 | decoder.init(buf, size).unwrap(); |
| 593 | let mut res = decoder.start_accumulated_result(); |
| 594 | assert_eq!(false, decoder.read_flag().or_accumulate(&mut res)); |
| 595 | assert_eq!(true, decoder.read_bool(10).or_accumulate(&mut res)); |
| 596 | assert_eq!(false, decoder.read_bool(250).or_accumulate(&mut res)); |
| 597 | assert_eq!(1, decoder.read_literal(1).or_accumulate(&mut res)); |
| 598 | assert_eq!(5, decoder.read_literal(3).or_accumulate(&mut res)); |
| 599 | assert_eq!(64, decoder.read_literal(8).or_accumulate(&mut res)); |
| 600 | assert_eq!(185, decoder.read_literal(8).or_accumulate(&mut res)); |
| 601 | assert_eq!(31, decoder.read_literal(8).or_accumulate(&mut res)); |
| 602 | decoder.check(res, ()).unwrap(); |
| 603 | } |
| 604 | |
| 605 | #[test ] |
| 606 | fn test_arithmetic_decoder_uninit() { |
| 607 | let mut decoder = ArithmeticDecoder::new(); |
| 608 | let mut res = decoder.start_accumulated_result(); |
| 609 | let _ = decoder.read_flag().or_accumulate(&mut res); |
| 610 | let result = decoder.check(res, ()); |
| 611 | assert!(result.is_err()); |
| 612 | } |
| 613 | } |
| 614 | |