| 1 | use core::array; |
| 2 | use core::borrow::BorrowMut; |
| 3 | use std::fmt; |
| 4 | use std::iter::FusedIterator; |
| 5 | |
| 6 | use super::lazy_buffer::LazyBuffer; |
| 7 | use alloc::vec::Vec; |
| 8 | |
| 9 | use crate::adaptors::checked_binomial; |
| 10 | |
| 11 | /// Iterator for `Vec` valued combinations returned by [`.combinations()`](crate::Itertools::combinations) |
| 12 | pub type Combinations<I> = CombinationsGeneric<I, Vec<usize>>; |
| 13 | /// Iterator for const generic combinations returned by [`.array_combinations()`](crate::Itertools::array_combinations) |
| 14 | pub type ArrayCombinations<I, const K: usize> = CombinationsGeneric<I, [usize; K]>; |
| 15 | |
| 16 | /// Create a new `Combinations` from a clonable iterator. |
| 17 | pub fn combinations<I: Iterator>(iter: I, k: usize) -> Combinations<I> |
| 18 | where |
| 19 | I::Item: Clone, |
| 20 | { |
| 21 | Combinations::new(iter, (0..k).collect()) |
| 22 | } |
| 23 | |
| 24 | /// Create a new `ArrayCombinations` from a clonable iterator. |
| 25 | pub fn array_combinations<I: Iterator, const K: usize>(iter: I) -> ArrayCombinations<I, K> |
| 26 | where |
| 27 | I::Item: Clone, |
| 28 | { |
| 29 | ArrayCombinations::new(iter, indices:array::from_fn(|i: usize| i)) |
| 30 | } |
| 31 | |
| 32 | /// An iterator to iterate through all the `k`-length combinations in an iterator. |
| 33 | /// |
| 34 | /// See [`.combinations()`](crate::Itertools::combinations) and [`.array_combinations()`](crate::Itertools::array_combinations) for more information. |
| 35 | #[must_use = "iterator adaptors are lazy and do nothing unless consumed" ] |
| 36 | pub struct CombinationsGeneric<I: Iterator, Idx> { |
| 37 | indices: Idx, |
| 38 | pool: LazyBuffer<I>, |
| 39 | first: bool, |
| 40 | } |
| 41 | |
| 42 | /// A type holding indices of elements in a pool or buffer of items from an inner iterator |
| 43 | /// and used to pick out different combinations in a generic way. |
| 44 | pub trait PoolIndex<T>: BorrowMut<[usize]> { |
| 45 | type Item; |
| 46 | |
| 47 | fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Self::Item |
| 48 | where |
| 49 | T: Clone; |
| 50 | |
| 51 | fn len(&self) -> usize { |
| 52 | self.borrow().len() |
| 53 | } |
| 54 | } |
| 55 | |
| 56 | impl<T> PoolIndex<T> for Vec<usize> { |
| 57 | type Item = Vec<T>; |
| 58 | |
| 59 | fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> Vec<T> |
| 60 | where |
| 61 | T: Clone, |
| 62 | { |
| 63 | pool.get_at(self) |
| 64 | } |
| 65 | } |
| 66 | |
| 67 | impl<T, const K: usize> PoolIndex<T> for [usize; K] { |
| 68 | type Item = [T; K]; |
| 69 | |
| 70 | fn extract_item<I: Iterator<Item = T>>(&self, pool: &LazyBuffer<I>) -> [T; K] |
| 71 | where |
| 72 | T: Clone, |
| 73 | { |
| 74 | pool.get_array(*self) |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | impl<I, Idx> Clone for CombinationsGeneric<I, Idx> |
| 79 | where |
| 80 | I: Iterator + Clone, |
| 81 | I::Item: Clone, |
| 82 | Idx: Clone, |
| 83 | { |
| 84 | clone_fields!(indices, pool, first); |
| 85 | } |
| 86 | |
| 87 | impl<I, Idx> fmt::Debug for CombinationsGeneric<I, Idx> |
| 88 | where |
| 89 | I: Iterator + fmt::Debug, |
| 90 | I::Item: fmt::Debug, |
| 91 | Idx: fmt::Debug, |
| 92 | { |
| 93 | debug_fmt_fields!(Combinations, indices, pool, first); |
| 94 | } |
| 95 | |
| 96 | impl<I: Iterator, Idx: PoolIndex<I::Item>> CombinationsGeneric<I, Idx> { |
| 97 | /// Constructor with arguments the inner iterator and the initial state for the indices. |
| 98 | fn new(iter: I, indices: Idx) -> Self { |
| 99 | Self { |
| 100 | indices, |
| 101 | pool: LazyBuffer::new(iter), |
| 102 | first: true, |
| 103 | } |
| 104 | } |
| 105 | |
| 106 | /// Returns the length of a combination produced by this iterator. |
| 107 | #[inline ] |
| 108 | pub fn k(&self) -> usize { |
| 109 | self.indices.len() |
| 110 | } |
| 111 | |
| 112 | /// Returns the (current) length of the pool from which combination elements are |
| 113 | /// selected. This value can change between invocations of [`next`](Combinations::next). |
| 114 | #[inline ] |
| 115 | pub fn n(&self) -> usize { |
| 116 | self.pool.len() |
| 117 | } |
| 118 | |
| 119 | /// Returns a reference to the source pool. |
| 120 | #[inline ] |
| 121 | pub(crate) fn src(&self) -> &LazyBuffer<I> { |
| 122 | &self.pool |
| 123 | } |
| 124 | |
| 125 | /// Return the length of the inner iterator and the count of remaining combinations. |
| 126 | pub(crate) fn n_and_count(self) -> (usize, usize) { |
| 127 | let Self { |
| 128 | indices, |
| 129 | pool, |
| 130 | first, |
| 131 | } = self; |
| 132 | let n = pool.count(); |
| 133 | (n, remaining_for(n, first, indices.borrow()).unwrap()) |
| 134 | } |
| 135 | |
| 136 | /// Initialises the iterator by filling a buffer with elements from the |
| 137 | /// iterator. Returns true if there are no combinations, false otherwise. |
| 138 | fn init(&mut self) -> bool { |
| 139 | self.pool.prefill(self.k()); |
| 140 | let done = self.k() > self.n(); |
| 141 | if !done { |
| 142 | self.first = false; |
| 143 | } |
| 144 | |
| 145 | done |
| 146 | } |
| 147 | |
| 148 | /// Increments indices representing the combination to advance to the next |
| 149 | /// (in lexicographic order by increasing sequence) combination. For example |
| 150 | /// if we have n=4 & k=2 then `[0, 1] -> [0, 2] -> [0, 3] -> [1, 2] -> ...` |
| 151 | /// |
| 152 | /// Returns true if we've run out of combinations, false otherwise. |
| 153 | fn increment_indices(&mut self) -> bool { |
| 154 | // Borrow once instead of noise each time it's indexed |
| 155 | let indices = self.indices.borrow_mut(); |
| 156 | |
| 157 | if indices.is_empty() { |
| 158 | return true; // Done |
| 159 | } |
| 160 | // Scan from the end, looking for an index to increment |
| 161 | let mut i: usize = indices.len() - 1; |
| 162 | |
| 163 | // Check if we need to consume more from the iterator |
| 164 | if indices[i] == self.pool.len() - 1 { |
| 165 | self.pool.get_next(); // may change pool size |
| 166 | } |
| 167 | |
| 168 | while indices[i] == i + self.pool.len() - indices.len() { |
| 169 | if i > 0 { |
| 170 | i -= 1; |
| 171 | } else { |
| 172 | // Reached the last combination |
| 173 | return true; |
| 174 | } |
| 175 | } |
| 176 | |
| 177 | // Increment index, and reset the ones to its right |
| 178 | indices[i] += 1; |
| 179 | for j in i + 1..indices.len() { |
| 180 | indices[j] = indices[j - 1] + 1; |
| 181 | } |
| 182 | // If we've made it this far, we haven't run out of combos |
| 183 | false |
| 184 | } |
| 185 | |
| 186 | /// Returns the n-th item or the number of successful steps. |
| 187 | pub(crate) fn try_nth(&mut self, n: usize) -> Result<<Self as Iterator>::Item, usize> |
| 188 | where |
| 189 | I: Iterator, |
| 190 | I::Item: Clone, |
| 191 | { |
| 192 | let done = if self.first { |
| 193 | self.init() |
| 194 | } else { |
| 195 | self.increment_indices() |
| 196 | }; |
| 197 | if done { |
| 198 | return Err(0); |
| 199 | } |
| 200 | for i in 0..n { |
| 201 | if self.increment_indices() { |
| 202 | return Err(i + 1); |
| 203 | } |
| 204 | } |
| 205 | Ok(self.indices.extract_item(&self.pool)) |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | impl<I, Idx> Iterator for CombinationsGeneric<I, Idx> |
| 210 | where |
| 211 | I: Iterator, |
| 212 | I::Item: Clone, |
| 213 | Idx: PoolIndex<I::Item>, |
| 214 | { |
| 215 | type Item = Idx::Item; |
| 216 | fn next(&mut self) -> Option<Self::Item> { |
| 217 | let done = if self.first { |
| 218 | self.init() |
| 219 | } else { |
| 220 | self.increment_indices() |
| 221 | }; |
| 222 | |
| 223 | if done { |
| 224 | return None; |
| 225 | } |
| 226 | |
| 227 | Some(self.indices.extract_item(&self.pool)) |
| 228 | } |
| 229 | |
| 230 | fn nth(&mut self, n: usize) -> Option<Self::Item> { |
| 231 | self.try_nth(n).ok() |
| 232 | } |
| 233 | |
| 234 | fn size_hint(&self) -> (usize, Option<usize>) { |
| 235 | let (mut low, mut upp) = self.pool.size_hint(); |
| 236 | low = remaining_for(low, self.first, self.indices.borrow()).unwrap_or(usize::MAX); |
| 237 | upp = upp.and_then(|upp| remaining_for(upp, self.first, self.indices.borrow())); |
| 238 | (low, upp) |
| 239 | } |
| 240 | |
| 241 | #[inline ] |
| 242 | fn count(self) -> usize { |
| 243 | self.n_and_count().1 |
| 244 | } |
| 245 | } |
| 246 | |
| 247 | impl<I, Idx> FusedIterator for CombinationsGeneric<I, Idx> |
| 248 | where |
| 249 | I: Iterator, |
| 250 | I::Item: Clone, |
| 251 | Idx: PoolIndex<I::Item>, |
| 252 | { |
| 253 | } |
| 254 | |
| 255 | impl<I: Iterator> Combinations<I> { |
| 256 | /// Resets this `Combinations` back to an initial state for combinations of length |
| 257 | /// `k` over the same pool data source. If `k` is larger than the current length |
| 258 | /// of the data pool an attempt is made to prefill the pool so that it holds `k` |
| 259 | /// elements. |
| 260 | pub(crate) fn reset(&mut self, k: usize) { |
| 261 | self.first = true; |
| 262 | |
| 263 | if k < self.indices.len() { |
| 264 | self.indices.truncate(len:k); |
| 265 | for i: usize in 0..k { |
| 266 | self.indices[i] = i; |
| 267 | } |
| 268 | } else { |
| 269 | for i: usize in 0..self.indices.len() { |
| 270 | self.indices[i] = i; |
| 271 | } |
| 272 | self.indices.extend(self.indices.len()..k); |
| 273 | self.pool.prefill(len:k); |
| 274 | } |
| 275 | } |
| 276 | } |
| 277 | |
| 278 | /// For a given size `n`, return the count of remaining combinations or None if it would overflow. |
| 279 | fn remaining_for(n: usize, first: bool, indices: &[usize]) -> Option<usize> { |
| 280 | let k = indices.len(); |
| 281 | if n < k { |
| 282 | Some(0) |
| 283 | } else if first { |
| 284 | checked_binomial(n, k) |
| 285 | } else { |
| 286 | // https://en.wikipedia.org/wiki/Combinatorial_number_system |
| 287 | // http://www.site.uottawa.ca/~lucia/courses/5165-09/GenCombObj.pdf |
| 288 | |
| 289 | // The combinations generated after the current one can be counted by counting as follows: |
| 290 | // - The subsequent combinations that differ in indices[0]: |
| 291 | // If subsequent combinations differ in indices[0], then their value for indices[0] |
| 292 | // must be at least 1 greater than the current indices[0]. |
| 293 | // As indices is strictly monotonically sorted, this means we can effectively choose k values |
| 294 | // from (n - 1 - indices[0]), leading to binomial(n - 1 - indices[0], k) possibilities. |
| 295 | // - The subsequent combinations with same indices[0], but differing indices[1]: |
| 296 | // Here we can choose k - 1 values from (n - 1 - indices[1]) values, |
| 297 | // leading to binomial(n - 1 - indices[1], k - 1) possibilities. |
| 298 | // - (...) |
| 299 | // - The subsequent combinations with same indices[0..=i], but differing indices[i]: |
| 300 | // Here we can choose k - i values from (n - 1 - indices[i]) values: binomial(n - 1 - indices[i], k - i). |
| 301 | // Since subsequent combinations can in any index, we must sum up the aforementioned binomial coefficients. |
| 302 | |
| 303 | // Below, `n0` resembles indices[i]. |
| 304 | indices.iter().enumerate().try_fold(0usize, |sum, (i, n0)| { |
| 305 | sum.checked_add(checked_binomial(n - 1 - *n0, k - i)?) |
| 306 | }) |
| 307 | } |
| 308 | } |
| 309 | |