1 | // Copyright 2018 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! Quadratic Bézier segments. |
5 | |
6 | use core::ops::{Mul, Range}; |
7 | |
8 | use arrayvec::ArrayVec; |
9 | |
10 | use crate::common::solve_cubic; |
11 | use crate::MAX_EXTREMA; |
12 | use crate::{ |
13 | Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, |
14 | ParamCurveCurvature, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, |
15 | Rect, Shape, |
16 | }; |
17 | |
18 | #[cfg (not(feature = "std" ))] |
19 | use crate::common::FloatFuncs; |
20 | |
21 | /// A single quadratic Bézier segment. |
22 | #[derive (Clone, Copy, Debug, PartialEq)] |
23 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
24 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
25 | #[allow (missing_docs)] |
26 | pub struct QuadBez { |
27 | pub p0: Point, |
28 | pub p1: Point, |
29 | pub p2: Point, |
30 | } |
31 | |
32 | impl QuadBez { |
33 | /// Create a new quadratic Bézier segment. |
34 | #[inline ] |
35 | pub fn new<V: Into<Point>>(p0: V, p1: V, p2: V) -> QuadBez { |
36 | QuadBez { |
37 | p0: p0.into(), |
38 | p1: p1.into(), |
39 | p2: p2.into(), |
40 | } |
41 | } |
42 | |
43 | /// Raise the order by 1. |
44 | /// |
45 | /// Returns a cubic Bézier segment that exactly represents this quadratic. |
46 | #[inline ] |
47 | pub fn raise(&self) -> CubicBez { |
48 | CubicBez::new( |
49 | self.p0, |
50 | self.p0 + (2.0 / 3.0) * (self.p1 - self.p0), |
51 | self.p2 + (2.0 / 3.0) * (self.p1 - self.p2), |
52 | self.p2, |
53 | ) |
54 | } |
55 | |
56 | /// Estimate the number of subdivisions for flattening. |
57 | pub(crate) fn estimate_subdiv(&self, sqrt_tol: f64) -> FlattenParams { |
58 | // Determine transformation to $y = x^2$ parabola. |
59 | let d01 = self.p1 - self.p0; |
60 | let d12 = self.p2 - self.p1; |
61 | let dd = d01 - d12; |
62 | let cross = (self.p2 - self.p0).cross(dd); |
63 | let x0 = d01.dot(dd) * cross.recip(); |
64 | let x2 = d12.dot(dd) * cross.recip(); |
65 | let scale = (cross / (dd.hypot() * (x2 - x0))).abs(); |
66 | |
67 | // Compute number of subdivisions needed. |
68 | let a0 = approx_parabola_integral(x0); |
69 | let a2 = approx_parabola_integral(x2); |
70 | let val = if scale.is_finite() { |
71 | let da = (a2 - a0).abs(); |
72 | let sqrt_scale = scale.sqrt(); |
73 | if x0.signum() == x2.signum() { |
74 | da * sqrt_scale |
75 | } else { |
76 | // Handle cusp case (segment contains curvature maximum) |
77 | let xmin = sqrt_tol / sqrt_scale; |
78 | sqrt_tol * da / approx_parabola_integral(xmin) |
79 | } |
80 | } else { |
81 | 0.0 |
82 | }; |
83 | let u0 = approx_parabola_inv_integral(a0); |
84 | let u2 = approx_parabola_inv_integral(a2); |
85 | let uscale = (u2 - u0).recip(); |
86 | FlattenParams { |
87 | a0, |
88 | a2, |
89 | u0, |
90 | uscale, |
91 | val, |
92 | } |
93 | } |
94 | |
95 | // Maps a value from 0..1 to 0..1. |
96 | pub(crate) fn determine_subdiv_t(&self, params: &FlattenParams, x: f64) -> f64 { |
97 | let a = params.a0 + (params.a2 - params.a0) * x; |
98 | let u = approx_parabola_inv_integral(a); |
99 | (u - params.u0) * params.uscale |
100 | } |
101 | |
102 | /// Is this quadratic Bezier curve finite? |
103 | #[inline ] |
104 | pub fn is_finite(&self) -> bool { |
105 | self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite() |
106 | } |
107 | |
108 | /// Is this quadratic Bezier curve NaN? |
109 | #[inline ] |
110 | pub fn is_nan(&self) -> bool { |
111 | self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan() |
112 | } |
113 | } |
114 | |
115 | /// An iterator for quadratic beziers. |
116 | pub struct QuadBezIter { |
117 | quad: QuadBez, |
118 | ix: usize, |
119 | } |
120 | |
121 | impl Shape for QuadBez { |
122 | type PathElementsIter<'iter> = QuadBezIter; |
123 | |
124 | #[inline ] |
125 | fn path_elements(&self, _tolerance: f64) -> QuadBezIter { |
126 | QuadBezIter { quad: *self, ix: 0 } |
127 | } |
128 | |
129 | fn area(&self) -> f64 { |
130 | 0.0 |
131 | } |
132 | |
133 | #[inline ] |
134 | fn perimeter(&self, accuracy: f64) -> f64 { |
135 | self.arclen(accuracy) |
136 | } |
137 | |
138 | fn winding(&self, _pt: Point) -> i32 { |
139 | 0 |
140 | } |
141 | |
142 | #[inline ] |
143 | fn bounding_box(&self) -> Rect { |
144 | ParamCurveExtrema::bounding_box(self) |
145 | } |
146 | } |
147 | |
148 | impl Iterator for QuadBezIter { |
149 | type Item = PathEl; |
150 | |
151 | fn next(&mut self) -> Option<PathEl> { |
152 | self.ix += 1; |
153 | match self.ix { |
154 | 1 => Some(PathEl::MoveTo(self.quad.p0)), |
155 | 2 => Some(PathEl::QuadTo(self.quad.p1, self.quad.p2)), |
156 | _ => None, |
157 | } |
158 | } |
159 | } |
160 | |
161 | pub(crate) struct FlattenParams { |
162 | a0: f64, |
163 | a2: f64, |
164 | u0: f64, |
165 | uscale: f64, |
166 | /// The number of subdivisions * 2 * sqrt_tol. |
167 | pub(crate) val: f64, |
168 | } |
169 | |
170 | /// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$ |
171 | /// |
172 | /// This is used for flattening curves. |
173 | fn approx_parabola_integral(x: f64) -> f64 { |
174 | const D: f64 = 0.67; |
175 | x / (1.0 - D + (D.powi(4) + 0.25 * x * x).sqrt().sqrt()) |
176 | } |
177 | |
178 | /// An approximation to the inverse parabola integral. |
179 | fn approx_parabola_inv_integral(x: f64) -> f64 { |
180 | const B: f64 = 0.39; |
181 | x * (1.0 - B + (B * B + 0.25 * x * x).sqrt()) |
182 | } |
183 | |
184 | impl ParamCurve for QuadBez { |
185 | #[inline ] |
186 | fn eval(&self, t: f64) -> Point { |
187 | let mt = 1.0 - t; |
188 | (self.p0.to_vec2() * (mt * mt) |
189 | + (self.p1.to_vec2() * (mt * 2.0) + self.p2.to_vec2() * t) * t) |
190 | .to_point() |
191 | } |
192 | |
193 | fn subsegment(&self, range: Range<f64>) -> QuadBez { |
194 | let (t0, t1) = (range.start, range.end); |
195 | let p0 = self.eval(t0); |
196 | let p2 = self.eval(t1); |
197 | let p1 = p0 + (self.p1 - self.p0).lerp(self.p2 - self.p1, t0) * (t1 - t0); |
198 | QuadBez { p0, p1, p2 } |
199 | } |
200 | |
201 | /// Subdivide into halves, using de Casteljau. |
202 | #[inline ] |
203 | fn subdivide(&self) -> (QuadBez, QuadBez) { |
204 | let pm = self.eval(0.5); |
205 | ( |
206 | QuadBez::new(self.p0, self.p0.midpoint(self.p1), pm), |
207 | QuadBez::new(pm, self.p1.midpoint(self.p2), self.p2), |
208 | ) |
209 | } |
210 | |
211 | #[inline ] |
212 | fn start(&self) -> Point { |
213 | self.p0 |
214 | } |
215 | |
216 | #[inline ] |
217 | fn end(&self) -> Point { |
218 | self.p2 |
219 | } |
220 | } |
221 | |
222 | impl ParamCurveDeriv for QuadBez { |
223 | type DerivResult = Line; |
224 | |
225 | #[inline ] |
226 | fn deriv(&self) -> Line { |
227 | Line::new( |
228 | (2.0 * (self.p1.to_vec2() - self.p0.to_vec2())).to_point(), |
229 | (2.0 * (self.p2.to_vec2() - self.p1.to_vec2())).to_point(), |
230 | ) |
231 | } |
232 | } |
233 | |
234 | impl ParamCurveArclen for QuadBez { |
235 | /// Arclength of a quadratic Bézier segment. |
236 | /// |
237 | /// This computation is based on an analytical formula. Since that formula suffers |
238 | /// from numerical instability when the curve is very close to a straight line, we |
239 | /// detect that case and fall back to Legendre-Gauss quadrature. |
240 | /// |
241 | /// Accuracy should be better than 1e-13 over the entire range. |
242 | /// |
243 | /// Adapted from <http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/> |
244 | /// with permission. |
245 | fn arclen(&self, _accuracy: f64) -> f64 { |
246 | let d2 = self.p0.to_vec2() - 2.0 * self.p1.to_vec2() + self.p2.to_vec2(); |
247 | let a = d2.hypot2(); |
248 | let d1 = self.p1 - self.p0; |
249 | let c = d1.hypot2(); |
250 | if a < 5e-4 * c { |
251 | // This case happens for nearly straight Béziers. |
252 | // |
253 | // Calculate arclength using Legendre-Gauss quadrature using formula from Behdad |
254 | // in https://github.com/Pomax/BezierInfo-2/issues/77 |
255 | let v0 = (-0.492943519233745 * self.p0.to_vec2() |
256 | + 0.430331482911935 * self.p1.to_vec2() |
257 | + 0.0626120363218102 * self.p2.to_vec2()) |
258 | .hypot(); |
259 | let v1 = ((self.p2 - self.p0) * 0.4444444444444444).hypot(); |
260 | let v2 = (-0.0626120363218102 * self.p0.to_vec2() |
261 | - 0.430331482911935 * self.p1.to_vec2() |
262 | + 0.492943519233745 * self.p2.to_vec2()) |
263 | .hypot(); |
264 | return v0 + v1 + v2; |
265 | } |
266 | let b = 2.0 * d2.dot(d1); |
267 | |
268 | let sabc = (a + b + c).sqrt(); |
269 | let a2 = a.powf(-0.5); |
270 | let a32 = a2.powi(3); |
271 | let c2 = 2.0 * c.sqrt(); |
272 | let ba_c2 = b * a2 + c2; |
273 | |
274 | let v0 = 0.25 * a2 * a2 * b * (2.0 * sabc - c2) + sabc; |
275 | // TODO: justify and fine-tune this exact constant. |
276 | if ba_c2 < 1e-13 { |
277 | // This case happens for Béziers with a sharp kink. |
278 | v0 |
279 | } else { |
280 | v0 + 0.25 |
281 | * a32 |
282 | * (4.0 * c * a - b * b) |
283 | * (((2.0 * a + b) * a2 + 2.0 * sabc) / ba_c2).ln() |
284 | } |
285 | } |
286 | } |
287 | |
288 | impl ParamCurveArea for QuadBez { |
289 | #[inline ] |
290 | fn signed_area(&self) -> f64 { |
291 | (self.p0.x * (2.0 * self.p1.y + self.p2.y) + 2.0 * self.p1.x * (self.p2.y - self.p0.y) |
292 | - self.p2.x * (self.p0.y + 2.0 * self.p1.y)) |
293 | * (1.0 / 6.0) |
294 | } |
295 | } |
296 | |
297 | impl ParamCurveNearest for QuadBez { |
298 | /// Find the nearest point, using analytical algorithm based on cubic root finding. |
299 | fn nearest(&self, p: Point, _accuracy: f64) -> Nearest { |
300 | fn eval_t(p: Point, t_best: &mut f64, r_best: &mut Option<f64>, t: f64, p0: Point) { |
301 | let r = (p0 - p).hypot2(); |
302 | if r_best.map(|r_best| r < r_best).unwrap_or(true) { |
303 | *r_best = Some(r); |
304 | *t_best = t; |
305 | } |
306 | } |
307 | fn try_t( |
308 | q: &QuadBez, |
309 | p: Point, |
310 | t_best: &mut f64, |
311 | r_best: &mut Option<f64>, |
312 | t: f64, |
313 | ) -> bool { |
314 | if !(0.0..=1.0).contains(&t) { |
315 | return true; |
316 | } |
317 | eval_t(p, t_best, r_best, t, q.eval(t)); |
318 | false |
319 | } |
320 | let d0 = self.p1 - self.p0; |
321 | let d1 = self.p0.to_vec2() + self.p2.to_vec2() - 2.0 * self.p1.to_vec2(); |
322 | let d = self.p0 - p; |
323 | let c0 = d.dot(d0); |
324 | let c1 = 2.0 * d0.hypot2() + d.dot(d1); |
325 | let c2 = 3.0 * d1.dot(d0); |
326 | let c3 = d1.hypot2(); |
327 | let roots = solve_cubic(c0, c1, c2, c3); |
328 | let mut r_best = None; |
329 | let mut t_best = 0.0; |
330 | let mut need_ends = false; |
331 | if roots.is_empty() { |
332 | need_ends = true; |
333 | } |
334 | for &t in &roots { |
335 | need_ends |= try_t(self, p, &mut t_best, &mut r_best, t); |
336 | } |
337 | if need_ends { |
338 | eval_t(p, &mut t_best, &mut r_best, 0.0, self.p0); |
339 | eval_t(p, &mut t_best, &mut r_best, 1.0, self.p2); |
340 | } |
341 | |
342 | Nearest { |
343 | t: t_best, |
344 | distance_sq: r_best.unwrap(), |
345 | } |
346 | } |
347 | } |
348 | |
349 | impl ParamCurveCurvature for QuadBez {} |
350 | |
351 | impl ParamCurveExtrema for QuadBez { |
352 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> { |
353 | let mut result: ArrayVec = ArrayVec::new(); |
354 | let d0: Vec2 = self.p1 - self.p0; |
355 | let d1: Vec2 = self.p2 - self.p1; |
356 | let dd: Vec2 = d1 - d0; |
357 | if dd.x != 0.0 { |
358 | let t: f64 = -d0.x / dd.x; |
359 | if t > 0.0 && t < 1.0 { |
360 | result.push(element:t); |
361 | } |
362 | } |
363 | if dd.y != 0.0 { |
364 | let t: f64 = -d0.y / dd.y; |
365 | if t > 0.0 && t < 1.0 { |
366 | result.push(element:t); |
367 | if result.len() == 2 && result[0] > t { |
368 | result.swap(a:0, b:1); |
369 | } |
370 | } |
371 | } |
372 | result |
373 | } |
374 | } |
375 | |
376 | impl Mul<QuadBez> for Affine { |
377 | type Output = QuadBez; |
378 | |
379 | #[inline ] |
380 | fn mul(self, other: QuadBez) -> QuadBez { |
381 | QuadBez { |
382 | p0: self * other.p0, |
383 | p1: self * other.p1, |
384 | p2: self * other.p2, |
385 | } |
386 | } |
387 | } |
388 | |
389 | #[cfg (test)] |
390 | mod tests { |
391 | use crate::{ |
392 | Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveDeriv, |
393 | ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, |
394 | }; |
395 | |
396 | fn assert_near(p0: Point, p1: Point, epsilon: f64) { |
397 | assert!((p1 - p0).hypot() < epsilon, " {p0:?} != {p1:?}" ); |
398 | } |
399 | |
400 | #[test ] |
401 | fn quadbez_deriv() { |
402 | let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0)); |
403 | let deriv = q.deriv(); |
404 | |
405 | let n = 10; |
406 | for i in 0..=n { |
407 | let t = (i as f64) * (n as f64).recip(); |
408 | let delta = 1e-6; |
409 | let p = q.eval(t); |
410 | let p1 = q.eval(t + delta); |
411 | let d_approx = (p1 - p) * delta.recip(); |
412 | let d = deriv.eval(t).to_vec2(); |
413 | assert!((d - d_approx).hypot() < delta * 2.0); |
414 | } |
415 | } |
416 | |
417 | #[test ] |
418 | fn quadbez_arclen() { |
419 | let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0)); |
420 | let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln(); |
421 | for i in 0..12 { |
422 | let accuracy = 0.1f64.powi(i); |
423 | let est = q.arclen(accuracy); |
424 | let error = est - true_arclen; |
425 | assert!(error.abs() < accuracy, " {est} != {true_arclen}" ); |
426 | } |
427 | } |
428 | |
429 | #[test ] |
430 | fn quadbez_arclen_pathological() { |
431 | let q = QuadBez::new((-1.0, 0.0), (1.03, 0.0), (1.0, 0.0)); |
432 | let true_arclen = 2.0008737864167325; // A rough empirical calculation |
433 | let accuracy = 1e-11; |
434 | let est = q.arclen(accuracy); |
435 | assert!( |
436 | (est - true_arclen).abs() < accuracy, |
437 | " {est} != {true_arclen}" |
438 | ); |
439 | } |
440 | |
441 | #[test ] |
442 | fn quadbez_subsegment() { |
443 | let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8)); |
444 | let t0 = 0.1; |
445 | let t1 = 0.8; |
446 | let qs = q.subsegment(t0..t1); |
447 | let epsilon = 1e-12; |
448 | let n = 10; |
449 | for i in 0..=n { |
450 | let t = (i as f64) * (n as f64).recip(); |
451 | let ts = t0 + t * (t1 - t0); |
452 | assert_near(q.eval(ts), qs.eval(t), epsilon); |
453 | } |
454 | } |
455 | |
456 | #[test ] |
457 | fn quadbez_raise() { |
458 | let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8)); |
459 | let c = q.raise(); |
460 | let qd = q.deriv(); |
461 | let cd = c.deriv(); |
462 | let epsilon = 1e-12; |
463 | let n = 10; |
464 | for i in 0..=n { |
465 | let t = (i as f64) * (n as f64).recip(); |
466 | assert_near(q.eval(t), c.eval(t), epsilon); |
467 | assert_near(qd.eval(t), cd.eval(t), epsilon); |
468 | } |
469 | } |
470 | |
471 | #[test ] |
472 | fn quadbez_signed_area() { |
473 | // y = 1 - x^2 |
474 | let q = QuadBez::new((1.0, 0.0), (0.5, 1.0), (0.0, 1.0)); |
475 | let epsilon = 1e-12; |
476 | assert!((q.signed_area() - 2.0 / 3.0).abs() < epsilon); |
477 | assert!(((Affine::rotate(0.5) * q).signed_area() - 2.0 / 3.0).abs() < epsilon); |
478 | assert!(((Affine::translate((0.0, 1.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon); |
479 | assert!(((Affine::translate((1.0, 0.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon); |
480 | } |
481 | |
482 | fn verify(result: Nearest, expected: f64) { |
483 | assert!( |
484 | (result.t - expected).abs() < 1e-6, |
485 | "got {result:?} expected {expected}" |
486 | ); |
487 | } |
488 | |
489 | #[test ] |
490 | fn quadbez_nearest() { |
491 | // y = x^2 |
492 | let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0)); |
493 | verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5); |
494 | verify(q.nearest((0.0, 0.1).into(), 1e-3), 0.5); |
495 | verify(q.nearest((0.0, -0.1).into(), 1e-3), 0.5); |
496 | verify(q.nearest((0.5, 0.25).into(), 1e-3), 0.75); |
497 | verify(q.nearest((1.0, 1.0).into(), 1e-3), 1.0); |
498 | verify(q.nearest((1.1, 1.1).into(), 1e-3), 1.0); |
499 | verify(q.nearest((-1.1, 1.1).into(), 1e-3), 0.0); |
500 | let a = Affine::rotate(0.5); |
501 | verify((a * q).nearest(a * Point::new(0.5, 0.25), 1e-3), 0.75); |
502 | } |
503 | |
504 | // This test exposes a degenerate case in the solver used internally |
505 | // by the "nearest" calculation - the cubic term is zero. |
506 | #[test ] |
507 | fn quadbez_nearest_low_order() { |
508 | let q = QuadBez::new((-1.0, 0.0), (0.0, 0.0), (1.0, 0.0)); |
509 | |
510 | verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5); |
511 | verify(q.nearest((0.0, 1.0).into(), 1e-3), 0.5); |
512 | } |
513 | |
514 | #[test ] |
515 | fn quadbez_nearest_rounding_panic() { |
516 | let quad = QuadBez::new( |
517 | (-1.0394736842105263, 0.0), |
518 | (0.8210526315789474, -1.511111111111111), |
519 | (0.0, 1.9333333333333333), |
520 | ); |
521 | let test = Point::new(-1.7976931348623157e308, 0.8571428571428571); |
522 | // accuracy ignored |
523 | let _res = quad.nearest(test , 1e-6); |
524 | // if we got here then we didn't panic |
525 | } |
526 | |
527 | #[test ] |
528 | fn quadbez_extrema() { |
529 | // y = x^2 |
530 | let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0)); |
531 | let extrema = q.extrema(); |
532 | assert_eq!(extrema.len(), 1); |
533 | assert!((extrema[0] - 0.5).abs() < 1e-6); |
534 | |
535 | let q = QuadBez::new((0.0, 0.5), (1.0, 1.0), (0.5, 0.0)); |
536 | let extrema = q.extrema(); |
537 | assert_eq!(extrema.len(), 2); |
538 | assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6); |
539 | assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6); |
540 | |
541 | // Reverse direction |
542 | let q = QuadBez::new((0.5, 0.0), (1.0, 1.0), (0.0, 0.5)); |
543 | let extrema = q.extrema(); |
544 | assert_eq!(extrema.len(), 2); |
545 | assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6); |
546 | assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6); |
547 | } |
548 | } |
549 | |