| 1 | // Copyright 2018 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Bézier paths (up to cubic). |
| 5 | |
| 6 | #![allow (clippy::many_single_char_names)] |
| 7 | |
| 8 | use core::iter::{Extend, FromIterator}; |
| 9 | use core::mem; |
| 10 | use core::ops::{Mul, Range}; |
| 11 | |
| 12 | use alloc::vec::Vec; |
| 13 | |
| 14 | use arrayvec::ArrayVec; |
| 15 | |
| 16 | use crate::common::{solve_cubic, solve_quadratic}; |
| 17 | use crate::MAX_EXTREMA; |
| 18 | use crate::{ |
| 19 | Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, |
| 20 | ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, Rect, Shape, TranslateScale, Vec2, |
| 21 | }; |
| 22 | |
| 23 | #[cfg (not(feature = "std" ))] |
| 24 | use crate::common::FloatFuncs; |
| 25 | |
| 26 | /// A Bézier path. |
| 27 | /// |
| 28 | /// These docs assume basic familiarity with Bézier curves; for an introduction, |
| 29 | /// see Pomax's wonderful [A Primer on Bézier Curves]. |
| 30 | /// |
| 31 | /// This path can contain lines, quadratics ([`QuadBez`]) and cubics |
| 32 | /// ([`CubicBez`]), and may contain multiple subpaths. |
| 33 | /// |
| 34 | /// # Elements and Segments |
| 35 | /// |
| 36 | /// A Bézier path can be represented in terms of either 'elements' ([`PathEl`]) |
| 37 | /// or 'segments' ([`PathSeg`]). Elements map closely to how Béziers are |
| 38 | /// generally used in PostScript-style drawing APIs; they can be thought of as |
| 39 | /// instructions for drawing the path. Segments more directly describe the |
| 40 | /// path itself, with each segment being an independent line or curve. |
| 41 | /// |
| 42 | /// These different representations are useful in different contexts. |
| 43 | /// For tasks like drawing, elements are a natural fit, but when doing |
| 44 | /// hit-testing or subdividing, we need to have access to the segments. |
| 45 | /// |
| 46 | /// Conceptually, a `BezPath` contains zero or more subpaths. Each subpath |
| 47 | /// *always* begins with a `MoveTo`, then has zero or more `LineTo`, `QuadTo`, |
| 48 | /// and `CurveTo` elements, and optionally ends with a `ClosePath`. |
| 49 | /// |
| 50 | /// Internally, a `BezPath` is a list of [`PathEl`]s; as such it implements |
| 51 | /// [`FromIterator<PathEl>`] and [`Extend<PathEl>`]: |
| 52 | /// |
| 53 | /// ``` |
| 54 | /// use kurbo::{BezPath, Rect, Shape, Vec2}; |
| 55 | /// let accuracy = 0.1; |
| 56 | /// let rect = Rect::from_origin_size((0., 0.,), (10., 10.)); |
| 57 | /// // these are equivalent |
| 58 | /// let path1 = rect.to_path(accuracy); |
| 59 | /// let path2: BezPath = rect.path_elements(accuracy).collect(); |
| 60 | /// |
| 61 | /// // extend a path with another path: |
| 62 | /// let mut path = rect.to_path(accuracy); |
| 63 | /// let shifted_rect = rect + Vec2::new(5.0, 10.0); |
| 64 | /// path.extend(shifted_rect.to_path(accuracy)); |
| 65 | /// ``` |
| 66 | /// |
| 67 | /// You can iterate the elements of a `BezPath` with the [`iter`] method, |
| 68 | /// and the segments with the [`segments`] method: |
| 69 | /// |
| 70 | /// ``` |
| 71 | /// use kurbo::{BezPath, Line, PathEl, PathSeg, Point, Rect, Shape}; |
| 72 | /// let accuracy = 0.1; |
| 73 | /// let rect = Rect::from_origin_size((0., 0.,), (10., 10.)); |
| 74 | /// // these are equivalent |
| 75 | /// let path = rect.to_path(accuracy); |
| 76 | /// let first_el = PathEl::MoveTo(Point::ZERO); |
| 77 | /// let first_seg = PathSeg::Line(Line::new((0., 0.), (10., 0.))); |
| 78 | /// assert_eq!(path.iter().next(), Some(first_el)); |
| 79 | /// assert_eq!(path.segments().next(), Some(first_seg)); |
| 80 | /// ``` |
| 81 | /// In addition, if you have some other type that implements |
| 82 | /// `Iterator<Item=PathEl>`, you can adapt that to an iterator of segments with |
| 83 | /// the [`segments` free function]. |
| 84 | /// |
| 85 | /// # Advanced functionality |
| 86 | /// |
| 87 | /// In addition to the basic API, there are several useful pieces of advanced |
| 88 | /// functionality available on `BezPath`: |
| 89 | /// |
| 90 | /// - [`flatten`] does Bézier flattening, converting a curve to a series of |
| 91 | /// line segments |
| 92 | /// - [`intersect_line`] computes intersections of a path with a line, useful |
| 93 | /// for things like subdividing |
| 94 | /// |
| 95 | /// [A Primer on Bézier Curves]: https://pomax.github.io/bezierinfo/ |
| 96 | /// [`iter`]: BezPath::iter |
| 97 | /// [`segments`]: BezPath::segments |
| 98 | /// [`flatten`]: flatten |
| 99 | /// [`intersect_line`]: PathSeg::intersect_line |
| 100 | /// [`segments` free function]: segments |
| 101 | /// [`FromIterator<PathEl>`]: std::iter::FromIterator |
| 102 | /// [`Extend<PathEl>`]: std::iter::Extend |
| 103 | #[derive (Clone, Default, Debug, PartialEq)] |
| 104 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 105 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 106 | pub struct BezPath(Vec<PathEl>); |
| 107 | |
| 108 | /// The element of a Bézier path. |
| 109 | /// |
| 110 | /// A valid path has `MoveTo` at the beginning of each subpath. |
| 111 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 112 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 113 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 114 | pub enum PathEl { |
| 115 | /// Move directly to the point without drawing anything, starting a new |
| 116 | /// subpath. |
| 117 | MoveTo(Point), |
| 118 | /// Draw a line from the current location to the point. |
| 119 | LineTo(Point), |
| 120 | /// Draw a quadratic bezier using the current location and the two points. |
| 121 | QuadTo(Point, Point), |
| 122 | /// Draw a cubic bezier using the current location and the three points. |
| 123 | CurveTo(Point, Point, Point), |
| 124 | /// Close off the path. |
| 125 | ClosePath, |
| 126 | } |
| 127 | |
| 128 | /// A segment of a Bézier path. |
| 129 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 130 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 131 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 132 | pub enum PathSeg { |
| 133 | /// A line segment. |
| 134 | Line(Line), |
| 135 | /// A quadratic bezier segment. |
| 136 | Quad(QuadBez), |
| 137 | /// A cubic bezier segment. |
| 138 | Cubic(CubicBez), |
| 139 | } |
| 140 | |
| 141 | /// An intersection of a [`Line`] and a [`PathSeg`]. |
| 142 | /// |
| 143 | /// This can be generated with the [`PathSeg::intersect_line`] method. |
| 144 | #[derive (Debug, Clone, Copy)] |
| 145 | pub struct LineIntersection { |
| 146 | /// The 'time' that the intersection occurs, on the line. |
| 147 | /// |
| 148 | /// This value is in the range 0..1. |
| 149 | pub line_t: f64, |
| 150 | |
| 151 | /// The 'time' that the intersection occurs, on the path segment. |
| 152 | /// |
| 153 | /// This value is nominally in the range 0..1, although it may slightly exceed |
| 154 | /// that range at the boundaries of segments. |
| 155 | pub segment_t: f64, |
| 156 | } |
| 157 | |
| 158 | /// The minimum distance between two Bézier curves. |
| 159 | pub struct MinDistance { |
| 160 | /// The shortest distance between any two points on the two curves. |
| 161 | pub distance: f64, |
| 162 | /// The position of the nearest point on the first curve, as a parameter. |
| 163 | /// |
| 164 | /// To resolve this to a [`Point`], use [`ParamCurve::eval`]. |
| 165 | /// |
| 166 | /// [`ParamCurve::eval`]: crate::ParamCurve::eval |
| 167 | pub t1: f64, |
| 168 | /// The position of the nearest point on the second curve, as a parameter. |
| 169 | /// |
| 170 | /// To resolve this to a [`Point`], use [`ParamCurve::eval`]. |
| 171 | /// |
| 172 | /// [`ParamCurve::eval`]: crate::ParamCurve::eval |
| 173 | pub t2: f64, |
| 174 | } |
| 175 | |
| 176 | impl BezPath { |
| 177 | /// Create a new path. |
| 178 | pub fn new() -> BezPath { |
| 179 | Default::default() |
| 180 | } |
| 181 | |
| 182 | /// Create a path from a vector of path elements. |
| 183 | /// |
| 184 | /// `BezPath` also implements `FromIterator<PathEl>`, so it works with `collect`: |
| 185 | /// |
| 186 | /// ``` |
| 187 | /// // a very contrived example: |
| 188 | /// use kurbo::{BezPath, PathEl}; |
| 189 | /// |
| 190 | /// let path = BezPath::new(); |
| 191 | /// let as_vec: Vec<PathEl> = path.into_iter().collect(); |
| 192 | /// let back_to_path: BezPath = as_vec.into_iter().collect(); |
| 193 | /// ``` |
| 194 | pub fn from_vec(v: Vec<PathEl>) -> BezPath { |
| 195 | debug_assert!( |
| 196 | v.first().is_none() || matches!(v.first(), Some(PathEl::MoveTo(_))), |
| 197 | "BezPath must begin with MoveTo" |
| 198 | ); |
| 199 | BezPath(v) |
| 200 | } |
| 201 | |
| 202 | /// Removes the last [`PathEl`] from the path and returns it, or `None` if the path is empty. |
| 203 | pub fn pop(&mut self) -> Option<PathEl> { |
| 204 | self.0.pop() |
| 205 | } |
| 206 | |
| 207 | /// Push a generic path element onto the path. |
| 208 | pub fn push(&mut self, el: PathEl) { |
| 209 | self.0.push(el); |
| 210 | debug_assert!( |
| 211 | matches!(self.0.first(), Some(PathEl::MoveTo(_))), |
| 212 | "BezPath must begin with MoveTo" |
| 213 | ); |
| 214 | } |
| 215 | |
| 216 | /// Push a "move to" element onto the path. |
| 217 | pub fn move_to<P: Into<Point>>(&mut self, p: P) { |
| 218 | self.push(PathEl::MoveTo(p.into())); |
| 219 | } |
| 220 | |
| 221 | /// Push a "line to" element onto the path. |
| 222 | /// |
| 223 | /// Will panic with a debug assert when the path is empty and there is no |
| 224 | /// "move to" element on the path. |
| 225 | /// |
| 226 | /// If `line_to` is called immediately after `close_path` then the current |
| 227 | /// subpath starts at the initial point of the previous subpath. |
| 228 | pub fn line_to<P: Into<Point>>(&mut self, p: P) { |
| 229 | debug_assert!(!self.0.is_empty(), "uninitialized subpath (missing MoveTo)" ); |
| 230 | self.push(PathEl::LineTo(p.into())); |
| 231 | } |
| 232 | |
| 233 | /// Push a "quad to" element onto the path. |
| 234 | /// |
| 235 | /// Will panic with a debug assert when the path is empty and there is no |
| 236 | /// "move to" element on the path. |
| 237 | /// |
| 238 | /// If `quad_to` is called immediately after `close_path` then the current |
| 239 | /// subpath starts at the initial point of the previous subpath. |
| 240 | pub fn quad_to<P: Into<Point>>(&mut self, p1: P, p2: P) { |
| 241 | debug_assert!(!self.0.is_empty(), "uninitialized subpath (missing MoveTo)" ); |
| 242 | self.push(PathEl::QuadTo(p1.into(), p2.into())); |
| 243 | } |
| 244 | |
| 245 | /// Push a "curve to" element onto the path. |
| 246 | /// |
| 247 | /// Will panic with a debug assert when the path is empty and there is no |
| 248 | /// "move to" element on the path. |
| 249 | /// |
| 250 | /// If `curve_to` is called immediately after `close_path` then the current |
| 251 | /// subpath starts at the initial point of the previous subpath. |
| 252 | pub fn curve_to<P: Into<Point>>(&mut self, p1: P, p2: P, p3: P) { |
| 253 | debug_assert!(!self.0.is_empty(), "uninitialized subpath (missing MoveTo)" ); |
| 254 | self.push(PathEl::CurveTo(p1.into(), p2.into(), p3.into())); |
| 255 | } |
| 256 | |
| 257 | /// Push a "close path" element onto the path. |
| 258 | /// |
| 259 | /// Will panic with a debug assert when the path is empty and there is no |
| 260 | /// "move to" element on the path. |
| 261 | pub fn close_path(&mut self) { |
| 262 | debug_assert!(!self.0.is_empty(), "uninitialized subpath (missing MoveTo)" ); |
| 263 | self.push(PathEl::ClosePath); |
| 264 | } |
| 265 | |
| 266 | /// Get the path elements. |
| 267 | pub fn elements(&self) -> &[PathEl] { |
| 268 | &self.0 |
| 269 | } |
| 270 | |
| 271 | /// Get the path elements (mut version). |
| 272 | pub fn elements_mut(&mut self) -> &mut [PathEl] { |
| 273 | &mut self.0 |
| 274 | } |
| 275 | |
| 276 | /// Returns an iterator over the path's elements. |
| 277 | pub fn iter(&self) -> impl Iterator<Item = PathEl> + Clone + '_ { |
| 278 | self.0.iter().copied() |
| 279 | } |
| 280 | |
| 281 | /// Iterate over the path segments. |
| 282 | pub fn segments(&self) -> impl Iterator<Item = PathSeg> + Clone + '_ { |
| 283 | segments(self.iter()) |
| 284 | } |
| 285 | |
| 286 | /// Shorten the path, keeping the first `len` elements. |
| 287 | pub fn truncate(&mut self, len: usize) { |
| 288 | self.0.truncate(len); |
| 289 | } |
| 290 | |
| 291 | /// Flatten the path, invoking the callback repeatedly. |
| 292 | /// |
| 293 | /// See [`flatten`] for more discussion. |
| 294 | #[deprecated (since = "0.11.1" , note = "use the free function flatten instead" )] |
| 295 | pub fn flatten(&self, tolerance: f64, callback: impl FnMut(PathEl)) { |
| 296 | flatten(self, tolerance, callback); |
| 297 | } |
| 298 | |
| 299 | /// Get the segment at the given element index. |
| 300 | /// |
| 301 | /// If you need to access all segments, [`segments`] provides a better |
| 302 | /// API. This is intended for random access of specific elements, for clients |
| 303 | /// that require this specifically. |
| 304 | /// |
| 305 | /// **note**: This returns the segment that ends at the provided element |
| 306 | /// index. In effect this means it is *1-indexed*: since no segment ends at |
| 307 | /// the first element (which is presumed to be a `MoveTo`) `get_seg(0)` will |
| 308 | /// always return `None`. |
| 309 | pub fn get_seg(&self, ix: usize) -> Option<PathSeg> { |
| 310 | if ix == 0 || ix >= self.0.len() { |
| 311 | return None; |
| 312 | } |
| 313 | let last = match self.0[ix - 1] { |
| 314 | PathEl::MoveTo(p) => p, |
| 315 | PathEl::LineTo(p) => p, |
| 316 | PathEl::QuadTo(_, p2) => p2, |
| 317 | PathEl::CurveTo(_, _, p3) => p3, |
| 318 | _ => return None, |
| 319 | }; |
| 320 | match self.0[ix] { |
| 321 | PathEl::LineTo(p) => Some(PathSeg::Line(Line::new(last, p))), |
| 322 | PathEl::QuadTo(p1, p2) => Some(PathSeg::Quad(QuadBez::new(last, p1, p2))), |
| 323 | PathEl::CurveTo(p1, p2, p3) => Some(PathSeg::Cubic(CubicBez::new(last, p1, p2, p3))), |
| 324 | PathEl::ClosePath => self.0[..ix].iter().rev().find_map(|el| match *el { |
| 325 | PathEl::MoveTo(start) if start != last => { |
| 326 | Some(PathSeg::Line(Line::new(last, start))) |
| 327 | } |
| 328 | _ => None, |
| 329 | }), |
| 330 | _ => None, |
| 331 | } |
| 332 | } |
| 333 | |
| 334 | /// Returns `true` if the path contains no segments. |
| 335 | pub fn is_empty(&self) -> bool { |
| 336 | self.0 |
| 337 | .iter() |
| 338 | .all(|el| matches!(el, PathEl::MoveTo(..) | PathEl::ClosePath)) |
| 339 | } |
| 340 | |
| 341 | /// Apply an affine transform to the path. |
| 342 | pub fn apply_affine(&mut self, affine: Affine) { |
| 343 | for el in self.0.iter_mut() { |
| 344 | *el = affine * (*el); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | /// Is this path finite? |
| 349 | #[inline ] |
| 350 | pub fn is_finite(&self) -> bool { |
| 351 | self.0.iter().all(|v| v.is_finite()) |
| 352 | } |
| 353 | |
| 354 | /// Is this path NaN? |
| 355 | #[inline ] |
| 356 | pub fn is_nan(&self) -> bool { |
| 357 | self.0.iter().any(|v| v.is_nan()) |
| 358 | } |
| 359 | |
| 360 | /// Returns a rectangle that conservatively encloses the path. |
| 361 | /// |
| 362 | /// Unlike the `bounding_box` method, this uses control points directly |
| 363 | /// rather than computing tight bounds for curve elements. |
| 364 | pub fn control_box(&self) -> Rect { |
| 365 | let mut cbox: Option<Rect> = None; |
| 366 | let mut add_pts = |pts: &[Point]| { |
| 367 | for pt in pts { |
| 368 | cbox = match cbox { |
| 369 | Some(cbox) => Some(cbox.union_pt(*pt)), |
| 370 | _ => Some(Rect::from_points(*pt, *pt)), |
| 371 | }; |
| 372 | } |
| 373 | }; |
| 374 | for &el in self.elements() { |
| 375 | match el { |
| 376 | PathEl::MoveTo(p0) | PathEl::LineTo(p0) => add_pts(&[p0]), |
| 377 | PathEl::QuadTo(p0, p1) => add_pts(&[p0, p1]), |
| 378 | PathEl::CurveTo(p0, p1, p2) => add_pts(&[p0, p1, p2]), |
| 379 | PathEl::ClosePath => {} |
| 380 | } |
| 381 | } |
| 382 | cbox.unwrap_or_default() |
| 383 | } |
| 384 | |
| 385 | /// Returns a new path with the winding direction of all subpaths reversed. |
| 386 | pub fn reverse_subpaths(&self) -> BezPath { |
| 387 | let elements = self.elements(); |
| 388 | let mut start_ix = 1; |
| 389 | let mut start_pt = Point::default(); |
| 390 | let mut reversed = BezPath(Vec::with_capacity(elements.len())); |
| 391 | // Pending move is used to capture degenerate subpaths that should |
| 392 | // remain in the reversed output. |
| 393 | let mut pending_move = false; |
| 394 | for (ix, el) in elements.iter().enumerate() { |
| 395 | match el { |
| 396 | PathEl::MoveTo(pt) => { |
| 397 | if pending_move { |
| 398 | reversed.push(PathEl::MoveTo(start_pt)); |
| 399 | } |
| 400 | if start_ix < ix { |
| 401 | reverse_subpath(start_pt, &elements[start_ix..ix], &mut reversed); |
| 402 | } |
| 403 | pending_move = true; |
| 404 | start_pt = *pt; |
| 405 | start_ix = ix + 1; |
| 406 | } |
| 407 | PathEl::ClosePath => { |
| 408 | if start_ix <= ix { |
| 409 | reverse_subpath(start_pt, &elements[start_ix..ix], &mut reversed); |
| 410 | } |
| 411 | reversed.push(PathEl::ClosePath); |
| 412 | start_ix = ix + 1; |
| 413 | pending_move = false; |
| 414 | } |
| 415 | _ => { |
| 416 | pending_move = false; |
| 417 | } |
| 418 | } |
| 419 | } |
| 420 | if start_ix < elements.len() { |
| 421 | reverse_subpath(start_pt, &elements[start_ix..], &mut reversed); |
| 422 | } else if pending_move { |
| 423 | reversed.push(PathEl::MoveTo(start_pt)); |
| 424 | } |
| 425 | reversed |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /// Helper for reversing a subpath. |
| 430 | /// |
| 431 | /// The `els` parameter must not contain any `MoveTo` or `ClosePath` elements. |
| 432 | fn reverse_subpath(start_pt: Point, els: &[PathEl], reversed: &mut BezPath) { |
| 433 | let end_pt: Point = els.last().and_then(|el| el.end_point()).unwrap_or(default:start_pt); |
| 434 | reversed.push(el:PathEl::MoveTo(end_pt)); |
| 435 | for (ix: usize, el: &PathEl) in els.iter().enumerate().rev() { |
| 436 | let end_pt: Point = if ix > 0 { |
| 437 | els[ix - 1].end_point().unwrap() |
| 438 | } else { |
| 439 | start_pt |
| 440 | }; |
| 441 | match el { |
| 442 | PathEl::LineTo(_) => reversed.push(el:PathEl::LineTo(end_pt)), |
| 443 | PathEl::QuadTo(c0: &Point, _) => reversed.push(el:PathEl::QuadTo(*c0, end_pt)), |
| 444 | PathEl::CurveTo(c0: &Point, c1: &Point, _) => reversed.push(el:PathEl::CurveTo(*c1, *c0, end_pt)), |
| 445 | _ => panic!("reverse_subpath expects MoveTo and ClosePath to be removed" ), |
| 446 | } |
| 447 | } |
| 448 | } |
| 449 | |
| 450 | impl FromIterator<PathEl> for BezPath { |
| 451 | fn from_iter<T: IntoIterator<Item = PathEl>>(iter: T) -> Self { |
| 452 | let el_vec: Vec<_> = iter.into_iter().collect(); |
| 453 | BezPath::from_vec(el_vec) |
| 454 | } |
| 455 | } |
| 456 | |
| 457 | /// Allow iteration over references to `BezPath`. |
| 458 | /// |
| 459 | /// Note: the semantics are slightly different from simply iterating over the |
| 460 | /// slice, as it returns `PathEl` items, rather than references. |
| 461 | impl<'a> IntoIterator for &'a BezPath { |
| 462 | type Item = PathEl; |
| 463 | type IntoIter = core::iter::Cloned<core::slice::Iter<'a, PathEl>>; |
| 464 | |
| 465 | fn into_iter(self) -> Self::IntoIter { |
| 466 | self.elements().iter().cloned() |
| 467 | } |
| 468 | } |
| 469 | |
| 470 | impl IntoIterator for BezPath { |
| 471 | type Item = PathEl; |
| 472 | type IntoIter = alloc::vec::IntoIter<PathEl>; |
| 473 | |
| 474 | fn into_iter(self) -> Self::IntoIter { |
| 475 | self.0.into_iter() |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | impl Extend<PathEl> for BezPath { |
| 480 | fn extend<I: IntoIterator<Item = PathEl>>(&mut self, iter: I) { |
| 481 | self.0.extend(iter); |
| 482 | } |
| 483 | } |
| 484 | |
| 485 | /// Proportion of tolerance budget that goes to cubic to quadratic conversion. |
| 486 | const TO_QUAD_TOL: f64 = 0.1; |
| 487 | |
| 488 | /// Flatten the path, invoking the callback repeatedly. |
| 489 | /// |
| 490 | /// Flattening is the action of approximating a curve with a succession of line segments. |
| 491 | /// |
| 492 | /// <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 120 30" height="30mm" width="120mm"> |
| 493 | /// <path d="M26.7 24.94l.82-11.15M44.46 5.1L33.8 7.34" fill="none" stroke="#55d400" stroke-width=".5"/> |
| 494 | /// <path d="M26.7 24.94c.97-11.13 7.17-17.6 17.76-19.84M75.27 24.94l1.13-5.5 2.67-5.48 4-4.42L88 6.7l5.02-1.6" fill="none" stroke="#000"/> |
| 495 | /// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 496 | /// <path d="M77.57 19.37a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> |
| 497 | /// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 498 | /// <path d="M80.22 13.93a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.08 1.08" color="#000" fill="#fff"/> |
| 499 | /// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 500 | /// <path d="M84.08 9.55a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
| 501 | /// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 502 | /// <path d="M89.1 6.66a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.08-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> |
| 503 | /// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 504 | /// <path d="M94.4 5a1.1 1.1 0 0 1-1.1 1.1A1.1 1.1 0 0 1 92.23 5a1.1 1.1 0 0 1 1.08-1.08A1.1 1.1 0 0 1 94.4 5" color="#000" fill="#fff"/> |
| 505 | /// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 506 | /// <path d="M76.44 25.13a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
| 507 | /// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 508 | /// <path d="M27.78 24.9a1.1 1.1 0 0 1-1.08 1.08 1.1 1.1 0 0 1-1.1-1.08 1.1 1.1 0 0 1 1.1-1.1 1.1 1.1 0 0 1 1.08 1.1" color="#000" fill="#fff"/> |
| 509 | /// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 510 | /// <path d="M45.4 5.14a1.1 1.1 0 0 1-1.08 1.1 1.1 1.1 0 0 1-1.1-1.1 1.1 1.1 0 0 1 1.1-1.08 1.1 1.1 0 0 1 1.1 1.08" color="#000" fill="#fff"/> |
| 511 | /// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 512 | /// <path d="M28.67 13.8a1.1 1.1 0 0 1-1.1 1.08 1.1 1.1 0 0 1-1.08-1.08 1.1 1.1 0 0 1 1.08-1.1 1.1 1.1 0 0 1 1.1 1.1" color="#000" fill="#fff"/> |
| 513 | /// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="none" stroke="#030303" stroke-linecap="round" stroke-opacity=".5"/> |
| 514 | /// <path d="M35 7.32a1.1 1.1 0 0 1-1.1 1.1 1.1 1.1 0 0 1-1.08-1.1 1.1 1.1 0 0 1 1.1-1.1A1.1 1.1 0 0 1 35 7.33" color="#000" fill="#fff"/> |
| 515 | /// <text style="line-height:6.61458302px" x="35.74" y="284.49" font-size="5.29" font-family="Sans" letter-spacing="0" word-spacing="0" fill="#b3b3b3" stroke-width=".26" transform="translate(19.595 -267)"> |
| 516 | /// <tspan x="35.74" y="284.49" font-size="10.58">→</tspan> |
| 517 | /// </text> |
| 518 | /// </svg> |
| 519 | /// |
| 520 | /// The tolerance value controls the maximum distance between the curved input |
| 521 | /// segments and their polyline approximations. (In technical terms, this is the |
| 522 | /// Hausdorff distance). The algorithm attempts to bound this distance between |
| 523 | /// by `tolerance` but this is not absolutely guaranteed. The appropriate value |
| 524 | /// depends on the use, but for antialiased rendering, a value of 0.25 has been |
| 525 | /// determined to give good results. The number of segments tends to scale as the |
| 526 | /// inverse square root of tolerance. |
| 527 | /// |
| 528 | /// <svg viewBox="0 0 47.5 13.2" height="100" width="350" xmlns="http://www.w3.org/2000/svg"> |
| 529 | /// <path d="M-2.44 9.53c16.27-8.5 39.68-7.93 52.13 1.9" fill="none" stroke="#dde9af" stroke-width="4.6"/> |
| 530 | /// <path d="M-1.97 9.3C14.28 1.03 37.36 1.7 49.7 11.4" fill="none" stroke="#00d400" stroke-width=".57" stroke-linecap="round" stroke-dasharray="4.6, 2.291434"/> |
| 531 | /// <path d="M-1.94 10.46L6.2 6.08l28.32-1.4 15.17 6.74" fill="none" stroke="#000" stroke-width=".6"/> |
| 532 | /// <path d="M6.83 6.57a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.25" color="#000" stroke="#000" stroke-width=".57" stroke-linecap="round" stroke-opacity=".5"/> |
| 533 | /// <path d="M35.35 5.3a.9.9 0 0 1-1.25.15.9.9 0 0 1-.15-1.25.9.9 0 0 1 1.25-.15.9.9 0 0 1 .15 1.24" color="#000" stroke="#000" stroke-width=".6" stroke-opacity=".5"/> |
| 534 | /// <g fill="none" stroke="#ff7f2a" stroke-width=".26"> |
| 535 | /// <path d="M20.4 3.8l.1 1.83M19.9 4.28l.48-.56.57.52M21.02 5.18l-.5.56-.6-.53" stroke-width=".2978872"/> |
| 536 | /// </g> |
| 537 | /// </svg> |
| 538 | /// |
| 539 | /// The callback will be called in order with each element of the generated |
| 540 | /// path. Because the result is made of polylines, these will be straight-line |
| 541 | /// path elements only, no curves. |
| 542 | /// |
| 543 | /// This algorithm is based on the blog post [Flattening quadratic Béziers] |
| 544 | /// but with some refinements. For one, there is a more careful approximation |
| 545 | /// at cusps. For two, the algorithm is extended to work with cubic Béziers |
| 546 | /// as well, by first subdividing into quadratics and then computing the |
| 547 | /// subdivision of each quadratic. However, as a clever trick, these quadratics |
| 548 | /// are subdivided fractionally, and their endpoints are not included. |
| 549 | /// |
| 550 | /// TODO: write a paper explaining this in more detail. |
| 551 | /// |
| 552 | /// [Flattening quadratic Béziers]: https://raphlinus.github.io/graphics/curves/2019/12/23/flatten-quadbez.html |
| 553 | pub fn flatten( |
| 554 | path: impl IntoIterator<Item = PathEl>, |
| 555 | tolerance: f64, |
| 556 | mut callback: impl FnMut(PathEl), |
| 557 | ) { |
| 558 | let sqrt_tol = tolerance.sqrt(); |
| 559 | let mut last_pt = None; |
| 560 | let mut quad_buf = Vec::new(); |
| 561 | for el in path { |
| 562 | match el { |
| 563 | PathEl::MoveTo(p) => { |
| 564 | last_pt = Some(p); |
| 565 | callback(PathEl::MoveTo(p)); |
| 566 | } |
| 567 | PathEl::LineTo(p) => { |
| 568 | last_pt = Some(p); |
| 569 | callback(PathEl::LineTo(p)); |
| 570 | } |
| 571 | PathEl::QuadTo(p1, p2) => { |
| 572 | if let Some(p0) = last_pt { |
| 573 | let q = QuadBez::new(p0, p1, p2); |
| 574 | let params = q.estimate_subdiv(sqrt_tol); |
| 575 | let n = ((0.5 * params.val / sqrt_tol).ceil() as usize).max(1); |
| 576 | let step = 1.0 / (n as f64); |
| 577 | for i in 1..n { |
| 578 | let u = (i as f64) * step; |
| 579 | let t = q.determine_subdiv_t(¶ms, u); |
| 580 | let p = q.eval(t); |
| 581 | callback(PathEl::LineTo(p)); |
| 582 | } |
| 583 | callback(PathEl::LineTo(p2)); |
| 584 | } |
| 585 | last_pt = Some(p2); |
| 586 | } |
| 587 | PathEl::CurveTo(p1, p2, p3) => { |
| 588 | if let Some(p0) = last_pt { |
| 589 | let c = CubicBez::new(p0, p1, p2, p3); |
| 590 | |
| 591 | // Subdivide into quadratics, and estimate the number of |
| 592 | // subdivisions required for each, summing to arrive at an |
| 593 | // estimate for the number of subdivisions for the cubic. |
| 594 | // Also retain these parameters for later. |
| 595 | let iter = c.to_quads(tolerance * TO_QUAD_TOL); |
| 596 | quad_buf.clear(); |
| 597 | quad_buf.reserve(iter.size_hint().0); |
| 598 | let sqrt_remain_tol = sqrt_tol * (1.0 - TO_QUAD_TOL).sqrt(); |
| 599 | let mut sum = 0.0; |
| 600 | for (_, _, q) in iter { |
| 601 | let params = q.estimate_subdiv(sqrt_remain_tol); |
| 602 | sum += params.val; |
| 603 | quad_buf.push((q, params)); |
| 604 | } |
| 605 | let n = ((0.5 * sum / sqrt_remain_tol).ceil() as usize).max(1); |
| 606 | |
| 607 | // Iterate through the quadratics, outputting the points of |
| 608 | // subdivisions that fall within that quadratic. |
| 609 | let step = sum / (n as f64); |
| 610 | let mut i = 1; |
| 611 | let mut val_sum = 0.0; |
| 612 | for (q, params) in &quad_buf { |
| 613 | let mut target = (i as f64) * step; |
| 614 | let recip_val = params.val.recip(); |
| 615 | while target < val_sum + params.val { |
| 616 | let u = (target - val_sum) * recip_val; |
| 617 | let t = q.determine_subdiv_t(params, u); |
| 618 | let p = q.eval(t); |
| 619 | callback(PathEl::LineTo(p)); |
| 620 | i += 1; |
| 621 | if i == n + 1 { |
| 622 | break; |
| 623 | } |
| 624 | target = (i as f64) * step; |
| 625 | } |
| 626 | val_sum += params.val; |
| 627 | } |
| 628 | callback(PathEl::LineTo(p3)); |
| 629 | } |
| 630 | last_pt = Some(p3); |
| 631 | } |
| 632 | PathEl::ClosePath => { |
| 633 | last_pt = None; |
| 634 | callback(PathEl::ClosePath); |
| 635 | } |
| 636 | } |
| 637 | } |
| 638 | } |
| 639 | |
| 640 | impl Mul<PathEl> for Affine { |
| 641 | type Output = PathEl; |
| 642 | |
| 643 | fn mul(self, other: PathEl) -> PathEl { |
| 644 | match other { |
| 645 | PathEl::MoveTo(p: Point) => PathEl::MoveTo(self * p), |
| 646 | PathEl::LineTo(p: Point) => PathEl::LineTo(self * p), |
| 647 | PathEl::QuadTo(p1: Point, p2: Point) => PathEl::QuadTo(self * p1, self * p2), |
| 648 | PathEl::CurveTo(p1: Point, p2: Point, p3: Point) => PathEl::CurveTo(self * p1, self * p2, self * p3), |
| 649 | PathEl::ClosePath => PathEl::ClosePath, |
| 650 | } |
| 651 | } |
| 652 | } |
| 653 | |
| 654 | impl Mul<PathSeg> for Affine { |
| 655 | type Output = PathSeg; |
| 656 | |
| 657 | fn mul(self, other: PathSeg) -> PathSeg { |
| 658 | match other { |
| 659 | PathSeg::Line(line: Line) => PathSeg::Line(self * line), |
| 660 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(self * quad), |
| 661 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(self * cubic), |
| 662 | } |
| 663 | } |
| 664 | } |
| 665 | |
| 666 | impl Mul<BezPath> for Affine { |
| 667 | type Output = BezPath; |
| 668 | |
| 669 | fn mul(self, other: BezPath) -> BezPath { |
| 670 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
| 671 | } |
| 672 | } |
| 673 | |
| 674 | impl<'a> Mul<&'a BezPath> for Affine { |
| 675 | type Output = BezPath; |
| 676 | |
| 677 | fn mul(self, other: &BezPath) -> BezPath { |
| 678 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
| 679 | } |
| 680 | } |
| 681 | |
| 682 | impl Mul<PathEl> for TranslateScale { |
| 683 | type Output = PathEl; |
| 684 | |
| 685 | fn mul(self, other: PathEl) -> PathEl { |
| 686 | match other { |
| 687 | PathEl::MoveTo(p: Point) => PathEl::MoveTo(self * p), |
| 688 | PathEl::LineTo(p: Point) => PathEl::LineTo(self * p), |
| 689 | PathEl::QuadTo(p1: Point, p2: Point) => PathEl::QuadTo(self * p1, self * p2), |
| 690 | PathEl::CurveTo(p1: Point, p2: Point, p3: Point) => PathEl::CurveTo(self * p1, self * p2, self * p3), |
| 691 | PathEl::ClosePath => PathEl::ClosePath, |
| 692 | } |
| 693 | } |
| 694 | } |
| 695 | |
| 696 | impl Mul<PathSeg> for TranslateScale { |
| 697 | type Output = PathSeg; |
| 698 | |
| 699 | fn mul(self, other: PathSeg) -> PathSeg { |
| 700 | match other { |
| 701 | PathSeg::Line(line: Line) => PathSeg::Line(self * line), |
| 702 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(self * quad), |
| 703 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(self * cubic), |
| 704 | } |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | impl Mul<BezPath> for TranslateScale { |
| 709 | type Output = BezPath; |
| 710 | |
| 711 | fn mul(self, other: BezPath) -> BezPath { |
| 712 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
| 713 | } |
| 714 | } |
| 715 | |
| 716 | impl<'a> Mul<&'a BezPath> for TranslateScale { |
| 717 | type Output = BezPath; |
| 718 | |
| 719 | fn mul(self, other: &BezPath) -> BezPath { |
| 720 | BezPath(other.0.iter().map(|&el: PathEl| self * el).collect()) |
| 721 | } |
| 722 | } |
| 723 | |
| 724 | /// Transform an iterator over path elements into one over path |
| 725 | /// segments. |
| 726 | /// |
| 727 | /// See also [`BezPath::segments`]. |
| 728 | /// This signature is a bit more general, allowing `&[PathEl]` slices |
| 729 | /// and other iterators yielding `PathEl`. |
| 730 | pub fn segments<I>(elements: I) -> Segments<I::IntoIter> |
| 731 | where |
| 732 | I: IntoIterator<Item = PathEl>, |
| 733 | { |
| 734 | Segments { |
| 735 | elements: elements.into_iter(), |
| 736 | start_last: None, |
| 737 | } |
| 738 | } |
| 739 | |
| 740 | /// An iterator that transforms path elements to path segments. |
| 741 | /// |
| 742 | /// This struct is created by the [`segments`] function. |
| 743 | #[derive (Clone)] |
| 744 | pub struct Segments<I: Iterator<Item = PathEl>> { |
| 745 | elements: I, |
| 746 | start_last: Option<(Point, Point)>, |
| 747 | } |
| 748 | |
| 749 | impl<I: Iterator<Item = PathEl>> Iterator for Segments<I> { |
| 750 | type Item = PathSeg; |
| 751 | |
| 752 | fn next(&mut self) -> Option<PathSeg> { |
| 753 | for el in &mut self.elements { |
| 754 | // We first need to check whether this is the first |
| 755 | // path element we see to fill in the start position. |
| 756 | let (start, last) = self.start_last.get_or_insert_with(|| { |
| 757 | let point = match el { |
| 758 | PathEl::MoveTo(p) => p, |
| 759 | PathEl::LineTo(p) => p, |
| 760 | PathEl::QuadTo(_, p2) => p2, |
| 761 | PathEl::CurveTo(_, _, p3) => p3, |
| 762 | PathEl::ClosePath => panic!("Can't start a segment on a ClosePath" ), |
| 763 | }; |
| 764 | (point, point) |
| 765 | }); |
| 766 | |
| 767 | return Some(match el { |
| 768 | PathEl::MoveTo(p) => { |
| 769 | *start = p; |
| 770 | *last = p; |
| 771 | continue; |
| 772 | } |
| 773 | PathEl::LineTo(p) => PathSeg::Line(Line::new(mem::replace(last, p), p)), |
| 774 | PathEl::QuadTo(p1, p2) => { |
| 775 | PathSeg::Quad(QuadBez::new(mem::replace(last, p2), p1, p2)) |
| 776 | } |
| 777 | PathEl::CurveTo(p1, p2, p3) => { |
| 778 | PathSeg::Cubic(CubicBez::new(mem::replace(last, p3), p1, p2, p3)) |
| 779 | } |
| 780 | PathEl::ClosePath => { |
| 781 | if *last != *start { |
| 782 | PathSeg::Line(Line::new(mem::replace(last, *start), *start)) |
| 783 | } else { |
| 784 | continue; |
| 785 | } |
| 786 | } |
| 787 | }); |
| 788 | } |
| 789 | |
| 790 | None |
| 791 | } |
| 792 | } |
| 793 | |
| 794 | impl<I: Iterator<Item = PathEl>> Segments<I> { |
| 795 | /// Here, `accuracy` specifies the accuracy for each Bézier segment. At worst, |
| 796 | /// the total error is `accuracy` times the number of Bézier segments. |
| 797 | |
| 798 | // TODO: pub? Or is this subsumed by method of &[PathEl]? |
| 799 | pub(crate) fn perimeter(self, accuracy: f64) -> f64 { |
| 800 | self.map(|seg| seg.arclen(accuracy)).sum() |
| 801 | } |
| 802 | |
| 803 | // Same |
| 804 | pub(crate) fn area(self) -> f64 { |
| 805 | self.map(|seg| seg.signed_area()).sum() |
| 806 | } |
| 807 | |
| 808 | // Same |
| 809 | pub(crate) fn winding(self, p: Point) -> i32 { |
| 810 | self.map(|seg| seg.winding(p)).sum() |
| 811 | } |
| 812 | |
| 813 | // Same |
| 814 | pub(crate) fn bounding_box(self) -> Rect { |
| 815 | let mut bbox: Option<Rect> = None; |
| 816 | for seg in self { |
| 817 | let seg_bb = ParamCurveExtrema::bounding_box(&seg); |
| 818 | if let Some(bb) = bbox { |
| 819 | bbox = Some(bb.union(seg_bb)); |
| 820 | } else { |
| 821 | bbox = Some(seg_bb); |
| 822 | } |
| 823 | } |
| 824 | bbox.unwrap_or_default() |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | impl ParamCurve for PathSeg { |
| 829 | fn eval(&self, t: f64) -> Point { |
| 830 | match *self { |
| 831 | PathSeg::Line(line: Line) => line.eval(t), |
| 832 | PathSeg::Quad(quad: QuadBez) => quad.eval(t), |
| 833 | PathSeg::Cubic(cubic: CubicBez) => cubic.eval(t), |
| 834 | } |
| 835 | } |
| 836 | |
| 837 | fn subsegment(&self, range: Range<f64>) -> PathSeg { |
| 838 | match *self { |
| 839 | PathSeg::Line(line: Line) => PathSeg::Line(line.subsegment(range)), |
| 840 | PathSeg::Quad(quad: QuadBez) => PathSeg::Quad(quad.subsegment(range)), |
| 841 | PathSeg::Cubic(cubic: CubicBez) => PathSeg::Cubic(cubic.subsegment(range)), |
| 842 | } |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | impl ParamCurveArclen for PathSeg { |
| 847 | fn arclen(&self, accuracy: f64) -> f64 { |
| 848 | match *self { |
| 849 | PathSeg::Line(line: Line) => line.arclen(accuracy), |
| 850 | PathSeg::Quad(quad: QuadBez) => quad.arclen(accuracy), |
| 851 | PathSeg::Cubic(cubic: CubicBez) => cubic.arclen(accuracy), |
| 852 | } |
| 853 | } |
| 854 | |
| 855 | fn inv_arclen(&self, arclen: f64, accuracy: f64) -> f64 { |
| 856 | match *self { |
| 857 | PathSeg::Line(line: Line) => line.inv_arclen(arclen, accuracy), |
| 858 | PathSeg::Quad(quad: QuadBez) => quad.inv_arclen(arclen, accuracy), |
| 859 | PathSeg::Cubic(cubic: CubicBez) => cubic.inv_arclen(arclen, accuracy), |
| 860 | } |
| 861 | } |
| 862 | } |
| 863 | |
| 864 | impl ParamCurveArea for PathSeg { |
| 865 | fn signed_area(&self) -> f64 { |
| 866 | match *self { |
| 867 | PathSeg::Line(line: Line) => line.signed_area(), |
| 868 | PathSeg::Quad(quad: QuadBez) => quad.signed_area(), |
| 869 | PathSeg::Cubic(cubic: CubicBez) => cubic.signed_area(), |
| 870 | } |
| 871 | } |
| 872 | } |
| 873 | |
| 874 | impl ParamCurveNearest for PathSeg { |
| 875 | fn nearest(&self, p: Point, accuracy: f64) -> Nearest { |
| 876 | match *self { |
| 877 | PathSeg::Line(line: Line) => line.nearest(p, accuracy), |
| 878 | PathSeg::Quad(quad: QuadBez) => quad.nearest(p, accuracy), |
| 879 | PathSeg::Cubic(cubic: CubicBez) => cubic.nearest(p, accuracy), |
| 880 | } |
| 881 | } |
| 882 | } |
| 883 | |
| 884 | impl ParamCurveExtrema for PathSeg { |
| 885 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> { |
| 886 | match *self { |
| 887 | PathSeg::Line(line: Line) => line.extrema(), |
| 888 | PathSeg::Quad(quad: QuadBez) => quad.extrema(), |
| 889 | PathSeg::Cubic(cubic: CubicBez) => cubic.extrema(), |
| 890 | } |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | impl PathSeg { |
| 895 | /// Get the [`PathEl`] that is equivalent to discarding the segment start point. |
| 896 | pub fn as_path_el(&self) -> PathEl { |
| 897 | match self { |
| 898 | PathSeg::Line(line) => PathEl::LineTo(line.p1), |
| 899 | PathSeg::Quad(q) => PathEl::QuadTo(q.p1, q.p2), |
| 900 | PathSeg::Cubic(c) => PathEl::CurveTo(c.p1, c.p2, c.p3), |
| 901 | } |
| 902 | } |
| 903 | |
| 904 | /// Returns a new `PathSeg` describing the same path as `self`, but with |
| 905 | /// the points reversed. |
| 906 | pub fn reverse(&self) -> PathSeg { |
| 907 | match self { |
| 908 | PathSeg::Line(Line { p0, p1 }) => PathSeg::Line(Line::new(*p1, *p0)), |
| 909 | PathSeg::Quad(q) => PathSeg::Quad(QuadBez::new(q.p2, q.p1, q.p0)), |
| 910 | PathSeg::Cubic(c) => PathSeg::Cubic(CubicBez::new(c.p3, c.p2, c.p1, c.p0)), |
| 911 | } |
| 912 | } |
| 913 | |
| 914 | /// Convert this segment to a cubic bezier. |
| 915 | pub fn to_cubic(&self) -> CubicBez { |
| 916 | match *self { |
| 917 | PathSeg::Line(Line { p0, p1 }) => CubicBez::new(p0, p0, p1, p1), |
| 918 | PathSeg::Cubic(c) => c, |
| 919 | PathSeg::Quad(q) => q.raise(), |
| 920 | } |
| 921 | } |
| 922 | |
| 923 | // Assumes split at extrema. |
| 924 | fn winding_inner(&self, p: Point) -> i32 { |
| 925 | let start = self.start(); |
| 926 | let end = self.end(); |
| 927 | let sign = if end.y > start.y { |
| 928 | if p.y < start.y || p.y >= end.y { |
| 929 | return 0; |
| 930 | } |
| 931 | -1 |
| 932 | } else if end.y < start.y { |
| 933 | if p.y < end.y || p.y >= start.y { |
| 934 | return 0; |
| 935 | } |
| 936 | 1 |
| 937 | } else { |
| 938 | return 0; |
| 939 | }; |
| 940 | match *self { |
| 941 | PathSeg::Line(_line) => { |
| 942 | if p.x < start.x.min(end.x) { |
| 943 | return 0; |
| 944 | } |
| 945 | if p.x >= start.x.max(end.x) { |
| 946 | return sign; |
| 947 | } |
| 948 | // line equation ax + by = c |
| 949 | let a = end.y - start.y; |
| 950 | let b = start.x - end.x; |
| 951 | let c = a * start.x + b * start.y; |
| 952 | if (a * p.x + b * p.y - c) * (sign as f64) <= 0.0 { |
| 953 | sign |
| 954 | } else { |
| 955 | 0 |
| 956 | } |
| 957 | } |
| 958 | PathSeg::Quad(quad) => { |
| 959 | let p1 = quad.p1; |
| 960 | if p.x < start.x.min(end.x).min(p1.x) { |
| 961 | return 0; |
| 962 | } |
| 963 | if p.x >= start.x.max(end.x).max(p1.x) { |
| 964 | return sign; |
| 965 | } |
| 966 | let a = end.y - 2.0 * p1.y + start.y; |
| 967 | let b = 2.0 * (p1.y - start.y); |
| 968 | let c = start.y - p.y; |
| 969 | for t in solve_quadratic(c, b, a) { |
| 970 | if (0.0..=1.0).contains(&t) { |
| 971 | let x = quad.eval(t).x; |
| 972 | if p.x >= x { |
| 973 | return sign; |
| 974 | } else { |
| 975 | return 0; |
| 976 | } |
| 977 | } |
| 978 | } |
| 979 | 0 |
| 980 | } |
| 981 | PathSeg::Cubic(cubic) => { |
| 982 | let p1 = cubic.p1; |
| 983 | let p2 = cubic.p2; |
| 984 | if p.x < start.x.min(end.x).min(p1.x).min(p2.x) { |
| 985 | return 0; |
| 986 | } |
| 987 | if p.x >= start.x.max(end.x).max(p1.x).max(p2.x) { |
| 988 | return sign; |
| 989 | } |
| 990 | let a = end.y - 3.0 * p2.y + 3.0 * p1.y - start.y; |
| 991 | let b = 3.0 * (p2.y - 2.0 * p1.y + start.y); |
| 992 | let c = 3.0 * (p1.y - start.y); |
| 993 | let d = start.y - p.y; |
| 994 | for t in solve_cubic(d, c, b, a) { |
| 995 | if (0.0..=1.0).contains(&t) { |
| 996 | let x = cubic.eval(t).x; |
| 997 | if p.x >= x { |
| 998 | return sign; |
| 999 | } else { |
| 1000 | return 0; |
| 1001 | } |
| 1002 | } |
| 1003 | } |
| 1004 | 0 |
| 1005 | } |
| 1006 | } |
| 1007 | } |
| 1008 | |
| 1009 | /// Compute the winding number contribution of a single segment. |
| 1010 | /// |
| 1011 | /// Cast a ray to the left and count intersections. |
| 1012 | fn winding(&self, p: Point) -> i32 { |
| 1013 | self.extrema_ranges() |
| 1014 | .into_iter() |
| 1015 | .map(|range| self.subsegment(range).winding_inner(p)) |
| 1016 | .sum() |
| 1017 | } |
| 1018 | |
| 1019 | /// Compute intersections against a line. |
| 1020 | /// |
| 1021 | /// Returns a vector of the intersections. For each intersection, |
| 1022 | /// the `t` value of the segment and line are given. |
| 1023 | /// |
| 1024 | /// Note: This test is designed to be inclusive of points near the endpoints |
| 1025 | /// of the segment. This is so that testing a line against multiple |
| 1026 | /// contiguous segments of a path will be guaranteed to catch at least one |
| 1027 | /// of them. In such cases, use higher level logic to coalesce the hits |
| 1028 | /// (the `t` value may be slightly outside the range of 0..1). |
| 1029 | /// |
| 1030 | /// # Examples |
| 1031 | /// |
| 1032 | /// ``` |
| 1033 | /// # use kurbo::*; |
| 1034 | /// let seg = PathSeg::Line(Line::new((0.0, 0.0), (2.0, 0.0))); |
| 1035 | /// let line = Line::new((1.0, 2.0), (1.0, -2.0)); |
| 1036 | /// let intersection = seg.intersect_line(line); |
| 1037 | /// assert_eq!(intersection.len(), 1); |
| 1038 | /// let intersection = intersection[0]; |
| 1039 | /// assert_eq!(intersection.segment_t, 0.5); |
| 1040 | /// assert_eq!(intersection.line_t, 0.5); |
| 1041 | /// |
| 1042 | /// let point = seg.eval(intersection.segment_t); |
| 1043 | /// assert_eq!(point, Point::new(1.0, 0.0)); |
| 1044 | /// ``` |
| 1045 | pub fn intersect_line(&self, line: Line) -> ArrayVec<LineIntersection, 3> { |
| 1046 | const EPSILON: f64 = 1e-9; |
| 1047 | let p0 = line.p0; |
| 1048 | let p1 = line.p1; |
| 1049 | let dx = p1.x - p0.x; |
| 1050 | let dy = p1.y - p0.y; |
| 1051 | let mut result = ArrayVec::new(); |
| 1052 | match self { |
| 1053 | PathSeg::Line(l) => { |
| 1054 | let det = dx * (l.p1.y - l.p0.y) - dy * (l.p1.x - l.p0.x); |
| 1055 | if det.abs() < EPSILON { |
| 1056 | // Lines are coincident (or nearly so). |
| 1057 | return result; |
| 1058 | } |
| 1059 | let t = dx * (p0.y - l.p0.y) - dy * (p0.x - l.p0.x); |
| 1060 | // t = position on self |
| 1061 | let t = t / det; |
| 1062 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
| 1063 | // u = position on probe line |
| 1064 | let u = |
| 1065 | (l.p0.x - p0.x) * (l.p1.y - l.p0.y) - (l.p0.y - p0.y) * (l.p1.x - l.p0.x); |
| 1066 | let u = u / det; |
| 1067 | if (0.0..=1.0).contains(&u) { |
| 1068 | result.push(LineIntersection::new(u, t)); |
| 1069 | } |
| 1070 | } |
| 1071 | } |
| 1072 | PathSeg::Quad(q) => { |
| 1073 | // The basic technique here is to determine x and y as a quadratic polynomial |
| 1074 | // as a function of t. Then plug those values into the line equation for the |
| 1075 | // probe line (giving a sort of signed distance from the probe line) and solve |
| 1076 | // that for t. |
| 1077 | let (px0, px1, px2) = quadratic_bez_coefs(q.p0.x, q.p1.x, q.p2.x); |
| 1078 | let (py0, py1, py2) = quadratic_bez_coefs(q.p0.y, q.p1.y, q.p2.y); |
| 1079 | let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y); |
| 1080 | let c1 = dy * px1 - dx * py1; |
| 1081 | let c2 = dy * px2 - dx * py2; |
| 1082 | let invlen2 = (dx * dx + dy * dy).recip(); |
| 1083 | for t in solve_quadratic(c0, c1, c2) { |
| 1084 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
| 1085 | let x = px0 + t * px1 + t * t * px2; |
| 1086 | let y = py0 + t * py1 + t * t * py2; |
| 1087 | let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2; |
| 1088 | if (0.0..=1.0).contains(&u) { |
| 1089 | result.push(LineIntersection::new(u, t)); |
| 1090 | } |
| 1091 | } |
| 1092 | } |
| 1093 | } |
| 1094 | PathSeg::Cubic(c) => { |
| 1095 | // Same technique as above, but cubic polynomial. |
| 1096 | let (px0, px1, px2, px3) = cubic_bez_coefs(c.p0.x, c.p1.x, c.p2.x, c.p3.x); |
| 1097 | let (py0, py1, py2, py3) = cubic_bez_coefs(c.p0.y, c.p1.y, c.p2.y, c.p3.y); |
| 1098 | let c0 = dy * (px0 - p0.x) - dx * (py0 - p0.y); |
| 1099 | let c1 = dy * px1 - dx * py1; |
| 1100 | let c2 = dy * px2 - dx * py2; |
| 1101 | let c3 = dy * px3 - dx * py3; |
| 1102 | let invlen2 = (dx * dx + dy * dy).recip(); |
| 1103 | for t in solve_cubic(c0, c1, c2, c3) { |
| 1104 | if (-EPSILON..=(1.0 + EPSILON)).contains(&t) { |
| 1105 | let x = px0 + t * px1 + t * t * px2 + t * t * t * px3; |
| 1106 | let y = py0 + t * py1 + t * t * py2 + t * t * t * py3; |
| 1107 | let u = ((x - p0.x) * dx + (y - p0.y) * dy) * invlen2; |
| 1108 | if (0.0..=1.0).contains(&u) { |
| 1109 | result.push(LineIntersection::new(u, t)); |
| 1110 | } |
| 1111 | } |
| 1112 | } |
| 1113 | } |
| 1114 | } |
| 1115 | result |
| 1116 | } |
| 1117 | |
| 1118 | /// Is this Bezier path finite? |
| 1119 | #[inline ] |
| 1120 | pub fn is_finite(&self) -> bool { |
| 1121 | match self { |
| 1122 | PathSeg::Line(line) => line.is_finite(), |
| 1123 | PathSeg::Quad(quad_bez) => quad_bez.is_finite(), |
| 1124 | PathSeg::Cubic(cubic_bez) => cubic_bez.is_finite(), |
| 1125 | } |
| 1126 | } |
| 1127 | |
| 1128 | /// Is this Bezier path NaN? |
| 1129 | #[inline ] |
| 1130 | pub fn is_nan(&self) -> bool { |
| 1131 | match self { |
| 1132 | PathSeg::Line(line) => line.is_nan(), |
| 1133 | PathSeg::Quad(quad_bez) => quad_bez.is_nan(), |
| 1134 | PathSeg::Cubic(cubic_bez) => cubic_bez.is_nan(), |
| 1135 | } |
| 1136 | } |
| 1137 | |
| 1138 | #[inline ] |
| 1139 | fn as_vec2_vec(&self) -> ArrayVec<Vec2, 4> { |
| 1140 | let mut a = ArrayVec::new(); |
| 1141 | match self { |
| 1142 | PathSeg::Line(l) => { |
| 1143 | a.push(l.p0.to_vec2()); |
| 1144 | a.push(l.p1.to_vec2()); |
| 1145 | } |
| 1146 | PathSeg::Quad(q) => { |
| 1147 | a.push(q.p0.to_vec2()); |
| 1148 | a.push(q.p1.to_vec2()); |
| 1149 | a.push(q.p2.to_vec2()); |
| 1150 | } |
| 1151 | PathSeg::Cubic(c) => { |
| 1152 | a.push(c.p0.to_vec2()); |
| 1153 | a.push(c.p1.to_vec2()); |
| 1154 | a.push(c.p2.to_vec2()); |
| 1155 | a.push(c.p3.to_vec2()); |
| 1156 | } |
| 1157 | }; |
| 1158 | a |
| 1159 | } |
| 1160 | |
| 1161 | /// Minimum distance between two [`PathSeg`]s. |
| 1162 | /// |
| 1163 | /// Returns a tuple of the distance, the path time `t1` of the closest point |
| 1164 | /// on the first `PathSeg`, and the path time `t2` of the closest point on the |
| 1165 | /// second `PathSeg`. |
| 1166 | pub fn min_dist(&self, other: PathSeg, accuracy: f64) -> MinDistance { |
| 1167 | let (distance, t1, t2) = crate::mindist::min_dist_param( |
| 1168 | &self.as_vec2_vec(), |
| 1169 | &other.as_vec2_vec(), |
| 1170 | (0.0, 1.0), |
| 1171 | (0.0, 1.0), |
| 1172 | accuracy, |
| 1173 | None, |
| 1174 | ); |
| 1175 | MinDistance { |
| 1176 | distance: distance.sqrt(), |
| 1177 | t1, |
| 1178 | t2, |
| 1179 | } |
| 1180 | } |
| 1181 | |
| 1182 | /// Compute endpoint tangents of a path segment. |
| 1183 | /// |
| 1184 | /// This version is robust to the path segment not being a regular curve. |
| 1185 | pub(crate) fn tangents(&self) -> (Vec2, Vec2) { |
| 1186 | const EPS: f64 = 1e-12; |
| 1187 | match self { |
| 1188 | PathSeg::Line(l) => { |
| 1189 | let d = l.p1 - l.p0; |
| 1190 | (d, d) |
| 1191 | } |
| 1192 | PathSeg::Quad(q) => { |
| 1193 | let d01 = q.p1 - q.p0; |
| 1194 | let d0 = if d01.hypot2() > EPS { d01 } else { q.p2 - q.p0 }; |
| 1195 | let d12 = q.p2 - q.p1; |
| 1196 | let d1 = if d12.hypot2() > EPS { d12 } else { q.p2 - q.p0 }; |
| 1197 | (d0, d1) |
| 1198 | } |
| 1199 | PathSeg::Cubic(c) => { |
| 1200 | let d01 = c.p1 - c.p0; |
| 1201 | let d0 = if d01.hypot2() > EPS { |
| 1202 | d01 |
| 1203 | } else { |
| 1204 | let d02 = c.p2 - c.p0; |
| 1205 | if d02.hypot2() > EPS { |
| 1206 | d02 |
| 1207 | } else { |
| 1208 | c.p3 - c.p0 |
| 1209 | } |
| 1210 | }; |
| 1211 | let d23 = c.p3 - c.p2; |
| 1212 | let d1 = if d23.hypot2() > EPS { |
| 1213 | d23 |
| 1214 | } else { |
| 1215 | let d13 = c.p3 - c.p1; |
| 1216 | if d13.hypot2() > EPS { |
| 1217 | d13 |
| 1218 | } else { |
| 1219 | c.p3 - c.p0 |
| 1220 | } |
| 1221 | }; |
| 1222 | (d0, d1) |
| 1223 | } |
| 1224 | } |
| 1225 | } |
| 1226 | } |
| 1227 | |
| 1228 | impl LineIntersection { |
| 1229 | fn new(line_t: f64, segment_t: f64) -> Self { |
| 1230 | LineIntersection { line_t, segment_t } |
| 1231 | } |
| 1232 | |
| 1233 | /// Is this line intersection finite? |
| 1234 | #[inline ] |
| 1235 | pub fn is_finite(self) -> bool { |
| 1236 | self.line_t.is_finite() && self.segment_t.is_finite() |
| 1237 | } |
| 1238 | |
| 1239 | /// Is this line intersection NaN? |
| 1240 | #[inline ] |
| 1241 | pub fn is_nan(self) -> bool { |
| 1242 | self.line_t.is_nan() || self.segment_t.is_nan() |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | // Return polynomial coefficients given cubic bezier coordinates. |
| 1247 | fn quadratic_bez_coefs(x0: f64, x1: f64, x2: f64) -> (f64, f64, f64) { |
| 1248 | let p0: f64 = x0; |
| 1249 | let p1: f64 = 2.0 * x1 - 2.0 * x0; |
| 1250 | let p2: f64 = x2 - 2.0 * x1 + x0; |
| 1251 | (p0, p1, p2) |
| 1252 | } |
| 1253 | |
| 1254 | // Return polynomial coefficients given cubic bezier coordinates. |
| 1255 | fn cubic_bez_coefs(x0: f64, x1: f64, x2: f64, x3: f64) -> (f64, f64, f64, f64) { |
| 1256 | let p0: f64 = x0; |
| 1257 | let p1: f64 = 3.0 * x1 - 3.0 * x0; |
| 1258 | let p2: f64 = 3.0 * x2 - 6.0 * x1 + 3.0 * x0; |
| 1259 | let p3: f64 = x3 - 3.0 * x2 + 3.0 * x1 - x0; |
| 1260 | (p0, p1, p2, p3) |
| 1261 | } |
| 1262 | |
| 1263 | impl From<CubicBez> for PathSeg { |
| 1264 | fn from(cubic_bez: CubicBez) -> PathSeg { |
| 1265 | PathSeg::Cubic(cubic_bez) |
| 1266 | } |
| 1267 | } |
| 1268 | |
| 1269 | impl From<Line> for PathSeg { |
| 1270 | fn from(line: Line) -> PathSeg { |
| 1271 | PathSeg::Line(line) |
| 1272 | } |
| 1273 | } |
| 1274 | |
| 1275 | impl From<QuadBez> for PathSeg { |
| 1276 | fn from(quad_bez: QuadBez) -> PathSeg { |
| 1277 | PathSeg::Quad(quad_bez) |
| 1278 | } |
| 1279 | } |
| 1280 | |
| 1281 | impl Shape for BezPath { |
| 1282 | type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>; |
| 1283 | |
| 1284 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
| 1285 | self.0.iter().copied() |
| 1286 | } |
| 1287 | |
| 1288 | fn to_path(&self, _tolerance: f64) -> BezPath { |
| 1289 | self.clone() |
| 1290 | } |
| 1291 | |
| 1292 | fn into_path(self, _tolerance: f64) -> BezPath { |
| 1293 | self |
| 1294 | } |
| 1295 | |
| 1296 | /// Signed area. |
| 1297 | fn area(&self) -> f64 { |
| 1298 | self.elements().area() |
| 1299 | } |
| 1300 | |
| 1301 | fn perimeter(&self, accuracy: f64) -> f64 { |
| 1302 | self.elements().perimeter(accuracy) |
| 1303 | } |
| 1304 | |
| 1305 | /// Winding number of point. |
| 1306 | fn winding(&self, pt: Point) -> i32 { |
| 1307 | self.elements().winding(pt) |
| 1308 | } |
| 1309 | |
| 1310 | fn bounding_box(&self) -> Rect { |
| 1311 | self.elements().bounding_box() |
| 1312 | } |
| 1313 | |
| 1314 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
| 1315 | Some(&self.0) |
| 1316 | } |
| 1317 | } |
| 1318 | |
| 1319 | impl PathEl { |
| 1320 | /// Is this path element finite? |
| 1321 | #[inline ] |
| 1322 | pub fn is_finite(&self) -> bool { |
| 1323 | match self { |
| 1324 | PathEl::MoveTo(p) => p.is_finite(), |
| 1325 | PathEl::LineTo(p) => p.is_finite(), |
| 1326 | PathEl::QuadTo(p, p2) => p.is_finite() && p2.is_finite(), |
| 1327 | PathEl::CurveTo(p, p2, p3) => p.is_finite() && p2.is_finite() && p3.is_finite(), |
| 1328 | PathEl::ClosePath => true, |
| 1329 | } |
| 1330 | } |
| 1331 | |
| 1332 | /// Is this path element NaN? |
| 1333 | #[inline ] |
| 1334 | pub fn is_nan(&self) -> bool { |
| 1335 | match self { |
| 1336 | PathEl::MoveTo(p) => p.is_nan(), |
| 1337 | PathEl::LineTo(p) => p.is_nan(), |
| 1338 | PathEl::QuadTo(p, p2) => p.is_nan() || p2.is_nan(), |
| 1339 | PathEl::CurveTo(p, p2, p3) => p.is_nan() || p2.is_nan() || p3.is_nan(), |
| 1340 | PathEl::ClosePath => false, |
| 1341 | } |
| 1342 | } |
| 1343 | |
| 1344 | /// Get the end point of the path element, if it exists. |
| 1345 | pub fn end_point(&self) -> Option<Point> { |
| 1346 | match self { |
| 1347 | PathEl::MoveTo(p) => Some(*p), |
| 1348 | PathEl::LineTo(p1) => Some(*p1), |
| 1349 | PathEl::QuadTo(_, p2) => Some(*p2), |
| 1350 | PathEl::CurveTo(_, _, p3) => Some(*p3), |
| 1351 | _ => None, |
| 1352 | } |
| 1353 | } |
| 1354 | } |
| 1355 | |
| 1356 | /// Implements [`Shape`] for a slice of [`PathEl`], provided that the first element of the slice is |
| 1357 | /// not a `PathEl::ClosePath`. If it is, several of these functions will panic. |
| 1358 | /// |
| 1359 | /// If the slice starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`. |
| 1360 | impl<'a> Shape for &'a [PathEl] { |
| 1361 | type PathElementsIter<'iter> |
| 1362 | |
| 1363 | = core::iter::Copied<core::slice::Iter<'a, PathEl>> where 'a: 'iter; |
| 1364 | |
| 1365 | #[inline ] |
| 1366 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
| 1367 | self.iter().copied() |
| 1368 | } |
| 1369 | |
| 1370 | fn to_path(&self, _tolerance: f64) -> BezPath { |
| 1371 | BezPath::from_vec(self.to_vec()) |
| 1372 | } |
| 1373 | |
| 1374 | /// Signed area. |
| 1375 | fn area(&self) -> f64 { |
| 1376 | segments(self.iter().copied()).area() |
| 1377 | } |
| 1378 | |
| 1379 | fn perimeter(&self, accuracy: f64) -> f64 { |
| 1380 | segments(self.iter().copied()).perimeter(accuracy) |
| 1381 | } |
| 1382 | |
| 1383 | /// Winding number of point. |
| 1384 | fn winding(&self, pt: Point) -> i32 { |
| 1385 | segments(self.iter().copied()).winding(pt) |
| 1386 | } |
| 1387 | |
| 1388 | fn bounding_box(&self) -> Rect { |
| 1389 | segments(self.iter().copied()).bounding_box() |
| 1390 | } |
| 1391 | |
| 1392 | #[inline ] |
| 1393 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
| 1394 | Some(self) |
| 1395 | } |
| 1396 | } |
| 1397 | |
| 1398 | /// Implements [`Shape`] for an array of [`PathEl`], provided that the first element of the array is |
| 1399 | /// not a `PathEl::ClosePath`. If it is, several of these functions will panic. |
| 1400 | /// |
| 1401 | /// If the array starts with `LineTo`, `QuadTo`, or `CurveTo`, it will be treated as a `MoveTo`. |
| 1402 | impl<const N: usize> Shape for [PathEl; N] { |
| 1403 | type PathElementsIter<'iter> = core::iter::Copied<core::slice::Iter<'iter, PathEl>>; |
| 1404 | |
| 1405 | #[inline ] |
| 1406 | fn path_elements(&self, _tolerance: f64) -> Self::PathElementsIter<'_> { |
| 1407 | self.iter().copied() |
| 1408 | } |
| 1409 | |
| 1410 | fn to_path(&self, _tolerance: f64) -> BezPath { |
| 1411 | BezPath::from_vec(self.to_vec()) |
| 1412 | } |
| 1413 | |
| 1414 | /// Signed area. |
| 1415 | fn area(&self) -> f64 { |
| 1416 | segments(self.iter().copied()).area() |
| 1417 | } |
| 1418 | |
| 1419 | fn perimeter(&self, accuracy: f64) -> f64 { |
| 1420 | segments(self.iter().copied()).perimeter(accuracy) |
| 1421 | } |
| 1422 | |
| 1423 | /// Winding number of point. |
| 1424 | fn winding(&self, pt: Point) -> i32 { |
| 1425 | segments(self.iter().copied()).winding(pt) |
| 1426 | } |
| 1427 | |
| 1428 | fn bounding_box(&self) -> Rect { |
| 1429 | segments(self.iter().copied()).bounding_box() |
| 1430 | } |
| 1431 | |
| 1432 | #[inline ] |
| 1433 | fn as_path_slice(&self) -> Option<&[PathEl]> { |
| 1434 | Some(self) |
| 1435 | } |
| 1436 | } |
| 1437 | |
| 1438 | /// An iterator for path segments. |
| 1439 | pub struct PathSegIter { |
| 1440 | seg: PathSeg, |
| 1441 | ix: usize, |
| 1442 | } |
| 1443 | |
| 1444 | impl Shape for PathSeg { |
| 1445 | type PathElementsIter<'iter> = PathSegIter; |
| 1446 | |
| 1447 | #[inline ] |
| 1448 | fn path_elements(&self, _tolerance: f64) -> PathSegIter { |
| 1449 | PathSegIter { seg: *self, ix: 0 } |
| 1450 | } |
| 1451 | |
| 1452 | /// The area under the curve. |
| 1453 | /// |
| 1454 | /// We could just return `0`, but this seems more useful. |
| 1455 | fn area(&self) -> f64 { |
| 1456 | self.signed_area() |
| 1457 | } |
| 1458 | |
| 1459 | #[inline ] |
| 1460 | fn perimeter(&self, accuracy: f64) -> f64 { |
| 1461 | self.arclen(accuracy) |
| 1462 | } |
| 1463 | |
| 1464 | fn winding(&self, _pt: Point) -> i32 { |
| 1465 | 0 |
| 1466 | } |
| 1467 | |
| 1468 | #[inline ] |
| 1469 | fn bounding_box(&self) -> Rect { |
| 1470 | ParamCurveExtrema::bounding_box(self) |
| 1471 | } |
| 1472 | |
| 1473 | fn as_line(&self) -> Option<Line> { |
| 1474 | if let PathSeg::Line(line) = self { |
| 1475 | Some(*line) |
| 1476 | } else { |
| 1477 | None |
| 1478 | } |
| 1479 | } |
| 1480 | } |
| 1481 | |
| 1482 | impl Iterator for PathSegIter { |
| 1483 | type Item = PathEl; |
| 1484 | |
| 1485 | fn next(&mut self) -> Option<PathEl> { |
| 1486 | self.ix += 1; |
| 1487 | match (self.ix, self.seg) { |
| 1488 | // yes I could do some fancy bindings thing here but... :shrug: |
| 1489 | (1, PathSeg::Line(seg: Line)) => Some(PathEl::MoveTo(seg.p0)), |
| 1490 | (1, PathSeg::Quad(seg: QuadBez)) => Some(PathEl::MoveTo(seg.p0)), |
| 1491 | (1, PathSeg::Cubic(seg: CubicBez)) => Some(PathEl::MoveTo(seg.p0)), |
| 1492 | (2, PathSeg::Line(seg: Line)) => Some(PathEl::LineTo(seg.p1)), |
| 1493 | (2, PathSeg::Quad(seg: QuadBez)) => Some(PathEl::QuadTo(seg.p1, seg.p2)), |
| 1494 | (2, PathSeg::Cubic(seg: CubicBez)) => Some(PathEl::CurveTo(seg.p1, seg.p2, seg.p3)), |
| 1495 | _ => None, |
| 1496 | } |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | #[cfg (test)] |
| 1501 | mod tests { |
| 1502 | use crate::{Circle, DEFAULT_ACCURACY}; |
| 1503 | |
| 1504 | use super::*; |
| 1505 | |
| 1506 | fn assert_approx_eq(x: f64, y: f64) { |
| 1507 | assert!((x - y).abs() < 1e-8, "{x} != {y}" ); |
| 1508 | } |
| 1509 | |
| 1510 | #[test ] |
| 1511 | #[should_panic (expected = "uninitialized subpath" )] |
| 1512 | fn test_elements_to_segments_starts_on_closepath() { |
| 1513 | let mut path = BezPath::new(); |
| 1514 | path.close_path(); |
| 1515 | path.segments().next(); |
| 1516 | } |
| 1517 | |
| 1518 | #[test ] |
| 1519 | fn test_elements_to_segments_closepath_refers_to_last_moveto() { |
| 1520 | let mut path = BezPath::new(); |
| 1521 | path.move_to((5.0, 5.0)); |
| 1522 | path.line_to((15.0, 15.0)); |
| 1523 | path.move_to((10.0, 10.0)); |
| 1524 | path.line_to((15.0, 15.0)); |
| 1525 | path.close_path(); |
| 1526 | assert_eq!( |
| 1527 | path.segments().collect::<Vec<_>>().last(), |
| 1528 | Some(&Line::new((15.0, 15.0), (10.0, 10.0)).into()), |
| 1529 | ); |
| 1530 | } |
| 1531 | |
| 1532 | #[test ] |
| 1533 | #[should_panic (expected = "uninitialized subpath" )] |
| 1534 | fn test_must_not_start_on_quad() { |
| 1535 | let mut path = BezPath::new(); |
| 1536 | path.quad_to((5.0, 5.0), (10.0, 10.0)); |
| 1537 | path.line_to((15.0, 15.0)); |
| 1538 | path.close_path(); |
| 1539 | } |
| 1540 | |
| 1541 | #[test ] |
| 1542 | fn test_intersect_line() { |
| 1543 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
| 1544 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
| 1545 | let intersection = PathSeg::Line(h_line).intersect_line(v_line)[0]; |
| 1546 | assert_approx_eq(intersection.segment_t, 0.1); |
| 1547 | assert_approx_eq(intersection.line_t, 0.5); |
| 1548 | |
| 1549 | let v_line = Line::new((-10.0, -10.0), (-10.0, 10.0)); |
| 1550 | assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty()); |
| 1551 | |
| 1552 | let v_line = Line::new((10.0, 10.0), (10.0, 20.0)); |
| 1553 | assert!(PathSeg::Line(h_line).intersect_line(v_line).is_empty()); |
| 1554 | } |
| 1555 | |
| 1556 | #[test ] |
| 1557 | fn test_intersect_qad() { |
| 1558 | let q = QuadBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -10.0)); |
| 1559 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
| 1560 | assert_eq!(PathSeg::Quad(q).intersect_line(v_line).len(), 1); |
| 1561 | let intersection = PathSeg::Quad(q).intersect_line(v_line)[0]; |
| 1562 | assert_approx_eq(intersection.segment_t, 0.5); |
| 1563 | assert_approx_eq(intersection.line_t, 0.75); |
| 1564 | |
| 1565 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
| 1566 | assert_eq!(PathSeg::Quad(q).intersect_line(h_line).len(), 2); |
| 1567 | } |
| 1568 | |
| 1569 | #[test ] |
| 1570 | fn test_intersect_cubic() { |
| 1571 | let c = CubicBez::new((0.0, -10.0), (10.0, 20.0), (20.0, -20.0), (30.0, 10.0)); |
| 1572 | let v_line = Line::new((10.0, -10.0), (10.0, 10.0)); |
| 1573 | assert_eq!(PathSeg::Cubic(c).intersect_line(v_line).len(), 1); |
| 1574 | let intersection = PathSeg::Cubic(c).intersect_line(v_line)[0]; |
| 1575 | assert_approx_eq(intersection.segment_t, 0.333333333); |
| 1576 | assert_approx_eq(intersection.line_t, 0.592592592); |
| 1577 | |
| 1578 | let h_line = Line::new((0.0, 0.0), (100.0, 0.0)); |
| 1579 | assert_eq!(PathSeg::Cubic(c).intersect_line(h_line).len(), 3); |
| 1580 | } |
| 1581 | |
| 1582 | #[test ] |
| 1583 | fn test_contains() { |
| 1584 | let mut path = BezPath::new(); |
| 1585 | path.move_to((0.0, 0.0)); |
| 1586 | path.line_to((1.0, 1.0)); |
| 1587 | path.line_to((2.0, 0.0)); |
| 1588 | path.close_path(); |
| 1589 | assert_eq!(path.winding(Point::new(1.0, 0.5)), -1); |
| 1590 | assert!(path.contains(Point::new(1.0, 0.5))); |
| 1591 | } |
| 1592 | |
| 1593 | // get_seg(i) should produce the same results as path_segments().nth(i - 1). |
| 1594 | #[test ] |
| 1595 | fn test_get_seg() { |
| 1596 | let circle = Circle::new((10.0, 10.0), 2.0).to_path(DEFAULT_ACCURACY); |
| 1597 | let segments = circle.path_segments(DEFAULT_ACCURACY).collect::<Vec<_>>(); |
| 1598 | let get_segs = (1..usize::MAX) |
| 1599 | .map_while(|i| circle.get_seg(i)) |
| 1600 | .collect::<Vec<_>>(); |
| 1601 | assert_eq!(segments, get_segs); |
| 1602 | } |
| 1603 | |
| 1604 | #[test ] |
| 1605 | fn test_control_box() { |
| 1606 | // a sort of map ping looking thing drawn with a single cubic |
| 1607 | // cbox is wildly different than tight box |
| 1608 | let path = BezPath::from_svg("M200,300 C50,50 350,50 200,300" ).unwrap(); |
| 1609 | assert_eq!(Rect::new(50.0, 50.0, 350.0, 300.0), path.control_box()); |
| 1610 | assert!(path.control_box().area() > path.bounding_box().area()); |
| 1611 | } |
| 1612 | |
| 1613 | #[test ] |
| 1614 | fn test_reverse_unclosed() { |
| 1615 | let path = BezPath::from_svg("M10,10 Q40,40 60,10 L100,10 C125,10 150,50 125,60" ).unwrap(); |
| 1616 | let reversed = path.reverse_subpaths(); |
| 1617 | assert_eq!( |
| 1618 | "M125,60 C150,50 125,10 100,10 L60,10 Q40,40 10,10" , |
| 1619 | reversed.to_svg() |
| 1620 | ); |
| 1621 | } |
| 1622 | |
| 1623 | #[test ] |
| 1624 | fn test_reverse_closed_triangle() { |
| 1625 | let path = BezPath::from_svg("M100,100 L150,200 L50,200 Z" ).unwrap(); |
| 1626 | let reversed = path.reverse_subpaths(); |
| 1627 | assert_eq!("M50,200 L150,200 L100,100 Z" , reversed.to_svg()); |
| 1628 | } |
| 1629 | |
| 1630 | #[test ] |
| 1631 | fn test_reverse_closed_shape() { |
| 1632 | let path = BezPath::from_svg( |
| 1633 | "M125,100 Q200,150 175,300 C150,150 50,150 25,300 Q0,150 75,100 L100,50 Z" , |
| 1634 | ) |
| 1635 | .unwrap(); |
| 1636 | let reversed = path.reverse_subpaths(); |
| 1637 | assert_eq!( |
| 1638 | "M100,50 L75,100 Q0,150 25,300 C50,150 150,150 175,300 Q200,150 125,100 Z" , |
| 1639 | reversed.to_svg() |
| 1640 | ); |
| 1641 | } |
| 1642 | |
| 1643 | #[test ] |
| 1644 | fn test_reverse_multiple_subpaths() { |
| 1645 | let svg = "M10,10 Q40,40 60,10 L100,10 C125,10 150,50 125,60 M100,100 L150,200 L50,200 Z M125,100 Q200,150 175,300 C150,150 50,150 25,300 Q0,150 75,100 L100,50 Z" ; |
| 1646 | let expected_svg = "M125,60 C150,50 125,10 100,10 L60,10 Q40,40 10,10 M50,200 L150,200 L100,100 Z M100,50 L75,100 Q0,150 25,300 C50,150 150,150 175,300 Q200,150 125,100 Z" ; |
| 1647 | let path = BezPath::from_svg(svg).unwrap(); |
| 1648 | let reversed = path.reverse_subpaths(); |
| 1649 | assert_eq!(expected_svg, reversed.to_svg()); |
| 1650 | } |
| 1651 | |
| 1652 | // https://github.com/fonttools/fonttools/blob/bf265ce49e0cae6f032420a4c80c31d8e16285b8/Tests/pens/reverseContourPen_test.py#L7 |
| 1653 | #[test ] |
| 1654 | fn test_reverse_lines() { |
| 1655 | let mut path = BezPath::new(); |
| 1656 | path.move_to((0.0, 0.0)); |
| 1657 | path.line_to((1.0, 1.0)); |
| 1658 | path.line_to((2.0, 2.0)); |
| 1659 | path.line_to((3.0, 3.0)); |
| 1660 | path.close_path(); |
| 1661 | let rev = path.reverse_subpaths(); |
| 1662 | assert_eq!("M3,3 L2,2 L1,1 L0,0 Z" , rev.to_svg()); |
| 1663 | } |
| 1664 | |
| 1665 | #[test ] |
| 1666 | fn test_reverse_multiple_moves() { |
| 1667 | reverse_test_helper( |
| 1668 | vec![ |
| 1669 | PathEl::MoveTo((2.0, 2.0).into()), |
| 1670 | PathEl::MoveTo((3.0, 3.0).into()), |
| 1671 | PathEl::ClosePath, |
| 1672 | PathEl::MoveTo((4.0, 4.0).into()), |
| 1673 | ], |
| 1674 | vec![ |
| 1675 | PathEl::MoveTo((2.0, 2.0).into()), |
| 1676 | PathEl::MoveTo((3.0, 3.0).into()), |
| 1677 | PathEl::ClosePath, |
| 1678 | PathEl::MoveTo((4.0, 4.0).into()), |
| 1679 | ], |
| 1680 | ); |
| 1681 | } |
| 1682 | |
| 1683 | // The following are direct port of fonttools' |
| 1684 | // reverseContourPen_test.py::test_reverse_pen, adapted to rust, excluding |
| 1685 | // test cases that don't apply because we don't implement |
| 1686 | // outputImpliedClosingLine=False. |
| 1687 | // https://github.com/fonttools/fonttools/blob/85c80be/Tests/pens/reverseContourPen_test.py#L6-L467 |
| 1688 | |
| 1689 | #[test ] |
| 1690 | fn test_reverse_closed_last_line_not_on_move() { |
| 1691 | reverse_test_helper( |
| 1692 | vec![ |
| 1693 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1694 | PathEl::LineTo((1.0, 1.0).into()), |
| 1695 | PathEl::LineTo((2.0, 2.0).into()), |
| 1696 | PathEl::LineTo((3.0, 3.0).into()), |
| 1697 | PathEl::ClosePath, |
| 1698 | ], |
| 1699 | vec![ |
| 1700 | PathEl::MoveTo((3.0, 3.0).into()), |
| 1701 | PathEl::LineTo((2.0, 2.0).into()), |
| 1702 | PathEl::LineTo((1.0, 1.0).into()), |
| 1703 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
| 1704 | PathEl::ClosePath, |
| 1705 | ], |
| 1706 | ); |
| 1707 | } |
| 1708 | |
| 1709 | #[test ] |
| 1710 | fn test_reverse_closed_last_line_overlaps_move() { |
| 1711 | reverse_test_helper( |
| 1712 | vec![ |
| 1713 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1714 | PathEl::LineTo((1.0, 1.0).into()), |
| 1715 | PathEl::LineTo((2.0, 2.0).into()), |
| 1716 | PathEl::LineTo((0.0, 0.0).into()), |
| 1717 | PathEl::ClosePath, |
| 1718 | ], |
| 1719 | vec![ |
| 1720 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1721 | PathEl::LineTo((2.0, 2.0).into()), |
| 1722 | PathEl::LineTo((1.0, 1.0).into()), |
| 1723 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
| 1724 | PathEl::ClosePath, |
| 1725 | ], |
| 1726 | ); |
| 1727 | } |
| 1728 | |
| 1729 | #[test ] |
| 1730 | fn test_reverse_closed_duplicate_line_following_move() { |
| 1731 | reverse_test_helper( |
| 1732 | vec![ |
| 1733 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1734 | PathEl::LineTo((0.0, 0.0).into()), |
| 1735 | PathEl::LineTo((1.0, 1.0).into()), |
| 1736 | PathEl::LineTo((2.0, 2.0).into()), |
| 1737 | PathEl::ClosePath, |
| 1738 | ], |
| 1739 | vec![ |
| 1740 | PathEl::MoveTo((2.0, 2.0).into()), |
| 1741 | PathEl::LineTo((1.0, 1.0).into()), |
| 1742 | PathEl::LineTo((0.0, 0.0).into()), // duplicate line retained |
| 1743 | PathEl::LineTo((0.0, 0.0).into()), |
| 1744 | PathEl::ClosePath, |
| 1745 | ], |
| 1746 | ); |
| 1747 | } |
| 1748 | |
| 1749 | #[test ] |
| 1750 | fn test_reverse_closed_two_lines() { |
| 1751 | reverse_test_helper( |
| 1752 | vec![ |
| 1753 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1754 | PathEl::LineTo((1.0, 1.0).into()), |
| 1755 | PathEl::ClosePath, |
| 1756 | ], |
| 1757 | vec![ |
| 1758 | PathEl::MoveTo((1.0, 1.0).into()), |
| 1759 | PathEl::LineTo((0.0, 0.0).into()), // closing line NOT implied |
| 1760 | PathEl::ClosePath, |
| 1761 | ], |
| 1762 | ); |
| 1763 | } |
| 1764 | |
| 1765 | #[test ] |
| 1766 | fn test_reverse_closed_last_curve_overlaps_move() { |
| 1767 | reverse_test_helper( |
| 1768 | vec![ |
| 1769 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1770 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
| 1771 | PathEl::CurveTo((4.0, 4.0).into(), (5.0, 5.0).into(), (0.0, 0.0).into()), |
| 1772 | PathEl::ClosePath, |
| 1773 | ], |
| 1774 | vec![ |
| 1775 | PathEl::MoveTo((0.0, 0.0).into()), // no extra lineTo added here |
| 1776 | PathEl::CurveTo((5.0, 5.0).into(), (4.0, 4.0).into(), (3.0, 3.0).into()), |
| 1777 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1778 | PathEl::ClosePath, |
| 1779 | ], |
| 1780 | ); |
| 1781 | } |
| 1782 | |
| 1783 | #[test ] |
| 1784 | fn test_reverse_closed_last_curve_not_on_move() { |
| 1785 | reverse_test_helper( |
| 1786 | vec![ |
| 1787 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1788 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
| 1789 | PathEl::CurveTo((4.0, 4.0).into(), (5.0, 5.0).into(), (6.0, 6.0).into()), |
| 1790 | PathEl::ClosePath, |
| 1791 | ], |
| 1792 | vec![ |
| 1793 | PathEl::MoveTo((6.0, 6.0).into()), // the previously implied line |
| 1794 | PathEl::CurveTo((5.0, 5.0).into(), (4.0, 4.0).into(), (3.0, 3.0).into()), |
| 1795 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1796 | PathEl::ClosePath, |
| 1797 | ], |
| 1798 | ); |
| 1799 | } |
| 1800 | |
| 1801 | #[test ] |
| 1802 | fn test_reverse_closed_line_curve_line() { |
| 1803 | reverse_test_helper( |
| 1804 | vec![ |
| 1805 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1806 | PathEl::LineTo((1.0, 1.0).into()), // this line... |
| 1807 | PathEl::CurveTo((2.0, 2.0).into(), (3.0, 3.0).into(), (4.0, 4.0).into()), |
| 1808 | PathEl::CurveTo((5.0, 5.0).into(), (6.0, 6.0).into(), (7.0, 7.0).into()), |
| 1809 | PathEl::ClosePath, |
| 1810 | ], |
| 1811 | vec![ |
| 1812 | PathEl::MoveTo((7.0, 7.0).into()), |
| 1813 | PathEl::CurveTo((6.0, 6.0).into(), (5.0, 5.0).into(), (4.0, 4.0).into()), |
| 1814 | PathEl::CurveTo((3.0, 3.0).into(), (2.0, 2.0).into(), (1.0, 1.0).into()), |
| 1815 | PathEl::LineTo((0.0, 0.0).into()), // ... does NOT become implied |
| 1816 | PathEl::ClosePath, |
| 1817 | ], |
| 1818 | ); |
| 1819 | } |
| 1820 | |
| 1821 | #[test ] |
| 1822 | fn test_reverse_closed_last_quad_overlaps_move() { |
| 1823 | reverse_test_helper( |
| 1824 | vec![ |
| 1825 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1826 | PathEl::QuadTo((1.0, 1.0).into(), (2.0, 2.0).into()), |
| 1827 | PathEl::QuadTo((3.0, 3.0).into(), (0.0, 0.0).into()), |
| 1828 | PathEl::ClosePath, |
| 1829 | ], |
| 1830 | vec![ |
| 1831 | PathEl::MoveTo((0.0, 0.0).into()), // no extra lineTo added here |
| 1832 | PathEl::QuadTo((3.0, 3.0).into(), (2.0, 2.0).into()), |
| 1833 | PathEl::QuadTo((1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1834 | PathEl::ClosePath, |
| 1835 | ], |
| 1836 | ); |
| 1837 | } |
| 1838 | |
| 1839 | #[test ] |
| 1840 | fn test_reverse_closed_last_quad_not_on_move() { |
| 1841 | reverse_test_helper( |
| 1842 | vec![ |
| 1843 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1844 | PathEl::QuadTo((1.0, 1.0).into(), (2.0, 2.0).into()), |
| 1845 | PathEl::QuadTo((3.0, 3.0).into(), (4.0, 4.0).into()), |
| 1846 | PathEl::ClosePath, |
| 1847 | ], |
| 1848 | vec![ |
| 1849 | PathEl::MoveTo((4.0, 4.0).into()), // the previously implied line |
| 1850 | PathEl::QuadTo((3.0, 3.0).into(), (2.0, 2.0).into()), |
| 1851 | PathEl::QuadTo((1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1852 | PathEl::ClosePath, |
| 1853 | ], |
| 1854 | ); |
| 1855 | } |
| 1856 | |
| 1857 | #[test ] |
| 1858 | fn test_reverse_closed_line_quad_line() { |
| 1859 | reverse_test_helper( |
| 1860 | vec![ |
| 1861 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1862 | PathEl::LineTo((1.0, 1.0).into()), // this line... |
| 1863 | PathEl::QuadTo((2.0, 2.0).into(), (3.0, 3.0).into()), |
| 1864 | PathEl::ClosePath, |
| 1865 | ], |
| 1866 | vec![ |
| 1867 | PathEl::MoveTo((3.0, 3.0).into()), |
| 1868 | PathEl::QuadTo((2.0, 2.0).into(), (1.0, 1.0).into()), |
| 1869 | PathEl::LineTo((0.0, 0.0).into()), // ... does NOT become implied |
| 1870 | PathEl::ClosePath, |
| 1871 | ], |
| 1872 | ); |
| 1873 | } |
| 1874 | |
| 1875 | #[test ] |
| 1876 | fn test_reverse_empty() { |
| 1877 | reverse_test_helper(vec![], vec![]); |
| 1878 | } |
| 1879 | |
| 1880 | #[test ] |
| 1881 | fn test_reverse_single_point() { |
| 1882 | reverse_test_helper( |
| 1883 | vec![PathEl::MoveTo((0.0, 0.0).into())], |
| 1884 | vec![PathEl::MoveTo((0.0, 0.0).into())], |
| 1885 | ); |
| 1886 | } |
| 1887 | |
| 1888 | #[test ] |
| 1889 | fn test_reverse_single_point_closed() { |
| 1890 | reverse_test_helper( |
| 1891 | vec![PathEl::MoveTo((0.0, 0.0).into()), PathEl::ClosePath], |
| 1892 | vec![PathEl::MoveTo((0.0, 0.0).into()), PathEl::ClosePath], |
| 1893 | ); |
| 1894 | } |
| 1895 | |
| 1896 | #[test ] |
| 1897 | fn test_reverse_single_line_open() { |
| 1898 | reverse_test_helper( |
| 1899 | vec![ |
| 1900 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1901 | PathEl::LineTo((1.0, 1.0).into()), |
| 1902 | ], |
| 1903 | vec![ |
| 1904 | PathEl::MoveTo((1.0, 1.0).into()), |
| 1905 | PathEl::LineTo((0.0, 0.0).into()), |
| 1906 | ], |
| 1907 | ); |
| 1908 | } |
| 1909 | |
| 1910 | #[test ] |
| 1911 | fn test_reverse_single_curve_open() { |
| 1912 | reverse_test_helper( |
| 1913 | vec![ |
| 1914 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1915 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
| 1916 | ], |
| 1917 | vec![ |
| 1918 | PathEl::MoveTo((3.0, 3.0).into()), |
| 1919 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1920 | ], |
| 1921 | ); |
| 1922 | } |
| 1923 | |
| 1924 | #[test ] |
| 1925 | fn test_reverse_curve_line_open() { |
| 1926 | reverse_test_helper( |
| 1927 | vec![ |
| 1928 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1929 | PathEl::CurveTo((1.0, 1.0).into(), (2.0, 2.0).into(), (3.0, 3.0).into()), |
| 1930 | PathEl::LineTo((4.0, 4.0).into()), |
| 1931 | ], |
| 1932 | vec![ |
| 1933 | PathEl::MoveTo((4.0, 4.0).into()), |
| 1934 | PathEl::LineTo((3.0, 3.0).into()), |
| 1935 | PathEl::CurveTo((2.0, 2.0).into(), (1.0, 1.0).into(), (0.0, 0.0).into()), |
| 1936 | ], |
| 1937 | ); |
| 1938 | } |
| 1939 | |
| 1940 | #[test ] |
| 1941 | fn test_reverse_line_curve_open() { |
| 1942 | reverse_test_helper( |
| 1943 | vec![ |
| 1944 | PathEl::MoveTo((0.0, 0.0).into()), |
| 1945 | PathEl::LineTo((1.0, 1.0).into()), |
| 1946 | PathEl::CurveTo((2.0, 2.0).into(), (3.0, 3.0).into(), (4.0, 4.0).into()), |
| 1947 | ], |
| 1948 | vec![ |
| 1949 | PathEl::MoveTo((4.0, 4.0).into()), |
| 1950 | PathEl::CurveTo((3.0, 3.0).into(), (2.0, 2.0).into(), (1.0, 1.0).into()), |
| 1951 | PathEl::LineTo((0.0, 0.0).into()), |
| 1952 | ], |
| 1953 | ); |
| 1954 | } |
| 1955 | |
| 1956 | #[test ] |
| 1957 | fn test_reverse_duplicate_point_after_move() { |
| 1958 | // Test case from: https://github.com/googlei18n/cu2qu/issues/51#issue-179370514 |
| 1959 | // Simplified to only use atomic PathEl::QuadTo (no QuadSplines). |
| 1960 | reverse_test_helper( |
| 1961 | vec![ |
| 1962 | PathEl::MoveTo((848.0, 348.0).into()), |
| 1963 | PathEl::LineTo((848.0, 348.0).into()), |
| 1964 | PathEl::QuadTo((848.0, 526.0).into(), (449.0, 704.0).into()), |
| 1965 | PathEl::QuadTo((848.0, 171.0).into(), (848.0, 348.0).into()), |
| 1966 | PathEl::ClosePath, |
| 1967 | ], |
| 1968 | vec![ |
| 1969 | PathEl::MoveTo((848.0, 348.0).into()), |
| 1970 | PathEl::QuadTo((848.0, 171.0).into(), (449.0, 704.0).into()), |
| 1971 | PathEl::QuadTo((848.0, 526.0).into(), (848.0, 348.0).into()), |
| 1972 | PathEl::LineTo((848.0, 348.0).into()), |
| 1973 | PathEl::ClosePath, |
| 1974 | ], |
| 1975 | ); |
| 1976 | } |
| 1977 | |
| 1978 | #[test ] |
| 1979 | fn test_reverse_duplicate_point_at_end() { |
| 1980 | // Test case from: https://github.com/googlefonts/fontmake/issues/572 |
| 1981 | reverse_test_helper( |
| 1982 | vec![ |
| 1983 | PathEl::MoveTo((0.0, 651.0).into()), |
| 1984 | PathEl::LineTo((0.0, 101.0).into()), |
| 1985 | PathEl::LineTo((0.0, 101.0).into()), |
| 1986 | PathEl::LineTo((0.0, 651.0).into()), |
| 1987 | PathEl::LineTo((0.0, 651.0).into()), |
| 1988 | PathEl::ClosePath, |
| 1989 | ], |
| 1990 | vec![ |
| 1991 | PathEl::MoveTo((0.0, 651.0).into()), |
| 1992 | PathEl::LineTo((0.0, 651.0).into()), |
| 1993 | PathEl::LineTo((0.0, 101.0).into()), |
| 1994 | PathEl::LineTo((0.0, 101.0).into()), |
| 1995 | PathEl::LineTo((0.0, 651.0).into()), |
| 1996 | PathEl::ClosePath, |
| 1997 | ], |
| 1998 | ); |
| 1999 | } |
| 2000 | |
| 2001 | fn reverse_test_helper(contour: Vec<PathEl>, expected: Vec<PathEl>) { |
| 2002 | assert_eq!(BezPath(contour).reverse_subpaths().0, expected); |
| 2003 | } |
| 2004 | } |
| 2005 | |