1 | // Copyright 2018 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! Lines. |
5 | |
6 | use core::ops::{Add, Mul, Range, Sub}; |
7 | |
8 | use arrayvec::ArrayVec; |
9 | |
10 | use crate::{ |
11 | Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveCurvature, |
12 | ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, Rect, Shape, Vec2, |
13 | DEFAULT_ACCURACY, MAX_EXTREMA, |
14 | }; |
15 | |
16 | /// A single line. |
17 | #[derive (Clone, Copy, Debug, PartialEq)] |
18 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
19 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
20 | pub struct Line { |
21 | /// The line's start point. |
22 | pub p0: Point, |
23 | /// The line's end point. |
24 | pub p1: Point, |
25 | } |
26 | |
27 | impl Line { |
28 | /// Create a new line. |
29 | #[inline ] |
30 | pub fn new(p0: impl Into<Point>, p1: impl Into<Point>) -> Line { |
31 | Line { |
32 | p0: p0.into(), |
33 | p1: p1.into(), |
34 | } |
35 | } |
36 | |
37 | /// The length of the line. |
38 | #[inline ] |
39 | pub fn length(self) -> f64 { |
40 | self.arclen(DEFAULT_ACCURACY) |
41 | } |
42 | |
43 | /// Computes the point where two lines, if extended to infinity, would cross. |
44 | pub fn crossing_point(self, other: Line) -> Option<Point> { |
45 | let ab = self.p1 - self.p0; |
46 | let cd = other.p1 - other.p0; |
47 | let pcd = ab.cross(cd); |
48 | if pcd == 0.0 { |
49 | return None; |
50 | } |
51 | let h = ab.cross(self.p0 - other.p0) / pcd; |
52 | Some(other.p0 + cd * h) |
53 | } |
54 | |
55 | /// Is this line finite? |
56 | #[inline ] |
57 | pub fn is_finite(self) -> bool { |
58 | self.p0.is_finite() && self.p1.is_finite() |
59 | } |
60 | |
61 | /// Is this line NaN? |
62 | #[inline ] |
63 | pub fn is_nan(self) -> bool { |
64 | self.p0.is_nan() || self.p1.is_nan() |
65 | } |
66 | } |
67 | |
68 | impl ParamCurve for Line { |
69 | #[inline ] |
70 | fn eval(&self, t: f64) -> Point { |
71 | self.p0.lerp(self.p1, t) |
72 | } |
73 | |
74 | #[inline ] |
75 | fn subsegment(&self, range: Range<f64>) -> Line { |
76 | Line { |
77 | p0: self.eval(range.start), |
78 | p1: self.eval(range.end), |
79 | } |
80 | } |
81 | |
82 | #[inline ] |
83 | fn start(&self) -> Point { |
84 | self.p0 |
85 | } |
86 | |
87 | #[inline ] |
88 | fn end(&self) -> Point { |
89 | self.p1 |
90 | } |
91 | } |
92 | |
93 | impl ParamCurveDeriv for Line { |
94 | type DerivResult = ConstPoint; |
95 | |
96 | #[inline ] |
97 | fn deriv(&self) -> ConstPoint { |
98 | ConstPoint((self.p1 - self.p0).to_point()) |
99 | } |
100 | } |
101 | |
102 | impl ParamCurveArclen for Line { |
103 | #[inline ] |
104 | fn arclen(&self, _accuracy: f64) -> f64 { |
105 | (self.p1 - self.p0).hypot() |
106 | } |
107 | |
108 | #[inline ] |
109 | fn inv_arclen(&self, arclen: f64, _accuracy: f64) -> f64 { |
110 | arclen / (self.p1 - self.p0).hypot() |
111 | } |
112 | } |
113 | |
114 | impl ParamCurveArea for Line { |
115 | #[inline ] |
116 | fn signed_area(&self) -> f64 { |
117 | self.p0.to_vec2().cross(self.p1.to_vec2()) * 0.5 |
118 | } |
119 | } |
120 | |
121 | impl ParamCurveNearest for Line { |
122 | fn nearest(&self, p: Point, _accuracy: f64) -> Nearest { |
123 | let d: Vec2 = self.p1 - self.p0; |
124 | let dotp: f64 = d.dot(p - self.p0); |
125 | let d_squared: f64 = d.dot(d); |
126 | let (t: f64, distance_sq: f64) = if dotp <= 0.0 { |
127 | (0.0, (p - self.p0).hypot2()) |
128 | } else if dotp >= d_squared { |
129 | (1.0, (p - self.p1).hypot2()) |
130 | } else { |
131 | let t: f64 = dotp / d_squared; |
132 | let dist: f64 = (p - self.eval(t)).hypot2(); |
133 | (t, dist) |
134 | }; |
135 | Nearest { distance_sq, t } |
136 | } |
137 | } |
138 | |
139 | impl ParamCurveCurvature for Line { |
140 | #[inline ] |
141 | fn curvature(&self, _t: f64) -> f64 { |
142 | 0.0 |
143 | } |
144 | } |
145 | |
146 | impl ParamCurveExtrema for Line { |
147 | #[inline ] |
148 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> { |
149 | ArrayVec::new() |
150 | } |
151 | } |
152 | |
153 | /// A trivial "curve" that is just a constant. |
154 | #[derive (Clone, Copy, Debug)] |
155 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
156 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
157 | pub struct ConstPoint(Point); |
158 | |
159 | impl ConstPoint { |
160 | /// Is this point finite? |
161 | #[inline ] |
162 | pub fn is_finite(self) -> bool { |
163 | self.0.is_finite() |
164 | } |
165 | |
166 | /// Is this point NaN? |
167 | #[inline ] |
168 | pub fn is_nan(self) -> bool { |
169 | self.0.is_nan() |
170 | } |
171 | } |
172 | |
173 | impl ParamCurve for ConstPoint { |
174 | #[inline ] |
175 | fn eval(&self, _t: f64) -> Point { |
176 | self.0 |
177 | } |
178 | |
179 | #[inline ] |
180 | fn subsegment(&self, _range: Range<f64>) -> ConstPoint { |
181 | *self |
182 | } |
183 | } |
184 | |
185 | impl ParamCurveDeriv for ConstPoint { |
186 | type DerivResult = ConstPoint; |
187 | |
188 | #[inline ] |
189 | fn deriv(&self) -> ConstPoint { |
190 | ConstPoint(Point::new(x:0.0, y:0.0)) |
191 | } |
192 | } |
193 | |
194 | impl ParamCurveArclen for ConstPoint { |
195 | #[inline ] |
196 | fn arclen(&self, _accuracy: f64) -> f64 { |
197 | 0.0 |
198 | } |
199 | |
200 | #[inline ] |
201 | fn inv_arclen(&self, _arclen: f64, _accuracy: f64) -> f64 { |
202 | 0.0 |
203 | } |
204 | } |
205 | |
206 | impl Mul<Line> for Affine { |
207 | type Output = Line; |
208 | |
209 | #[inline ] |
210 | fn mul(self, other: Line) -> Line { |
211 | Line { |
212 | p0: self * other.p0, |
213 | p1: self * other.p1, |
214 | } |
215 | } |
216 | } |
217 | |
218 | impl Add<Vec2> for Line { |
219 | type Output = Line; |
220 | |
221 | #[inline ] |
222 | fn add(self, v: Vec2) -> Line { |
223 | Line::new(self.p0 + v, self.p1 + v) |
224 | } |
225 | } |
226 | |
227 | impl Sub<Vec2> for Line { |
228 | type Output = Line; |
229 | |
230 | #[inline ] |
231 | fn sub(self, v: Vec2) -> Line { |
232 | Line::new(self.p0 - v, self.p1 - v) |
233 | } |
234 | } |
235 | |
236 | /// An iterator yielding the path for a single line. |
237 | #[doc (hidden)] |
238 | pub struct LinePathIter { |
239 | line: Line, |
240 | ix: usize, |
241 | } |
242 | |
243 | impl Shape for Line { |
244 | type PathElementsIter<'iter> = LinePathIter; |
245 | |
246 | #[inline ] |
247 | fn path_elements(&self, _tolerance: f64) -> LinePathIter { |
248 | LinePathIter { line: *self, ix: 0 } |
249 | } |
250 | |
251 | /// Returning zero here is consistent with the contract (area is |
252 | /// only meaningful for closed shapes), but an argument can be made |
253 | /// that the contract should be tightened to include the Green's |
254 | /// theorem contribution. |
255 | fn area(&self) -> f64 { |
256 | 0.0 |
257 | } |
258 | |
259 | #[inline ] |
260 | fn perimeter(&self, _accuracy: f64) -> f64 { |
261 | (self.p1 - self.p0).hypot() |
262 | } |
263 | |
264 | /// Same consideration as `area`. |
265 | fn winding(&self, _pt: Point) -> i32 { |
266 | 0 |
267 | } |
268 | |
269 | #[inline ] |
270 | fn bounding_box(&self) -> Rect { |
271 | Rect::from_points(self.p0, self.p1) |
272 | } |
273 | |
274 | #[inline ] |
275 | fn as_line(&self) -> Option<Line> { |
276 | Some(*self) |
277 | } |
278 | } |
279 | |
280 | impl Iterator for LinePathIter { |
281 | type Item = PathEl; |
282 | |
283 | fn next(&mut self) -> Option<PathEl> { |
284 | self.ix += 1; |
285 | match self.ix { |
286 | 1 => Some(PathEl::MoveTo(self.line.p0)), |
287 | 2 => Some(PathEl::LineTo(self.line.p1)), |
288 | _ => None, |
289 | } |
290 | } |
291 | } |
292 | |
293 | #[cfg (test)] |
294 | mod tests { |
295 | use crate::{Line, ParamCurveArclen, Point}; |
296 | |
297 | #[test ] |
298 | fn line_arclen() { |
299 | let l = Line::new((0.0, 0.0), (1.0, 1.0)); |
300 | let true_len = 2.0f64.sqrt(); |
301 | let epsilon = 1e-9; |
302 | assert!(l.arclen(epsilon) - true_len < epsilon); |
303 | |
304 | let t = l.inv_arclen(true_len / 3.0, epsilon); |
305 | assert!((t - 1.0 / 3.0).abs() < epsilon); |
306 | } |
307 | |
308 | #[test ] |
309 | fn line_is_finite() { |
310 | assert!((Line { |
311 | p0: Point { x: 0., y: 0. }, |
312 | p1: Point { x: 1., y: 1. } |
313 | }) |
314 | .is_finite()); |
315 | |
316 | assert!(!(Line { |
317 | p0: Point { x: 0., y: 0. }, |
318 | p1: Point { |
319 | x: f64::INFINITY, |
320 | y: 1. |
321 | } |
322 | }) |
323 | .is_finite()); |
324 | |
325 | assert!(!(Line { |
326 | p0: Point { x: 0., y: 0. }, |
327 | p1: Point { |
328 | x: 0., |
329 | y: f64::INFINITY |
330 | } |
331 | }) |
332 | .is_finite()); |
333 | } |
334 | } |
335 | |