1 | // Copyright 2019 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! A transformation that includes both scale and translation. |
5 | |
6 | use core::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign}; |
7 | |
8 | use crate::{ |
9 | Affine, Circle, CubicBez, Line, Point, QuadBez, Rect, RoundedRect, RoundedRectRadii, Vec2, |
10 | }; |
11 | |
12 | /// A transformation consisting of a uniform scaling followed by a translation. |
13 | /// |
14 | /// If the translation is `(x, y)` and the scale is `s`, then this |
15 | /// transformation represents this augmented matrix: |
16 | /// |
17 | /// ```text |
18 | /// | s 0 x | |
19 | /// | 0 s y | |
20 | /// | 0 0 1 | |
21 | /// ``` |
22 | /// |
23 | /// See [`Affine`] for more details about the |
24 | /// equivalence with augmented matrices. |
25 | /// |
26 | /// Various multiplication ops are defined, and these are all defined |
27 | /// to be consistent with matrix multiplication. Therefore, |
28 | /// `TranslateScale * Point` is defined but not the other way around. |
29 | /// |
30 | /// Also note that multiplication is not commutative. Thus, |
31 | /// `TranslateScale::scale(2.0) * TranslateScale::translate(Vec2::new(1.0, 0.0))` |
32 | /// has a translation of (2, 0), while |
33 | /// `TranslateScale::translate(Vec2::new(1.0, 0.0)) * TranslateScale::scale(2.0)` |
34 | /// has a translation of (1, 0). (Both have a scale of 2; also note that |
35 | /// the first case can be written |
36 | /// `2.0 * TranslateScale::translate(Vec2::new(1.0, 0.0))` as this case |
37 | /// has an implicit conversion). |
38 | /// |
39 | /// This transformation is less powerful than `Affine`, but can be applied |
40 | /// to more primitives, especially including [`Rect`]. |
41 | #[derive (Clone, Copy, Debug)] |
42 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
43 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
44 | pub struct TranslateScale { |
45 | /// The translation component of this transformation |
46 | pub translation: Vec2, |
47 | /// The scale component of this transformation |
48 | pub scale: f64, |
49 | } |
50 | |
51 | impl TranslateScale { |
52 | /// Create a new transformation from translation and scale. |
53 | #[inline ] |
54 | pub const fn new(translation: Vec2, scale: f64) -> TranslateScale { |
55 | TranslateScale { translation, scale } |
56 | } |
57 | |
58 | /// Create a new transformation with scale only. |
59 | #[inline ] |
60 | pub const fn scale(s: f64) -> TranslateScale { |
61 | TranslateScale::new(Vec2::ZERO, s) |
62 | } |
63 | |
64 | /// Create a new transformation with translation only. |
65 | #[inline ] |
66 | pub fn translate(translation: impl Into<Vec2>) -> TranslateScale { |
67 | TranslateScale::new(translation.into(), 1.0) |
68 | } |
69 | |
70 | /// Decompose transformation into translation and scale. |
71 | #[deprecated (note = "use the struct fields directly" )] |
72 | #[inline ] |
73 | pub const fn as_tuple(self) -> (Vec2, f64) { |
74 | (self.translation, self.scale) |
75 | } |
76 | |
77 | /// Create a transform that scales about a point other than the origin. |
78 | /// |
79 | /// # Examples |
80 | /// |
81 | /// ``` |
82 | /// # use kurbo::{Point, TranslateScale}; |
83 | /// # fn assert_near(p0: Point, p1: Point) { |
84 | /// # assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}" ); |
85 | /// # } |
86 | /// let center = Point::new(1., 1.); |
87 | /// let ts = TranslateScale::from_scale_about(2., center); |
88 | /// // Should keep the point (1., 1.) stationary |
89 | /// assert_near(ts * center, center); |
90 | /// // (2., 2.) -> (3., 3.) |
91 | /// assert_near(ts * Point::new(2., 2.), Point::new(3., 3.)); |
92 | /// ``` |
93 | #[inline ] |
94 | pub fn from_scale_about(scale: f64, focus: Point) -> Self { |
95 | // We need to create a transform that is equivalent to translating `focus` |
96 | // to the origin, followed by a normal scale, followed by reversing the translation. |
97 | // We need to find the (translation ∘ scale) that matches this. |
98 | let focus = focus.to_vec2(); |
99 | let translation = focus - focus * scale; |
100 | Self::new(translation, scale) |
101 | } |
102 | |
103 | /// Compute the inverse transform. |
104 | /// |
105 | /// Multiplying a transform with its inverse (either on the |
106 | /// left or right) results in the identity transform |
107 | /// (modulo floating point rounding errors). |
108 | /// |
109 | /// Produces NaN values when scale is zero. |
110 | #[inline ] |
111 | pub fn inverse(self) -> TranslateScale { |
112 | let scale_recip = self.scale.recip(); |
113 | TranslateScale { |
114 | translation: self.translation * -scale_recip, |
115 | scale: scale_recip, |
116 | } |
117 | } |
118 | |
119 | /// Is this translate/scale finite? |
120 | #[inline ] |
121 | pub fn is_finite(&self) -> bool { |
122 | self.translation.is_finite() && self.scale.is_finite() |
123 | } |
124 | |
125 | /// Is this translate/scale NaN? |
126 | #[inline ] |
127 | pub fn is_nan(&self) -> bool { |
128 | self.translation.is_nan() || self.scale.is_nan() |
129 | } |
130 | } |
131 | |
132 | impl Default for TranslateScale { |
133 | #[inline ] |
134 | fn default() -> TranslateScale { |
135 | TranslateScale::new(translation:Vec2::ZERO, scale:1.0) |
136 | } |
137 | } |
138 | |
139 | impl From<TranslateScale> for Affine { |
140 | fn from(ts: TranslateScale) -> Affine { |
141 | let TranslateScale { translation: Vec2, scale: f64 } = ts; |
142 | Affine::new([scale, 0.0, 0.0, scale, translation.x, translation.y]) |
143 | } |
144 | } |
145 | |
146 | impl Mul<Point> for TranslateScale { |
147 | type Output = Point; |
148 | |
149 | #[inline ] |
150 | fn mul(self, other: Point) -> Point { |
151 | (self.scale * other.to_vec2()).to_point() + self.translation |
152 | } |
153 | } |
154 | |
155 | impl Mul for TranslateScale { |
156 | type Output = TranslateScale; |
157 | |
158 | #[inline ] |
159 | fn mul(self, other: TranslateScale) -> TranslateScale { |
160 | TranslateScale { |
161 | translation: self.translation + self.scale * other.translation, |
162 | scale: self.scale * other.scale, |
163 | } |
164 | } |
165 | } |
166 | |
167 | impl MulAssign for TranslateScale { |
168 | #[inline ] |
169 | fn mul_assign(&mut self, other: TranslateScale) { |
170 | *self = self.mul(other); |
171 | } |
172 | } |
173 | |
174 | impl Mul<TranslateScale> for f64 { |
175 | type Output = TranslateScale; |
176 | |
177 | #[inline ] |
178 | fn mul(self, other: TranslateScale) -> TranslateScale { |
179 | TranslateScale { |
180 | translation: other.translation * self, |
181 | scale: other.scale * self, |
182 | } |
183 | } |
184 | } |
185 | |
186 | impl Add<Vec2> for TranslateScale { |
187 | type Output = TranslateScale; |
188 | |
189 | #[inline ] |
190 | fn add(self, other: Vec2) -> TranslateScale { |
191 | TranslateScale { |
192 | translation: self.translation + other, |
193 | scale: self.scale, |
194 | } |
195 | } |
196 | } |
197 | |
198 | impl Add<TranslateScale> for Vec2 { |
199 | type Output = TranslateScale; |
200 | |
201 | #[inline ] |
202 | fn add(self, other: TranslateScale) -> TranslateScale { |
203 | other + self |
204 | } |
205 | } |
206 | |
207 | impl AddAssign<Vec2> for TranslateScale { |
208 | #[inline ] |
209 | fn add_assign(&mut self, other: Vec2) { |
210 | *self = self.add(other); |
211 | } |
212 | } |
213 | |
214 | impl Sub<Vec2> for TranslateScale { |
215 | type Output = TranslateScale; |
216 | |
217 | #[inline ] |
218 | fn sub(self, other: Vec2) -> TranslateScale { |
219 | TranslateScale { |
220 | translation: self.translation - other, |
221 | scale: self.scale, |
222 | } |
223 | } |
224 | } |
225 | |
226 | impl SubAssign<Vec2> for TranslateScale { |
227 | #[inline ] |
228 | fn sub_assign(&mut self, other: Vec2) { |
229 | *self = self.sub(other); |
230 | } |
231 | } |
232 | |
233 | impl Mul<Circle> for TranslateScale { |
234 | type Output = Circle; |
235 | |
236 | #[inline ] |
237 | fn mul(self, other: Circle) -> Circle { |
238 | Circle::new(self * other.center, self.scale * other.radius) |
239 | } |
240 | } |
241 | |
242 | impl Mul<Line> for TranslateScale { |
243 | type Output = Line; |
244 | |
245 | #[inline ] |
246 | fn mul(self, other: Line) -> Line { |
247 | Line::new(self * other.p0, self * other.p1) |
248 | } |
249 | } |
250 | |
251 | impl Mul<Rect> for TranslateScale { |
252 | type Output = Rect; |
253 | |
254 | #[inline ] |
255 | fn mul(self, other: Rect) -> Rect { |
256 | let pt0: Point = self * Point::new(x:other.x0, y:other.y0); |
257 | let pt1: Point = self * Point::new(x:other.x1, y:other.y1); |
258 | (pt0, pt1).into() |
259 | } |
260 | } |
261 | |
262 | impl Mul<RoundedRect> for TranslateScale { |
263 | type Output = RoundedRect; |
264 | |
265 | #[inline ] |
266 | fn mul(self, other: RoundedRect) -> RoundedRect { |
267 | RoundedRect::from_rect(self * other.rect(), self * other.radii()) |
268 | } |
269 | } |
270 | |
271 | impl Mul<RoundedRectRadii> for TranslateScale { |
272 | type Output = RoundedRectRadii; |
273 | |
274 | #[inline ] |
275 | fn mul(self, other: RoundedRectRadii) -> RoundedRectRadii { |
276 | RoundedRectRadii::new( |
277 | self.scale * other.top_left, |
278 | self.scale * other.top_right, |
279 | self.scale * other.bottom_right, |
280 | self.scale * other.bottom_left, |
281 | ) |
282 | } |
283 | } |
284 | |
285 | impl Mul<QuadBez> for TranslateScale { |
286 | type Output = QuadBez; |
287 | |
288 | #[inline ] |
289 | fn mul(self, other: QuadBez) -> QuadBez { |
290 | QuadBez::new(self * other.p0, self * other.p1, self * other.p2) |
291 | } |
292 | } |
293 | |
294 | impl Mul<CubicBez> for TranslateScale { |
295 | type Output = CubicBez; |
296 | |
297 | #[inline ] |
298 | fn mul(self, other: CubicBez) -> CubicBez { |
299 | CubicBez::new( |
300 | self * other.p0, |
301 | self * other.p1, |
302 | self * other.p2, |
303 | self * other.p3, |
304 | ) |
305 | } |
306 | } |
307 | |
308 | #[cfg (test)] |
309 | mod tests { |
310 | use crate::{Affine, Point, TranslateScale, Vec2}; |
311 | |
312 | fn assert_near(p0: Point, p1: Point) { |
313 | assert!((p1 - p0).hypot() < 1e-9, " {p0:?} != {p1:?}" ); |
314 | } |
315 | |
316 | #[test ] |
317 | fn translate_scale() { |
318 | let p = Point::new(3.0, 4.0); |
319 | let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0); |
320 | |
321 | assert_near(ts * p, Point::new(11.0, 14.0)); |
322 | } |
323 | |
324 | #[test ] |
325 | fn conversions() { |
326 | let p = Point::new(3.0, 4.0); |
327 | let s = 2.0; |
328 | let t = Vec2::new(5.0, 6.0); |
329 | let ts = TranslateScale::new(t, s); |
330 | |
331 | // Test that conversion to affine is consistent. |
332 | let a: Affine = ts.into(); |
333 | assert_near(ts * p, a * p); |
334 | |
335 | assert_near((s * p.to_vec2()).to_point(), TranslateScale::scale(s) * p); |
336 | assert_near(p + t, TranslateScale::translate(t) * p); |
337 | } |
338 | |
339 | #[test ] |
340 | fn inverse() { |
341 | let p = Point::new(3.0, 4.0); |
342 | let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0); |
343 | |
344 | assert_near(p, (ts * ts.inverse()) * p); |
345 | assert_near(p, (ts.inverse() * ts) * p); |
346 | } |
347 | } |
348 | |