1 | // Copyright 2018 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! Bézier paths (up to cubic). |
5 | |
6 | #![allow (clippy::many_single_char_names)] |
7 | |
8 | use core::iter::{Extend, FromIterator}; |
9 | use core::mem; |
10 | use core::ops::{Mul, Range}; |
11 | |
12 | use alloc::vec::Vec; |
13 | |
14 | use arrayvec::ArrayVec; |
15 | |
16 | use crate::common::{solve_cubic, solve_quadratic}; |
17 | use crate::MAX_EXTREMA; |
18 | use crate::{ |
19 | Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, |
20 | ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, Rect, Shape, TranslateScale, Vec2, |
21 | }; |
22 | |
23 | #[cfg (not(feature = "std" ))] |
24 | use crate::common::FloatFuncs; |
25 | |
26 | /// A Bézier path. |
27 | /// |
28 | /// These docs assume basic familiarity with Bézier curves; for an introduction, |
29 | /// see Pomax's wonderful [A Primer on Bézier Curves]. |
30 | /// |
31 | /// This path can contain lines, quadratics ([`QuadBez`]) and cubics |
32 | /// ([`CubicBez`]), and may contain multiple subpaths. |
33 | /// |
34 | /// # Elements and Segments |
35 | /// |
36 | /// A Bézier path can be represented in terms of either 'elements' ([`PathEl`]) |
37 | /// or 'segments' ([`PathSeg`]). Elements map closely to how Béziers are |
38 | /// generally used in PostScript-style drawing APIs; they can be thought of as |
39 | /// instructions for drawing the path. Segments more directly describe the |
40 | /// path itself, with each segment being an independent line or curve. |
41 | /// |
42 | /// These different representations are useful in different contexts. |
43 | /// For tasks like drawing, elements are a natural fit, but when doing |
44 | /// hit-testing or subdividing, we need to have access to the segments. |
45 | /// |
46 | /// Conceptually, a `BezPath` contains zero or more subpaths. Each subpath |
47 | /// *always* begins with a `MoveTo`, then has zero or more `LineTo`, `QuadTo`, |
48 | /// and `CurveTo` elements, and optionally ends with a `ClosePath`. |
49 | /// |
50 | /// Internally, a `BezPath` is a list of [`PathEl`]s; as such it implements |
51 | /// [`FromIterator<PathEl>`] and [`Extend<PathEl>`]: |
52 | /// |
53 | /// ``` |
54 | /// use kurbo::{BezPath, Rect, Shape, Vec2}; |
55 | /// let accuracy = 0.1; |
56 | /// let rect = Rect::from_origin_size((0., 0.,), (10., 10.)); |
57 | /// // these are equivalent |
58 | /// let path1 = rect.to_path(accuracy); |
59 | /// let path2: BezPath = rect.path_elements(accuracy).collect(); |
60 | /// |
61 | /// // extend a path with another path: |
62 | /// let mut path = rect.to_path(accuracy); |
63 | /// let shifted_rect = rect + Vec2::new(5.0, 10.0); |
64 | /// path.extend(shifted_rect.to_path(accuracy)); |
65 | /// ``` |
66 | /// |
67 | /// You can iterate the elements of a `BezPath` with the [`iter`] method, |
68 | /// and the segments with the [`segments`] method: |
69 | /// |
70 | /// ``` |
71 | /// use kurbo::{BezPath, Line, PathEl, PathSeg, Point, Rect, Shape}; |
72 | /// let accuracy = 0.1; |
73 | /// let rect = Rect::from_origin_size((0., 0.,), (10., 10.)); |
74 | /// // these are equivalent |
75 | /// let path = rect.to_path(accuracy); |
76 | /// let first_el = PathEl::MoveTo(Point::ZERO); |
77 | /// let first_seg = PathSeg::Line(Line::new((0., 0.), (10., 0.))); |
78 | /// assert_eq!(path.iter().next(), Some(first_el)); |
79 | /// assert_eq!(path.segments().next(), Some(first_seg)); |
80 | /// ``` |
81 | /// In addition, if you have some other type that implements |
82 | /// `Iterator<Item=PathEl>`, you can adapt that to an iterator of segments with |
83 | /// the [`segments` free function]. |
84 | /// |
85 | /// # Advanced functionality |
86 | /// |
87 | /// In addition to the basic API, there are several useful pieces of advanced |
88 | /// functionality available on `BezPath`: |
89 | /// |
90 | /// - [`flatten`] does Bézier flattening, converting a curve to a series of |
91 | /// line segments |
92 | /// - [`intersect_line`] computes intersections of a path with a line, useful |
93 | /// for things like subdividing |
94 | /// |
95 | /// [A Primer on Bézier Curves]: https://pomax.github.io/bezierinfo/ |
96 | /// [`iter`]: BezPath::iter |
97 | /// [`segments`]: BezPath::segments |
98 | /// [`flatten`]: BezPath::flatten |
99 | /// [`intersect_line`]: PathSeg::intersect_line |
100 | /// [`segments` free function]: segments |
101 | /// [`FromIterator<PathEl>`]: std::iter::FromIterator |
102 | /// [`Extend<PathEl>`]: std::iter::Extend |
103 | #[derive (Clone, Default, Debug, PartialEq)] |
104 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
105 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
106 | pub struct BezPath(Vec<PathEl>); |
107 | |
108 | /// The element of a Bézier path. |
109 | /// |
110 | /// A valid path has `MoveTo` at the beginning of each subpath. |
111 | #[derive (Clone, Copy, Debug, PartialEq)] |
112 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
113 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
114 | pub enum PathEl { |
115 | /// Move directly to the point without drawing anything, starting a new |
116 | /// subpath. |
117 | MoveTo(Point), |
118 | /// Draw a line from the current location to the point. |
119 | LineTo(Point), |
120 | /// Draw a quadratic bezier using the current location and the two points. |
121 | QuadTo(Point, Point), |
122 | /// Draw a cubic bezier using the current location and the three points. |
123 | CurveTo(Point, Point, Point), |
124 | /// Close off the path. |
125 | ClosePath, |
126 | } |
127 | |
128 | /// A segment of a Bézier path. |
129 | #[derive (Clone, Copy, Debug, PartialEq)] |
130 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
131 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
132 | pub enum PathSeg { |
133 | /// A line segment. |
134 | Line(Line), |
135 | /// A quadratic bezier segment. |
136 | Quad(QuadBez), |
137 | /// A cubic bezier segment. |
138 | Cubic(CubicBez), |
139 | } |
140 | |
141 | /// An intersection of a [`Line`] and a [`PathSeg`]. |
142 | /// |
143 | /// This can be generated with the [`PathSeg::intersect_line`] method. |
144 | #[derive (Debug, Clone, Copy)] |
145 | pub struct LineIntersection { |
146 | /// The 'time' that the intersection occurs, on the line. |
147 | /// |
148 | /// This value is in the range 0..1. |
149 | pub line_t: f64, |
150 | |
151 | /// The 'time' that the intersection occurs, on the path segment. |
152 | /// |
153 | /// This value is nominally in the range 0..1, although it may slightly exceed |
154 | /// that range at the boundaries of segments. |
155 | pub segment_t: f64, |
156 | } |
157 | |
158 | /// The minimum distance between two Bézier curves. |
159 | pub struct MinDistance { |
160 | /// The shortest distance between any two points on the two curves. |
161 | pub distance: f64, |
162 | /// The position of the nearest point on the first curve, as a parameter. |
163 | /// |
164 | /// To resolve this to a [`Point`], use [`ParamCurve::eval`]. |
165 | /// |
166 | /// [`ParamCurve::eval`]: crate::ParamCurve::eval |
167 | pub t1: f64, |
168 | /// The position of the nearest point on the second curve, as a parameter. |
169 | /// |
170 | /// To resolve this to a [`Point`], use [`ParamCurve::eval`]. |
171 | /// |
172 | /// [`ParamCurve::eval`]: crate::ParamCurve::eval |
173 | pub t2: f64, |
174 | } |
175 | |
176 | impl BezPath { |
177 | /// Create a new path. |
178 | pub fn new() -> BezPath { |
179 | Default::default() |
180 | } |
181 | |
182 | /// Create a path from a vector of path elements. |
183 | /// |
184 | /// `BezPath` also implements `FromIterator<PathEl>`, so it works with `collect`: |
185 | /// |
186 | /// ``` |
187 | /// // a very contrived example: |
188 | /// use kurbo::{BezPath, PathEl}; |
189 | /// |
190 | /// let path = BezPath::new(); |
191 | /// let as_vec: Vec<PathEl> = path.into_iter().collect(); |
192 | /// let back_to_path: BezPath = as_vec.into_iter().collect(); |
193 | /// ``` |
194 | pub fn from_vec(v: Vec<PathEl>) -> BezPath { |
195 | debug_assert!( |
196 | v.first().is_none() || matches!(v.first(), Some(PathEl::MoveTo(_))), |
197 | "BezPath must begin with MoveTo" |
198 | ); |
199 | BezPath(v) |
200 | } |
201 | |
202 | /// Removes the last [`PathEl`] from the path and returns it, or `None` if the path is empty. |
203 | pub fn pop(&mut self) -> Option<PathEl> { |
204 | self.0.pop() |
205 | } |
206 | |
207 | /// Push a generic path element onto the path. |
208 | pub fn push(&mut self, el: PathEl) { |
209 | self.0.push(el); |
210 | debug_assert!( |
211 | matches!(self.0.first(), Some(PathEl::MoveTo(_))), |
212 | "BezPath must begin with MoveTo" |
213 | ) |
214 | } |
215 | |
216 | /// Push a "move to" element onto the path. |
217 | pub fn move_to<P: Into<Point>>(&mut self, p: P) { |
218 | self.push(PathEl::MoveTo(p.into())); |
219 | } |
220 | |
221 | /// Push a "line to" element onto the path. |
222 | /// |
223 | /// Will panic with a debug assert when the current subpath does not |
224 | /// start with `move_to`. |
225 | pub fn line_to<P: Into<Point>>(&mut self, p: P) { |
226 | debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)" ); |
227 | self.push(PathEl::LineTo(p.into())); |
228 | } |
229 | |
230 | /// Push a "quad to" element onto the path. |
231 | /// |
232 | /// Will panic with a debug assert when the current subpath does not |
233 | /// start with `move_to`. |
234 | pub fn quad_to<P: Into<Point>>(&mut self, p1: P, p2: P) { |
235 | debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)" ); |
236 | self.push(PathEl::QuadTo(p1.into(), p2.into())); |
237 | } |
238 | |
239 | /// Push a "curve to" element onto the path. |
240 | /// |
241 | /// Will panic with a debug assert when the current subpath does not |
242 | /// start with `move_to`. |
243 | pub fn curve_to<P: Into<Point>>(&mut self, p1: P, p2: P, p3: P) { |
244 | debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)" ); |
245 | self.push(PathEl::CurveTo(p1.into(), p2.into(), p3.into())); |
246 | } |
247 | |
248 | /// Push a "close path" element onto the path. |
249 | /// |
250 | /// Will panic with a debug assert when the current subpath does not |
251 | /// start with `move_to`. |
252 | pub fn close_path(&mut self) { |
253 | debug_assert!(self.is_open_subpath(), "no open subpath (missing MoveTo)" ); |
254 | self.push(PathEl::ClosePath); |
255 | } |
256 | |
257 | fn is_open_subpath(&self) -> bool { |
258 | !self.0.is_empty() && self.0.last() != Some(&PathEl::ClosePath) |
259 | } |
260 | |
261 | /// Get the path elements. |
262 | pub fn elements(&self) -> &[PathEl] { |
263 | &self.0 |
264 | } |
265 | |
266 | /// Get the path elements (mut version). |
267 | pub fn elements_mut(&mut self) -> &mut [PathEl] { |
268 | &mut self.0 |
269 | } |
270 | |
271 | /// Returns an iterator over the path's elements. |
272 | pub fn iter(&self) -> impl Iterator<Item = PathEl> + Clone + '_ { |
273 | self.0.iter().copied() |
274 | } |
275 | |
276 | /// Iterate over the path segments. |
277 | pub fn segments(&self) -> impl Iterator<Item = PathSeg> + Clone + '_ { |
278 | segments(self.iter()) |
279 | } |
280 | |
281 | /// Shorten the path, keeping the first `len` elements. |
282 | pub fn truncate(&mut self, len: usize) { |
283 | self.0.truncate(len); |
284 | } |
285 | |
286 | /// Flatten the path, invoking the callback repeatedly. |
287 | /// |
288 | /// Flattening is the action of approximating a curve with a succession of line segments. |
289 | /// |
290 | /// <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm"> |
291 | /// <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/> |
292 | /// <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/> |
293 | /// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
294 | /// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> |
295 | /// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
296 | /// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/> |
297 | /// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
298 | /// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
299 | /// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
300 | /// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> |
301 | /// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
302 | /// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/> |
303 | /// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
304 | /// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
305 | /// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
306 | /// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
307 | /// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
308 | /// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> |
309 | /// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
310 | /// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> |
311 | /// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
312 | /// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/> |
313 | /// <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)"> |
314 | /// <tspan x="35.74" y="284.49" font-size="10.58">→</tspan> |
315 | /// </text> |
316 | /// </svg> |
317 | /// |
318 | /// The tolerance value controls the maximum distance between the curved input |
319 | /// segments and their polyline approximations. (In technical terms, this is the |
320 | /// Hausdorff distance). The algorithm attempts to bound this distance between |
321 | /// by `tolerance` but this is not absolutely guaranteed. The appropriate value |
322 | /// depends on the use, but for antialiased rendering, a value of 0.25 has been |
323 | /// determined to give good results. The number of segments tends to scale as the |
324 | /// inverse square root of tolerance. |
325 | /// |
326 | /// <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg"> |
327 | /// <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/> |
328 | /// <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/> |
329 | /// <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/> |
330 | /// <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/> |
331 | /// <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/> |
332 | /// <g fill="none" stroke="#ff7f2a" stroke-width=".26"> |
333 | /// <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/> |
334 | /// </g> |
335 | /// </svg> |
336 | /// |
337 | /// The callback will be called in order with each element of the generated |
338 | /// path. Because the result is made of polylines, these will be straight-line |
339 | /// path elements only, no curves. |
340 | /// |
341 | /// This algorithm is based on the blog post [Flattening quadratic Béziers] |
342 | /// but with some refinements. For one, there is a more careful approximation |
343 | /// at cusps. For two, the algorithm is extended to work with cubic Béziers |
344 | /// as well, by first subdividing into quadratics and then computing the |
345 | /// subdivision of each quadratic. However, as a clever trick, these quadratics |
346 | /// are subdivided fractionally, and their endpoints are not included. |
347 | /// |
348 | /// TODO: write a paper explaining this in more detail. |
349 | /// |
350 | /// Note: the [`flatten`] function provides the same |
351 | /// functionality but works with slices and other [`PathEl`] iterators. |
352 | /// |
353 | /// [Flattening quadratic Béziers]: https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html |
354 | pub fn flatten(&self, tolerance: f64, callback: impl FnMut(PathEl)) { |
355 | flatten(self, tolerance, callback); |
356 | } |
357 | |
358 | /// Get the segment at the given element index. |
359 | /// |
360 | /// If you need to access all segments, [`segments`] provides a better |
361 | /// API. This is intended for random access of specific elements, for clients |
362 | /// that require this specifically. |
363 | /// |
364 | /// **note**: This returns the segment that ends at the provided element |
365 | /// index. In effect this means it is *1-indexed*: since no segment ends at |
366 | /// the first element (which is presumed to be a `MoveTo`) `get_seg(0)` will |
367 | /// always return `None`. |
368 | pub fn get_seg(&self, ix: usize) -> Option<PathSeg> { |
369 | if ix == 0 || ix >= self.0.len() { |
370 | return None; |
371 | } |
372 | let last = match self.0[ix - 1] { |
373 | PathEl::MoveTo(p) => p, |
374 | PathEl::LineTo(p) => p, |
375 | PathEl::QuadTo(_, p2) => p2, |
376 | PathEl::CurveTo(_, _, p3) => p3, |
377 | _ => return None, |
378 | }; |
379 | match self.0[ix] { |
380 | PathEl::LineTo(p) => Some(PathSeg::Line(Line::new(last, p))), |
381 | PathEl::QuadTo(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))), |
382 | PathEl::CurveTo(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))), |
383 | PathEl::ClosePath => self.0[..ix].iter().rev().find_map(|el| match *el { |
384 | PathEl::MoveTo(start) if start != last => { |
385 | Some(PathSeg::Line(Line::new(last, start))) |
386 | } |
387 | _ => None, |
388 | }), |
389 | _ => None, |
390 | } |
391 | } |
392 | |
393 | /// Returns `true` if the path contains no segments. |
394 | pub fn is_empty(&self) -> bool { |
395 | self.0 |
396 | .iter() |
397 | .all(|el| matches!(el, PathEl::MoveTo(..) | PathEl::ClosePath)) |
398 | } |
399 | |
400 | /// Apply an affine transform to the path. |
401 | pub fn apply_affine(&mut self, affine: Affine) { |
402 | for el in self.0.iter_mut() { |
403 | *el = affine * (*el); |
404 | } |
405 | } |
406 | |
407 | /// Is this path finite? |
408 | #[inline ] |
409 | pub fn is_finite(&self) -> bool { |
410 | self.0.iter().all(|v| v.is_finite()) |
411 | } |
412 | |
413 | /// Is this path NaN? |
414 | #[inline ] |
415 | pub fn is_nan(&self) -> bool { |
416 | self.0.iter().any(|v| v.is_nan()) |
417 | } |
418 | |
419 | /// Returns a rectangle that conservatively encloses the path. |
420 | /// |
421 | /// Unlike the `bounding_box` method, this uses control points directly |
422 | /// rather than computing tight bounds for curve elements. |
423 | pub fn control_box(&self) -> Rect { |
424 | let mut cbox: Option<Rect> = None; |
425 | let mut add_pts = |pts: &[Point]| { |
426 | for pt in pts { |
427 | cbox = match cbox { |
428 | Some(cbox) => Some(cbox.union_pt(*pt)), |
429 | _ => Some(Rect::from_points(*pt, *pt)), |
430 | }; |
431 | } |
432 | }; |
433 | for &el in self.elements() { |
434 | match el { |
435 | PathEl::MoveTo(p0) | PathEl::LineTo(p0) => add_pts(&[p0]), |
436 | PathEl::QuadTo(p0, p1) => add_pts(&[p0, p1]), |
437 | PathEl::CurveTo(p0, p1, p2) => add_pts(&[p0, p1, p2]), |
438 | PathEl::ClosePath => {} |
439 | } |
440 | } |
441 | cbox.unwrap_or_default() |
442 | } |
443 | |
444 | /// Returns a new path with the winding direction of all subpaths reversed. |
445 | pub fn reverse_subpaths(&self) -> BezPath { |
446 | let elements = self.elements(); |
447 | let mut start_ix = 1; |
448 | let mut start_pt = Point::default(); |
449 | let mut reversed = BezPath(Vec::with_capacity(elements.len())); |
450 | // Pending move is used to capture degenerate subpaths that should |
451 | // remain in the reversed output. |
452 | let mut pending_move = false; |
453 | for (ix, el) in elements.iter().enumerate() { |
454 | match el { |
455 | PathEl::MoveTo(pt) => { |
456 | if pending_move { |
457 | reversed.push(PathEl::MoveTo(start_pt)); |
458 | } |
459 | if start_ix < ix { |
460 | reverse_subpath(start_pt, &elements[start_ix..ix], &mut reversed); |
461 | } |
462 | pending_move = true; |
463 | start_pt = *pt; |
464 | start_ix = ix + 1; |
465 | } |
466 | PathEl::ClosePath => { |
467 | if start_ix <= ix { |
468 | reverse_subpath(start_pt, &elements[start_ix..ix], &mut reversed); |
469 | } |
470 | reversed.push(PathEl::ClosePath); |
471 | start_ix = ix + 1; |
472 | pending_move = false; |
473 | } |
474 | _ => { |
475 | pending_move = false; |
476 | } |
477 | } |
478 | } |
479 | if start_ix < elements.len() { |
480 | reverse_subpath(start_pt, &elements[start_ix..], &mut reversed); |
481 | } else if pending_move { |
482 | reversed.push(PathEl::MoveTo(start_pt)); |
483 | } |
484 | reversed |
485 | } |
486 | } |
487 | |
488 | /// Helper for reversing a subpath. |
489 | /// |
490 | /// The `els` parameter must not contain any `MoveTo` or `ClosePath` elements. |
491 | fn reverse_subpath(start_pt: Point, els: &[PathEl], reversed: &mut BezPath) { |
492 | let end_pt: Point = els.last().and_then(|el| el.end_point()).unwrap_or(default:start_pt); |
493 | reversed.push(el:PathEl::MoveTo(end_pt)); |
494 | for (ix: usize, el: &PathEl) in els.iter().enumerate().rev() { |
495 | let end_pt: Point = if ix > 0 { |
496 | els[ix - 1].end_point().unwrap() |
497 | } else { |
498 | start_pt |
499 | }; |
500 | match el { |
501 | PathEl::LineTo(_) => reversed.push(el:PathEl::LineTo(end_pt)), |
502 | PathEl::QuadTo(c0: &Point, _) => reversed.push(el:PathEl::QuadTo(*c0, end_pt)), |
503 | PathEl::CurveTo(c0: &Point, c1: &Point, _) => reversed.push(el:PathEl::CurveTo(*c1, *c0, end_pt)), |
504 | _ => panic!("reverse_subpath expects MoveTo and ClosePath to be removed" ), |
505 | } |
506 | } |
507 | } |
508 | |
509 | impl FromIterator<PathEl> for BezPath { |
510 | fn from_iter<T: IntoIterator<Item = PathEl>>(iter: T) -> Self { |
511 | let el_vec: Vec<_> = iter.into_iter().collect(); |
512 | BezPath::from_vec(el_vec) |
513 | } |
514 | } |
515 | |
516 | /// Allow iteration over references to `BezPath`. |
517 | /// |
518 | /// Note: the semantics are slightly different from simply iterating over the |
519 | /// slice, as it returns `PathEl` items, rather than references. |
520 | impl<'a> IntoIterator for &'a BezPath { |
521 | type Item = PathEl; |
522 | type IntoIter = core::iter::Cloned<core::slice::Iter<'a, PathEl>>; |
523 | |
524 | fn into_iter(self) -> Self::IntoIter { |
525 | self.elements().iter().cloned() |
526 | } |
527 | } |
528 | |
529 | impl IntoIterator for BezPath { |
530 | type Item = PathEl; |
531 | type IntoIter = alloc::vec::IntoIter<PathEl>; |
532 | |
533 | fn into_iter(self) -> Self::IntoIter { |
534 | self.0.into_iter() |
535 | } |
536 | } |
537 | |
538 | impl Extend<PathEl> for BezPath { |
539 | fn extend<I: IntoIterator<Item = PathEl>>(&mut self, iter: I) { |
540 | self.0.extend(iter); |
541 | } |
542 | } |
543 | |
544 | /// Proportion of tolerance budget that goes to cubic to quadratic conversion. |
545 | const TO_QUAD_TOL: f64 = 0.1; |
546 | |
547 | /// Flatten the path, invoking the callback repeatedly. |
548 | /// |
549 | /// See [`BezPath::flatten`] for more discussion. |
550 | /// This signature is a bit more general, allowing flattening of `&[PathEl]` slices |
551 | /// and other iterators yielding `PathEl`. |
552 | pub fn flatten( |
553 | path: impl IntoIterator<Item = PathEl>, |
554 | tolerance: f64, |
555 | mut callback: impl FnMut(PathEl), |
556 | ) { |
557 | let sqrt_tol = tolerance.sqrt(); |
558 | let mut last_pt = None; |
559 | let mut quad_buf = Vec::new(); |
560 | for el in path { |
561 | match el { |
562 | PathEl::MoveTo(p) => { |
563 | last_pt = Some(p); |
564 | callback(PathEl::MoveTo(p)); |
565 | } |
566 | PathEl::LineTo(p) => { |
567 | last_pt = Some(p); |
568 | callback(PathEl::LineTo(p)); |
569 | } |
570 | PathEl::QuadTo(p1, p2) => { |
571 | if let Some(p0) = last_pt { |
572 | let q = QuadBez::new(p0, p1, p2); |
573 | let params = q.estimate_subdiv(sqrt_tol); |
574 | let n = ((0.5 * params.val / sqrt_tol).ceil() as usize).max(1); |
575 | let step = 1.0 / (n as f64); |
576 | for i in 1..n { |
577 | let u = (i as f64) * step; |
578 | let t = q.determine_subdiv_t(¶ms, u); |
579 | let p = q.eval(t); |
580 | callback(PathEl::LineTo(p)); |
581 | } |
582 | callback(PathEl::LineTo(p2)); |
583 | } |
584 | last_pt = Some(p2); |
585 | } |
586 | PathEl::CurveTo(p1, p2, p3) => { |
587 | if let Some(p0) = last_pt { |
588 | let c = CubicBez::new(p0, p1, p2, p3); |
589 | |
590 | // Subdivide into quadratics, and estimate the number of |
591 | // subdivisions required for each, summing to arrive at an |
592 | // estimate for the number of subdivisions for the cubic. |
593 | // Also retain these parameters for later. |
594 | let iter = c.to_quads(tolerance * TO_QUAD_TOL); |
595 | quad_buf.clear(); |
596 | quad_buf.reserve(iter.size_hint().0); |
597 | let sqrt_remain_tol = sqrt_tol * (1.0 - TO_QUAD_TOL).sqrt(); |
598 | let mut sum = 0.0; |
599 | for (_, _, q) in iter { |
600 | let params = q.estimate_subdiv(sqrt_remain_tol); |
601 | sum += params.val; |
602 | quad_buf.push((q, params)); |
603 | } |
604 | let n = ((0.5 * sum / sqrt_remain_tol).ceil() as usize).max(1); |
605 | |
606 | // Iterate through the quadratics, outputting the points of |
607 | // subdivisions that fall within that quadratic. |
608 | let step = sum / (n as f64); |
609 | let mut i = 1; |
610 | let mut val_sum = 0.0; |
611 | for (q, params) in &quad_buf { |
612 | let mut target = (i as f64) * step; |
613 | let recip_val = params.val.recip(); |
614 | while target < val_sum + params.val { |
615 | let u = (target - val_sum) * recip_val; |
616 | let t = q.determine_subdiv_t(params, u); |
617 | let p = q.eval(t); |
618 | callback(PathEl::LineTo(p)); |
619 | i += 1; |
620 | if i == n + 1 { |
621 | break; |
622 | } |
623 | target = (i as f64) * step; |
624 | } |
625 | val_sum += params.val; |
626 | } |
627 | callback(PathEl::LineTo(p3)); |
628 | } |
629 | last_pt = Some(p3); |
630 | } |
631 | PathEl::ClosePath => { |
632 | last_pt = None; |
633 | callback(PathEl::ClosePath); |
634 | } |
635 | } |
636 | } |
637 | } |
638 | |
639 | impl Mul<PathEl> for Affine { |
640 | type Output = PathEl; |
641 | |
642 | fn mul(self, other: PathEl) -> PathEl { |
643 | match other { |
644 | PathEl::MoveTo(p: Point) => PathEl::MoveTo(self * p), |
645 | PathEl::LineTo(p: Point) => PathEl::LineTo(self * p), |
646 | PathEl::QuadTo(p1: Point, p2: Point) => PathEl::QuadTo(self * p1, self * p2), |
647 | PathEl::CurveTo(p1: Point, p2: Point, p3: Point) => PathEl::CurveTo(self * p1, self * p2, self * p3), |
648 | PathEl::ClosePath => PathEl::ClosePath, |
649 | } |
650 | } |
651 | } |
652 | |
653 | impl Mul<PathSeg> for Affine { |
654 | type Output = PathSeg; |
655 | |
656 | fn mul(self, other: PathSeg) -> PathSeg { |
657 | match other { |
658 | PathSeg::Line(line: Line) => PathSeg::Line(self * line), |
659 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(self * quad), |
660 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(self * cubic), |
661 | } |
662 | } |
663 | } |
664 | |
665 | impl Mul<BezPath> for Affine { |
666 | type Output = BezPath; |
667 | |
668 | fn mul(self, other: BezPath) -> BezPath { |
669 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
670 | } |
671 | } |
672 | |
673 | impl<'a> Mul<&'a BezPath> for Affine { |
674 | type Output = BezPath; |
675 | |
676 | fn mul(self, other: &BezPath) -> BezPath { |
677 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
678 | } |
679 | } |
680 | |
681 | impl Mul<PathEl> for TranslateScale { |
682 | type Output = PathEl; |
683 | |
684 | fn mul(self, other: PathEl) -> PathEl { |
685 | match other { |
686 | PathEl::MoveTo(p: Point) => PathEl::MoveTo(self * p), |
687 | PathEl::LineTo(p: Point) => PathEl::LineTo(self * p), |
688 | PathEl::QuadTo(p1: Point, p2: Point) => PathEl::QuadTo(self * p1, self * p2), |
689 | PathEl::CurveTo(p1: Point, p2: Point, p3: Point) => PathEl::CurveTo(self * p1, self * p2, self * p3), |
690 | PathEl::ClosePath => PathEl::ClosePath, |
691 | } |
692 | } |
693 | } |
694 | |
695 | impl Mul<PathSeg> for TranslateScale { |
696 | type Output = PathSeg; |
697 | |
698 | fn mul(self, other: PathSeg) -> PathSeg { |
699 | match other { |
700 | PathSeg::Line(line: Line) => PathSeg::Line(self * line), |
701 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(self * quad), |
702 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(self * cubic), |
703 | } |
704 | } |
705 | } |
706 | |
707 | impl Mul<BezPath> for TranslateScale { |
708 | type Output = BezPath; |
709 | |
710 | fn mul(self, other: BezPath) -> BezPath { |
711 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
712 | } |
713 | } |
714 | |
715 | impl<'a> Mul<&'a BezPath> for TranslateScale { |
716 | type Output = BezPath; |
717 | |
718 | fn mul(self, other: &BezPath) -> BezPath { |
719 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
720 | } |
721 | } |
722 | |
723 | /// Transform an iterator over path elements into one over path |
724 | /// segments. |
725 | /// |
726 | /// See also [`BezPath::segments`]. |
727 | /// This signature is a bit more general, allowing `&[PathEl]` slices |
728 | /// and other iterators yielding `PathEl`. |
729 | pub fn segments<I>(elements: I) -> Segments<I::IntoIter> |
730 | where |
731 | I: IntoIterator<Item = PathEl>, |
732 | { |
733 | Segments { |
734 | elements: elements.into_iter(), |
735 | start_last: None, |
736 | } |
737 | } |
738 | |
739 | /// An iterator that transforms path elements to path segments. |
740 | /// |
741 | /// This struct is created by the [`segments`] function. |
742 | #[derive (Clone)] |
743 | pub struct Segments<I: Iterator<Item = PathEl>> { |
744 | elements: I, |
745 | start_last: Option<(Point, Point)>, |
746 | } |
747 | |
748 | impl<I: Iterator<Item = PathEl>> Iterator for Segments<I> { |
749 | type Item = PathSeg; |
750 | |
751 | fn next(&mut self) -> Option<PathSeg> { |
752 | for el in &mut self.elements { |
753 | // We first need to check whether this is the first |
754 | // path element we see to fill in the start position. |
755 | let (start, last) = self.start_last.get_or_insert_with(|| { |
756 | let point = match el { |
757 | PathEl::MoveTo(p) => p, |
758 | PathEl::LineTo(p) => p, |
759 | PathEl::QuadTo(_, p2) => p2, |
760 | PathEl::CurveTo(_, _, p3) => p3, |
761 | PathEl::ClosePath => panic!("Can't start a segment on a ClosePath" ), |
762 | }; |
763 | (point, point) |
764 | }); |
765 | |
766 | return Some(match el { |
767 | PathEl::MoveTo(p) => { |
768 | *start = p; |
769 | *last = p; |
770 | continue; |
771 | } |
772 | PathEl::LineTo(p) => PathSeg::Line(Line::new(mem::replace(last, p), p)), |
773 | PathEl::QuadTo(p1, p2) => { |
774 | PathSeg::Quad(QuadBez::new(mem::replace(last, p2), p1, p2)) |
775 | } |
776 | PathEl::CurveTo(p1, p2, p3) => { |
777 | PathSeg::Cubic(CubicBez::new(mem::replace(last, p3), p1, p2, p3)) |
778 | } |
779 | PathEl::ClosePath => { |
780 | if *last != *start { |
781 | PathSeg::Line(Line::new(mem::replace(last, *start), *start)) |
782 | } else { |
783 | continue; |
784 | } |
785 | } |
786 | }); |
787 | } |
788 | |
789 | None |
790 | } |
791 | } |
792 | |
793 | impl<I: Iterator<Item = PathEl>> Segments<I> { |
794 | /// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst, |
795 | /// the total error is `accuracy` times the number of Bézier segments. |
796 | |
797 | // TODO: pub? Or is this subsumed by method of &[PathEl]? |
798 | pub(crate) fn perimeter(self, accuracy: f64) -> f64 { |
799 | self.map(|seg| seg.arclen(accuracy)).sum() |
800 | } |
801 | |
802 | // Same |
803 | pub(crate) fn area(self) -> f64 { |
804 | self.map(|seg| seg.signed_area()).sum() |
805 | } |
806 | |
807 | // Same |
808 | pub(crate) fn winding(self, p: Point) -> i32 { |
809 | self.map(|seg| seg.winding(p)).sum() |
810 | } |
811 | |
812 | // Same |
813 | pub(crate) fn bounding_box(self) -> Rect { |
814 | let mut bbox: Option<Rect> = None; |
815 | for seg in self { |
816 | let seg_bb = ParamCurveExtrema::bounding_box(&seg); |
817 | if let Some(bb) = bbox { |
818 | bbox = Some(bb.union(seg_bb)); |
819 | } else { |
820 | bbox = Some(seg_bb) |
821 | } |
822 | } |
823 | bbox.unwrap_or_default() |
824 | } |
825 | } |
826 | |
827 | impl ParamCurve for PathSeg { |
828 | fn eval(&self, t: f64) -> Point { |
829 | match *self { |
830 | PathSeg::Line(line: Line) => line.eval(t), |
831 | PathSeg::Quad(quad: QuadBez) => quad.eval(t), |
832 | PathSeg::Cubic(cubic: CubicBez) => cubic.eval(t), |
833 | } |
834 | } |
835 | |
836 | fn subsegment(&self, range: Range<f64>) -> PathSeg { |
837 | match *self { |
838 | PathSeg::Line(line: Line) => PathSeg::Line(line.subsegment(range)), |
839 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(quad.subsegment(range)), |
840 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(cubic.subsegment(range)), |
841 | } |
842 | } |
843 | } |
844 | |
845 | impl ParamCurveArclen for PathSeg { |
846 | fn arclen(&self, accuracy: f64) -> f64 { |
847 | match *self { |
848 | PathSeg::Line(line: Line) => line.arclen(accuracy), |
849 | PathSeg::Quad(quad: QuadBez) => quad.arclen(accuracy), |
850 | PathSeg::Cubic(cubic: CubicBez) => cubic.arclen(accuracy), |
851 | } |
852 | } |
853 | |
854 | fn inv_arclen(&self, arclen: f64, accuracy: f64) -> f64 { |
855 | match *self { |
856 | PathSeg::Line(line: Line) => line.inv_arclen(arclen, accuracy), |
857 | PathSeg::Quad(quad: QuadBez) => quad.inv_arclen(arclen, accuracy), |
858 | PathSeg::Cubic(cubic: CubicBez) => cubic.inv_arclen(arclen, accuracy), |
859 | } |
860 | } |
861 | } |
862 | |
863 | impl ParamCurveArea for PathSeg { |
864 | fn signed_area(&self) -> f64 { |
865 | match *self { |
866 | PathSeg::Line(line: Line) => line.signed_area(), |
867 | PathSeg::Quad(quad: QuadBez) => quad.signed_area(), |
868 | PathSeg::Cubic(cubic: CubicBez) => cubic.signed_area(), |
869 | } |
870 | } |
871 | } |
872 | |
873 | impl ParamCurveNearest for PathSeg { |
874 | fn nearest(&self, p: Point, accuracy: f64) -> Nearest { |
875 | match *self { |
876 | PathSeg::Line(line: Line) => line.nearest(p, accuracy), |
877 | PathSeg::Quad(quad: QuadBez) => quad.nearest(p, accuracy), |
878 | PathSeg::Cubic(cubic: CubicBez) => cubic.nearest(p, accuracy), |
879 | } |
880 | } |
881 | } |
882 | |
883 | impl ParamCurveExtrema for PathSeg { |
884 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> { |
885 | match *self { |
886 | PathSeg::Line(line: Line) => line.extrema(), |
887 | PathSeg::Quad(quad: QuadBez) => quad.extrema(), |
888 | PathSeg::Cubic(cubic: CubicBez) => cubic.extrema(), |
889 | } |
890 | } |
891 | } |
892 | |
893 | impl PathSeg { |
894 | /// Get the [`PathEl`] that is equivalent to discarding the segment start point. |
895 | pub fn as_path_el(&self) -> PathEl { |
896 | match self { |
897 | PathSeg::Line(line) => PathEl::LineTo(line.p1), |
898 | PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2), |
899 | PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3), |
900 | } |
901 | } |
902 | |
903 | /// Returns a new `PathSeg` describing the same path as `self`, but with |
904 | /// the points reversed. |
905 | pub fn reverse(&self) -> PathSeg { |
906 | match self { |
907 | PathSeg::Line(Line { p0, p1 }) => PathSeg::Line(Line::new(*p1, *p0)), |
908 | PathSeg::Quad(q) => PathSeg::Quad(QuadBez::new(q.p2, q.p1, q.p0)), |
909 | PathSeg::Cubic(c) => PathSeg::Cubic(CubicBez::new(c.p3, c.p2, c.p1, c.p0)), |
910 | } |
911 | } |
912 | |
913 | /// Convert this segment to a cubic bezier. |
914 | pub fn to_cubic(&self) -> CubicBez { |
915 | match *self { |
916 | PathSeg::Line(Line { p0, p1 }) => CubicBez::new(p0, p0, p1, p1), |
917 | PathSeg::Cubic(c) => c, |
918 | PathSeg::Quad(q) => q.raise(), |
919 | } |
920 | } |
921 | |
922 | // Assumes split at extrema. |
923 | fn winding_inner(&self, p: Point) -> i32 { |
924 | let start = self.start(); |
925 | let end = self.end(); |
926 | let sign = if end.y > start.y { |
927 | if p.y < start.y || p.y >= end.y { |
928 | return 0; |
929 | } |
930 | -1 |
931 | } else if end.y < start.y { |
932 | if p.y < end.y || p.y >= start.y { |
933 | return 0; |
934 | } |
935 | 1 |
936 | } else { |
937 | return 0; |
938 | }; |
939 | match *self { |
940 | PathSeg::Line(_line) => { |
941 | if p.x < start.x.min(end.x) { |
942 | return 0; |
943 | } |
944 | if p.x >= start.x.max(end.x) { |
945 | return sign; |
946 | } |
947 | // line equation ax + by = c |
948 | let a = end.y - start.y; |
949 | let b = start.x - end.x; |
950 | let c = a * start.x + b * start.y; |
951 | if (a * p.x + b * p.y - c) * (sign as f64) <= 0.0 { |
952 | sign |
953 | } else { |
954 | 0 |
955 | } |
956 | } |
957 | PathSeg::Quad(quad) => { |
958 | let p1 = quad.p1; |
959 | if p.x < start.x.min(end.x).min(p1.x) { |
960 | return 0; |
961 | } |
962 | if p.x >= start.x.max(end.x).max(p1.x) { |
963 | return sign; |
964 | } |
965 | let a = end.y - 2.0 * p1.y + start.y; |
966 | let b = 2.0 * (p1.y - start.y); |
967 | let c = start.y - p.y; |
968 | for t in solve_quadratic(c, b, a) { |
969 | if (0.0..=1.0).contains(&t) { |
970 | let x = quad.eval(t).x; |
971 | if p.x >= x { |
972 | return sign; |
973 | } else { |
974 | return 0; |
975 | } |
976 | } |
977 | } |
978 | 0 |
979 | } |
980 | PathSeg::Cubic(cubic) => { |
981 | let p1 = cubic.p1; |
982 | let p2 = cubic.p2; |
983 | if p.x < start.x.min(end.x).min(p1.x).min(p2.x) { |
984 | return 0; |
985 | } |
986 | if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) { |
987 | return sign; |
988 | } |
989 | let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y; |
990 | let b = 3.0 * (p2.y - 2.0 * p1.y + start.y); |
991 | let c = 3.0 * (p1.y - start.y); |
992 | let d = start.y - p.y; |
993 | for t in solve_cubic(d, c, b, a) { |
994 | if (0.0..=1.0).contains(&t) { |
995 | let x = cubic.eval(t).x; |
996 | if p.x >= x { |
997 | return sign; |
998 | } else { |
999 | return 0; |
1000 | } |
1001 | } |
1002 | } |
1003 | 0 |
1004 | } |
1005 | } |
1006 | } |
1007 | |
1008 | /// Compute the winding number contribution of a single segment. |
1009 | /// |
1010 | /// Cast a ray to the left and count intersections. |
1011 | fn winding(&self, p: Point) -> i32 { |
1012 | self.extrema_ranges() |
1013 | .into_iter() |
1014 | .map(|range| self.subsegment(range).winding_inner(p)) |
1015 | .sum() |
1016 | } |
1017 | |
1018 | /// Compute intersections against a line. |
1019 | /// |
1020 | /// Returns a vector of the intersections. For each intersection, |
1021 | /// the `t` value of the segment and line are given. |
1022 | /// |
1023 | /// Note: This test is designed to be inclusive of points near the endpoints |
1024 | /// of the segment. This is so that testing a line against multiple |
1025 | /// contiguous segments of a path will be guaranteed to catch at least one |
1026 | /// of them. In such cases, use higher level logic to coalesce the hits |
1027 | /// (the `t` value may be slightly outside the range of 0..1). |
1028 | /// |
1029 | /// # Examples |
1030 | /// |
1031 | /// ``` |
1032 | /// # use kurbo::*; |
1033 | /// let seg = PathSeg::Line(Line::new((0.0, 0.0), (2.0, 0.0))); |
1034 | /// let line = Line::new((1.0, 2.0), (1.0, -2.0)); |
1035 | /// let intersection = seg.intersect_line(line); |
1036 | /// assert_eq!(intersection.len(), 1); |
1037 | /// let intersection = intersection[0]; |
1038 | /// assert_eq!(intersection.segment_t, 0.5); |
1039 | /// assert_eq!(intersection.line_t, 0.5); |
1040 | /// |
1041 | /// let point = seg.eval(intersection.segment_t); |
1042 | /// assert_eq!(point, Point::new(1.0, 0.0)); |
1043 | /// ``` |
1044 | pub fn intersect_line(&self, line: Line) -> ArrayVec<LineIntersection, 3> { |
1045 | const EPSILON: f64 = 1e-9; |
1046 | let p0 = line.p0; |
1047 | let p1 = line.p1; |
1048 | let dx = p1.x - p0.x; |
1049 | let dy = p1.y - p0.y; |
1050 | let mut result = ArrayVec::new(); |
1051 | match self { |
1052 | PathSeg::Line(l) => { |
1053 | let det = dx * (l.p1.y - l.p0.y) - dy * (l.p1.x - l.p0.x); |
1054 | if det.abs() < EPSILON { |
1055 | // Lines are coincident (or nearly so). |
1056 | return result; |
1057 | } |
1058 | let t = dx * (p0.y - l.p0.y) - dy * (p0.x - l.p0.x); |
1059 | // t = position on self |
1060 | let t = t / det; |
1061 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
1062 | // u = position on probe line |
1063 | let u = |
1064 | (l.p0.x - p0.x) * (l.p1.y - l.p0.y) - (l.p0.y - p0.y) * (l.p1.x - l.p0.x); |
1065 | let u = u / det; |
1066 | if (0.0..=1.0).contains(&u) { |
1067 | result.push(LineIntersection::new(u, t)); |
1068 | } |
1069 | } |
1070 | } |
1071 | PathSeg::Quad(q) => { |
1072 | // The basic technique here is to determine x and y as a quadratic polynomial |
1073 | // as a function of t. Then plug those values into the line equation for the |
1074 | // probe line (giving a sort of signed distance from the probe line) and solve |
1075 | // that for t. |
1076 | let (px0, px1, px2) = quadratic_bez_coefs(q.p0.x, q.p1.x, q.p2.x); |
1077 | let (py0, py1, py2) = quadratic_bez_coefs(q.p0.y, q.p1.y, q.p2.y); |
1078 | let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y); |
1079 | let c1 = dy * px1 - dx * py1; |
1080 | let c2 = dy * px2 - dx * py2; |
1081 | let invlen2 = (dx * dx + dy * dy).recip(); |
1082 | for t in crate::common::solve_quadratic(c0, c1, c2) { |
1083 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
1084 | let x = px0 + t * px1 + t * t * px2; |
1085 | let y = py0 + t * py1 + t * t * py2; |
1086 | let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2; |
1087 | if (0.0..=1.0).contains(&u) { |
1088 | result.push(LineIntersection::new(u, t)); |
1089 | } |
1090 | } |
1091 | } |
1092 | } |
1093 | PathSeg::Cubic(c) => { |
1094 | // Same technique as above, but cubic polynomial. |
1095 | let (px0, px1, px2, px3) = cubic_bez_coefs(c.p0.x, c.p1.x, c.p2.x, c.p3.x); |
1096 | let (py0, py1, py2, py3) = cubic_bez_coefs(c.p0.y, c.p1.y, c.p2.y, c.p3.y); |
1097 | let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y); |
1098 | let c1 = dy * px1 - dx * py1; |
1099 | let c2 = dy * px2 - dx * py2; |
1100 | let c3 = dy * px3 - dx * py3; |
1101 | let invlen2 = (dx * dx + dy * dy).recip(); |
1102 | for t in crate::common::solve_cubic(c0, c1, c2, c3) { |
1103 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
1104 | let x = px0 + t * px1 + t * t * px2 + t * t * t * px3; |
1105 | let y = py0 + t * py1 + t * t * py2 + t * t * t * py3; |
1106 | let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2; |
1107 | if (0.0..=1.0).contains(&u) { |
1108 | result.push(LineIntersection::new(u, t)); |
1109 | } |
1110 | } |
1111 | } |
1112 | } |
1113 | } |
1114 | result |
1115 | } |
1116 | |
1117 | /// Is this Bezier path finite? |
1118 | #[inline ] |
1119 | pub fn is_finite(&self) -> bool { |
1120 | match self { |
1121 | PathSeg::Line(line) => line.is_finite(), |
1122 | PathSeg::Quad(quad_bez) => quad_bez.is_finite(), |
1123 | PathSeg::Cubic(cubic_bez) => cubic_bez.is_finite(), |
1124 | } |
1125 | } |
1126 | |
1127 | /// Is this Bezier path NaN? |
1128 | #[inline ] |
1129 | pub fn is_nan(&self) -> bool { |
1130 | match self { |
1131 | PathSeg::Line(line) => line.is_nan(), |
1132 | PathSeg::Quad(quad_bez) => quad_bez.is_nan(), |
1133 | PathSeg::Cubic(cubic_bez) => cubic_bez.is_nan(), |
1134 | } |
1135 | } |
1136 | |
1137 | #[inline ] |
1138 | fn as_vec2_vec(&self) -> ArrayVec<Vec2, 4> { |
1139 | let mut a = ArrayVec::new(); |
1140 | match self { |
1141 | PathSeg::Line(l) => { |
1142 | a.push(l.p0.to_vec2()); |
1143 | a.push(l.p1.to_vec2()); |
1144 | } |
1145 | PathSeg::Quad(q) => { |
1146 | a.push(q.p0.to_vec2()); |
1147 | a.push(q.p1.to_vec2()); |
1148 | a.push(q.p2.to_vec2()); |
1149 | } |
1150 | PathSeg::Cubic(c) => { |
1151 | a.push(c.p0.to_vec2()); |
1152 | a.push(c.p1.to_vec2()); |
1153 | a.push(c.p2.to_vec2()); |
1154 | a.push(c.p3.to_vec2()); |
1155 | } |
1156 | }; |
1157 | a |
1158 | } |
1159 | |
1160 | /// Minimum distance between two [`PathSeg`]s. |
1161 | /// |
1162 | /// Returns a tuple of the distance, the path time `t1` of the closest point |
1163 | /// on the first `PathSeg`, and the path time `t2` of the closest point on the |
1164 | /// second `PathSeg`. |
1165 | pub fn min_dist(&self, other: PathSeg, accuracy: f64) -> MinDistance { |
1166 | let (distance, t1, t2) = crate::mindist::min_dist_param( |
1167 | &self.as_vec2_vec(), |
1168 | &other.as_vec2_vec(), |
1169 | (0.0, 1.0), |
1170 | (0.0, 1.0), |
1171 | accuracy, |
1172 | None, |
1173 | ); |
1174 | MinDistance { |
1175 | distance: distance.sqrt(), |
1176 | t1, |
1177 | t2, |
1178 | } |
1179 | } |
1180 | |
1181 | /// Compute endpoint tangents of a path segment. |
1182 | /// |
1183 | /// This version is robust to the path segment not being a regular curve. |
1184 | pub(crate) fn tangents(&self) -> (Vec2, Vec2) { |
1185 | const EPS: f64 = 1e-12; |
1186 | match self { |
1187 | PathSeg::Line(l) => { |
1188 | let d = l.p1 - l.p0; |
1189 | (d, d) |
1190 | } |
1191 | PathSeg::Quad(q) => { |
1192 | let d01 = q.p1 - q.p0; |
1193 | let d0 = if d01.hypot2() > EPS { d01 } else { q.p2 - q.p0 }; |
1194 | let d12 = q.p2 - q.p1; |
1195 | let d1 = if d12.hypot2() > EPS { d12 } else { q.p2 - q.p0 }; |
1196 | (d0, d1) |
1197 | } |
1198 | PathSeg::Cubic(c) => { |
1199 | let d01 = c.p1 - c.p0; |
1200 | let d0 = if d01.hypot2() > EPS { |
1201 | d01 |
1202 | } else { |
1203 | let d02 = c.p2 - c.p0; |
1204 | if d02.hypot2() > EPS { |
1205 | d02 |
1206 | } else { |
1207 | c.p3 - c.p0 |
1208 | } |
1209 | }; |
1210 | let d23 = c.p3 - c.p2; |
1211 | let d1 = if d23.hypot2() > EPS { |
1212 | d23 |
1213 | } else { |
1214 | let d13 = c.p3 - c.p1; |
1215 | if d13.hypot2() > EPS { |
1216 | d13 |
1217 | } else { |
1218 | c.p3 - c.p0 |
1219 | } |
1220 | }; |
1221 | (d0, d1) |
1222 | } |
1223 | } |
1224 | } |
1225 | } |
1226 | |
1227 | impl LineIntersection { |
1228 | fn new(line_t: f64, segment_t: f64) -> Self { |
1229 | LineIntersection { line_t, segment_t } |
1230 | } |
1231 | |
1232 | /// Is this line intersection finite? |
1233 | #[inline ] |
1234 | pub fn is_finite(self) -> bool { |
1235 | self.line_t.is_finite() && self.segment_t.is_finite() |
1236 | } |
1237 | |
1238 | /// Is this line intersection NaN? |
1239 | #[inline ] |
1240 | pub fn is_nan(self) -> bool { |
1241 | self.line_t.is_nan() || self.segment_t.is_nan() |
1242 | } |
1243 | } |
1244 | |
1245 | // Return polynomial coefficients given cubic bezier coordinates. |
1246 | fn quadratic_bez_coefs(x0: f64, x1: f64, x2: f64) -> (f64, f64, f64) { |
1247 | let p0: f64 = x0; |
1248 | let p1: f64 = 2.0 * x1 - 2.0 * x0; |
1249 | let p2: f64 = x2 - 2.0 * x1 + x0; |
1250 | (p0, p1, p2) |
1251 | } |
1252 | |
1253 | // Return polynomial coefficients given cubic bezier coordinates. |
1254 | fn cubic_bez_coefs(x0: f64, x1: f64, x2: f64, x3: f64) -> (f64, f64, f64, f64) { |
1255 | let p0: f64 = x0; |
1256 | let p1: f64 = 3.0 * x1 - 3.0 * x0; |
1257 | let p2: f64 = 3.0 * x2 - 6.0 * x1 + 3.0 * x0; |
1258 | let p3: f64 = x3 - 3.0 * x2 + 3.0 * x1 - x0; |
1259 | (p0, p1, p2, p3) |
1260 | } |
1261 | |
1262 | impl From<CubicBez> for PathSeg { |
1263 | fn from(cubic_bez: CubicBez) -> PathSeg { |
1264 | PathSeg::Cubic(cubic_bez) |
1265 | } |
1266 | } |
1267 | |
1268 | impl From<Line> for PathSeg { |
1269 | fn from(line: Line) -> PathSeg { |
1270 | PathSeg::Line(line) |
1271 | } |
1272 | } |
1273 | |
1274 | impl From<QuadBez> for PathSeg { |
1275 | fn from(quad_bez: QuadBez) -> PathSeg { |
1276 | PathSeg::Quad(quad_bez) |
1277 | } |
1278 | } |
1279 | |
1280 | impl Shape for BezPath { |
1281 | type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>; |
1282 | |
1283 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
1284 | self.0.iter().copied() |
1285 | } |
1286 | |
1287 | fn to_path(&self, _tolerance: f64) -> BezPath { |
1288 | self.clone() |
1289 | } |
1290 | |
1291 | fn into_path(self, _tolerance: f64) -> BezPath { |
1292 | self |
1293 | } |
1294 | |
1295 | /// Signed area. |
1296 | fn area(&self) -> f64 { |
1297 | self.elements().area() |
1298 | } |
1299 | |
1300 | fn perimeter(&self, accuracy: f64) -> f64 { |
1301 | self.elements().perimeter(accuracy) |
1302 | } |
1303 | |
1304 | /// Winding number of point. |
1305 | fn winding(&self, pt: Point) -> i32 { |
1306 | self.elements().winding(pt) |
1307 | } |
1308 | |
1309 | fn bounding_box(&self) -> Rect { |
1310 | self.elements().bounding_box() |
1311 | } |
1312 | |
1313 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
1314 | Some(&self.0) |
1315 | } |
1316 | } |
1317 | |
1318 | impl PathEl { |
1319 | /// Is this path element finite? |
1320 | #[inline ] |
1321 | pub fn is_finite(&self) -> bool { |
1322 | match self { |
1323 | PathEl::MoveTo(p) => p.is_finite(), |
1324 | PathEl::LineTo(p) => p.is_finite(), |
1325 | PathEl::QuadTo(p, p2) => p.is_finite() && p2.is_finite(), |
1326 | PathEl::CurveTo(p, p2, p3) => p.is_finite() && p2.is_finite() && p3.is_finite(), |
1327 | PathEl::ClosePath => true, |
1328 | } |
1329 | } |
1330 | |
1331 | /// Is this path element NaN? |
1332 | #[inline ] |
1333 | pub fn is_nan(&self) -> bool { |
1334 | match self { |
1335 | PathEl::MoveTo(p) => p.is_nan(), |
1336 | PathEl::LineTo(p) => p.is_nan(), |
1337 | PathEl::QuadTo(p, p2) => p.is_nan() || p2.is_nan(), |
1338 | PathEl::CurveTo(p, p2, p3) => p.is_nan() || p2.is_nan() || p3.is_nan(), |
1339 | PathEl::ClosePath => false, |
1340 | } |
1341 | } |
1342 | |
1343 | /// Get the end point of the path element, if it exists. |
1344 | pub fn end_point(&self) -> Option<Point> { |
1345 | match self { |
1346 | PathEl::MoveTo(p) => Some(*p), |
1347 | PathEl::LineTo(p1) => Some(*p1), |
1348 | PathEl::QuadTo(_, p2) => Some(*p2), |
1349 | PathEl::CurveTo(_, _, p3) => Some(*p3), |
1350 | _ => None, |
1351 | } |
1352 | } |
1353 | } |
1354 | |
1355 | /// Implements [`Shape`] for a slice of [`PathEl`], provided that the first element of the slice is |
1356 | /// not a `PathEl::ClosePath`. If it is, several of these functions will panic. |
1357 | /// |
1358 | /// If the slice starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`. |
1359 | impl<'a> Shape for &'a [PathEl] { |
1360 | type PathElementsIter<'iter> |
1361 | |
1362 | = core::iter::Copied<core::slice::Iter<'a, PathEl>> where 'a: 'iter; |
1363 | |
1364 | #[inline ] |
1365 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
1366 | self.iter().copied() |
1367 | } |
1368 | |
1369 | fn to_path(&self, _tolerance: f64) -> BezPath { |
1370 | BezPath::from_vec(self.to_vec()) |
1371 | } |
1372 | |
1373 | /// Signed area. |
1374 | fn area(&self) -> f64 { |
1375 | segments(self.iter().copied()).area() |
1376 | } |
1377 | |
1378 | fn perimeter(&self, accuracy: f64) -> f64 { |
1379 | segments(self.iter().copied()).perimeter(accuracy) |
1380 | } |
1381 | |
1382 | /// Winding number of point. |
1383 | fn winding(&self, pt: Point) -> i32 { |
1384 | segments(self.iter().copied()).winding(pt) |
1385 | } |
1386 | |
1387 | fn bounding_box(&self) -> Rect { |
1388 | segments(self.iter().copied()).bounding_box() |
1389 | } |
1390 | |
1391 | #[inline ] |
1392 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
1393 | Some(self) |
1394 | } |
1395 | } |
1396 | |
1397 | /// Implements [`Shape`] for an array of [`PathEl`], provided that the first element of the array is |
1398 | /// not a `PathEl::ClosePath`. If it is, several of these functions will panic. |
1399 | /// |
1400 | /// If the array starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`. |
1401 | impl<const N: usize> Shape for [PathEl; N] { |
1402 | type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>; |
1403 | |
1404 | #[inline ] |
1405 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
1406 | self.iter().copied() |
1407 | } |
1408 | |
1409 | fn to_path(&self, _tolerance: f64) -> BezPath { |
1410 | BezPath::from_vec(self.to_vec()) |
1411 | } |
1412 | |
1413 | /// Signed area. |
1414 | fn area(&self) -> f64 { |
1415 | segments(self.iter().copied()).area() |
1416 | } |
1417 | |
1418 | fn perimeter(&self, accuracy: f64) -> f64 { |
1419 | segments(self.iter().copied()).perimeter(accuracy) |
1420 | } |
1421 | |
1422 | /// Winding number of point. |
1423 | fn winding(&self, pt: Point) -> i32 { |
1424 | segments(self.iter().copied()).winding(pt) |
1425 | } |
1426 | |
1427 | fn bounding_box(&self) -> Rect { |
1428 | segments(self.iter().copied()).bounding_box() |
1429 | } |
1430 | |
1431 | #[inline ] |
1432 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
1433 | Some(self) |
1434 | } |
1435 | } |
1436 | |
1437 | /// An iterator for path segments. |
1438 | pub struct PathSegIter { |
1439 | seg: PathSeg, |
1440 | ix: usize, |
1441 | } |
1442 | |
1443 | impl Shape for PathSeg { |
1444 | type PathElementsIter<'iter> = PathSegIter; |
1445 | |
1446 | #[inline ] |
1447 | fn path_elements(&self, _tolerance: f64) -> PathSegIter { |
1448 | PathSegIter { seg: *self, ix: 0 } |
1449 | } |
1450 | |
1451 | /// The area under the curve. |
1452 | /// |
1453 | /// We could just return `0`, but this seems more useful. |
1454 | fn area(&self) -> f64 { |
1455 | self.signed_area() |
1456 | } |
1457 | |
1458 | #[inline ] |
1459 | fn perimeter(&self, accuracy: f64) -> f64 { |
1460 | self.arclen(accuracy) |
1461 | } |
1462 | |
1463 | fn winding(&self, _pt: Point) -> i32 { |
1464 | 0 |
1465 | } |
1466 | |
1467 | #[inline ] |
1468 | fn bounding_box(&self) -> Rect { |
1469 | ParamCurveExtrema::bounding_box(self) |
1470 | } |
1471 | |
1472 | fn as_line(&self) -> Option<Line> { |
1473 | if let PathSeg::Line(line) = self { |
1474 | Some(*line) |
1475 | } else { |
1476 | None |
1477 | } |
1478 | } |
1479 | } |
1480 | |
1481 | impl Iterator for PathSegIter { |
1482 | type Item = PathEl; |
1483 | |
1484 | fn next(&mut self) -> Option<PathEl> { |
1485 | self.ix += 1; |
1486 | match (self.ix, self.seg) { |
1487 | // yes I could do some fancy bindings thing here but... :shrug: |
1488 | (1, PathSeg::Line(seg: Line)) => Some(PathEl::MoveTo(seg.p0)), |
1489 | (1, PathSeg::Quad(seg: QuadBez)) => Some(PathEl::MoveTo(seg.p0)), |
1490 | (1, PathSeg::Cubic(seg: CubicBez)) => Some(PathEl::MoveTo(seg.p0)), |
1491 | (2, PathSeg::Line(seg: Line)) => Some(PathEl::LineTo(seg.p1)), |
1492 | (2, PathSeg::Quad(seg: QuadBez)) => Some(PathEl::QuadTo(seg.p1, seg.p2)), |
1493 | (2, PathSeg::Cubic(seg: CubicBez)) => Some(PathEl::CurveTo(seg.p1, seg.p2, seg.p3)), |
1494 | _ => None, |
1495 | } |
1496 | } |
1497 | } |
1498 | |
1499 | #[cfg (test)] |
1500 | mod tests { |
1501 | use crate::{Circle, DEFAULT_ACCURACY}; |
1502 | |
1503 | use super::*; |
1504 | |
1505 | fn assert_approx_eq(x: f64, y: f64) { |
1506 | assert!((x - y).abs() < 1e-8, " {x} != {y}" ); |
1507 | } |
1508 | |
1509 | #[test ] |
1510 | #[should_panic (expected = "no open subpath" )] |
1511 | fn test_elements_to_segments_starts_on_closepath() { |
1512 | let mut path = BezPath::new(); |
1513 | path.close_path(); |
1514 | path.segments().next(); |
1515 | } |
1516 | |
1517 | #[test ] |
1518 | fn test_elements_to_segments_closepath_refers_to_last_moveto() { |
1519 | let mut path = BezPath::new(); |
1520 | path.move_to((5.0, 5.0)); |
1521 | path.line_to((15.0, 15.0)); |
1522 | path.move_to((10.0, 10.0)); |
1523 | path.line_to((15.0, 15.0)); |
1524 | path.close_path(); |
1525 | assert_eq!( |
1526 | path.segments().collect::<Vec<_>>().last(), |
1527 | Some(&Line::new((15.0, 15.0), (10.0, 10.0)).into()), |
1528 | ); |
1529 | } |
1530 | |
1531 | #[test ] |
1532 | #[should_panic (expected = "no open subpath" )] |
1533 | fn test_must_not_start_on_quad() { |
1534 | let mut path = BezPath::new(); |
1535 | path.quad_to((5.0, 5.0), (10.0, 10.0)); |
1536 | path.line_to((15.0, 15.0)); |
1537 | path.close_path(); |
1538 | } |
1539 | |
1540 | #[test ] |
1541 | fn test_intersect_line() { |
1542 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
1543 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
1544 | let intersection = PathSeg::Line(h_line).intersect_line(v_line)[0]; |
1545 | assert_approx_eq(intersection.segment_t, 0.1); |
1546 | assert_approx_eq(intersection.line_t, 0.5); |
1547 | |
1548 | let v_line = Line::new((-10.0, -10.0), (-10.0, 10.0)); |
1549 | assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty()); |
1550 | |
1551 | let v_line = Line::new((10.0, 10.0), (10.0, 20.0)); |
1552 | assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty()); |
1553 | } |
1554 | |
1555 | #[test ] |
1556 | fn test_intersect_qad() { |
1557 | let q = QuadBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -10.0)); |
1558 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
1559 | assert_eq!(PathSeg::Quad(q).intersect_line(v_line).len(), 1); |
1560 | let intersection = PathSeg::Quad(q).intersect_line(v_line)[0]; |
1561 | assert_approx_eq(intersection.segment_t, 0.5); |
1562 | assert_approx_eq(intersection.line_t, 0.75); |
1563 | |
1564 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
1565 | assert_eq!(PathSeg::Quad(q).intersect_line(h_line).len(), 2); |
1566 | } |
1567 | |
1568 | #[test ] |
1569 | fn test_intersect_cubic() { |
1570 | let c = CubicBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -20.0), (30.0, 10.0)); |
1571 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
1572 | assert_eq!(PathSeg::Cubic(c).intersect_line(v_line).len(), 1); |
1573 | let intersection = PathSeg::Cubic(c).intersect_line(v_line)[0]; |
1574 | assert_approx_eq(intersection.segment_t, 0.333333333); |
1575 | assert_approx_eq(intersection.line_t, 0.592592592); |
1576 | |
1577 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
1578 | assert_eq!(PathSeg::Cubic(c).intersect_line(h_line).len(), 3); |
1579 | } |
1580 | |
1581 | #[test ] |
1582 | fn test_contains() { |
1583 | let mut path = BezPath::new(); |
1584 | path.move_to((0.0, 0.0)); |
1585 | path.line_to((1.0, 1.0)); |
1586 | path.line_to((2.0, 0.0)); |
1587 | path.close_path(); |
1588 | assert_eq!(path.winding(Point::new(1.0, 0.5)), -1); |
1589 | assert!(path.contains(Point::new(1.0, 0.5))); |
1590 | } |
1591 | |
1592 | // get_seg(i) should produce the same results as path_segments().nth(i - 1). |
1593 | #[test ] |
1594 | fn test_get_seg() { |
1595 | let circle = Circle::new((10.0, 10.0), 2.0).to_path(DEFAULT_ACCURACY); |
1596 | let segments = circle.path_segments(DEFAULT_ACCURACY).collect::<Vec<_>>(); |
1597 | let get_segs = (1..usize::MAX) |
1598 | .map_while(|i| circle.get_seg(i)) |
1599 | .collect::<Vec<_>>(); |
1600 | assert_eq!(segments, get_segs); |
1601 | } |
1602 | |
1603 | #[test ] |
1604 | fn test_control_box() { |
1605 | // a sort of map ping looking thing drawn with a single cubic |
1606 | // cbox is wildly different than tight box |
1607 | let path = BezPath::from_svg("M200,300 C50,50 350,50 200,300" ).unwrap(); |
1608 | assert_eq!(Rect::new(50.0, 50.0, 350.0, 300.0), path.control_box()); |
1609 | assert!(path.control_box().area() > path.bounding_box().area()); |
1610 | } |
1611 | |
1612 | #[test ] |
1613 | fn test_reverse_unclosed() { |
1614 | let path = BezPath::from_svg("M10,10 Q40,40 60,10 L100,10 C125,10 150,50 125,60" ).unwrap(); |
1615 | let reversed = path.reverse_subpaths(); |
1616 | assert_eq!( |
1617 | "M125,60 C150,50 125,10 100,10 L60,10 Q40,40 10,10" , |
1618 | reversed.to_svg() |
1619 | ); |
1620 | } |
1621 | |
1622 | #[test ] |
1623 | fn test_reverse_closed_triangle() { |
1624 | let path = BezPath::from_svg("M100,100 L150,200 L50,200 Z" ).unwrap(); |
1625 | let reversed = path.reverse_subpaths(); |
1626 | assert_eq!("M50,200 L150,200 L100,100 Z" , reversed.to_svg()); |
1627 | } |
1628 | |
1629 | #[test ] |
1630 | fn test_reverse_closed_shape() { |
1631 | let path = BezPath::from_svg( |
1632 | "M125,100 Q200,150 175,300 C150,150 50,150 25,300 Q0,150 75,100 L100,50 Z" , |
1633 | ) |
1634 | .unwrap(); |
1635 | let reversed = path.reverse_subpaths(); |
1636 | assert_eq!( |
1637 | "M100,50 L75,100 Q0,150 25,300 C50,150 150,150 175,300 Q200,150 125,100 Z" , |
1638 | reversed.to_svg() |
1639 | ); |
1640 | } |
1641 | |
1642 | #[test ] |
1643 | fn test_reverse_multiple_subpaths() { |
1644 | let svg = "M10,10 Q40,40 60,10 L100,10 C125,10 150,50 125,60 M100,100 L150,200 L50,200 Z M125,100 Q200,150 175,300 C150,150 50,150 25,300 Q0,150 75,100 L100,50 Z" ; |
1645 | let expected_svg = "M125,60 C150,50 125,10 100,10 L60,10 Q40,40 10,10 M50,200 L150,200 L100,100 Z M100,50 L75,100 Q0,150 25,300 C50,150 150,150 175,300 Q200,150 125,100 Z" ; |
1646 | let path = BezPath::from_svg(svg).unwrap(); |
1647 | let reversed = path.reverse_subpaths(); |
1648 | assert_eq!(expected_svg, reversed.to_svg()); |
1649 | } |
1650 | |
1651 | // https://github.com/fonttools/fonttools/blob/bf265ce49e0cae6f032420a4c80c31d8e16285b8/Tests/pens/reverseContourPen_test.py#L7 |
1652 | #[test ] |
1653 | fn test_reverse_lines() { |
1654 | let mut path = BezPath::new(); |
1655 | path.move_to((0.0, 0.0)); |
1656 | path.line_to((1.0, 1.0)); |
1657 | path.line_to((2.0, 2.0)); |
1658 | path.line_to((3.0, 3.0)); |
1659 | path.close_path(); |
1660 | let rev = path.reverse_subpaths(); |
1661 | assert_eq!("M3,3 L2,2 L1,1 L0,0 Z" , rev.to_svg()); |
1662 | } |
1663 | |
1664 | #[test ] |
1665 | fn test_reverse_multiple_moves() { |
1666 | reverse_test_helper( |
1667 | vec![ |
1668 | PathEl::MoveTo((2.0, 2.0).into()), |
1669 | PathEl::MoveTo((3.0, 3.0).into()), |
1670 | PathEl::ClosePath, |
1671 | PathEl::MoveTo((4.0, 4.0).into()), |
1672 | ], |
1673 | vec![ |
1674 | PathEl::MoveTo((2.0, 2.0).into()), |
1675 | PathEl::MoveTo((3.0, 3.0).into()), |
1676 | PathEl::ClosePath, |
1677 | PathEl::MoveTo((4.0, 4.0).into()), |
1678 | ], |
1679 | ) |
1680 | } |
1681 | |
1682 | // The following are direct port of fonttools' |
1683 | // reverseContourPen_test.py::test_reverse_pen, adapted to rust, excluding |
1684 | // test cases that don't apply because we don't implement |
1685 | // outputImpliedClosingLine=False. |
1686 | // https://github.com/fonttools/fonttools/blob/85c80be/Tests/pens/reverseContourPen_test.py#L6-L467 |
1687 | |
1688 | #[test ] |
1689 | fn test_reverse_closed_last_line_not_on_move() { |
1690 | reverse_test_helper( |
1691 | vec![ |
1692 | PathEl::MoveTo((0.0, 0.0).into()), |
1693 | PathEl::LineTo((1.0, 1.0).into()), |
1694 | PathEl::LineTo((2.0, 2.0).into()), |
1695 | PathEl::LineTo((3.0, 3.0).into()), |
1696 | PathEl::ClosePath, |
1697 | ], |
1698 | vec![ |
1699 | PathEl::MoveTo((3.0, 3.0).into()), |
1700 | PathEl::LineTo((2.0, 2.0).into()), |
1701 | PathEl::LineTo((1.0, 1.0).into()), |
1702 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
1703 | PathEl::ClosePath, |
1704 | ], |
1705 | ) |
1706 | } |
1707 | |
1708 | #[test ] |
1709 | fn test_reverse_closed_last_line_overlaps_move() { |
1710 | reverse_test_helper( |
1711 | vec![ |
1712 | PathEl::MoveTo((0.0, 0.0).into()), |
1713 | PathEl::LineTo((1.0, 1.0).into()), |
1714 | PathEl::LineTo((2.0, 2.0).into()), |
1715 | PathEl::LineTo((0.0, 0.0).into()), |
1716 | PathEl::ClosePath, |
1717 | ], |
1718 | vec![ |
1719 | PathEl::MoveTo((0.0, 0.0).into()), |
1720 | PathEl::LineTo((2.0, 2.0).into()), |
1721 | PathEl::LineTo((1.0, 1.0).into()), |
1722 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
1723 | PathEl::ClosePath, |
1724 | ], |
1725 | ) |
1726 | } |
1727 | |
1728 | #[test ] |
1729 | fn test_reverse_closed_duplicate_line_following_move() { |
1730 | reverse_test_helper( |
1731 | vec![ |
1732 | PathEl::MoveTo((0.0, 0.0).into()), |
1733 | PathEl::LineTo((0.0, 0.0).into()), |
1734 | PathEl::LineTo((1.0, 1.0).into()), |
1735 | PathEl::LineTo((2.0, 2.0).into()), |
1736 | PathEl::ClosePath, |
1737 | ], |
1738 | vec![ |
1739 | PathEl::MoveTo((2.0, 2.0).into()), |
1740 | PathEl::LineTo((1.0, 1.0).into()), |
1741 | PathEl::LineTo((0.0, 0.0).into()), // duplicate line retained |
1742 | PathEl::LineTo((0.0, 0.0).into()), |
1743 | PathEl::ClosePath, |
1744 | ], |
1745 | ) |
1746 | } |
1747 | |
1748 | #[test ] |
1749 | fn test_reverse_closed_two_lines() { |
1750 | reverse_test_helper( |
1751 | vec![ |
1752 | PathEl::MoveTo((0.0, 0.0).into()), |
1753 | PathEl::LineTo((1.0, 1.0).into()), |
1754 | PathEl::ClosePath, |
1755 | ], |
1756 | vec![ |
1757 | PathEl::MoveTo((1.0, 1.0).into()), |
1758 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
1759 | PathEl::ClosePath, |
1760 | ], |
1761 | ) |
1762 | } |
1763 | |
1764 | #[test ] |
1765 | fn test_reverse_closed_last_curve_overlaps_move() { |
1766 | reverse_test_helper( |
1767 | vec![ |
1768 | PathEl::MoveTo((0.0, 0.0).into()), |
1769 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
1770 | PathEl::CurveTo((4.0, 4.0).into(), (5.0, 5.0).into(), (0.0, 0.0).into()), |
1771 | PathEl::ClosePath, |
1772 | ], |
1773 | vec![ |
1774 | PathEl::MoveTo((0.0, 0.0).into()), // no extra lineTo added here |
1775 | PathEl::CurveTo((5.0, 5.0).into(), (4.0, 4.0).into(), (3.0, 3.0).into()), |
1776 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
1777 | PathEl::ClosePath, |
1778 | ], |
1779 | ) |
1780 | } |
1781 | |
1782 | #[test ] |
1783 | fn test_reverse_closed_last_curve_not_on_move() { |
1784 | reverse_test_helper( |
1785 | vec![ |
1786 | PathEl::MoveTo((0.0, 0.0).into()), |
1787 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
1788 | PathEl::CurveTo((4.0, 4.0).into(), (5.0, 5.0).into(), (6.0, 6.0).into()), |
1789 | PathEl::ClosePath, |
1790 | ], |
1791 | vec![ |
1792 | PathEl::MoveTo((6.0, 6.0).into()), // the previously implied line |
1793 | PathEl::CurveTo((5.0, 5.0).into(), (4.0, 4.0).into(), (3.0, 3.0).into()), |
1794 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
1795 | PathEl::ClosePath, |
1796 | ], |
1797 | ) |
1798 | } |
1799 | |
1800 | #[test ] |
1801 | fn test_reverse_closed_line_curve_line() { |
1802 | reverse_test_helper( |
1803 | vec![ |
1804 | PathEl::MoveTo((0.0, 0.0).into()), |
1805 | PathEl::LineTo((1.0, 1.0).into()), // this line... |
1806 | PathEl::CurveTo((2.0, 2.0).into(), (3.0, 3.0).into(), (4.0, 4.0).into()), |
1807 | PathEl::CurveTo((5.0, 5.0).into(), (6.0, 6.0).into(), (7.0, 7.0).into()), |
1808 | PathEl::ClosePath, |
1809 | ], |
1810 | vec![ |
1811 | PathEl::MoveTo((7.0, 7.0).into()), |
1812 | PathEl::CurveTo((6.0, 6.0).into(), (5.0, 5.0).into(), (4.0, 4.0).into()), |
1813 | PathEl::CurveTo((3.0, 3.0).into(), (2.0, 2.0).into(), (1.0, 1.0).into()), |
1814 | PathEl::LineTo((0.0, 0.0).into()), // ... does NOT become implied |
1815 | PathEl::ClosePath, |
1816 | ], |
1817 | ) |
1818 | } |
1819 | |
1820 | #[test ] |
1821 | fn test_reverse_closed_last_quad_overlaps_move() { |
1822 | reverse_test_helper( |
1823 | vec![ |
1824 | PathEl::MoveTo((0.0, 0.0).into()), |
1825 | PathEl::QuadTo((1.0, 1.0).into(), (2.0, 2.0).into()), |
1826 | PathEl::QuadTo((3.0, 3.0).into(), (0.0, 0.0).into()), |
1827 | PathEl::ClosePath, |
1828 | ], |
1829 | vec![ |
1830 | PathEl::MoveTo((0.0, 0.0).into()), // no extra lineTo added here |
1831 | PathEl::QuadTo((3.0, 3.0).into(), (2.0, 2.0).into()), |
1832 | PathEl::QuadTo((1.0, 1.0).into(), (0.0, 0.0).into()), |
1833 | PathEl::ClosePath, |
1834 | ], |
1835 | ) |
1836 | } |
1837 | |
1838 | #[test ] |
1839 | fn test_reverse_closed_last_quad_not_on_move() { |
1840 | reverse_test_helper( |
1841 | vec![ |
1842 | PathEl::MoveTo((0.0, 0.0).into()), |
1843 | PathEl::QuadTo((1.0, 1.0).into(), (2.0, 2.0).into()), |
1844 | PathEl::QuadTo((3.0, 3.0).into(), (4.0, 4.0).into()), |
1845 | PathEl::ClosePath, |
1846 | ], |
1847 | vec![ |
1848 | PathEl::MoveTo((4.0, 4.0).into()), // the previously implied line |
1849 | PathEl::QuadTo((3.0, 3.0).into(), (2.0, 2.0).into()), |
1850 | PathEl::QuadTo((1.0, 1.0).into(), (0.0, 0.0).into()), |
1851 | PathEl::ClosePath, |
1852 | ], |
1853 | ) |
1854 | } |
1855 | |
1856 | #[test ] |
1857 | fn test_reverse_closed_line_quad_line() { |
1858 | reverse_test_helper( |
1859 | vec![ |
1860 | PathEl::MoveTo((0.0, 0.0).into()), |
1861 | PathEl::LineTo((1.0, 1.0).into()), // this line... |
1862 | PathEl::QuadTo((2.0, 2.0).into(), (3.0, 3.0).into()), |
1863 | PathEl::ClosePath, |
1864 | ], |
1865 | vec![ |
1866 | PathEl::MoveTo((3.0, 3.0).into()), |
1867 | PathEl::QuadTo((2.0, 2.0).into(), (1.0, 1.0).into()), |
1868 | PathEl::LineTo((0.0, 0.0).into()), // ... does NOT become implied |
1869 | PathEl::ClosePath, |
1870 | ], |
1871 | ) |
1872 | } |
1873 | |
1874 | #[test ] |
1875 | fn test_reverse_empty() { |
1876 | reverse_test_helper(vec![], vec![]) |
1877 | } |
1878 | |
1879 | #[test ] |
1880 | fn test_reverse_single_point() { |
1881 | reverse_test_helper( |
1882 | vec![PathEl::MoveTo((0.0, 0.0).into())], |
1883 | vec![PathEl::MoveTo((0.0, 0.0).into())], |
1884 | ) |
1885 | } |
1886 | |
1887 | #[test ] |
1888 | fn test_reverse_single_point_closed() { |
1889 | reverse_test_helper( |
1890 | vec![PathEl::MoveTo((0.0, 0.0).into()), PathEl::ClosePath], |
1891 | vec![PathEl::MoveTo((0.0, 0.0).into()), PathEl::ClosePath], |
1892 | ) |
1893 | } |
1894 | |
1895 | #[test ] |
1896 | fn test_reverse_single_line_open() { |
1897 | reverse_test_helper( |
1898 | vec![ |
1899 | PathEl::MoveTo((0.0, 0.0).into()), |
1900 | PathEl::LineTo((1.0, 1.0).into()), |
1901 | ], |
1902 | vec![ |
1903 | PathEl::MoveTo((1.0, 1.0).into()), |
1904 | PathEl::LineTo((0.0, 0.0).into()), |
1905 | ], |
1906 | ) |
1907 | } |
1908 | |
1909 | #[test ] |
1910 | fn test_reverse_single_curve_open() { |
1911 | reverse_test_helper( |
1912 | vec![ |
1913 | PathEl::MoveTo((0.0, 0.0).into()), |
1914 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
1915 | ], |
1916 | vec![ |
1917 | PathEl::MoveTo((3.0, 3.0).into()), |
1918 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
1919 | ], |
1920 | ) |
1921 | } |
1922 | |
1923 | #[test ] |
1924 | fn test_reverse_curve_line_open() { |
1925 | reverse_test_helper( |
1926 | vec![ |
1927 | PathEl::MoveTo((0.0, 0.0).into()), |
1928 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
1929 | PathEl::LineTo((4.0, 4.0).into()), |
1930 | ], |
1931 | vec![ |
1932 | PathEl::MoveTo((4.0, 4.0).into()), |
1933 | PathEl::LineTo((3.0, 3.0).into()), |
1934 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
1935 | ], |
1936 | ) |
1937 | } |
1938 | |
1939 | #[test ] |
1940 | fn test_reverse_line_curve_open() { |
1941 | reverse_test_helper( |
1942 | vec![ |
1943 | PathEl::MoveTo((0.0, 0.0).into()), |
1944 | PathEl::LineTo((1.0, 1.0).into()), |
1945 | PathEl::CurveTo((2.0, 2.0).into(), (3.0, 3.0).into(), (4.0, 4.0).into()), |
1946 | ], |
1947 | vec![ |
1948 | PathEl::MoveTo((4.0, 4.0).into()), |
1949 | PathEl::CurveTo((3.0, 3.0).into(), (2.0, 2.0).into(), (1.0, 1.0).into()), |
1950 | PathEl::LineTo((0.0, 0.0).into()), |
1951 | ], |
1952 | ) |
1953 | } |
1954 | |
1955 | #[test ] |
1956 | fn test_reverse_duplicate_point_after_move() { |
1957 | // Test case from: https://github.com/googlei18n/cu2qu/issues/51#issue-179370514 |
1958 | // Simplified to only use atomic PathEl::QuadTo (no QuadSplines). |
1959 | reverse_test_helper( |
1960 | vec![ |
1961 | PathEl::MoveTo((848.0, 348.0).into()), |
1962 | PathEl::LineTo((848.0, 348.0).into()), |
1963 | PathEl::QuadTo((848.0, 526.0).into(), (449.0, 704.0).into()), |
1964 | PathEl::QuadTo((848.0, 171.0).into(), (848.0, 348.0).into()), |
1965 | PathEl::ClosePath, |
1966 | ], |
1967 | vec![ |
1968 | PathEl::MoveTo((848.0, 348.0).into()), |
1969 | PathEl::QuadTo((848.0, 171.0).into(), (449.0, 704.0).into()), |
1970 | PathEl::QuadTo((848.0, 526.0).into(), (848.0, 348.0).into()), |
1971 | PathEl::LineTo((848.0, 348.0).into()), |
1972 | PathEl::ClosePath, |
1973 | ], |
1974 | ) |
1975 | } |
1976 | |
1977 | #[test ] |
1978 | fn test_reverse_duplicate_point_at_end() { |
1979 | // Test case from: https://github.com/googlefonts/fontmake/issues/572 |
1980 | reverse_test_helper( |
1981 | vec![ |
1982 | PathEl::MoveTo((0.0, 651.0).into()), |
1983 | PathEl::LineTo((0.0, 101.0).into()), |
1984 | PathEl::LineTo((0.0, 101.0).into()), |
1985 | PathEl::LineTo((0.0, 651.0).into()), |
1986 | PathEl::LineTo((0.0, 651.0).into()), |
1987 | PathEl::ClosePath, |
1988 | ], |
1989 | vec![ |
1990 | PathEl::MoveTo((0.0, 651.0).into()), |
1991 | PathEl::LineTo((0.0, 651.0).into()), |
1992 | PathEl::LineTo((0.0, 101.0).into()), |
1993 | PathEl::LineTo((0.0, 101.0).into()), |
1994 | PathEl::LineTo((0.0, 651.0).into()), |
1995 | PathEl::ClosePath, |
1996 | ], |
1997 | ) |
1998 | } |
1999 | |
2000 | fn reverse_test_helper(contour: Vec<PathEl>, expected: Vec<PathEl>) { |
2001 | assert_eq!(BezPath(contour).reverse_subpaths().0, expected); |
2002 | } |
2003 | } |
2004 | |