| 1 | // Copyright 2019 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Implementation of circle shape. |
| 5 | |
| 6 | use core::{ |
| 7 | f64::consts::{FRAC_PI_2, PI}, |
| 8 | iter, |
| 9 | ops::{Add, Mul, Sub}, |
| 10 | }; |
| 11 | |
| 12 | use crate::{Affine, Arc, ArcAppendIter, Ellipse, PathEl, Point, Rect, Shape, Vec2}; |
| 13 | |
| 14 | #[cfg (not(feature = "std" ))] |
| 15 | use crate::common::FloatFuncs; |
| 16 | |
| 17 | /// A circle. |
| 18 | #[derive (Clone, Copy, Default, Debug, PartialEq)] |
| 19 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 20 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 21 | pub struct Circle { |
| 22 | /// The center. |
| 23 | pub center: Point, |
| 24 | /// The radius. |
| 25 | pub radius: f64, |
| 26 | } |
| 27 | |
| 28 | impl Circle { |
| 29 | /// A new circle from center and radius. |
| 30 | #[inline ] |
| 31 | pub fn new(center: impl Into<Point>, radius: f64) -> Circle { |
| 32 | Circle { |
| 33 | center: center.into(), |
| 34 | radius, |
| 35 | } |
| 36 | } |
| 37 | |
| 38 | /// Create a [`CircleSegment`] by cutting out parts of this circle. |
| 39 | pub fn segment(self, inner_radius: f64, start_angle: f64, sweep_angle: f64) -> CircleSegment { |
| 40 | CircleSegment { |
| 41 | center: self.center, |
| 42 | outer_radius: self.radius, |
| 43 | inner_radius, |
| 44 | start_angle, |
| 45 | sweep_angle, |
| 46 | } |
| 47 | } |
| 48 | |
| 49 | /// Is this circle [finite]? |
| 50 | /// |
| 51 | /// [finite]: f64::is_finite |
| 52 | #[inline ] |
| 53 | pub fn is_finite(&self) -> bool { |
| 54 | self.center.is_finite() && self.radius.is_finite() |
| 55 | } |
| 56 | |
| 57 | /// Is this circle [NaN]? |
| 58 | /// |
| 59 | /// [NaN]: f64::is_nan |
| 60 | #[inline ] |
| 61 | pub fn is_nan(&self) -> bool { |
| 62 | self.center.is_nan() || self.radius.is_nan() |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | impl Add<Vec2> for Circle { |
| 67 | type Output = Circle; |
| 68 | |
| 69 | #[inline ] |
| 70 | fn add(self, v: Vec2) -> Circle { |
| 71 | Circle { |
| 72 | center: self.center + v, |
| 73 | radius: self.radius, |
| 74 | } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | impl Sub<Vec2> for Circle { |
| 79 | type Output = Circle; |
| 80 | |
| 81 | #[inline ] |
| 82 | fn sub(self, v: Vec2) -> Circle { |
| 83 | Circle { |
| 84 | center: self.center - v, |
| 85 | radius: self.radius, |
| 86 | } |
| 87 | } |
| 88 | } |
| 89 | |
| 90 | impl Mul<Circle> for Affine { |
| 91 | type Output = Ellipse; |
| 92 | fn mul(self, other: Circle) -> Self::Output { |
| 93 | self * Ellipse::from(other) |
| 94 | } |
| 95 | } |
| 96 | |
| 97 | #[doc (hidden)] |
| 98 | pub struct CirclePathIter { |
| 99 | circle: Circle, |
| 100 | delta_th: f64, |
| 101 | arm_len: f64, |
| 102 | ix: usize, |
| 103 | n: usize, |
| 104 | } |
| 105 | |
| 106 | impl Shape for Circle { |
| 107 | type PathElementsIter<'iter> = CirclePathIter; |
| 108 | |
| 109 | fn path_elements(&self, tolerance: f64) -> CirclePathIter { |
| 110 | let scaled_err = self.radius.abs() / tolerance; |
| 111 | let (n, arm_len) = if scaled_err < 1.0 / 1.9608e-4 { |
| 112 | // Solution from http://spencermortensen.com/articles/bezier-circle/ |
| 113 | (4, 0.551915024494) |
| 114 | } else { |
| 115 | // This is empirically determined to fall within error tolerance. |
| 116 | let n = (1.1163 * scaled_err).powf(1.0 / 6.0).ceil() as usize; |
| 117 | // Note: this isn't minimum error, but it is simple and we can easily |
| 118 | // estimate the error. |
| 119 | let arm_len = (4.0 / 3.0) * (FRAC_PI_2 / (n as f64)).tan(); |
| 120 | (n, arm_len) |
| 121 | }; |
| 122 | CirclePathIter { |
| 123 | circle: *self, |
| 124 | delta_th: 2.0 * PI / (n as f64), |
| 125 | arm_len, |
| 126 | ix: 0, |
| 127 | n, |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | #[inline ] |
| 132 | fn area(&self) -> f64 { |
| 133 | PI * self.radius.powi(2) |
| 134 | } |
| 135 | |
| 136 | #[inline ] |
| 137 | fn perimeter(&self, _accuracy: f64) -> f64 { |
| 138 | (2.0 * PI * self.radius).abs() |
| 139 | } |
| 140 | |
| 141 | fn winding(&self, pt: Point) -> i32 { |
| 142 | if (pt - self.center).hypot2() < self.radius.powi(2) { |
| 143 | 1 |
| 144 | } else { |
| 145 | 0 |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | #[inline ] |
| 150 | fn bounding_box(&self) -> Rect { |
| 151 | let r = self.radius.abs(); |
| 152 | let (x, y) = self.center.into(); |
| 153 | Rect::new(x - r, y - r, x + r, y + r) |
| 154 | } |
| 155 | |
| 156 | fn as_circle(&self) -> Option<Circle> { |
| 157 | Some(*self) |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | impl Iterator for CirclePathIter { |
| 162 | type Item = PathEl; |
| 163 | |
| 164 | fn next(&mut self) -> Option<PathEl> { |
| 165 | let a = self.arm_len; |
| 166 | let r = self.circle.radius; |
| 167 | let (x, y) = self.circle.center.into(); |
| 168 | let ix = self.ix; |
| 169 | self.ix += 1; |
| 170 | if ix == 0 { |
| 171 | Some(PathEl::MoveTo(Point::new(x + r, y))) |
| 172 | } else if ix <= self.n { |
| 173 | let th1 = self.delta_th * (ix as f64); |
| 174 | let th0 = th1 - self.delta_th; |
| 175 | let (s0, c0) = th0.sin_cos(); |
| 176 | let (s1, c1) = if ix == self.n { |
| 177 | (0.0, 1.0) |
| 178 | } else { |
| 179 | th1.sin_cos() |
| 180 | }; |
| 181 | Some(PathEl::CurveTo( |
| 182 | Point::new(x + r * (c0 - a * s0), y + r * (s0 + a * c0)), |
| 183 | Point::new(x + r * (c1 + a * s1), y + r * (s1 - a * c1)), |
| 184 | Point::new(x + r * c1, y + r * s1), |
| 185 | )) |
| 186 | } else if ix == self.n + 1 { |
| 187 | Some(PathEl::ClosePath) |
| 188 | } else { |
| 189 | None |
| 190 | } |
| 191 | } |
| 192 | } |
| 193 | |
| 194 | /// A segment of a circle. |
| 195 | /// |
| 196 | /// If `inner_radius > 0`, then the shape will be a doughnut segment. |
| 197 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 198 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 199 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 200 | pub struct CircleSegment { |
| 201 | /// The center. |
| 202 | pub center: Point, |
| 203 | /// The outer radius. |
| 204 | pub outer_radius: f64, |
| 205 | /// The inner radius. |
| 206 | pub inner_radius: f64, |
| 207 | /// The angle to start drawing the segment (in radians). |
| 208 | pub start_angle: f64, |
| 209 | /// The arc length of the segment (in radians). |
| 210 | pub sweep_angle: f64, |
| 211 | } |
| 212 | |
| 213 | impl CircleSegment { |
| 214 | /// Create a `CircleSegment` out of its constituent parts. |
| 215 | pub fn new( |
| 216 | center: impl Into<Point>, |
| 217 | outer_radius: f64, |
| 218 | inner_radius: f64, |
| 219 | start_angle: f64, |
| 220 | sweep_angle: f64, |
| 221 | ) -> Self { |
| 222 | CircleSegment { |
| 223 | center: center.into(), |
| 224 | outer_radius, |
| 225 | inner_radius, |
| 226 | start_angle, |
| 227 | sweep_angle, |
| 228 | } |
| 229 | } |
| 230 | |
| 231 | /// Return an arc representing the outer radius. |
| 232 | #[must_use ] |
| 233 | #[inline ] |
| 234 | pub fn outer_arc(&self) -> Arc { |
| 235 | Arc { |
| 236 | center: self.center, |
| 237 | radii: Vec2::new(self.outer_radius, self.outer_radius), |
| 238 | start_angle: self.start_angle, |
| 239 | sweep_angle: self.sweep_angle, |
| 240 | x_rotation: 0.0, |
| 241 | } |
| 242 | } |
| 243 | |
| 244 | /// Return an arc representing the inner radius. |
| 245 | /// |
| 246 | /// This is [reversed] from the outer arc, so that it is in the |
| 247 | /// same direction as the arc that would be drawn (as the path |
| 248 | /// elements for this circle segment produce a closed path). |
| 249 | /// |
| 250 | /// [reversed]: Arc::reversed |
| 251 | #[must_use ] |
| 252 | #[inline ] |
| 253 | pub fn inner_arc(&self) -> Arc { |
| 254 | Arc { |
| 255 | center: self.center, |
| 256 | radii: Vec2::new(self.inner_radius, self.inner_radius), |
| 257 | start_angle: self.start_angle + self.sweep_angle, |
| 258 | sweep_angle: -self.sweep_angle, |
| 259 | x_rotation: 0.0, |
| 260 | } |
| 261 | } |
| 262 | |
| 263 | /// Is this circle segment [finite]? |
| 264 | /// |
| 265 | /// [finite]: f64::is_finite |
| 266 | #[inline ] |
| 267 | pub fn is_finite(&self) -> bool { |
| 268 | self.center.is_finite() |
| 269 | && self.outer_radius.is_finite() |
| 270 | && self.inner_radius.is_finite() |
| 271 | && self.start_angle.is_finite() |
| 272 | && self.sweep_angle.is_finite() |
| 273 | } |
| 274 | |
| 275 | /// Is this circle segment [NaN]? |
| 276 | /// |
| 277 | /// [NaN]: f64::is_nan |
| 278 | #[inline ] |
| 279 | pub fn is_nan(&self) -> bool { |
| 280 | self.center.is_nan() |
| 281 | || self.outer_radius.is_nan() |
| 282 | || self.inner_radius.is_nan() |
| 283 | || self.start_angle.is_nan() |
| 284 | || self.sweep_angle.is_nan() |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | impl Add<Vec2> for CircleSegment { |
| 289 | type Output = CircleSegment; |
| 290 | |
| 291 | #[inline ] |
| 292 | fn add(self, v: Vec2) -> Self { |
| 293 | Self { |
| 294 | center: self.center + v, |
| 295 | ..self |
| 296 | } |
| 297 | } |
| 298 | } |
| 299 | |
| 300 | impl Sub<Vec2> for CircleSegment { |
| 301 | type Output = CircleSegment; |
| 302 | |
| 303 | #[inline ] |
| 304 | fn sub(self, v: Vec2) -> Self { |
| 305 | Self { |
| 306 | center: self.center - v, |
| 307 | ..self |
| 308 | } |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | type CircleSegmentPathIter = iter::Chain< |
| 313 | iter::Chain< |
| 314 | iter::Chain<iter::Chain<iter::Once<PathEl>, iter::Once<PathEl>>, ArcAppendIter>, |
| 315 | iter::Once<PathEl>, |
| 316 | >, |
| 317 | ArcAppendIter, |
| 318 | >; |
| 319 | |
| 320 | impl Shape for CircleSegment { |
| 321 | type PathElementsIter<'iter> = CircleSegmentPathIter; |
| 322 | |
| 323 | fn path_elements(&self, tolerance: f64) -> CircleSegmentPathIter { |
| 324 | iter::once(PathEl::MoveTo(point_on_circle( |
| 325 | self.center, |
| 326 | self.inner_radius, |
| 327 | self.start_angle, |
| 328 | ))) |
| 329 | // First radius |
| 330 | .chain(iter::once(PathEl::LineTo(point_on_circle( |
| 331 | self.center, |
| 332 | self.outer_radius, |
| 333 | self.start_angle, |
| 334 | )))) |
| 335 | // outer arc |
| 336 | .chain(self.outer_arc().append_iter(tolerance)) |
| 337 | // second radius |
| 338 | .chain(iter::once(PathEl::LineTo(point_on_circle( |
| 339 | self.center, |
| 340 | self.inner_radius, |
| 341 | self.start_angle + self.sweep_angle, |
| 342 | )))) |
| 343 | // inner arc |
| 344 | .chain(self.inner_arc().append_iter(tolerance)) |
| 345 | } |
| 346 | |
| 347 | #[inline ] |
| 348 | fn area(&self) -> f64 { |
| 349 | 0.5 * (self.outer_radius.powi(2) - self.inner_radius.powi(2)).abs() * self.sweep_angle |
| 350 | } |
| 351 | |
| 352 | #[inline ] |
| 353 | fn perimeter(&self, _accuracy: f64) -> f64 { |
| 354 | 2.0 * (self.outer_radius - self.inner_radius).abs() |
| 355 | + self.sweep_angle * (self.inner_radius + self.outer_radius) |
| 356 | } |
| 357 | |
| 358 | fn winding(&self, pt: Point) -> i32 { |
| 359 | let angle = (pt - self.center).atan2(); |
| 360 | if angle < self.start_angle || angle > self.start_angle + self.sweep_angle { |
| 361 | return 0; |
| 362 | } |
| 363 | let dist2 = (pt - self.center).hypot2(); |
| 364 | if (dist2 < self.outer_radius.powi(2) && dist2 > self.inner_radius.powi(2)) || |
| 365 | // case where outer_radius < inner_radius |
| 366 | (dist2 < self.inner_radius.powi(2) && dist2 > self.outer_radius.powi(2)) |
| 367 | { |
| 368 | 1 |
| 369 | } else { |
| 370 | 0 |
| 371 | } |
| 372 | } |
| 373 | |
| 374 | #[inline ] |
| 375 | fn bounding_box(&self) -> Rect { |
| 376 | // todo this is currently not tight |
| 377 | let r = self.inner_radius.max(self.outer_radius); |
| 378 | let (x, y) = self.center.into(); |
| 379 | Rect::new(x - r, y - r, x + r, y + r) |
| 380 | } |
| 381 | } |
| 382 | |
| 383 | #[inline ] |
| 384 | fn point_on_circle(center: Point, radius: f64, angle: f64) -> Point { |
| 385 | let (angle_sin: f64, angle_cos: f64) = angle.sin_cos(); |
| 386 | center |
| 387 | + Vec2 { |
| 388 | x: angle_cos * radius, |
| 389 | y: angle_sin * radius, |
| 390 | } |
| 391 | } |
| 392 | |
| 393 | #[cfg (test)] |
| 394 | mod tests { |
| 395 | use crate::{Circle, Point, Shape}; |
| 396 | use std::f64::consts::PI; |
| 397 | |
| 398 | fn assert_approx_eq(x: f64, y: f64) { |
| 399 | // Note: we might want to be more rigorous in testing the accuracy |
| 400 | // of the conversion into Béziers. But this seems good enough. |
| 401 | assert!((x - y).abs() < 1e-7, "{x} != {y}" ); |
| 402 | } |
| 403 | |
| 404 | #[test ] |
| 405 | fn area_sign() { |
| 406 | let center = Point::new(5.0, 5.0); |
| 407 | let c = Circle::new(center, 5.0); |
| 408 | assert_approx_eq(c.area(), 25.0 * PI); |
| 409 | |
| 410 | assert_eq!(c.winding(center), 1); |
| 411 | |
| 412 | let p = c.to_path(1e-9); |
| 413 | assert_approx_eq(c.area(), p.area()); |
| 414 | assert_eq!(c.winding(center), p.winding(center)); |
| 415 | |
| 416 | let c_neg_radius = Circle::new(center, -5.0); |
| 417 | assert_approx_eq(c_neg_radius.area(), 25.0 * PI); |
| 418 | |
| 419 | assert_eq!(c_neg_radius.winding(center), 1); |
| 420 | |
| 421 | let p_neg_radius = c_neg_radius.to_path(1e-9); |
| 422 | assert_approx_eq(c_neg_radius.area(), p_neg_radius.area()); |
| 423 | assert_eq!(c_neg_radius.winding(center), p_neg_radius.winding(center)); |
| 424 | } |
| 425 | } |
| 426 | |