| 1 | use alloc::vec::Vec; |
| 2 | use core::cmp::{min, max}; |
| 3 | use core::cmp::Ordering::{Less, Equal}; |
| 4 | use core::convert::From; |
| 5 | use core::fmt; |
| 6 | use core::iter::FusedIterator; |
| 7 | use core::option::Option::{Some, None}; |
| 8 | #[cfg (not(feature = "std" ))] |
| 9 | use core::error::Error; |
| 10 | #[cfg (feature = "std" )] |
| 11 | use std::error::Error; |
| 12 | #[cfg (not(feature = "std" ))] |
| 13 | use core::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 14 | #[cfg (feature = "std" )] |
| 15 | use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 16 | |
| 17 | use crate::ipext::{IpAdd, IpSub, IpStep, IpAddrRange, Ipv4AddrRange, Ipv6AddrRange}; |
| 18 | use crate::mask::{ip_mask_to_prefix, ipv4_mask_to_prefix, ipv6_mask_to_prefix}; |
| 19 | |
| 20 | /// An IP network address, either IPv4 or IPv6. |
| 21 | /// |
| 22 | /// This enum can contain either an [`Ipv4Net`] or an [`Ipv6Net`]. A |
| 23 | /// [`From`] implementation is provided to convert these into an |
| 24 | /// `IpNet`. |
| 25 | /// |
| 26 | /// # Textual representation |
| 27 | /// |
| 28 | /// `IpNet` provides a [`FromStr`] implementation for parsing network |
| 29 | /// addresses represented in CIDR notation. See [IETF RFC 4632] for the |
| 30 | /// CIDR notation. |
| 31 | /// |
| 32 | /// [`Ipv4Net`]: struct.Ipv4Net.html |
| 33 | /// [`Ipv6Net`]: struct.Ipv6Net.html |
| 34 | /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html |
| 35 | /// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html |
| 36 | /// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 |
| 37 | /// |
| 38 | /// # Examples |
| 39 | /// |
| 40 | /// ``` |
| 41 | /// use std::net::IpAddr; |
| 42 | /// use ipnet::IpNet; |
| 43 | /// |
| 44 | /// let net: IpNet = "10.1.1.0/24" .parse().unwrap(); |
| 45 | /// assert_eq!(Ok(net.network()), "10.1.1.0" .parse()); |
| 46 | /// |
| 47 | /// let net: IpNet = "fd00::/32" .parse().unwrap(); |
| 48 | /// assert_eq!(Ok(net.network()), "fd00::" .parse()); |
| 49 | /// ``` |
| 50 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] |
| 51 | pub enum IpNet { |
| 52 | V4(Ipv4Net), |
| 53 | V6(Ipv6Net), |
| 54 | } |
| 55 | |
| 56 | /// An IPv4 network address. |
| 57 | /// |
| 58 | /// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network |
| 59 | /// addresses. |
| 60 | /// |
| 61 | /// # Textual representation |
| 62 | /// |
| 63 | /// `Ipv4Net` provides a [`FromStr`] implementation for parsing network |
| 64 | /// addresses represented in CIDR notation. See [IETF RFC 4632] for the |
| 65 | /// CIDR notation. |
| 66 | /// |
| 67 | /// [`IpNet`]: enum.IpNet.html |
| 68 | /// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html |
| 69 | /// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 |
| 70 | /// |
| 71 | /// # Examples |
| 72 | /// |
| 73 | /// ``` |
| 74 | /// # #[cfg (feature = "std" )] |
| 75 | /// # use std::net::Ipv6Addr; |
| 76 | /// # #[cfg (not(feature = "std" ))] |
| 77 | /// # use core::net::Ipv6Addr; |
| 78 | /// use ipnet::Ipv4Net; |
| 79 | /// |
| 80 | /// let net: Ipv4Net = "10.1.1.0/24" .parse().unwrap(); |
| 81 | /// assert_eq!(Ok(net.network()), "10.1.1.0" .parse()); |
| 82 | /// ``` |
| 83 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] |
| 84 | pub struct Ipv4Net { |
| 85 | addr: Ipv4Addr, |
| 86 | prefix_len: u8, |
| 87 | } |
| 88 | |
| 89 | /// An IPv6 network address. |
| 90 | /// |
| 91 | /// See [`IpNet`] for a type encompassing both IPv4 and IPv6 network |
| 92 | /// addresses. |
| 93 | /// |
| 94 | /// # Textual representation |
| 95 | /// |
| 96 | /// `Ipv6Net` provides a [`FromStr`] implementation for parsing network |
| 97 | /// addresses represented in CIDR notation. See [IETF RFC 4632] for the |
| 98 | /// CIDR notation. |
| 99 | /// |
| 100 | /// [`IpNet`]: enum.IpNet.html |
| 101 | /// [`FromStr`]: https://doc.rust-lang.org/std/str/trait.FromStr.html |
| 102 | /// [IETF RFC 4632]: https://tools.ietf.org/html/rfc4632 |
| 103 | /// |
| 104 | /// # Examples |
| 105 | /// |
| 106 | /// ``` |
| 107 | /// use std::net::Ipv6Addr; |
| 108 | /// use ipnet::Ipv6Net; |
| 109 | /// |
| 110 | /// let net: Ipv6Net = "fd00::/32" .parse().unwrap(); |
| 111 | /// assert_eq!(Ok(net.network()), "fd00::" .parse()); |
| 112 | /// ``` |
| 113 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash)] |
| 114 | pub struct Ipv6Net { |
| 115 | addr: Ipv6Addr, |
| 116 | prefix_len: u8, |
| 117 | } |
| 118 | |
| 119 | /// An error which can be returned when the prefix length is invalid. |
| 120 | /// |
| 121 | /// Valid prefix lengths are 0 to 32 for IPv4 and 0 to 128 for IPv6. |
| 122 | #[derive (Debug, Clone, PartialEq, Eq)] |
| 123 | pub struct PrefixLenError; |
| 124 | |
| 125 | impl fmt::Display for PrefixLenError { |
| 126 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 127 | fmt.write_str(data:"invalid IP prefix length" ) |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | impl Error for PrefixLenError {} |
| 132 | |
| 133 | impl IpNet { |
| 134 | /// Creates a new IP network address from an `IpAddr` and prefix |
| 135 | /// length. |
| 136 | /// |
| 137 | /// # Examples |
| 138 | /// |
| 139 | /// ``` |
| 140 | /// use std::net::Ipv6Addr; |
| 141 | /// use ipnet::{IpNet, PrefixLenError}; |
| 142 | /// |
| 143 | /// let net = IpNet::new(Ipv6Addr::LOCALHOST.into(), 48); |
| 144 | /// assert!(net.is_ok()); |
| 145 | /// |
| 146 | /// let bad_prefix_len = IpNet::new(Ipv6Addr::LOCALHOST.into(), 129); |
| 147 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 148 | /// ``` |
| 149 | pub fn new(ip: IpAddr, prefix_len: u8) -> Result<IpNet, PrefixLenError> { |
| 150 | Ok(match ip { |
| 151 | IpAddr::V4(a) => Ipv4Net::new(a, prefix_len)?.into(), |
| 152 | IpAddr::V6(a) => Ipv6Net::new(a, prefix_len)?.into(), |
| 153 | }) |
| 154 | } |
| 155 | |
| 156 | /// Creates a new IP network address from an `IpAddr` and prefix |
| 157 | /// length. If called from a const context it will verify prefix length |
| 158 | /// at compile time. Otherwise it will panic at runtime if prefix length |
| 159 | /// is incorrect for a given IpAddr type. |
| 160 | /// |
| 161 | /// # Examples |
| 162 | /// |
| 163 | /// ``` |
| 164 | /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr}; |
| 165 | /// use ipnet::{IpNet}; |
| 166 | /// |
| 167 | /// // This code is verified at compile time: |
| 168 | /// const NET: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 24); |
| 169 | /// assert_eq!(NET.prefix_len(), 24); |
| 170 | /// |
| 171 | /// // This code is verified at runtime: |
| 172 | /// let net = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 24); |
| 173 | /// assert_eq!(net.prefix_len(), 24); |
| 174 | /// |
| 175 | /// // This code does not compile: |
| 176 | /// // const BAD_PREFIX_LEN: IpNet = IpNet::new_assert(IpAddr::V4(Ipv4Addr::new(10, 1, 1, 0)), 33); |
| 177 | /// |
| 178 | /// // This code panics at runtime: |
| 179 | /// // let bad_prefix_len = IpNet::new_assert(Ipv6Addr::LOCALHOST.into(), 129); |
| 180 | /// ``` |
| 181 | pub const fn new_assert(ip: IpAddr, prefix_len: u8) -> IpNet { |
| 182 | match ip { |
| 183 | IpAddr::V4(a) => IpNet::V4(Ipv4Net::new_assert(a, prefix_len)), |
| 184 | IpAddr::V6(a) => IpNet::V6(Ipv6Net::new_assert(a, prefix_len)), |
| 185 | } |
| 186 | } |
| 187 | |
| 188 | /// Creates a new IP network address from an `IpAddr` and netmask. |
| 189 | /// |
| 190 | /// # Examples |
| 191 | /// |
| 192 | /// ``` |
| 193 | /// use std::net::Ipv6Addr; |
| 194 | /// use ipnet::{IpNet, PrefixLenError}; |
| 195 | /// |
| 196 | /// let net = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0000_0000_0000_0000).into()); |
| 197 | /// assert!(net.is_ok()); |
| 198 | /// |
| 199 | /// let bad_prefix_len = IpNet::with_netmask(Ipv6Addr::LOCALHOST.into(), Ipv6Addr::from(0xffff_ffff_ffff_0000_0001_0000_0000_0000).into()); |
| 200 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 201 | /// ``` |
| 202 | pub fn with_netmask(ip: IpAddr, netmask: IpAddr) -> Result<IpNet, PrefixLenError> { |
| 203 | let prefix = ip_mask_to_prefix(netmask)?; |
| 204 | Self::new(ip, prefix) |
| 205 | } |
| 206 | |
| 207 | /// Returns a copy of the network with the address truncated to the |
| 208 | /// prefix length. |
| 209 | /// |
| 210 | /// # Examples |
| 211 | /// |
| 212 | /// ``` |
| 213 | /// # use ipnet::IpNet; |
| 214 | /// # |
| 215 | /// assert_eq!( |
| 216 | /// "192.168.12.34/16" .parse::<IpNet>().unwrap().trunc(), |
| 217 | /// "192.168.0.0/16" .parse().unwrap() |
| 218 | /// ); |
| 219 | /// |
| 220 | /// assert_eq!( |
| 221 | /// "fd00::1:2:3:4/16" .parse::<IpNet>().unwrap().trunc(), |
| 222 | /// "fd00::/16" .parse().unwrap() |
| 223 | /// ); |
| 224 | /// ``` |
| 225 | pub fn trunc(&self) -> IpNet { |
| 226 | match *self { |
| 227 | IpNet::V4(ref a) => IpNet::V4(a.trunc()), |
| 228 | IpNet::V6(ref a) => IpNet::V6(a.trunc()), |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /// Returns the address. |
| 233 | pub fn addr(&self) -> IpAddr { |
| 234 | match *self { |
| 235 | IpNet::V4(ref a) => IpAddr::V4(a.addr), |
| 236 | IpNet::V6(ref a) => IpAddr::V6(a.addr), |
| 237 | } |
| 238 | } |
| 239 | |
| 240 | /// Returns the prefix length. |
| 241 | pub fn prefix_len(&self) -> u8 { |
| 242 | match *self { |
| 243 | IpNet::V4(ref a) => a.prefix_len(), |
| 244 | IpNet::V6(ref a) => a.prefix_len(), |
| 245 | } |
| 246 | } |
| 247 | |
| 248 | /// Returns the maximum valid prefix length. |
| 249 | pub fn max_prefix_len(&self) -> u8 { |
| 250 | match *self { |
| 251 | IpNet::V4(ref a) => a.max_prefix_len(), |
| 252 | IpNet::V6(ref a) => a.max_prefix_len(), |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | /// Returns the network mask. |
| 257 | /// |
| 258 | /// # Examples |
| 259 | /// |
| 260 | /// ``` |
| 261 | /// # use std::net::IpAddr; |
| 262 | /// # use ipnet::IpNet; |
| 263 | /// # |
| 264 | /// let net: IpNet = "10.1.0.0/20" .parse().unwrap(); |
| 265 | /// assert_eq!(Ok(net.netmask()), "255.255.240.0" .parse()); |
| 266 | /// |
| 267 | /// let net: IpNet = "fd00::/24" .parse().unwrap(); |
| 268 | /// assert_eq!(Ok(net.netmask()), "ffff:ff00::" .parse()); |
| 269 | /// ``` |
| 270 | pub fn netmask(&self) -> IpAddr { |
| 271 | match *self { |
| 272 | IpNet::V4(ref a) => IpAddr::V4(a.netmask()), |
| 273 | IpNet::V6(ref a) => IpAddr::V6(a.netmask()), |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | /// Returns the host mask. |
| 278 | /// |
| 279 | /// # Examples |
| 280 | /// |
| 281 | /// ``` |
| 282 | /// # use std::net::IpAddr; |
| 283 | /// # use ipnet::IpNet; |
| 284 | /// # |
| 285 | /// let net: IpNet = "10.1.0.0/20" .parse().unwrap(); |
| 286 | /// assert_eq!(Ok(net.hostmask()), "0.0.15.255" .parse()); |
| 287 | /// |
| 288 | /// let net: IpNet = "fd00::/24" .parse().unwrap(); |
| 289 | /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff" .parse()); |
| 290 | /// ``` |
| 291 | pub fn hostmask(&self) -> IpAddr { |
| 292 | match *self { |
| 293 | IpNet::V4(ref a) => IpAddr::V4(a.hostmask()), |
| 294 | IpNet::V6(ref a) => IpAddr::V6(a.hostmask()), |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | /// Returns the network address. |
| 299 | /// |
| 300 | /// # Examples |
| 301 | /// |
| 302 | /// ``` |
| 303 | /// # use std::net::IpAddr; |
| 304 | /// # use ipnet::IpNet; |
| 305 | /// # |
| 306 | /// let net: IpNet = "172.16.123.123/16" .parse().unwrap(); |
| 307 | /// assert_eq!(Ok(net.network()), "172.16.0.0" .parse()); |
| 308 | /// |
| 309 | /// let net: IpNet = "fd00:1234:5678::/24" .parse().unwrap(); |
| 310 | /// assert_eq!(Ok(net.network()), "fd00:1200::" .parse()); |
| 311 | /// ``` |
| 312 | pub fn network(&self) -> IpAddr { |
| 313 | match *self { |
| 314 | IpNet::V4(ref a) => IpAddr::V4(a.network()), |
| 315 | IpNet::V6(ref a) => IpAddr::V6(a.network()), |
| 316 | } |
| 317 | } |
| 318 | |
| 319 | /// Returns the broadcast address. |
| 320 | /// |
| 321 | /// # Examples |
| 322 | /// |
| 323 | /// ``` |
| 324 | /// # use std::net::IpAddr; |
| 325 | /// # use ipnet::IpNet; |
| 326 | /// # |
| 327 | /// let net: IpNet = "172.16.0.0/22" .parse().unwrap(); |
| 328 | /// assert_eq!(Ok(net.broadcast()), "172.16.3.255" .parse()); |
| 329 | /// |
| 330 | /// let net: IpNet = "fd00:1234:5678::/24" .parse().unwrap(); |
| 331 | /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff" .parse()); |
| 332 | /// ``` |
| 333 | pub fn broadcast(&self) -> IpAddr { |
| 334 | match *self { |
| 335 | IpNet::V4(ref a) => IpAddr::V4(a.broadcast()), |
| 336 | IpNet::V6(ref a) => IpAddr::V6(a.broadcast()), |
| 337 | } |
| 338 | } |
| 339 | |
| 340 | /// Returns the `IpNet` that contains this one. |
| 341 | /// |
| 342 | /// # Examples |
| 343 | /// |
| 344 | /// ``` |
| 345 | /// # use ipnet::IpNet; |
| 346 | /// # |
| 347 | /// let n1: IpNet = "172.16.1.0/24" .parse().unwrap(); |
| 348 | /// let n2: IpNet = "172.16.0.0/23" .parse().unwrap(); |
| 349 | /// let n3: IpNet = "172.16.0.0/0" .parse().unwrap(); |
| 350 | /// |
| 351 | /// assert_eq!(n1.supernet().unwrap(), n2); |
| 352 | /// assert_eq!(n3.supernet(), None); |
| 353 | /// |
| 354 | /// let n1: IpNet = "fd00:ff00::/24" .parse().unwrap(); |
| 355 | /// let n2: IpNet = "fd00:fe00::/23" .parse().unwrap(); |
| 356 | /// let n3: IpNet = "fd00:fe00::/0" .parse().unwrap(); |
| 357 | /// |
| 358 | /// assert_eq!(n1.supernet().unwrap(), n2); |
| 359 | /// assert_eq!(n3.supernet(), None); |
| 360 | /// ``` |
| 361 | pub fn supernet(&self) -> Option<IpNet> { |
| 362 | match *self { |
| 363 | IpNet::V4(ref a) => a.supernet().map(IpNet::V4), |
| 364 | IpNet::V6(ref a) => a.supernet().map(IpNet::V6), |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | /// Returns `true` if this network and the given network are |
| 369 | /// children of the same supernet. |
| 370 | /// |
| 371 | /// # Examples |
| 372 | /// |
| 373 | /// ``` |
| 374 | /// # use ipnet::IpNet; |
| 375 | /// # |
| 376 | /// let n4_1: IpNet = "10.1.0.0/24" .parse().unwrap(); |
| 377 | /// let n4_2: IpNet = "10.1.1.0/24" .parse().unwrap(); |
| 378 | /// let n4_3: IpNet = "10.1.2.0/24" .parse().unwrap(); |
| 379 | /// let n6_1: IpNet = "fd00::/18" .parse().unwrap(); |
| 380 | /// let n6_2: IpNet = "fd00:4000::/18" .parse().unwrap(); |
| 381 | /// let n6_3: IpNet = "fd00:8000::/18" .parse().unwrap(); |
| 382 | /// |
| 383 | /// assert!( n4_1.is_sibling(&n4_2)); |
| 384 | /// assert!(!n4_2.is_sibling(&n4_3)); |
| 385 | /// assert!( n6_1.is_sibling(&n6_2)); |
| 386 | /// assert!(!n6_2.is_sibling(&n6_3)); |
| 387 | /// assert!(!n4_1.is_sibling(&n6_2)); |
| 388 | /// ``` |
| 389 | pub fn is_sibling(&self, other: &IpNet) -> bool { |
| 390 | match (*self, *other) { |
| 391 | (IpNet::V4(ref a), IpNet::V4(ref b)) => a.is_sibling(b), |
| 392 | (IpNet::V6(ref a), IpNet::V6(ref b)) => a.is_sibling(b), |
| 393 | _ => false, |
| 394 | } |
| 395 | } |
| 396 | |
| 397 | /// Return an `Iterator` over the host addresses in this network. |
| 398 | /// |
| 399 | /// # Examples |
| 400 | /// |
| 401 | /// ``` |
| 402 | /// # use std::net::IpAddr; |
| 403 | /// # use ipnet::IpNet; |
| 404 | /// # |
| 405 | /// let net: IpNet = "10.0.0.0/30" .parse().unwrap(); |
| 406 | /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ |
| 407 | /// "10.0.0.1" .parse::<IpAddr>().unwrap(), |
| 408 | /// "10.0.0.2" .parse().unwrap(), |
| 409 | /// ]); |
| 410 | /// |
| 411 | /// let net: IpNet = "10.0.0.0/31" .parse().unwrap(); |
| 412 | /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ |
| 413 | /// "10.0.0.0" .parse::<IpAddr>().unwrap(), |
| 414 | /// "10.0.0.1" .parse().unwrap(), |
| 415 | /// ]); |
| 416 | /// |
| 417 | /// let net: IpNet = "fd00::/126" .parse().unwrap(); |
| 418 | /// assert_eq!(net.hosts().collect::<Vec<IpAddr>>(), vec![ |
| 419 | /// "fd00::" .parse::<IpAddr>().unwrap(), |
| 420 | /// "fd00::1" .parse().unwrap(), |
| 421 | /// "fd00::2" .parse().unwrap(), |
| 422 | /// "fd00::3" .parse().unwrap(), |
| 423 | /// ]); |
| 424 | /// ``` |
| 425 | pub fn hosts(&self) -> IpAddrRange { |
| 426 | match *self { |
| 427 | IpNet::V4(ref a) => IpAddrRange::V4(a.hosts()), |
| 428 | IpNet::V6(ref a) => IpAddrRange::V6(a.hosts()), |
| 429 | } |
| 430 | } |
| 431 | |
| 432 | /// Returns an `Iterator` over the subnets of this network with the |
| 433 | /// given prefix length. |
| 434 | /// |
| 435 | /// # Examples |
| 436 | /// |
| 437 | /// ``` |
| 438 | /// # use ipnet::{IpNet, PrefixLenError}; |
| 439 | /// # |
| 440 | /// let net: IpNet = "10.0.0.0/24" .parse().unwrap(); |
| 441 | /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<IpNet>>(), vec![ |
| 442 | /// "10.0.0.0/26" .parse::<IpNet>().unwrap(), |
| 443 | /// "10.0.0.64/26" .parse().unwrap(), |
| 444 | /// "10.0.0.128/26" .parse().unwrap(), |
| 445 | /// "10.0.0.192/26" .parse().unwrap(), |
| 446 | /// ]); |
| 447 | /// |
| 448 | /// let net: IpNet = "fd00::/16" .parse().unwrap(); |
| 449 | /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<IpNet>>(), vec![ |
| 450 | /// "fd00::/18" .parse::<IpNet>().unwrap(), |
| 451 | /// "fd00:4000::/18" .parse().unwrap(), |
| 452 | /// "fd00:8000::/18" .parse().unwrap(), |
| 453 | /// "fd00:c000::/18" .parse().unwrap(), |
| 454 | /// ]); |
| 455 | /// |
| 456 | /// let net: IpNet = "10.0.0.0/24" .parse().unwrap(); |
| 457 | /// assert_eq!(net.subnets(23), Err(PrefixLenError)); |
| 458 | /// |
| 459 | /// let net: IpNet = "10.0.0.0/24" .parse().unwrap(); |
| 460 | /// assert_eq!(net.subnets(33), Err(PrefixLenError)); |
| 461 | /// |
| 462 | /// let net: IpNet = "fd00::/16" .parse().unwrap(); |
| 463 | /// assert_eq!(net.subnets(15), Err(PrefixLenError)); |
| 464 | /// |
| 465 | /// let net: IpNet = "fd00::/16" .parse().unwrap(); |
| 466 | /// assert_eq!(net.subnets(129), Err(PrefixLenError)); |
| 467 | /// ``` |
| 468 | pub fn subnets(&self, new_prefix_len: u8) -> Result<IpSubnets, PrefixLenError> { |
| 469 | match *self { |
| 470 | IpNet::V4(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V4), |
| 471 | IpNet::V6(ref a) => a.subnets(new_prefix_len).map(IpSubnets::V6), |
| 472 | } |
| 473 | } |
| 474 | |
| 475 | /// Test if a network address contains either another network |
| 476 | /// address or an IP address. |
| 477 | /// |
| 478 | /// # Examples |
| 479 | /// |
| 480 | /// ``` |
| 481 | /// # use std::net::IpAddr; |
| 482 | /// # use ipnet::IpNet; |
| 483 | /// # |
| 484 | /// let net4: IpNet = "192.168.0.0/24" .parse().unwrap(); |
| 485 | /// let net4_yes: IpNet = "192.168.0.0/25" .parse().unwrap(); |
| 486 | /// let net4_no: IpNet = "192.168.0.0/23" .parse().unwrap(); |
| 487 | /// let ip4_yes: IpAddr = "192.168.0.1" .parse().unwrap(); |
| 488 | /// let ip4_no: IpAddr = "192.168.1.0" .parse().unwrap(); |
| 489 | /// |
| 490 | /// assert!(net4.contains(&net4)); |
| 491 | /// assert!(net4.contains(&net4_yes)); |
| 492 | /// assert!(!net4.contains(&net4_no)); |
| 493 | /// assert!(net4.contains(&ip4_yes)); |
| 494 | /// assert!(!net4.contains(&ip4_no)); |
| 495 | /// |
| 496 | /// |
| 497 | /// let net6: IpNet = "fd00::/16" .parse().unwrap(); |
| 498 | /// let net6_yes: IpNet = "fd00::/17" .parse().unwrap(); |
| 499 | /// let net6_no: IpNet = "fd00::/15" .parse().unwrap(); |
| 500 | /// let ip6_yes: IpAddr = "fd00::1" .parse().unwrap(); |
| 501 | /// let ip6_no: IpAddr = "fd01::" .parse().unwrap(); |
| 502 | /// |
| 503 | /// assert!(net6.contains(&net6)); |
| 504 | /// assert!(net6.contains(&net6_yes)); |
| 505 | /// assert!(!net6.contains(&net6_no)); |
| 506 | /// assert!(net6.contains(&ip6_yes)); |
| 507 | /// assert!(!net6.contains(&ip6_no)); |
| 508 | /// |
| 509 | /// assert!(!net4.contains(&net6)); |
| 510 | /// assert!(!net6.contains(&net4)); |
| 511 | /// assert!(!net4.contains(&ip6_no)); |
| 512 | /// assert!(!net6.contains(&ip4_no)); |
| 513 | /// ``` |
| 514 | pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { |
| 515 | Contains::contains(self, other) |
| 516 | } |
| 517 | |
| 518 | /// Aggregate a `Vec` of `IpNet`s and return the result as a new |
| 519 | /// `Vec`. |
| 520 | /// |
| 521 | /// # Examples |
| 522 | /// |
| 523 | /// ``` |
| 524 | /// # use ipnet::IpNet; |
| 525 | /// # |
| 526 | /// let nets = vec![ |
| 527 | /// "10.0.0.0/24" .parse::<IpNet>().unwrap(), |
| 528 | /// "10.0.1.0/24" .parse().unwrap(), |
| 529 | /// "10.0.2.0/24" .parse().unwrap(), |
| 530 | /// "fd00::/18" .parse().unwrap(), |
| 531 | /// "fd00:4000::/18" .parse().unwrap(), |
| 532 | /// "fd00:8000::/18" .parse().unwrap(), |
| 533 | /// ]; |
| 534 | /// |
| 535 | /// assert_eq!(IpNet::aggregate(&nets), vec![ |
| 536 | /// "10.0.0.0/23" .parse::<IpNet>().unwrap(), |
| 537 | /// "10.0.2.0/24" .parse().unwrap(), |
| 538 | /// "fd00::/17" .parse().unwrap(), |
| 539 | /// "fd00:8000::/18" .parse().unwrap(), |
| 540 | /// ]); |
| 541 | /// ``` |
| 542 | pub fn aggregate(networks: &Vec<IpNet>) -> Vec<IpNet> { |
| 543 | // It's 2.5x faster to split the input up and run them using the |
| 544 | // specific IPv4 and IPV6 implementations. merge_intervals() and |
| 545 | // the comparisons are much faster running over integers. |
| 546 | let mut ipv4nets: Vec<Ipv4Net> = Vec::new(); |
| 547 | let mut ipv6nets: Vec<Ipv6Net> = Vec::new(); |
| 548 | |
| 549 | for n in networks { |
| 550 | match *n { |
| 551 | IpNet::V4(x) => ipv4nets.push(x), |
| 552 | IpNet::V6(x) => ipv6nets.push(x), |
| 553 | } |
| 554 | } |
| 555 | |
| 556 | let mut res: Vec<IpNet> = Vec::new(); |
| 557 | let ipv4aggs = Ipv4Net::aggregate(&ipv4nets); |
| 558 | let ipv6aggs = Ipv6Net::aggregate(&ipv6nets); |
| 559 | res.extend::<Vec<IpNet>>(ipv4aggs.into_iter().map(IpNet::V4).collect::<Vec<IpNet>>()); |
| 560 | res.extend::<Vec<IpNet>>(ipv6aggs.into_iter().map(IpNet::V6).collect::<Vec<IpNet>>()); |
| 561 | res |
| 562 | } |
| 563 | } |
| 564 | |
| 565 | impl Default for IpNet { |
| 566 | fn default() -> Self { |
| 567 | Self::V4(Ipv4Net::default()) |
| 568 | } |
| 569 | } |
| 570 | |
| 571 | impl fmt::Debug for IpNet { |
| 572 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 573 | fmt::Display::fmt(self, f:fmt) |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | impl fmt::Display for IpNet { |
| 578 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 579 | match *self { |
| 580 | IpNet::V4(ref a: &Ipv4Net) => a.fmt(fmt), |
| 581 | IpNet::V6(ref a: &Ipv6Net) => a.fmt(fmt), |
| 582 | } |
| 583 | } |
| 584 | } |
| 585 | |
| 586 | impl From<Ipv4Net> for IpNet { |
| 587 | fn from(net: Ipv4Net) -> IpNet { |
| 588 | IpNet::V4(net) |
| 589 | } |
| 590 | } |
| 591 | |
| 592 | impl From<Ipv6Net> for IpNet { |
| 593 | fn from(net: Ipv6Net) -> IpNet { |
| 594 | IpNet::V6(net) |
| 595 | } |
| 596 | } |
| 597 | |
| 598 | impl From<IpAddr> for IpNet { |
| 599 | fn from(addr: IpAddr) -> IpNet { |
| 600 | match addr { |
| 601 | IpAddr::V4(a: Ipv4Addr) => IpNet::V4(a.into()), |
| 602 | IpAddr::V6(a: Ipv6Addr) => IpNet::V6(a.into()), |
| 603 | } |
| 604 | } |
| 605 | } |
| 606 | |
| 607 | impl Ipv4Net { |
| 608 | /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix |
| 609 | /// length. |
| 610 | /// |
| 611 | /// # Examples |
| 612 | /// |
| 613 | /// ``` |
| 614 | /// use std::net::Ipv4Addr; |
| 615 | /// use ipnet::{Ipv4Net, PrefixLenError}; |
| 616 | /// |
| 617 | /// let net = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 24); |
| 618 | /// assert!(net.is_ok()); |
| 619 | /// |
| 620 | /// let bad_prefix_len = Ipv4Net::new(Ipv4Addr::new(10, 1, 1, 0), 33); |
| 621 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 622 | /// ``` |
| 623 | #[inline ] |
| 624 | pub const fn new(ip: Ipv4Addr, prefix_len: u8) -> Result<Ipv4Net, PrefixLenError> { |
| 625 | if prefix_len > 32 { |
| 626 | return Err(PrefixLenError); |
| 627 | } |
| 628 | Ok(Ipv4Net { addr: ip, prefix_len: prefix_len }) |
| 629 | } |
| 630 | |
| 631 | /// Creates a new IPv4 network address from an `Ipv4Addr` and prefix |
| 632 | /// length. If called from a const context it will verify prefix length |
| 633 | /// at compile time. Otherwise it will panic at runtime if prefix length |
| 634 | /// is not less then or equal to 32. |
| 635 | /// |
| 636 | /// # Examples |
| 637 | /// |
| 638 | /// ``` |
| 639 | /// use std::net::Ipv4Addr; |
| 640 | /// use ipnet::{Ipv4Net}; |
| 641 | /// |
| 642 | /// // This code is verified at compile time: |
| 643 | /// const NET: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 24); |
| 644 | /// assert_eq!(NET.prefix_len(), 24); |
| 645 | /// |
| 646 | /// // This code is verified at runtime: |
| 647 | /// let net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 24); |
| 648 | /// assert_eq!(NET.prefix_len(), 24); |
| 649 | /// |
| 650 | /// // This code does not compile: |
| 651 | /// // const BAD_PREFIX_LEN: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 33); |
| 652 | /// |
| 653 | /// // This code panics at runtime: |
| 654 | /// // let bad_prefix_len = Ipv4Net::new_assert(Ipv4Addr::new(10, 1, 1, 0), 33); |
| 655 | /// ``` |
| 656 | #[inline ] |
| 657 | pub const fn new_assert(ip: Ipv4Addr, prefix_len: u8) -> Ipv4Net { |
| 658 | assert!(prefix_len <= 32, "PREFIX_LEN must be less then or equal to 32 for Ipv4Net" ); |
| 659 | Ipv4Net { addr: ip, prefix_len: prefix_len } |
| 660 | } |
| 661 | |
| 662 | /// Creates a new IPv4 network address from an `Ipv4Addr` and netmask. |
| 663 | /// |
| 664 | /// # Examples |
| 665 | /// |
| 666 | /// ``` |
| 667 | /// use std::net::Ipv4Addr; |
| 668 | /// use ipnet::{Ipv4Net, PrefixLenError}; |
| 669 | /// |
| 670 | /// let net = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 255, 0)); |
| 671 | /// assert!(net.is_ok()); |
| 672 | /// |
| 673 | /// let bad_prefix_len = Ipv4Net::with_netmask(Ipv4Addr::new(10, 1, 1, 0), Ipv4Addr::new(255, 255, 0, 1)); |
| 674 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 675 | /// ``` |
| 676 | pub fn with_netmask(ip: Ipv4Addr, netmask: Ipv4Addr) -> Result<Ipv4Net, PrefixLenError> { |
| 677 | let prefix = ipv4_mask_to_prefix(netmask)?; |
| 678 | Self::new(ip, prefix) |
| 679 | } |
| 680 | |
| 681 | /// Returns a copy of the network with the address truncated to the |
| 682 | /// prefix length. |
| 683 | /// |
| 684 | /// # Examples |
| 685 | /// |
| 686 | /// ``` |
| 687 | /// # use ipnet::Ipv4Net; |
| 688 | /// # |
| 689 | /// assert_eq!( |
| 690 | /// "192.168.12.34/16" .parse::<Ipv4Net>().unwrap().trunc(), |
| 691 | /// "192.168.0.0/16" .parse().unwrap() |
| 692 | /// ); |
| 693 | /// ``` |
| 694 | pub fn trunc(&self) -> Ipv4Net { |
| 695 | Ipv4Net::new(self.network(), self.prefix_len).unwrap() |
| 696 | } |
| 697 | |
| 698 | /// Returns the address. |
| 699 | #[inline ] |
| 700 | pub const fn addr(&self) -> Ipv4Addr { |
| 701 | self.addr |
| 702 | } |
| 703 | |
| 704 | /// Returns the prefix length. |
| 705 | #[inline ] |
| 706 | pub const fn prefix_len(&self) -> u8 { |
| 707 | self.prefix_len |
| 708 | } |
| 709 | |
| 710 | /// Returns the maximum valid prefix length. |
| 711 | #[inline ] |
| 712 | pub const fn max_prefix_len(&self) -> u8 { |
| 713 | 32 |
| 714 | } |
| 715 | |
| 716 | /// Returns the network mask. |
| 717 | /// |
| 718 | /// # Examples |
| 719 | /// |
| 720 | /// ``` |
| 721 | /// # use std::net::Ipv4Addr; |
| 722 | /// # use ipnet::Ipv4Net; |
| 723 | /// # |
| 724 | /// let net: Ipv4Net = "10.1.0.0/20" .parse().unwrap(); |
| 725 | /// assert_eq!(Ok(net.netmask()), "255.255.240.0" .parse()); |
| 726 | /// ``` |
| 727 | pub fn netmask(&self) -> Ipv4Addr { |
| 728 | Ipv4Addr::from(self.netmask_u32()) |
| 729 | } |
| 730 | |
| 731 | fn netmask_u32(&self) -> u32 { |
| 732 | u32::max_value().checked_shl(32 - self.prefix_len as u32).unwrap_or(0) |
| 733 | } |
| 734 | |
| 735 | /// Returns the host mask. |
| 736 | /// |
| 737 | /// # Examples |
| 738 | /// |
| 739 | /// ``` |
| 740 | /// # use std::net::Ipv4Addr; |
| 741 | /// # use ipnet::Ipv4Net; |
| 742 | /// # |
| 743 | /// let net: Ipv4Net = "10.1.0.0/20" .parse().unwrap(); |
| 744 | /// assert_eq!(Ok(net.hostmask()), "0.0.15.255" .parse()); |
| 745 | /// ``` |
| 746 | pub fn hostmask(&self) -> Ipv4Addr { |
| 747 | Ipv4Addr::from(self.hostmask_u32()) |
| 748 | } |
| 749 | |
| 750 | fn hostmask_u32(&self) -> u32 { |
| 751 | u32::max_value().checked_shr(self.prefix_len as u32).unwrap_or(0) |
| 752 | } |
| 753 | |
| 754 | /// Returns the network address. |
| 755 | /// |
| 756 | /// # Examples |
| 757 | /// |
| 758 | /// ``` |
| 759 | /// # use std::net::Ipv4Addr; |
| 760 | /// # use ipnet::Ipv4Net; |
| 761 | /// # |
| 762 | /// let net: Ipv4Net = "172.16.123.123/16" .parse().unwrap(); |
| 763 | /// assert_eq!(Ok(net.network()), "172.16.0.0" .parse()); |
| 764 | /// ``` |
| 765 | pub fn network(&self) -> Ipv4Addr { |
| 766 | Ipv4Addr::from(u32::from(self.addr) & self.netmask_u32()) |
| 767 | } |
| 768 | |
| 769 | /// Returns the broadcast address. |
| 770 | /// |
| 771 | /// # Examples |
| 772 | /// |
| 773 | /// ``` |
| 774 | /// # use std::net::Ipv4Addr; |
| 775 | /// # use ipnet::Ipv4Net; |
| 776 | /// # |
| 777 | /// let net: Ipv4Net = "172.16.0.0/22" .parse().unwrap(); |
| 778 | /// assert_eq!(Ok(net.broadcast()), "172.16.3.255" .parse()); |
| 779 | /// ``` |
| 780 | pub fn broadcast(&self) -> Ipv4Addr { |
| 781 | Ipv4Addr::from(u32::from(self.addr) | self.hostmask_u32()) |
| 782 | } |
| 783 | |
| 784 | /// Returns the `Ipv4Net` that contains this one. |
| 785 | /// |
| 786 | /// # Examples |
| 787 | /// |
| 788 | /// ``` |
| 789 | /// # use ipnet::Ipv4Net; |
| 790 | /// # |
| 791 | /// let n1: Ipv4Net = "172.16.1.0/24" .parse().unwrap(); |
| 792 | /// let n2: Ipv4Net = "172.16.0.0/23" .parse().unwrap(); |
| 793 | /// let n3: Ipv4Net = "172.16.0.0/0" .parse().unwrap(); |
| 794 | /// |
| 795 | /// assert_eq!(n1.supernet().unwrap(), n2); |
| 796 | /// assert_eq!(n3.supernet(), None); |
| 797 | /// ``` |
| 798 | pub fn supernet(&self) -> Option<Ipv4Net> { |
| 799 | Ipv4Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() |
| 800 | } |
| 801 | |
| 802 | /// Returns `true` if this network and the given network are |
| 803 | /// children of the same supernet. |
| 804 | /// |
| 805 | /// # Examples |
| 806 | /// |
| 807 | /// ``` |
| 808 | /// # use ipnet::Ipv4Net; |
| 809 | /// # |
| 810 | /// let n1: Ipv4Net = "10.1.0.0/24" .parse().unwrap(); |
| 811 | /// let n2: Ipv4Net = "10.1.1.0/24" .parse().unwrap(); |
| 812 | /// let n3: Ipv4Net = "10.1.2.0/24" .parse().unwrap(); |
| 813 | /// |
| 814 | /// assert!(n1.is_sibling(&n2)); |
| 815 | /// assert!(!n2.is_sibling(&n3)); |
| 816 | /// ``` |
| 817 | pub fn is_sibling(&self, other: &Ipv4Net) -> bool { |
| 818 | self.prefix_len > 0 && |
| 819 | self.prefix_len == other.prefix_len && |
| 820 | self.supernet().unwrap().contains(other) |
| 821 | } |
| 822 | |
| 823 | /// Return an `Iterator` over the host addresses in this network. |
| 824 | /// |
| 825 | /// If the prefix length is less than 31 both the network address |
| 826 | /// and broadcast address are excluded. These are only valid host |
| 827 | /// addresses when the prefix length is 31. |
| 828 | /// |
| 829 | /// # Examples |
| 830 | /// |
| 831 | /// ``` |
| 832 | /// # use std::net::Ipv4Addr; |
| 833 | /// # use ipnet::Ipv4Net; |
| 834 | /// # |
| 835 | /// let net: Ipv4Net = "10.0.0.0/30" .parse().unwrap(); |
| 836 | /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ |
| 837 | /// "10.0.0.1" .parse::<Ipv4Addr>().unwrap(), |
| 838 | /// "10.0.0.2" .parse().unwrap(), |
| 839 | /// ]); |
| 840 | /// |
| 841 | /// let net: Ipv4Net = "10.0.0.0/31" .parse().unwrap(); |
| 842 | /// assert_eq!(net.hosts().collect::<Vec<Ipv4Addr>>(), vec![ |
| 843 | /// "10.0.0.0" .parse::<Ipv4Addr>().unwrap(), |
| 844 | /// "10.0.0.1" .parse().unwrap(), |
| 845 | /// ]); |
| 846 | /// ``` |
| 847 | pub fn hosts(&self) -> Ipv4AddrRange { |
| 848 | let mut start = self.network(); |
| 849 | let mut end = self.broadcast(); |
| 850 | |
| 851 | if self.prefix_len < 31 { |
| 852 | start = start.saturating_add(1); |
| 853 | end = end.saturating_sub(1); |
| 854 | } |
| 855 | |
| 856 | Ipv4AddrRange::new(start, end) |
| 857 | } |
| 858 | |
| 859 | /// Returns an `Iterator` over the subnets of this network with the |
| 860 | /// given prefix length. |
| 861 | /// |
| 862 | /// # Examples |
| 863 | /// |
| 864 | /// ``` |
| 865 | /// # use ipnet::{Ipv4Net, PrefixLenError}; |
| 866 | /// # |
| 867 | /// let net: Ipv4Net = "10.0.0.0/24" .parse().unwrap(); |
| 868 | /// assert_eq!(net.subnets(26).unwrap().collect::<Vec<Ipv4Net>>(), vec![ |
| 869 | /// "10.0.0.0/26" .parse::<Ipv4Net>().unwrap(), |
| 870 | /// "10.0.0.64/26" .parse().unwrap(), |
| 871 | /// "10.0.0.128/26" .parse().unwrap(), |
| 872 | /// "10.0.0.192/26" .parse().unwrap(), |
| 873 | /// ]); |
| 874 | /// |
| 875 | /// let net: Ipv4Net = "10.0.0.0/30" .parse().unwrap(); |
| 876 | /// assert_eq!(net.subnets(32).unwrap().collect::<Vec<Ipv4Net>>(), vec![ |
| 877 | /// "10.0.0.0/32" .parse::<Ipv4Net>().unwrap(), |
| 878 | /// "10.0.0.1/32" .parse().unwrap(), |
| 879 | /// "10.0.0.2/32" .parse().unwrap(), |
| 880 | /// "10.0.0.3/32" .parse().unwrap(), |
| 881 | /// ]); |
| 882 | /// |
| 883 | /// let net: Ipv4Net = "10.0.0.0/24" .parse().unwrap(); |
| 884 | /// assert_eq!(net.subnets(23), Err(PrefixLenError)); |
| 885 | /// |
| 886 | /// let net: Ipv4Net = "10.0.0.0/24" .parse().unwrap(); |
| 887 | /// assert_eq!(net.subnets(33), Err(PrefixLenError)); |
| 888 | /// ``` |
| 889 | pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv4Subnets, PrefixLenError> { |
| 890 | if self.prefix_len > new_prefix_len || new_prefix_len > 32 { |
| 891 | return Err(PrefixLenError); |
| 892 | } |
| 893 | |
| 894 | Ok(Ipv4Subnets::new( |
| 895 | self.network(), |
| 896 | self.broadcast(), |
| 897 | new_prefix_len, |
| 898 | )) |
| 899 | } |
| 900 | |
| 901 | /// Test if a network address contains either another network |
| 902 | /// address or an IP address. |
| 903 | /// |
| 904 | /// # Examples |
| 905 | /// |
| 906 | /// ``` |
| 907 | /// # use std::net::Ipv4Addr; |
| 908 | /// # use ipnet::Ipv4Net; |
| 909 | /// # |
| 910 | /// let net: Ipv4Net = "192.168.0.0/24" .parse().unwrap(); |
| 911 | /// let net_yes: Ipv4Net = "192.168.0.0/25" .parse().unwrap(); |
| 912 | /// let net_no: Ipv4Net = "192.168.0.0/23" .parse().unwrap(); |
| 913 | /// let ip_yes: Ipv4Addr = "192.168.0.1" .parse().unwrap(); |
| 914 | /// let ip_no: Ipv4Addr = "192.168.1.0" .parse().unwrap(); |
| 915 | /// |
| 916 | /// assert!(net.contains(&net)); |
| 917 | /// assert!(net.contains(&net_yes)); |
| 918 | /// assert!(!net.contains(&net_no)); |
| 919 | /// assert!(net.contains(&ip_yes)); |
| 920 | /// assert!(!net.contains(&ip_no)); |
| 921 | /// ``` |
| 922 | pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { |
| 923 | Contains::contains(self, other) |
| 924 | } |
| 925 | |
| 926 | // It is significantly faster to work on u32 than Ipv4Addr. |
| 927 | fn interval(&self) -> (u32, u32) { |
| 928 | ( |
| 929 | u32::from(self.network()), |
| 930 | u32::from(self.broadcast()).saturating_add(1), |
| 931 | ) |
| 932 | } |
| 933 | |
| 934 | /// Aggregate a `Vec` of `Ipv4Net`s and return the result as a new |
| 935 | /// `Vec`. |
| 936 | /// |
| 937 | /// # Examples |
| 938 | /// |
| 939 | /// ``` |
| 940 | /// # use ipnet::Ipv4Net; |
| 941 | /// # |
| 942 | /// let nets = vec![ |
| 943 | /// "10.0.0.0/24" .parse::<Ipv4Net>().unwrap(), |
| 944 | /// "10.0.1.0/24" .parse().unwrap(), |
| 945 | /// "10.0.2.0/24" .parse().unwrap(), |
| 946 | /// ]; |
| 947 | /// |
| 948 | /// assert_eq!(Ipv4Net::aggregate(&nets), vec![ |
| 949 | /// "10.0.0.0/23" .parse::<Ipv4Net>().unwrap(), |
| 950 | /// "10.0.2.0/24" .parse().unwrap(), |
| 951 | /// ]); |
| 952 | pub fn aggregate(networks: &Vec<Ipv4Net>) -> Vec<Ipv4Net> { |
| 953 | let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); |
| 954 | intervals = merge_intervals(intervals); |
| 955 | let mut res: Vec<Ipv4Net> = Vec::new(); |
| 956 | |
| 957 | for (start, mut end) in intervals { |
| 958 | if end != core::u32::MAX { |
| 959 | end = end.saturating_sub(1) |
| 960 | } |
| 961 | let iter = Ipv4Subnets::new(start.into(), end.into(), 0); |
| 962 | res.extend(iter); |
| 963 | } |
| 964 | res |
| 965 | } |
| 966 | } |
| 967 | |
| 968 | impl Default for Ipv4Net { |
| 969 | fn default() -> Self { |
| 970 | Self { |
| 971 | addr: Ipv4Addr::from(0), |
| 972 | prefix_len: 0, |
| 973 | } |
| 974 | } |
| 975 | } |
| 976 | |
| 977 | impl fmt::Debug for Ipv4Net { |
| 978 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 979 | fmt::Display::fmt(self, f:fmt) |
| 980 | } |
| 981 | } |
| 982 | |
| 983 | impl fmt::Display for Ipv4Net { |
| 984 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 985 | write!(fmt, " {}/ {}" , self.addr, self.prefix_len) |
| 986 | } |
| 987 | } |
| 988 | |
| 989 | impl From<Ipv4Addr> for Ipv4Net { |
| 990 | fn from(addr: Ipv4Addr) -> Ipv4Net { |
| 991 | Ipv4Net { addr, prefix_len: 32 } |
| 992 | } |
| 993 | } |
| 994 | |
| 995 | impl Ipv6Net { |
| 996 | /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix |
| 997 | /// length. |
| 998 | /// |
| 999 | /// # Examples |
| 1000 | /// |
| 1001 | /// ``` |
| 1002 | /// use std::net::Ipv6Addr; |
| 1003 | /// use ipnet::{Ipv6Net, PrefixLenError}; |
| 1004 | /// |
| 1005 | /// let net = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); |
| 1006 | /// assert!(net.is_ok()); |
| 1007 | /// |
| 1008 | /// let bad_prefix_len = Ipv6Net::new(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); |
| 1009 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 1010 | /// ``` |
| 1011 | #[inline ] |
| 1012 | pub const fn new(ip: Ipv6Addr, prefix_len: u8) -> Result<Ipv6Net, PrefixLenError> { |
| 1013 | if prefix_len > 128 { |
| 1014 | return Err(PrefixLenError); |
| 1015 | } |
| 1016 | Ok(Ipv6Net { addr: ip, prefix_len: prefix_len }) |
| 1017 | } |
| 1018 | |
| 1019 | /// Creates a new IPv6 network address from an `Ipv6Addr` and prefix |
| 1020 | /// length. If called from a const context it will verify prefix length |
| 1021 | /// at compile time. Otherwise it will panic at runtime if prefix length |
| 1022 | /// is not less then or equal to 128. |
| 1023 | /// |
| 1024 | /// # Examples |
| 1025 | /// |
| 1026 | /// ``` |
| 1027 | /// use std::net::Ipv6Addr; |
| 1028 | /// use ipnet::{Ipv6Net}; |
| 1029 | /// |
| 1030 | /// // This code is verified at compile time: |
| 1031 | /// const NET: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); |
| 1032 | /// assert_eq!(NET.prefix_len(), 24); |
| 1033 | /// |
| 1034 | /// // This code is verified at runtime: |
| 1035 | /// let net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 24); |
| 1036 | /// assert_eq!(net.prefix_len(), 24); |
| 1037 | /// |
| 1038 | /// // This code does not compile: |
| 1039 | /// // const BAD_PREFIX_LEN: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); |
| 1040 | /// |
| 1041 | /// // This code panics at runtime: |
| 1042 | /// // let bad_prefix_len = Ipv6Addr::new_assert(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), 129); |
| 1043 | /// ``` |
| 1044 | #[inline ] |
| 1045 | pub const fn new_assert(ip: Ipv6Addr, prefix_len: u8) -> Ipv6Net { |
| 1046 | assert!(prefix_len <= 128, "PREFIX_LEN must be less then or equal to 128 for Ipv6Net" ); |
| 1047 | Ipv6Net { addr: ip, prefix_len: prefix_len } |
| 1048 | } |
| 1049 | |
| 1050 | /// Creates a new IPv6 network address from an `Ipv6Addr` and netmask. |
| 1051 | /// |
| 1052 | /// # Examples |
| 1053 | /// |
| 1054 | /// ``` |
| 1055 | /// use std::net::Ipv6Addr; |
| 1056 | /// use ipnet::{Ipv6Net, PrefixLenError}; |
| 1057 | /// |
| 1058 | /// let net = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0000_0000_0000_0000)); |
| 1059 | /// assert!(net.is_ok()); |
| 1060 | /// |
| 1061 | /// let bad_prefix_len = Ipv6Net::with_netmask(Ipv6Addr::new(0xfd, 0, 0, 0, 0, 0, 0, 0), Ipv6Addr::from(0xffff_ff00_0000_0000_0001_0000_0000_0000)); |
| 1062 | /// assert_eq!(bad_prefix_len, Err(PrefixLenError)); |
| 1063 | /// ``` |
| 1064 | pub fn with_netmask(ip: Ipv6Addr, netmask: Ipv6Addr) -> Result<Ipv6Net, PrefixLenError> { |
| 1065 | let prefix = ipv6_mask_to_prefix(netmask)?; |
| 1066 | Self::new(ip, prefix) |
| 1067 | } |
| 1068 | |
| 1069 | /// Returns a copy of the network with the address truncated to the |
| 1070 | /// prefix length. |
| 1071 | /// |
| 1072 | /// # Examples |
| 1073 | /// |
| 1074 | /// ``` |
| 1075 | /// # use ipnet::Ipv6Net; |
| 1076 | /// # |
| 1077 | /// assert_eq!( |
| 1078 | /// "fd00::1:2:3:4/16" .parse::<Ipv6Net>().unwrap().trunc(), |
| 1079 | /// "fd00::/16" .parse().unwrap() |
| 1080 | /// ); |
| 1081 | /// ``` |
| 1082 | pub fn trunc(&self) -> Ipv6Net { |
| 1083 | Ipv6Net::new(self.network(), self.prefix_len).unwrap() |
| 1084 | } |
| 1085 | |
| 1086 | /// Returns the address. |
| 1087 | #[inline ] |
| 1088 | pub const fn addr(&self) -> Ipv6Addr { |
| 1089 | self.addr |
| 1090 | } |
| 1091 | |
| 1092 | /// Returns the prefix length. |
| 1093 | #[inline ] |
| 1094 | pub const fn prefix_len(&self) -> u8 { |
| 1095 | self.prefix_len |
| 1096 | } |
| 1097 | |
| 1098 | /// Returns the maximum valid prefix length. |
| 1099 | #[inline ] |
| 1100 | pub const fn max_prefix_len(&self) -> u8 { |
| 1101 | 128 |
| 1102 | } |
| 1103 | |
| 1104 | /// Returns the network mask. |
| 1105 | /// |
| 1106 | /// # Examples |
| 1107 | /// |
| 1108 | /// ``` |
| 1109 | /// # use std::net::Ipv6Addr; |
| 1110 | /// # use ipnet::Ipv6Net; |
| 1111 | /// # |
| 1112 | /// let net: Ipv6Net = "fd00::/24" .parse().unwrap(); |
| 1113 | /// assert_eq!(Ok(net.netmask()), "ffff:ff00::" .parse()); |
| 1114 | /// ``` |
| 1115 | pub fn netmask(&self) -> Ipv6Addr { |
| 1116 | self.netmask_u128().into() |
| 1117 | } |
| 1118 | |
| 1119 | fn netmask_u128(&self) -> u128 { |
| 1120 | u128::max_value().checked_shl((128 - self.prefix_len) as u32).unwrap_or(u128::min_value()) |
| 1121 | } |
| 1122 | |
| 1123 | /// Returns the host mask. |
| 1124 | /// |
| 1125 | /// # Examples |
| 1126 | /// |
| 1127 | /// ``` |
| 1128 | /// # use std::net::Ipv6Addr; |
| 1129 | /// # use ipnet::Ipv6Net; |
| 1130 | /// # |
| 1131 | /// let net: Ipv6Net = "fd00::/24" .parse().unwrap(); |
| 1132 | /// assert_eq!(Ok(net.hostmask()), "::ff:ffff:ffff:ffff:ffff:ffff:ffff" .parse()); |
| 1133 | /// ``` |
| 1134 | pub fn hostmask(&self) -> Ipv6Addr { |
| 1135 | self.hostmask_u128().into() |
| 1136 | } |
| 1137 | |
| 1138 | fn hostmask_u128(&self) -> u128 { |
| 1139 | u128::max_value().checked_shr(self.prefix_len as u32).unwrap_or(u128::min_value()) |
| 1140 | } |
| 1141 | |
| 1142 | /// Returns the network address. |
| 1143 | /// |
| 1144 | /// # Examples |
| 1145 | /// |
| 1146 | /// ``` |
| 1147 | /// # use std::net::Ipv6Addr; |
| 1148 | /// # use ipnet::Ipv6Net; |
| 1149 | /// # |
| 1150 | /// let net: Ipv6Net = "fd00:1234:5678::/24" .parse().unwrap(); |
| 1151 | /// assert_eq!(Ok(net.network()), "fd00:1200::" .parse()); |
| 1152 | /// ``` |
| 1153 | pub fn network(&self) -> Ipv6Addr { |
| 1154 | (u128::from(self.addr) & self.netmask_u128()).into() |
| 1155 | } |
| 1156 | |
| 1157 | /// Returns the last address. |
| 1158 | /// |
| 1159 | /// Technically there is no such thing as a broadcast address for |
| 1160 | /// IPv6. The name is used for consistency with colloquial usage. |
| 1161 | /// |
| 1162 | /// # Examples |
| 1163 | /// |
| 1164 | /// ``` |
| 1165 | /// # use std::net::Ipv6Addr; |
| 1166 | /// # use ipnet::Ipv6Net; |
| 1167 | /// # |
| 1168 | /// let net: Ipv6Net = "fd00:1234:5678::/24" .parse().unwrap(); |
| 1169 | /// assert_eq!(Ok(net.broadcast()), "fd00:12ff:ffff:ffff:ffff:ffff:ffff:ffff" .parse()); |
| 1170 | /// ``` |
| 1171 | pub fn broadcast(&self) -> Ipv6Addr { |
| 1172 | (u128::from(self.addr) | self.hostmask_u128()).into() |
| 1173 | } |
| 1174 | |
| 1175 | /// Returns the `Ipv6Net` that contains this one. |
| 1176 | /// |
| 1177 | /// # Examples |
| 1178 | /// |
| 1179 | /// ``` |
| 1180 | /// # use std::str::FromStr; |
| 1181 | /// # use ipnet::Ipv6Net; |
| 1182 | /// # |
| 1183 | /// let n1: Ipv6Net = "fd00:ff00::/24" .parse().unwrap(); |
| 1184 | /// let n2: Ipv6Net = "fd00:fe00::/23" .parse().unwrap(); |
| 1185 | /// let n3: Ipv6Net = "fd00:fe00::/0" .parse().unwrap(); |
| 1186 | /// |
| 1187 | /// assert_eq!(n1.supernet().unwrap(), n2); |
| 1188 | /// assert_eq!(n3.supernet(), None); |
| 1189 | /// ``` |
| 1190 | pub fn supernet(&self) -> Option<Ipv6Net> { |
| 1191 | Ipv6Net::new(self.addr, self.prefix_len.wrapping_sub(1)).map(|n| n.trunc()).ok() |
| 1192 | } |
| 1193 | |
| 1194 | /// Returns `true` if this network and the given network are |
| 1195 | /// children of the same supernet. |
| 1196 | /// |
| 1197 | /// # Examples |
| 1198 | /// |
| 1199 | /// ``` |
| 1200 | /// # use ipnet::Ipv6Net; |
| 1201 | /// # |
| 1202 | /// let n1: Ipv6Net = "fd00::/18" .parse().unwrap(); |
| 1203 | /// let n2: Ipv6Net = "fd00:4000::/18" .parse().unwrap(); |
| 1204 | /// let n3: Ipv6Net = "fd00:8000::/18" .parse().unwrap(); |
| 1205 | /// |
| 1206 | /// assert!(n1.is_sibling(&n2)); |
| 1207 | /// assert!(!n2.is_sibling(&n3)); |
| 1208 | /// ``` |
| 1209 | pub fn is_sibling(&self, other: &Ipv6Net) -> bool { |
| 1210 | self.prefix_len > 0 && |
| 1211 | self.prefix_len == other.prefix_len && |
| 1212 | self.supernet().unwrap().contains(other) |
| 1213 | } |
| 1214 | |
| 1215 | /// Return an `Iterator` over the host addresses in this network. |
| 1216 | /// |
| 1217 | /// # Examples |
| 1218 | /// |
| 1219 | /// ``` |
| 1220 | /// # use std::net::Ipv6Addr; |
| 1221 | /// # use ipnet::Ipv6Net; |
| 1222 | /// # |
| 1223 | /// let net: Ipv6Net = "fd00::/126" .parse().unwrap(); |
| 1224 | /// assert_eq!(net.hosts().collect::<Vec<Ipv6Addr>>(), vec![ |
| 1225 | /// "fd00::" .parse::<Ipv6Addr>().unwrap(), |
| 1226 | /// "fd00::1" .parse().unwrap(), |
| 1227 | /// "fd00::2" .parse().unwrap(), |
| 1228 | /// "fd00::3" .parse().unwrap(), |
| 1229 | /// ]); |
| 1230 | /// ``` |
| 1231 | pub fn hosts(&self) -> Ipv6AddrRange { |
| 1232 | Ipv6AddrRange::new(self.network(), self.broadcast()) |
| 1233 | } |
| 1234 | |
| 1235 | /// Returns an `Iterator` over the subnets of this network with the |
| 1236 | /// given prefix length. |
| 1237 | /// |
| 1238 | /// # Examples |
| 1239 | /// |
| 1240 | /// ``` |
| 1241 | /// # use ipnet::{Ipv6Net, PrefixLenError}; |
| 1242 | /// # |
| 1243 | /// let net: Ipv6Net = "fd00::/16" .parse().unwrap(); |
| 1244 | /// assert_eq!(net.subnets(18).unwrap().collect::<Vec<Ipv6Net>>(), vec![ |
| 1245 | /// "fd00::/18" .parse::<Ipv6Net>().unwrap(), |
| 1246 | /// "fd00:4000::/18" .parse().unwrap(), |
| 1247 | /// "fd00:8000::/18" .parse().unwrap(), |
| 1248 | /// "fd00:c000::/18" .parse().unwrap(), |
| 1249 | /// ]); |
| 1250 | /// |
| 1251 | /// let net: Ipv6Net = "fd00::/126" .parse().unwrap(); |
| 1252 | /// assert_eq!(net.subnets(128).unwrap().collect::<Vec<Ipv6Net>>(), vec![ |
| 1253 | /// "fd00::/128" .parse::<Ipv6Net>().unwrap(), |
| 1254 | /// "fd00::1/128" .parse().unwrap(), |
| 1255 | /// "fd00::2/128" .parse().unwrap(), |
| 1256 | /// "fd00::3/128" .parse().unwrap(), |
| 1257 | /// ]); |
| 1258 | /// |
| 1259 | /// let net: Ipv6Net = "fd00::/16" .parse().unwrap(); |
| 1260 | /// assert_eq!(net.subnets(15), Err(PrefixLenError)); |
| 1261 | /// |
| 1262 | /// let net: Ipv6Net = "fd00::/16" .parse().unwrap(); |
| 1263 | /// assert_eq!(net.subnets(129), Err(PrefixLenError)); |
| 1264 | /// ``` |
| 1265 | pub fn subnets(&self, new_prefix_len: u8) -> Result<Ipv6Subnets, PrefixLenError> { |
| 1266 | if self.prefix_len > new_prefix_len || new_prefix_len > 128 { |
| 1267 | return Err(PrefixLenError); |
| 1268 | } |
| 1269 | |
| 1270 | Ok(Ipv6Subnets::new( |
| 1271 | self.network(), |
| 1272 | self.broadcast(), |
| 1273 | new_prefix_len, |
| 1274 | )) |
| 1275 | } |
| 1276 | |
| 1277 | /// Test if a network address contains either another network |
| 1278 | /// address or an IP address. |
| 1279 | /// |
| 1280 | /// # Examples |
| 1281 | /// |
| 1282 | /// ``` |
| 1283 | /// # use std::net::Ipv6Addr; |
| 1284 | /// # use ipnet::Ipv6Net; |
| 1285 | /// # |
| 1286 | /// let net: Ipv6Net = "fd00::/16" .parse().unwrap(); |
| 1287 | /// let net_yes: Ipv6Net = "fd00::/17" .parse().unwrap(); |
| 1288 | /// let net_no: Ipv6Net = "fd00::/15" .parse().unwrap(); |
| 1289 | /// let ip_yes: Ipv6Addr = "fd00::1" .parse().unwrap(); |
| 1290 | /// let ip_no: Ipv6Addr = "fd01::" .parse().unwrap(); |
| 1291 | /// |
| 1292 | /// assert!(net.contains(&net)); |
| 1293 | /// assert!(net.contains(&net_yes)); |
| 1294 | /// assert!(!net.contains(&net_no)); |
| 1295 | /// assert!(net.contains(&ip_yes)); |
| 1296 | /// assert!(!net.contains(&ip_no)); |
| 1297 | /// ``` |
| 1298 | pub fn contains<T>(&self, other: T) -> bool where Self: Contains<T> { |
| 1299 | Contains::contains(self, other) |
| 1300 | } |
| 1301 | |
| 1302 | // It is significantly faster to work on u128 that Ipv6Addr. |
| 1303 | fn interval(&self) -> (u128, u128) { |
| 1304 | ( |
| 1305 | u128::from(self.network()), |
| 1306 | u128::from(self.broadcast()).saturating_add(1), |
| 1307 | ) |
| 1308 | } |
| 1309 | |
| 1310 | /// Aggregate a `Vec` of `Ipv6Net`s and return the result as a new |
| 1311 | /// `Vec`. |
| 1312 | /// |
| 1313 | /// # Examples |
| 1314 | /// |
| 1315 | /// ``` |
| 1316 | /// # use ipnet::Ipv6Net; |
| 1317 | /// # |
| 1318 | /// let nets = vec![ |
| 1319 | /// "fd00::/18" .parse::<Ipv6Net>().unwrap(), |
| 1320 | /// "fd00:4000::/18" .parse().unwrap(), |
| 1321 | /// "fd00:8000::/18" .parse().unwrap(), |
| 1322 | /// ]; |
| 1323 | /// assert_eq!(Ipv6Net::aggregate(&nets), vec![ |
| 1324 | /// "fd00::/17" .parse::<Ipv6Net>().unwrap(), |
| 1325 | /// "fd00:8000::/18" .parse().unwrap(), |
| 1326 | /// ]); |
| 1327 | /// ``` |
| 1328 | pub fn aggregate(networks: &Vec<Ipv6Net>) -> Vec<Ipv6Net> { |
| 1329 | let mut intervals: Vec<(_, _)> = networks.iter().map(|n| n.interval()).collect(); |
| 1330 | intervals = merge_intervals(intervals); |
| 1331 | let mut res: Vec<Ipv6Net> = Vec::new(); |
| 1332 | |
| 1333 | for (start, mut end) in intervals { |
| 1334 | if end != core::u128::MAX { |
| 1335 | end = end.saturating_sub(1) |
| 1336 | } |
| 1337 | let iter = Ipv6Subnets::new(start.into(), end.into(), 0); |
| 1338 | res.extend(iter); |
| 1339 | } |
| 1340 | res |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | impl Default for Ipv6Net { |
| 1345 | fn default() -> Self { |
| 1346 | Self { |
| 1347 | addr: Ipv6Addr::from(0), |
| 1348 | prefix_len: 0, |
| 1349 | } |
| 1350 | } |
| 1351 | } |
| 1352 | |
| 1353 | impl fmt::Debug for Ipv6Net { |
| 1354 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 1355 | fmt::Display::fmt(self, f:fmt) |
| 1356 | } |
| 1357 | } |
| 1358 | |
| 1359 | impl fmt::Display for Ipv6Net { |
| 1360 | fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result { |
| 1361 | write!(fmt, " {}/ {}" , self.addr, self.prefix_len) |
| 1362 | } |
| 1363 | } |
| 1364 | |
| 1365 | impl From<Ipv6Addr> for Ipv6Net { |
| 1366 | fn from(addr: Ipv6Addr) -> Ipv6Net { |
| 1367 | Ipv6Net { addr, prefix_len: 128 } |
| 1368 | } |
| 1369 | } |
| 1370 | |
| 1371 | /// Provides a method to test if a network address contains either |
| 1372 | /// another network address or an IP address. |
| 1373 | /// |
| 1374 | /// # Examples |
| 1375 | /// |
| 1376 | /// ``` |
| 1377 | /// # use std::net::IpAddr; |
| 1378 | /// # use ipnet::IpNet; |
| 1379 | /// # |
| 1380 | /// let n4_1: IpNet = "10.1.1.0/24" .parse().unwrap(); |
| 1381 | /// let n4_2: IpNet = "10.1.1.0/26" .parse().unwrap(); |
| 1382 | /// let n4_3: IpNet = "10.1.2.0/26" .parse().unwrap(); |
| 1383 | /// let ip4_1: IpAddr = "10.1.1.1" .parse().unwrap(); |
| 1384 | /// let ip4_2: IpAddr = "10.1.2.1" .parse().unwrap(); |
| 1385 | /// |
| 1386 | /// let n6_1: IpNet = "fd00::/16" .parse().unwrap(); |
| 1387 | /// let n6_2: IpNet = "fd00::/17" .parse().unwrap(); |
| 1388 | /// let n6_3: IpNet = "fd01::/17" .parse().unwrap(); |
| 1389 | /// let ip6_1: IpAddr = "fd00::1" .parse().unwrap(); |
| 1390 | /// let ip6_2: IpAddr = "fd01::1" .parse().unwrap(); |
| 1391 | /// |
| 1392 | /// assert!(n4_1.contains(&n4_2)); |
| 1393 | /// assert!(!n4_1.contains(&n4_3)); |
| 1394 | /// assert!(n4_1.contains(&ip4_1)); |
| 1395 | /// assert!(!n4_1.contains(&ip4_2)); |
| 1396 | /// |
| 1397 | /// assert!(n6_1.contains(&n6_2)); |
| 1398 | /// assert!(!n6_1.contains(&n6_3)); |
| 1399 | /// assert!(n6_1.contains(&ip6_1)); |
| 1400 | /// assert!(!n6_1.contains(&ip6_2)); |
| 1401 | /// |
| 1402 | /// assert!(!n4_1.contains(&n6_1) && !n6_1.contains(&n4_1)); |
| 1403 | /// assert!(!n4_1.contains(&ip6_1) && !n6_1.contains(&ip4_1)); |
| 1404 | /// ``` |
| 1405 | pub trait Contains<T> { |
| 1406 | fn contains(&self, other: T) -> bool; |
| 1407 | } |
| 1408 | |
| 1409 | impl<'a> Contains<&'a IpNet> for IpNet { |
| 1410 | fn contains(&self, other: &IpNet) -> bool { |
| 1411 | match (*self, *other) { |
| 1412 | (IpNet::V4(ref a: &Ipv4Net), IpNet::V4(ref b: &Ipv4Net)) => a.contains(b), |
| 1413 | (IpNet::V6(ref a: &Ipv6Net), IpNet::V6(ref b: &Ipv6Net)) => a.contains(b), |
| 1414 | _ => false, |
| 1415 | } |
| 1416 | } |
| 1417 | } |
| 1418 | |
| 1419 | impl<'a> Contains<&'a IpAddr> for IpNet { |
| 1420 | fn contains(&self, other: &IpAddr) -> bool { |
| 1421 | match (*self, *other) { |
| 1422 | (IpNet::V4(ref a: &Ipv4Net), IpAddr::V4(ref b: &Ipv4Addr)) => a.contains(b), |
| 1423 | (IpNet::V6(ref a: &Ipv6Net), IpAddr::V6(ref b: &Ipv6Addr)) => a.contains(b), |
| 1424 | _ => false, |
| 1425 | } |
| 1426 | } |
| 1427 | } |
| 1428 | |
| 1429 | impl<'a> Contains<&'a Ipv4Net> for Ipv4Net { |
| 1430 | fn contains(&self, other: &'a Ipv4Net) -> bool { |
| 1431 | self.network() <= other.network() && other.broadcast() <= self.broadcast() |
| 1432 | } |
| 1433 | } |
| 1434 | |
| 1435 | impl<'a> Contains<&'a Ipv4Addr> for Ipv4Net { |
| 1436 | fn contains(&self, other: &'a Ipv4Addr) -> bool { |
| 1437 | self.network() <= *other && *other <= self.broadcast() |
| 1438 | } |
| 1439 | } |
| 1440 | |
| 1441 | impl<'a> Contains<&'a Ipv6Net> for Ipv6Net { |
| 1442 | fn contains(&self, other: &'a Ipv6Net) -> bool { |
| 1443 | self.network() <= other.network() && other.broadcast() <= self.broadcast() |
| 1444 | } |
| 1445 | } |
| 1446 | |
| 1447 | impl<'a> Contains<&'a Ipv6Addr> for Ipv6Net { |
| 1448 | fn contains(&self, other: &'a Ipv6Addr) -> bool { |
| 1449 | self.network() <= *other && *other <= self.broadcast() |
| 1450 | } |
| 1451 | } |
| 1452 | |
| 1453 | /// An `Iterator` that generates IP network addresses, either IPv4 or |
| 1454 | /// IPv6. |
| 1455 | /// |
| 1456 | /// Generates the subnets between the provided `start` and `end` IP |
| 1457 | /// addresses inclusive of `end`. Each iteration generates the next |
| 1458 | /// network address of the largest valid size it can, while using a |
| 1459 | /// prefix length not less than `min_prefix_len`. |
| 1460 | /// |
| 1461 | /// # Examples |
| 1462 | /// |
| 1463 | /// ``` |
| 1464 | /// # use std::net::{Ipv4Addr, Ipv6Addr}; |
| 1465 | /// # use std::str::FromStr; |
| 1466 | /// # use ipnet::{IpNet, IpSubnets, Ipv4Subnets, Ipv6Subnets}; |
| 1467 | /// let subnets = IpSubnets::from(Ipv4Subnets::new( |
| 1468 | /// "10.0.0.0" .parse().unwrap(), |
| 1469 | /// "10.0.0.239" .parse().unwrap(), |
| 1470 | /// 26, |
| 1471 | /// )); |
| 1472 | /// |
| 1473 | /// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ |
| 1474 | /// "10.0.0.0/26" .parse().unwrap(), |
| 1475 | /// "10.0.0.64/26" .parse().unwrap(), |
| 1476 | /// "10.0.0.128/26" .parse().unwrap(), |
| 1477 | /// "10.0.0.192/27" .parse().unwrap(), |
| 1478 | /// "10.0.0.224/28" .parse().unwrap(), |
| 1479 | /// ]); |
| 1480 | /// |
| 1481 | /// let subnets = IpSubnets::from(Ipv6Subnets::new( |
| 1482 | /// "fd00::" .parse().unwrap(), |
| 1483 | /// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff" .parse().unwrap(), |
| 1484 | /// 26, |
| 1485 | /// )); |
| 1486 | /// |
| 1487 | /// assert_eq!(subnets.collect::<Vec<IpNet>>(), vec![ |
| 1488 | /// "fd00::/26" .parse().unwrap(), |
| 1489 | /// "fd00:40::/26" .parse().unwrap(), |
| 1490 | /// "fd00:80::/26" .parse().unwrap(), |
| 1491 | /// "fd00:c0::/27" .parse().unwrap(), |
| 1492 | /// "fd00:e0::/28" .parse().unwrap(), |
| 1493 | /// ]); |
| 1494 | /// ``` |
| 1495 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 1496 | pub enum IpSubnets { |
| 1497 | V4(Ipv4Subnets), |
| 1498 | V6(Ipv6Subnets), |
| 1499 | } |
| 1500 | |
| 1501 | /// An `Iterator` that generates IPv4 network addresses. |
| 1502 | /// |
| 1503 | /// Generates the subnets between the provided `start` and `end` IP |
| 1504 | /// addresses inclusive of `end`. Each iteration generates the next |
| 1505 | /// network address of the largest valid size it can, while using a |
| 1506 | /// prefix length not less than `min_prefix_len`. |
| 1507 | /// |
| 1508 | /// # Examples |
| 1509 | /// |
| 1510 | /// ``` |
| 1511 | /// # use std::net::Ipv4Addr; |
| 1512 | /// # use std::str::FromStr; |
| 1513 | /// # use ipnet::{Ipv4Net, Ipv4Subnets}; |
| 1514 | /// let subnets = Ipv4Subnets::new( |
| 1515 | /// "10.0.0.0" .parse().unwrap(), |
| 1516 | /// "10.0.0.239" .parse().unwrap(), |
| 1517 | /// 26, |
| 1518 | /// ); |
| 1519 | /// |
| 1520 | /// assert_eq!(subnets.collect::<Vec<Ipv4Net>>(), vec![ |
| 1521 | /// "10.0.0.0/26" .parse().unwrap(), |
| 1522 | /// "10.0.0.64/26" .parse().unwrap(), |
| 1523 | /// "10.0.0.128/26" .parse().unwrap(), |
| 1524 | /// "10.0.0.192/27" .parse().unwrap(), |
| 1525 | /// "10.0.0.224/28" .parse().unwrap(), |
| 1526 | /// ]); |
| 1527 | /// ``` |
| 1528 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 1529 | pub struct Ipv4Subnets { |
| 1530 | start: Ipv4Addr, |
| 1531 | end: Ipv4Addr, // end is inclusive |
| 1532 | min_prefix_len: u8, |
| 1533 | } |
| 1534 | |
| 1535 | /// An `Iterator` that generates IPv6 network addresses. |
| 1536 | /// |
| 1537 | /// Generates the subnets between the provided `start` and `end` IP |
| 1538 | /// addresses inclusive of `end`. Each iteration generates the next |
| 1539 | /// network address of the largest valid size it can, while using a |
| 1540 | /// prefix length not less than `min_prefix_len`. |
| 1541 | /// |
| 1542 | /// # Examples |
| 1543 | /// |
| 1544 | /// ``` |
| 1545 | /// # use std::net::Ipv6Addr; |
| 1546 | /// # use std::str::FromStr; |
| 1547 | /// # use ipnet::{Ipv6Net, Ipv6Subnets}; |
| 1548 | /// let subnets = Ipv6Subnets::new( |
| 1549 | /// "fd00::" .parse().unwrap(), |
| 1550 | /// "fd00:ef:ffff:ffff:ffff:ffff:ffff:ffff" .parse().unwrap(), |
| 1551 | /// 26, |
| 1552 | /// ); |
| 1553 | /// |
| 1554 | /// assert_eq!(subnets.collect::<Vec<Ipv6Net>>(), vec![ |
| 1555 | /// "fd00::/26" .parse().unwrap(), |
| 1556 | /// "fd00:40::/26" .parse().unwrap(), |
| 1557 | /// "fd00:80::/26" .parse().unwrap(), |
| 1558 | /// "fd00:c0::/27" .parse().unwrap(), |
| 1559 | /// "fd00:e0::/28" .parse().unwrap(), |
| 1560 | /// ]); |
| 1561 | /// ``` |
| 1562 | #[derive (Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Hash, Debug)] |
| 1563 | pub struct Ipv6Subnets { |
| 1564 | start: Ipv6Addr, |
| 1565 | end: Ipv6Addr, // end is inclusive |
| 1566 | min_prefix_len: u8, |
| 1567 | } |
| 1568 | |
| 1569 | impl Ipv4Subnets { |
| 1570 | pub fn new(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Self { |
| 1571 | Ipv4Subnets { |
| 1572 | start: start, |
| 1573 | end: end, |
| 1574 | min_prefix_len: min_prefix_len, |
| 1575 | } |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | impl Ipv6Subnets { |
| 1580 | pub fn new(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Self { |
| 1581 | Ipv6Subnets { |
| 1582 | start: start, |
| 1583 | end: end, |
| 1584 | min_prefix_len: min_prefix_len, |
| 1585 | } |
| 1586 | } |
| 1587 | } |
| 1588 | |
| 1589 | impl From<Ipv4Subnets> for IpSubnets { |
| 1590 | fn from(i: Ipv4Subnets) -> IpSubnets { |
| 1591 | IpSubnets::V4(i) |
| 1592 | } |
| 1593 | } |
| 1594 | |
| 1595 | impl From<Ipv6Subnets> for IpSubnets { |
| 1596 | fn from(i: Ipv6Subnets) -> IpSubnets { |
| 1597 | IpSubnets::V6(i) |
| 1598 | } |
| 1599 | } |
| 1600 | |
| 1601 | impl Iterator for IpSubnets { |
| 1602 | type Item = IpNet; |
| 1603 | |
| 1604 | fn next(&mut self) -> Option<Self::Item> { |
| 1605 | match *self { |
| 1606 | IpSubnets::V4(ref mut a: &mut Ipv4Subnets) => a.next().map(IpNet::V4), |
| 1607 | IpSubnets::V6(ref mut a: &mut Ipv6Subnets) => a.next().map(IpNet::V6), |
| 1608 | } |
| 1609 | } |
| 1610 | } |
| 1611 | |
| 1612 | fn next_ipv4_subnet(start: Ipv4Addr, end: Ipv4Addr, min_prefix_len: u8) -> Ipv4Net { |
| 1613 | let range: u32 = end.saturating_sub(start).saturating_add(1); |
| 1614 | if range == core::u32::MAX && min_prefix_len == 0 { |
| 1615 | Ipv4Net::new(ip:start, min_prefix_len).unwrap() |
| 1616 | } |
| 1617 | else { |
| 1618 | let range_bits: u32 = 32u32.saturating_sub(range.leading_zeros()).saturating_sub(1); |
| 1619 | let start_tz: u32 = u32::from(start).trailing_zeros(); |
| 1620 | let new_prefix_len: u32 = 32 - min(v1:range_bits, v2:start_tz); |
| 1621 | let next_prefix_len: u8 = max(v1:new_prefix_len as u8, v2:min_prefix_len); |
| 1622 | Ipv4Net::new(ip:start, next_prefix_len).unwrap() |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | fn next_ipv6_subnet(start: Ipv6Addr, end: Ipv6Addr, min_prefix_len: u8) -> Ipv6Net { |
| 1627 | let range: u128 = end.saturating_sub(start).saturating_add(1); |
| 1628 | if range == core::u128::MAX && min_prefix_len == 0 { |
| 1629 | Ipv6Net::new(ip:start, min_prefix_len).unwrap() |
| 1630 | } |
| 1631 | else { |
| 1632 | let range: u128 = end.saturating_sub(start).saturating_add(1); |
| 1633 | let range_bits: u32 = 128u32.saturating_sub(range.leading_zeros()).saturating_sub(1); |
| 1634 | let start_tz: u32 = u128::from(start).trailing_zeros(); |
| 1635 | let new_prefix_len: u32 = 128 - min(v1:range_bits, v2:start_tz); |
| 1636 | let next_prefix_len: u8 = max(v1:new_prefix_len as u8, v2:min_prefix_len); |
| 1637 | Ipv6Net::new(ip:start, next_prefix_len).unwrap() |
| 1638 | } |
| 1639 | } |
| 1640 | |
| 1641 | impl Iterator for Ipv4Subnets { |
| 1642 | type Item = Ipv4Net; |
| 1643 | |
| 1644 | fn next(&mut self) -> Option<Self::Item> { |
| 1645 | match self.start.partial_cmp(&self.end) { |
| 1646 | Some(Less) => { |
| 1647 | let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); |
| 1648 | self.start = next.broadcast().saturating_add(1); |
| 1649 | |
| 1650 | // Stop the iterator if we saturated self.start. This |
| 1651 | // check worsens performance slightly but overall this |
| 1652 | // approach of operating on Ipv4Addr types is faster |
| 1653 | // than what we were doing before using Ipv4Net. |
| 1654 | if self.start == next.broadcast() { |
| 1655 | self.end.replace_zero(); |
| 1656 | } |
| 1657 | Some(next) |
| 1658 | }, |
| 1659 | Some(Equal) => { |
| 1660 | let next = next_ipv4_subnet(self.start, self.end, self.min_prefix_len); |
| 1661 | self.start = next.broadcast().saturating_add(1); |
| 1662 | self.end.replace_zero(); |
| 1663 | Some(next) |
| 1664 | }, |
| 1665 | _ => None, |
| 1666 | } |
| 1667 | } |
| 1668 | } |
| 1669 | |
| 1670 | impl Iterator for Ipv6Subnets { |
| 1671 | type Item = Ipv6Net; |
| 1672 | |
| 1673 | fn next(&mut self) -> Option<Self::Item> { |
| 1674 | match self.start.partial_cmp(&self.end) { |
| 1675 | Some(Less) => { |
| 1676 | let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); |
| 1677 | self.start = next.broadcast().saturating_add(1); |
| 1678 | |
| 1679 | // Stop the iterator if we saturated self.start. This |
| 1680 | // check worsens performance slightly but overall this |
| 1681 | // approach of operating on Ipv6Addr types is faster |
| 1682 | // than what we were doing before using Ipv6Net. |
| 1683 | if self.start == next.broadcast() { |
| 1684 | self.end.replace_zero(); |
| 1685 | } |
| 1686 | Some(next) |
| 1687 | }, |
| 1688 | Some(Equal) => { |
| 1689 | let next = next_ipv6_subnet(self.start, self.end, self.min_prefix_len); |
| 1690 | self.start = next.broadcast().saturating_add(1); |
| 1691 | self.end.replace_zero(); |
| 1692 | Some(next) |
| 1693 | }, |
| 1694 | _ => None, |
| 1695 | } |
| 1696 | } |
| 1697 | } |
| 1698 | |
| 1699 | impl FusedIterator for IpSubnets {} |
| 1700 | impl FusedIterator for Ipv4Subnets {} |
| 1701 | impl FusedIterator for Ipv6Subnets {} |
| 1702 | |
| 1703 | // Generic function for merging a vector of intervals. |
| 1704 | fn merge_intervals<T: Copy + Ord>(mut intervals: Vec<(T, T)>) -> Vec<(T, T)> { |
| 1705 | if intervals.len() == 0 { |
| 1706 | return intervals; |
| 1707 | } |
| 1708 | |
| 1709 | intervals.sort(); |
| 1710 | let mut res: Vec<(T, T)> = Vec::new(); |
| 1711 | let (mut start, mut end) = intervals[0]; |
| 1712 | |
| 1713 | let mut i = 1; |
| 1714 | let len = intervals.len(); |
| 1715 | while i < len { |
| 1716 | let (next_start, next_end) = intervals[i]; |
| 1717 | if end >= next_start { |
| 1718 | start = min(start, next_start); |
| 1719 | end = max(end, next_end); |
| 1720 | } |
| 1721 | else { |
| 1722 | res.push((start, end)); |
| 1723 | start = next_start; |
| 1724 | end = next_end; |
| 1725 | } |
| 1726 | i += 1; |
| 1727 | } |
| 1728 | |
| 1729 | res.push((start, end)); |
| 1730 | res |
| 1731 | } |
| 1732 | |
| 1733 | #[cfg (test)] |
| 1734 | mod tests { |
| 1735 | use super::*; |
| 1736 | |
| 1737 | macro_rules! make_ipnet_vec { |
| 1738 | ($($x:expr),*) => ( vec![$($x.parse::<IpNet>().unwrap(),)*] ); |
| 1739 | ($($x:expr,)*) => ( make_ipnet_vec![$($x),*] ); |
| 1740 | } |
| 1741 | |
| 1742 | #[test ] |
| 1743 | fn test_make_ipnet_vec() { |
| 1744 | assert_eq!( |
| 1745 | make_ipnet_vec![ |
| 1746 | "10.1.1.1/32" , "10.2.2.2/24" , "10.3.3.3/16" , |
| 1747 | "fd00::1/128" , "fd00::2/127" , "fd00::3/126" , |
| 1748 | ], |
| 1749 | vec![ |
| 1750 | "10.1.1.1/32" .parse().unwrap(), |
| 1751 | "10.2.2.2/24" .parse().unwrap(), |
| 1752 | "10.3.3.3/16" .parse().unwrap(), |
| 1753 | "fd00::1/128" .parse().unwrap(), |
| 1754 | "fd00::2/127" .parse().unwrap(), |
| 1755 | "fd00::3/126" .parse().unwrap(), |
| 1756 | ] |
| 1757 | ); |
| 1758 | } |
| 1759 | |
| 1760 | #[test ] |
| 1761 | fn test_merge_intervals() { |
| 1762 | let v = vec![ |
| 1763 | (0, 1), (1, 2), (2, 3), |
| 1764 | (11, 12), (13, 14), (10, 15), (11, 13), |
| 1765 | (20, 25), (24, 29), |
| 1766 | ]; |
| 1767 | |
| 1768 | let v_ok = vec![ |
| 1769 | (0, 3), |
| 1770 | (10, 15), |
| 1771 | (20, 29), |
| 1772 | ]; |
| 1773 | |
| 1774 | let vv = vec![ |
| 1775 | ([0, 1], [0, 2]), ([0, 2], [0, 3]), ([0, 0], [0, 1]), |
| 1776 | ([10, 15], [11, 0]), ([10, 0], [10, 16]), |
| 1777 | ]; |
| 1778 | |
| 1779 | let vv_ok = vec![ |
| 1780 | ([0, 0], [0, 3]), |
| 1781 | ([10, 0], [11, 0]), |
| 1782 | ]; |
| 1783 | |
| 1784 | assert_eq!(merge_intervals(v), v_ok); |
| 1785 | assert_eq!(merge_intervals(vv), vv_ok); |
| 1786 | } |
| 1787 | |
| 1788 | macro_rules! make_ipv4_subnets_test { |
| 1789 | ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( |
| 1790 | #[test] |
| 1791 | fn $name() { |
| 1792 | let subnets = IpSubnets::from(Ipv4Subnets::new( |
| 1793 | $start.parse().unwrap(), |
| 1794 | $end.parse().unwrap(), |
| 1795 | $min_prefix_len, |
| 1796 | )); |
| 1797 | let results = make_ipnet_vec![$($x),*]; |
| 1798 | assert_eq!(subnets.collect::<Vec<IpNet>>(), results); |
| 1799 | } |
| 1800 | ); |
| 1801 | ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( |
| 1802 | make_ipv4_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); |
| 1803 | ); |
| 1804 | } |
| 1805 | |
| 1806 | macro_rules! make_ipv6_subnets_test { |
| 1807 | ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr),*) => ( |
| 1808 | #[test] |
| 1809 | fn $name() { |
| 1810 | let subnets = IpSubnets::from(Ipv6Subnets::new( |
| 1811 | $start.parse().unwrap(), |
| 1812 | $end.parse().unwrap(), |
| 1813 | $min_prefix_len, |
| 1814 | )); |
| 1815 | let results = make_ipnet_vec![$($x),*]; |
| 1816 | assert_eq!(subnets.collect::<Vec<IpNet>>(), results); |
| 1817 | } |
| 1818 | ); |
| 1819 | ($name:ident, $start:expr, $end:expr, $min_prefix_len:expr, $($x:expr,)*) => ( |
| 1820 | make_ipv6_subnets_test!($name, $start, $end, $min_prefix_len, $($x),*); |
| 1821 | ); |
| 1822 | } |
| 1823 | |
| 1824 | make_ipv4_subnets_test!( |
| 1825 | test_ipv4_subnets_zero_zero, |
| 1826 | "0.0.0.0" , "0.0.0.0" , 0, |
| 1827 | "0.0.0.0/32" , |
| 1828 | ); |
| 1829 | |
| 1830 | make_ipv4_subnets_test!( |
| 1831 | test_ipv4_subnets_zero_max, |
| 1832 | "0.0.0.0" , "255.255.255.255" , 0, |
| 1833 | "0.0.0.0/0" , |
| 1834 | ); |
| 1835 | |
| 1836 | make_ipv4_subnets_test!( |
| 1837 | test_ipv4_subnets_max_max, |
| 1838 | "255.255.255.255" , "255.255.255.255" , 0, |
| 1839 | "255.255.255.255/32" , |
| 1840 | ); |
| 1841 | |
| 1842 | make_ipv4_subnets_test!( |
| 1843 | test_ipv4_subnets_none, |
| 1844 | "0.0.0.1" , "0.0.0.0" , 0, |
| 1845 | ); |
| 1846 | |
| 1847 | make_ipv4_subnets_test!( |
| 1848 | test_ipv4_subnets_one, |
| 1849 | "0.0.0.0" , "0.0.0.1" , 0, |
| 1850 | "0.0.0.0/31" , |
| 1851 | ); |
| 1852 | |
| 1853 | make_ipv4_subnets_test!( |
| 1854 | test_ipv4_subnets_two, |
| 1855 | "0.0.0.0" , "0.0.0.2" , 0, |
| 1856 | "0.0.0.0/31" , |
| 1857 | "0.0.0.2/32" , |
| 1858 | ); |
| 1859 | |
| 1860 | make_ipv4_subnets_test!( |
| 1861 | test_ipv4_subnets_taper, |
| 1862 | "0.0.0.0" , "0.0.0.10" , 30, |
| 1863 | "0.0.0.0/30" , |
| 1864 | "0.0.0.4/30" , |
| 1865 | "0.0.0.8/31" , |
| 1866 | "0.0.0.10/32" , |
| 1867 | ); |
| 1868 | |
| 1869 | make_ipv6_subnets_test!( |
| 1870 | test_ipv6_subnets_zero_zero, |
| 1871 | "::" , "::" , 0, |
| 1872 | "::/128" , |
| 1873 | ); |
| 1874 | |
| 1875 | make_ipv6_subnets_test!( |
| 1876 | test_ipv6_subnets_zero_max, |
| 1877 | "::" , "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" , 0, |
| 1878 | "::/0" , |
| 1879 | ); |
| 1880 | |
| 1881 | make_ipv6_subnets_test!( |
| 1882 | test_ipv6_subnets_max_max, |
| 1883 | "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" , "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff" , 0, |
| 1884 | "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff/128" , |
| 1885 | ); |
| 1886 | |
| 1887 | make_ipv6_subnets_test!( |
| 1888 | test_ipv6_subnets_none, |
| 1889 | "::1" , "::" , 0, |
| 1890 | ); |
| 1891 | |
| 1892 | make_ipv6_subnets_test!( |
| 1893 | test_ipv6_subnets_one, |
| 1894 | "::" , "::1" , 0, |
| 1895 | "::/127" , |
| 1896 | ); |
| 1897 | |
| 1898 | make_ipv6_subnets_test!( |
| 1899 | test_ipv6_subnets_two, |
| 1900 | "::" , "::2" , 0, |
| 1901 | "::/127" , |
| 1902 | "::2/128" , |
| 1903 | ); |
| 1904 | |
| 1905 | make_ipv6_subnets_test!( |
| 1906 | test_ipv6_subnets_taper, |
| 1907 | "::" , "::a" , 126, |
| 1908 | "::/126" , |
| 1909 | "::4/126" , |
| 1910 | "::8/127" , |
| 1911 | "::a/128" , |
| 1912 | ); |
| 1913 | |
| 1914 | #[test ] |
| 1915 | fn test_aggregate() { |
| 1916 | let ip_nets = make_ipnet_vec![ |
| 1917 | "10.0.0.0/24" , "10.0.1.0/24" , "10.0.1.1/24" , "10.0.1.2/24" , |
| 1918 | "10.0.2.0/24" , |
| 1919 | "10.1.0.0/24" , "10.1.1.0/24" , |
| 1920 | "192.168.0.0/24" , "192.168.1.0/24" , "192.168.2.0/24" , "192.168.3.0/24" , |
| 1921 | "fd00::/32" , "fd00:1::/32" , |
| 1922 | "fd00:2::/32" , |
| 1923 | ]; |
| 1924 | |
| 1925 | let ip_aggs = make_ipnet_vec![ |
| 1926 | "10.0.0.0/23" , |
| 1927 | "10.0.2.0/24" , |
| 1928 | "10.1.0.0/23" , |
| 1929 | "192.168.0.0/22" , |
| 1930 | "fd00::/31" , |
| 1931 | "fd00:2::/32" , |
| 1932 | ]; |
| 1933 | |
| 1934 | let ipv4_nets: Vec<Ipv4Net> = ip_nets.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); |
| 1935 | let ipv4_aggs: Vec<Ipv4Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V4(x) = *p { Some(x) } else { None }).collect(); |
| 1936 | let ipv6_nets: Vec<Ipv6Net> = ip_nets.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); |
| 1937 | let ipv6_aggs: Vec<Ipv6Net> = ip_aggs.iter().filter_map(|p| if let IpNet::V6(x) = *p { Some(x) } else { None }).collect(); |
| 1938 | |
| 1939 | assert_eq!(IpNet::aggregate(&ip_nets), ip_aggs); |
| 1940 | assert_eq!(Ipv4Net::aggregate(&ipv4_nets), ipv4_aggs); |
| 1941 | assert_eq!(Ipv6Net::aggregate(&ipv6_nets), ipv6_aggs); |
| 1942 | } |
| 1943 | |
| 1944 | #[test ] |
| 1945 | fn test_aggregate_issue44() { |
| 1946 | let nets: Vec<Ipv4Net> = vec!["128.0.0.0/1" .parse().unwrap()]; |
| 1947 | assert_eq!(Ipv4Net::aggregate(&nets), nets); |
| 1948 | |
| 1949 | let nets: Vec<Ipv4Net> = vec!["0.0.0.0/1" .parse().unwrap(), "128.0.0.0/1" .parse().unwrap()]; |
| 1950 | assert_eq!(Ipv4Net::aggregate(&nets), vec!["0.0.0.0/0" .parse().unwrap()]); |
| 1951 | |
| 1952 | let nets: Vec<Ipv6Net> = vec!["8000::/1" .parse().unwrap()]; |
| 1953 | assert_eq!(Ipv6Net::aggregate(&nets), nets); |
| 1954 | |
| 1955 | let nets: Vec<Ipv6Net> = vec!["::/1" .parse().unwrap(), "8000::/1" .parse().unwrap()]; |
| 1956 | assert_eq!(Ipv6Net::aggregate(&nets), vec!["::/0" .parse().unwrap()]); |
| 1957 | } |
| 1958 | |
| 1959 | #[test ] |
| 1960 | fn ipnet_default() { |
| 1961 | let ipnet: IpNet = "0.0.0.0/0" .parse().unwrap(); |
| 1962 | assert_eq!(ipnet, IpNet::default()); |
| 1963 | } |
| 1964 | |
| 1965 | #[test ] |
| 1966 | fn ipv4net_default() { |
| 1967 | let ipnet: Ipv4Net = "0.0.0.0/0" .parse().unwrap(); |
| 1968 | assert_eq!(ipnet, Ipv4Net::default()); |
| 1969 | } |
| 1970 | |
| 1971 | #[test ] |
| 1972 | fn ipv6net_default() { |
| 1973 | let ipnet: Ipv6Net = "::/0" .parse().unwrap(); |
| 1974 | assert_eq!(ipnet, Ipv6Net::default()); |
| 1975 | } |
| 1976 | |
| 1977 | #[test ] |
| 1978 | fn new_assert() { |
| 1979 | const _: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 0); |
| 1980 | const _: Ipv4Net = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 32); |
| 1981 | const _: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 0); |
| 1982 | const _: Ipv6Net = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 128); |
| 1983 | |
| 1984 | let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 0); |
| 1985 | let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 32); |
| 1986 | let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 0); |
| 1987 | let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 128); |
| 1988 | } |
| 1989 | |
| 1990 | #[test ] |
| 1991 | #[should_panic ] |
| 1992 | fn ipv4net_new_assert_panics() { |
| 1993 | let _ = Ipv4Net::new_assert(Ipv4Addr::new(0, 0, 0, 0), 33); |
| 1994 | } |
| 1995 | |
| 1996 | #[test ] |
| 1997 | #[should_panic ] |
| 1998 | fn ipv6net_new_assert_panics() { |
| 1999 | let _ = Ipv6Net::new_assert(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0), 129); |
| 2000 | } |
| 2001 | } |
| 2002 | |