| 1 | // Copyright 2019 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! A transformation that includes both scale and translation. |
| 5 | |
| 6 | use core::ops::{Add, AddAssign, Mul, MulAssign, Sub, SubAssign}; |
| 7 | |
| 8 | use crate::{ |
| 9 | Affine, Circle, CubicBez, Line, Point, QuadBez, Rect, RoundedRect, RoundedRectRadii, Vec2, |
| 10 | }; |
| 11 | |
| 12 | /// A transformation consisting of a uniform scaling followed by a translation. |
| 13 | /// |
| 14 | /// If the translation is `(x, y)` and the scale is `s`, then this |
| 15 | /// transformation represents this augmented matrix: |
| 16 | /// |
| 17 | /// ```text |
| 18 | /// | s 0 x | |
| 19 | /// | 0 s y | |
| 20 | /// | 0 0 1 | |
| 21 | /// ``` |
| 22 | /// |
| 23 | /// See [`Affine`] for more details about the |
| 24 | /// equivalence with augmented matrices. |
| 25 | /// |
| 26 | /// Various multiplication ops are defined, and these are all defined |
| 27 | /// to be consistent with matrix multiplication. Therefore, |
| 28 | /// `TranslateScale * Point` is defined but not the other way around. |
| 29 | /// |
| 30 | /// Also note that multiplication is not commutative. Thus, |
| 31 | /// `TranslateScale::scale(2.0) * TranslateScale::translate(Vec2::new(1.0, 0.0))` |
| 32 | /// has a translation of (2, 0), while |
| 33 | /// `TranslateScale::translate(Vec2::new(1.0, 0.0)) * TranslateScale::scale(2.0)` |
| 34 | /// has a translation of (1, 0). (Both have a scale of 2; also note that |
| 35 | /// the first case can be written |
| 36 | /// `2.0 * TranslateScale::translate(Vec2::new(1.0, 0.0))` as this case |
| 37 | /// has an implicit conversion). |
| 38 | /// |
| 39 | /// This transformation is less powerful than [`Affine`], but can be applied |
| 40 | /// to more primitives, especially including [`Rect`]. |
| 41 | #[derive (Clone, Copy, Debug)] |
| 42 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 43 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 44 | pub struct TranslateScale { |
| 45 | /// The translation component of this transformation |
| 46 | pub translation: Vec2, |
| 47 | /// The scale component of this transformation |
| 48 | pub scale: f64, |
| 49 | } |
| 50 | |
| 51 | impl TranslateScale { |
| 52 | /// Create a new transformation from translation and scale. |
| 53 | #[inline ] |
| 54 | pub const fn new(translation: Vec2, scale: f64) -> TranslateScale { |
| 55 | TranslateScale { translation, scale } |
| 56 | } |
| 57 | |
| 58 | /// Create a new transformation with scale only. |
| 59 | #[inline ] |
| 60 | pub const fn scale(s: f64) -> TranslateScale { |
| 61 | TranslateScale::new(Vec2::ZERO, s) |
| 62 | } |
| 63 | |
| 64 | /// Create a new transformation with translation only. |
| 65 | #[inline ] |
| 66 | pub fn translate(translation: impl Into<Vec2>) -> TranslateScale { |
| 67 | TranslateScale::new(translation.into(), 1.0) |
| 68 | } |
| 69 | |
| 70 | /// Decompose transformation into translation and scale. |
| 71 | #[deprecated (note = "use the struct fields directly" )] |
| 72 | #[inline ] |
| 73 | pub const fn as_tuple(self) -> (Vec2, f64) { |
| 74 | (self.translation, self.scale) |
| 75 | } |
| 76 | |
| 77 | /// Create a transform that scales about a point other than the origin. |
| 78 | /// |
| 79 | /// # Examples |
| 80 | /// |
| 81 | /// ``` |
| 82 | /// # use kurbo::{Point, TranslateScale}; |
| 83 | /// # fn assert_near(p0: Point, p1: Point) { |
| 84 | /// # assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}" ); |
| 85 | /// # } |
| 86 | /// let center = Point::new(1., 1.); |
| 87 | /// let ts = TranslateScale::from_scale_about(2., center); |
| 88 | /// // Should keep the point (1., 1.) stationary |
| 89 | /// assert_near(ts * center, center); |
| 90 | /// // (2., 2.) -> (3., 3.) |
| 91 | /// assert_near(ts * Point::new(2., 2.), Point::new(3., 3.)); |
| 92 | /// ``` |
| 93 | #[inline ] |
| 94 | pub fn from_scale_about(scale: f64, focus: impl Into<Point>) -> Self { |
| 95 | // We need to create a transform that is equivalent to translating `focus` |
| 96 | // to the origin, followed by a normal scale, followed by reversing the translation. |
| 97 | // We need to find the (translation ∘ scale) that matches this. |
| 98 | let focus = focus.into().to_vec2(); |
| 99 | let translation = focus - focus * scale; |
| 100 | Self::new(translation, scale) |
| 101 | } |
| 102 | |
| 103 | /// Compute the inverse transform. |
| 104 | /// |
| 105 | /// Multiplying a transform with its inverse (either on the |
| 106 | /// left or right) results in the identity transform |
| 107 | /// (modulo floating point rounding errors). |
| 108 | /// |
| 109 | /// Produces NaN values when scale is zero. |
| 110 | #[inline ] |
| 111 | pub fn inverse(self) -> TranslateScale { |
| 112 | let scale_recip = self.scale.recip(); |
| 113 | TranslateScale { |
| 114 | translation: self.translation * -scale_recip, |
| 115 | scale: scale_recip, |
| 116 | } |
| 117 | } |
| 118 | |
| 119 | /// Is this translate/scale [finite]? |
| 120 | /// |
| 121 | /// [finite]: f64::is_finite |
| 122 | #[inline ] |
| 123 | pub fn is_finite(&self) -> bool { |
| 124 | self.translation.is_finite() && self.scale.is_finite() |
| 125 | } |
| 126 | |
| 127 | /// Is this translate/scale [NaN]? |
| 128 | /// |
| 129 | /// [NaN]: f64::is_nan |
| 130 | #[inline ] |
| 131 | pub fn is_nan(&self) -> bool { |
| 132 | self.translation.is_nan() || self.scale.is_nan() |
| 133 | } |
| 134 | } |
| 135 | |
| 136 | impl Default for TranslateScale { |
| 137 | #[inline ] |
| 138 | fn default() -> TranslateScale { |
| 139 | TranslateScale::new(translation:Vec2::ZERO, scale:1.0) |
| 140 | } |
| 141 | } |
| 142 | |
| 143 | impl From<TranslateScale> for Affine { |
| 144 | fn from(ts: TranslateScale) -> Affine { |
| 145 | let TranslateScale { translation: Vec2, scale: f64 } = ts; |
| 146 | Affine::new([scale, 0.0, 0.0, scale, translation.x, translation.y]) |
| 147 | } |
| 148 | } |
| 149 | |
| 150 | impl Mul<Point> for TranslateScale { |
| 151 | type Output = Point; |
| 152 | |
| 153 | #[inline ] |
| 154 | fn mul(self, other: Point) -> Point { |
| 155 | (self.scale * other.to_vec2()).to_point() + self.translation |
| 156 | } |
| 157 | } |
| 158 | |
| 159 | impl Mul for TranslateScale { |
| 160 | type Output = TranslateScale; |
| 161 | |
| 162 | #[inline ] |
| 163 | fn mul(self, other: TranslateScale) -> TranslateScale { |
| 164 | TranslateScale { |
| 165 | translation: self.translation + self.scale * other.translation, |
| 166 | scale: self.scale * other.scale, |
| 167 | } |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | impl MulAssign for TranslateScale { |
| 172 | #[inline ] |
| 173 | fn mul_assign(&mut self, other: TranslateScale) { |
| 174 | *self = self.mul(other); |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | impl Mul<TranslateScale> for f64 { |
| 179 | type Output = TranslateScale; |
| 180 | |
| 181 | #[inline ] |
| 182 | fn mul(self, other: TranslateScale) -> TranslateScale { |
| 183 | TranslateScale { |
| 184 | translation: other.translation * self, |
| 185 | scale: other.scale * self, |
| 186 | } |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | impl Add<Vec2> for TranslateScale { |
| 191 | type Output = TranslateScale; |
| 192 | |
| 193 | #[inline ] |
| 194 | fn add(self, other: Vec2) -> TranslateScale { |
| 195 | TranslateScale { |
| 196 | translation: self.translation + other, |
| 197 | scale: self.scale, |
| 198 | } |
| 199 | } |
| 200 | } |
| 201 | |
| 202 | impl Add<TranslateScale> for Vec2 { |
| 203 | type Output = TranslateScale; |
| 204 | |
| 205 | #[inline ] |
| 206 | fn add(self, other: TranslateScale) -> TranslateScale { |
| 207 | other + self |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | impl AddAssign<Vec2> for TranslateScale { |
| 212 | #[inline ] |
| 213 | fn add_assign(&mut self, other: Vec2) { |
| 214 | *self = self.add(other); |
| 215 | } |
| 216 | } |
| 217 | |
| 218 | impl Sub<Vec2> for TranslateScale { |
| 219 | type Output = TranslateScale; |
| 220 | |
| 221 | #[inline ] |
| 222 | fn sub(self, other: Vec2) -> TranslateScale { |
| 223 | TranslateScale { |
| 224 | translation: self.translation - other, |
| 225 | scale: self.scale, |
| 226 | } |
| 227 | } |
| 228 | } |
| 229 | |
| 230 | impl SubAssign<Vec2> for TranslateScale { |
| 231 | #[inline ] |
| 232 | fn sub_assign(&mut self, other: Vec2) { |
| 233 | *self = self.sub(other); |
| 234 | } |
| 235 | } |
| 236 | |
| 237 | impl Mul<Circle> for TranslateScale { |
| 238 | type Output = Circle; |
| 239 | |
| 240 | #[inline ] |
| 241 | fn mul(self, other: Circle) -> Circle { |
| 242 | Circle::new(self * other.center, self.scale * other.radius) |
| 243 | } |
| 244 | } |
| 245 | |
| 246 | impl Mul<Line> for TranslateScale { |
| 247 | type Output = Line; |
| 248 | |
| 249 | #[inline ] |
| 250 | fn mul(self, other: Line) -> Line { |
| 251 | Line::new(self * other.p0, self * other.p1) |
| 252 | } |
| 253 | } |
| 254 | |
| 255 | impl Mul<Rect> for TranslateScale { |
| 256 | type Output = Rect; |
| 257 | |
| 258 | #[inline ] |
| 259 | fn mul(self, other: Rect) -> Rect { |
| 260 | let pt0: Point = self * Point::new(x:other.x0, y:other.y0); |
| 261 | let pt1: Point = self * Point::new(x:other.x1, y:other.y1); |
| 262 | (pt0, pt1).into() |
| 263 | } |
| 264 | } |
| 265 | |
| 266 | impl Mul<RoundedRect> for TranslateScale { |
| 267 | type Output = RoundedRect; |
| 268 | |
| 269 | #[inline ] |
| 270 | fn mul(self, other: RoundedRect) -> RoundedRect { |
| 271 | RoundedRect::from_rect(self * other.rect(), self * other.radii()) |
| 272 | } |
| 273 | } |
| 274 | |
| 275 | impl Mul<RoundedRectRadii> for TranslateScale { |
| 276 | type Output = RoundedRectRadii; |
| 277 | |
| 278 | #[inline ] |
| 279 | fn mul(self, other: RoundedRectRadii) -> RoundedRectRadii { |
| 280 | RoundedRectRadii::new( |
| 281 | self.scale * other.top_left, |
| 282 | self.scale * other.top_right, |
| 283 | self.scale * other.bottom_right, |
| 284 | self.scale * other.bottom_left, |
| 285 | ) |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | impl Mul<QuadBez> for TranslateScale { |
| 290 | type Output = QuadBez; |
| 291 | |
| 292 | #[inline ] |
| 293 | fn mul(self, other: QuadBez) -> QuadBez { |
| 294 | QuadBez::new(self * other.p0, self * other.p1, self * other.p2) |
| 295 | } |
| 296 | } |
| 297 | |
| 298 | impl Mul<CubicBez> for TranslateScale { |
| 299 | type Output = CubicBez; |
| 300 | |
| 301 | #[inline ] |
| 302 | fn mul(self, other: CubicBez) -> CubicBez { |
| 303 | CubicBez::new( |
| 304 | self * other.p0, |
| 305 | self * other.p1, |
| 306 | self * other.p2, |
| 307 | self * other.p3, |
| 308 | ) |
| 309 | } |
| 310 | } |
| 311 | |
| 312 | #[cfg (test)] |
| 313 | mod tests { |
| 314 | use crate::{Affine, Point, TranslateScale, Vec2}; |
| 315 | |
| 316 | fn assert_near(p0: Point, p1: Point) { |
| 317 | assert!((p1 - p0).hypot() < 1e-9, "{p0:?} != {p1:?}" ); |
| 318 | } |
| 319 | |
| 320 | #[test ] |
| 321 | fn translate_scale() { |
| 322 | let p = Point::new(3.0, 4.0); |
| 323 | let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0); |
| 324 | |
| 325 | assert_near(ts * p, Point::new(11.0, 14.0)); |
| 326 | } |
| 327 | |
| 328 | #[test ] |
| 329 | fn conversions() { |
| 330 | let p = Point::new(3.0, 4.0); |
| 331 | let s = 2.0; |
| 332 | let t = Vec2::new(5.0, 6.0); |
| 333 | let ts = TranslateScale::new(t, s); |
| 334 | |
| 335 | // Test that conversion to affine is consistent. |
| 336 | let a: Affine = ts.into(); |
| 337 | assert_near(ts * p, a * p); |
| 338 | |
| 339 | assert_near((s * p.to_vec2()).to_point(), TranslateScale::scale(s) * p); |
| 340 | assert_near(p + t, TranslateScale::translate(t) * p); |
| 341 | } |
| 342 | |
| 343 | #[test ] |
| 344 | fn inverse() { |
| 345 | let p = Point::new(3.0, 4.0); |
| 346 | let ts = TranslateScale::new(Vec2::new(5.0, 6.0), 2.0); |
| 347 | |
| 348 | assert_near(p, (ts * ts.inverse()) * p); |
| 349 | assert_near(p, (ts.inverse() * ts) * p); |
| 350 | } |
| 351 | } |
| 352 | |