| 1 | // Copyright 2018 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Quadratic Bézier segments. |
| 5 | |
| 6 | use core::ops::{Mul, Range}; |
| 7 | |
| 8 | use arrayvec::ArrayVec; |
| 9 | |
| 10 | use crate::common::solve_cubic; |
| 11 | use crate::MAX_EXTREMA; |
| 12 | use crate::{ |
| 13 | Affine, CubicBez, Line, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, |
| 14 | ParamCurveCurvature, ParamCurveDeriv, ParamCurveExtrema, ParamCurveNearest, PathEl, Point, |
| 15 | Rect, Shape, |
| 16 | }; |
| 17 | |
| 18 | #[cfg (not(feature = "std" ))] |
| 19 | use crate::common::FloatFuncs; |
| 20 | |
| 21 | /// A single quadratic Bézier segment. |
| 22 | #[derive (Clone, Copy, Debug, PartialEq)] |
| 23 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 24 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 25 | #[allow (missing_docs)] |
| 26 | pub struct QuadBez { |
| 27 | pub p0: Point, |
| 28 | pub p1: Point, |
| 29 | pub p2: Point, |
| 30 | } |
| 31 | |
| 32 | impl QuadBez { |
| 33 | /// Create a new quadratic Bézier segment. |
| 34 | #[inline ] |
| 35 | pub fn new<V: Into<Point>>(p0: V, p1: V, p2: V) -> QuadBez { |
| 36 | QuadBez { |
| 37 | p0: p0.into(), |
| 38 | p1: p1.into(), |
| 39 | p2: p2.into(), |
| 40 | } |
| 41 | } |
| 42 | |
| 43 | /// Raise the order by 1. |
| 44 | /// |
| 45 | /// Returns a cubic Bézier segment that exactly represents this quadratic. |
| 46 | #[inline ] |
| 47 | pub fn raise(&self) -> CubicBez { |
| 48 | CubicBez::new( |
| 49 | self.p0, |
| 50 | self.p0 + (2.0 / 3.0) * (self.p1 - self.p0), |
| 51 | self.p2 + (2.0 / 3.0) * (self.p1 - self.p2), |
| 52 | self.p2, |
| 53 | ) |
| 54 | } |
| 55 | |
| 56 | /// Estimate the number of subdivisions for flattening. |
| 57 | pub(crate) fn estimate_subdiv(&self, sqrt_tol: f64) -> FlattenParams { |
| 58 | // Determine transformation to $y = x^2$ parabola. |
| 59 | let d01 = self.p1 - self.p0; |
| 60 | let d12 = self.p2 - self.p1; |
| 61 | let dd = d01 - d12; |
| 62 | let cross = (self.p2 - self.p0).cross(dd); |
| 63 | let x0 = d01.dot(dd) * cross.recip(); |
| 64 | let x2 = d12.dot(dd) * cross.recip(); |
| 65 | let scale = (cross / (dd.hypot() * (x2 - x0))).abs(); |
| 66 | |
| 67 | // Compute number of subdivisions needed. |
| 68 | let a0 = approx_parabola_integral(x0); |
| 69 | let a2 = approx_parabola_integral(x2); |
| 70 | let val = if scale.is_finite() { |
| 71 | let da = (a2 - a0).abs(); |
| 72 | let sqrt_scale = scale.sqrt(); |
| 73 | if x0.signum() == x2.signum() { |
| 74 | da * sqrt_scale |
| 75 | } else { |
| 76 | // Handle cusp case (segment contains curvature maximum) |
| 77 | let xmin = sqrt_tol / sqrt_scale; |
| 78 | sqrt_tol * da / approx_parabola_integral(xmin) |
| 79 | } |
| 80 | } else { |
| 81 | 0.0 |
| 82 | }; |
| 83 | let u0 = approx_parabola_inv_integral(a0); |
| 84 | let u2 = approx_parabola_inv_integral(a2); |
| 85 | let uscale = (u2 - u0).recip(); |
| 86 | FlattenParams { |
| 87 | a0, |
| 88 | a2, |
| 89 | u0, |
| 90 | uscale, |
| 91 | val, |
| 92 | } |
| 93 | } |
| 94 | |
| 95 | // Maps a value from 0..1 to 0..1. |
| 96 | pub(crate) fn determine_subdiv_t(&self, params: &FlattenParams, x: f64) -> f64 { |
| 97 | let a = params.a0 + (params.a2 - params.a0) * x; |
| 98 | let u = approx_parabola_inv_integral(a); |
| 99 | (u - params.u0) * params.uscale |
| 100 | } |
| 101 | |
| 102 | /// Is this quadratic Bezier curve finite? |
| 103 | #[inline ] |
| 104 | pub fn is_finite(&self) -> bool { |
| 105 | self.p0.is_finite() && self.p1.is_finite() && self.p2.is_finite() |
| 106 | } |
| 107 | |
| 108 | /// Is this quadratic Bezier curve NaN? |
| 109 | #[inline ] |
| 110 | pub fn is_nan(&self) -> bool { |
| 111 | self.p0.is_nan() || self.p1.is_nan() || self.p2.is_nan() |
| 112 | } |
| 113 | } |
| 114 | |
| 115 | /// An iterator for quadratic beziers. |
| 116 | pub struct QuadBezIter { |
| 117 | quad: QuadBez, |
| 118 | ix: usize, |
| 119 | } |
| 120 | |
| 121 | impl Shape for QuadBez { |
| 122 | type PathElementsIter<'iter> = QuadBezIter; |
| 123 | |
| 124 | #[inline ] |
| 125 | fn path_elements(&self, _tolerance: f64) -> QuadBezIter { |
| 126 | QuadBezIter { quad: *self, ix: 0 } |
| 127 | } |
| 128 | |
| 129 | fn area(&self) -> f64 { |
| 130 | 0.0 |
| 131 | } |
| 132 | |
| 133 | #[inline ] |
| 134 | fn perimeter(&self, accuracy: f64) -> f64 { |
| 135 | self.arclen(accuracy) |
| 136 | } |
| 137 | |
| 138 | fn winding(&self, _pt: Point) -> i32 { |
| 139 | 0 |
| 140 | } |
| 141 | |
| 142 | #[inline ] |
| 143 | fn bounding_box(&self) -> Rect { |
| 144 | ParamCurveExtrema::bounding_box(self) |
| 145 | } |
| 146 | } |
| 147 | |
| 148 | impl Iterator for QuadBezIter { |
| 149 | type Item = PathEl; |
| 150 | |
| 151 | fn next(&mut self) -> Option<PathEl> { |
| 152 | self.ix += 1; |
| 153 | match self.ix { |
| 154 | 1 => Some(PathEl::MoveTo(self.quad.p0)), |
| 155 | 2 => Some(PathEl::QuadTo(self.quad.p1, self.quad.p2)), |
| 156 | _ => None, |
| 157 | } |
| 158 | } |
| 159 | } |
| 160 | |
| 161 | pub(crate) struct FlattenParams { |
| 162 | a0: f64, |
| 163 | a2: f64, |
| 164 | u0: f64, |
| 165 | uscale: f64, |
| 166 | /// The number of `subdivisions * 2 * sqrt_tol`. |
| 167 | pub(crate) val: f64, |
| 168 | } |
| 169 | |
| 170 | /// An approximation to $\int (1 + 4x^2) ^ -0.25 dx$ |
| 171 | /// |
| 172 | /// This is used for flattening curves. |
| 173 | fn approx_parabola_integral(x: f64) -> f64 { |
| 174 | const D: f64 = 0.67; |
| 175 | x / (1.0 - D + (D.powi(4) + 0.25 * x * x).sqrt().sqrt()) |
| 176 | } |
| 177 | |
| 178 | /// An approximation to the inverse parabola integral. |
| 179 | fn approx_parabola_inv_integral(x: f64) -> f64 { |
| 180 | const B: f64 = 0.39; |
| 181 | x * (1.0 - B + (B * B + 0.25 * x * x).sqrt()) |
| 182 | } |
| 183 | |
| 184 | impl ParamCurve for QuadBez { |
| 185 | #[inline ] |
| 186 | fn eval(&self, t: f64) -> Point { |
| 187 | let mt = 1.0 - t; |
| 188 | (self.p0.to_vec2() * (mt * mt) |
| 189 | + (self.p1.to_vec2() * (mt * 2.0) + self.p2.to_vec2() * t) * t) |
| 190 | .to_point() |
| 191 | } |
| 192 | |
| 193 | fn subsegment(&self, range: Range<f64>) -> QuadBez { |
| 194 | let (t0, t1) = (range.start, range.end); |
| 195 | let p0 = self.eval(t0); |
| 196 | let p2 = self.eval(t1); |
| 197 | let p1 = p0 + (self.p1 - self.p0).lerp(self.p2 - self.p1, t0) * (t1 - t0); |
| 198 | QuadBez { p0, p1, p2 } |
| 199 | } |
| 200 | |
| 201 | /// Subdivide into halves, using de Casteljau. |
| 202 | #[inline ] |
| 203 | fn subdivide(&self) -> (QuadBez, QuadBez) { |
| 204 | let pm = self.eval(0.5); |
| 205 | ( |
| 206 | QuadBez::new(self.p0, self.p0.midpoint(self.p1), pm), |
| 207 | QuadBez::new(pm, self.p1.midpoint(self.p2), self.p2), |
| 208 | ) |
| 209 | } |
| 210 | |
| 211 | #[inline ] |
| 212 | fn start(&self) -> Point { |
| 213 | self.p0 |
| 214 | } |
| 215 | |
| 216 | #[inline ] |
| 217 | fn end(&self) -> Point { |
| 218 | self.p2 |
| 219 | } |
| 220 | } |
| 221 | |
| 222 | impl ParamCurveDeriv for QuadBez { |
| 223 | type DerivResult = Line; |
| 224 | |
| 225 | #[inline ] |
| 226 | fn deriv(&self) -> Line { |
| 227 | Line::new( |
| 228 | (2.0 * (self.p1.to_vec2() - self.p0.to_vec2())).to_point(), |
| 229 | (2.0 * (self.p2.to_vec2() - self.p1.to_vec2())).to_point(), |
| 230 | ) |
| 231 | } |
| 232 | } |
| 233 | |
| 234 | impl ParamCurveArclen for QuadBez { |
| 235 | /// Arclength of a quadratic Bézier segment. |
| 236 | /// |
| 237 | /// This computation is based on an analytical formula. Since that formula suffers |
| 238 | /// from numerical instability when the curve is very close to a straight line, we |
| 239 | /// detect that case and fall back to Legendre-Gauss quadrature. |
| 240 | /// |
| 241 | /// Accuracy should be better than 1e-13 over the entire range. |
| 242 | /// |
| 243 | /// Adapted from <http://www.malczak.linuxpl.com/blog/quadratic-bezier-curve-length/> |
| 244 | /// with permission. |
| 245 | fn arclen(&self, _accuracy: f64) -> f64 { |
| 246 | let d2 = self.p0.to_vec2() - 2.0 * self.p1.to_vec2() + self.p2.to_vec2(); |
| 247 | let a = d2.hypot2(); |
| 248 | let d1 = self.p1 - self.p0; |
| 249 | let c = d1.hypot2(); |
| 250 | if a < 5e-4 * c { |
| 251 | // This case happens for nearly straight Béziers. |
| 252 | // |
| 253 | // Calculate arclength using Legendre-Gauss quadrature using formula from Behdad |
| 254 | // in https://github.com/Pomax/BezierInfo-2/issues/77 |
| 255 | let v0 = (-0.492943519233745 * self.p0.to_vec2() |
| 256 | + 0.430331482911935 * self.p1.to_vec2() |
| 257 | + 0.0626120363218102 * self.p2.to_vec2()) |
| 258 | .hypot(); |
| 259 | let v1 = ((self.p2 - self.p0) * 0.4444444444444444).hypot(); |
| 260 | let v2 = (-0.0626120363218102 * self.p0.to_vec2() |
| 261 | - 0.430331482911935 * self.p1.to_vec2() |
| 262 | + 0.492943519233745 * self.p2.to_vec2()) |
| 263 | .hypot(); |
| 264 | return v0 + v1 + v2; |
| 265 | } |
| 266 | let b = 2.0 * d2.dot(d1); |
| 267 | |
| 268 | let sabc = (a + b + c).sqrt(); |
| 269 | let a2 = a.powf(-0.5); |
| 270 | let a32 = a2.powi(3); |
| 271 | let c2 = 2.0 * c.sqrt(); |
| 272 | let ba_c2 = b * a2 + c2; |
| 273 | |
| 274 | let v0 = 0.25 * a2 * a2 * b * (2.0 * sabc - c2) + sabc; |
| 275 | // TODO: justify and fine-tune this exact constant. |
| 276 | if ba_c2 < 1e-13 { |
| 277 | // This case happens for Béziers with a sharp kink. |
| 278 | v0 |
| 279 | } else { |
| 280 | v0 + 0.25 |
| 281 | * a32 |
| 282 | * (4.0 * c * a - b * b) |
| 283 | * (((2.0 * a + b) * a2 + 2.0 * sabc) / ba_c2).ln() |
| 284 | } |
| 285 | } |
| 286 | } |
| 287 | |
| 288 | impl ParamCurveArea for QuadBez { |
| 289 | #[inline ] |
| 290 | fn signed_area(&self) -> f64 { |
| 291 | (self.p0.x * (2.0 * self.p1.y + self.p2.y) + 2.0 * self.p1.x * (self.p2.y - self.p0.y) |
| 292 | - self.p2.x * (self.p0.y + 2.0 * self.p1.y)) |
| 293 | * (1.0 / 6.0) |
| 294 | } |
| 295 | } |
| 296 | |
| 297 | impl ParamCurveNearest for QuadBez { |
| 298 | /// Find the nearest point, using analytical algorithm based on cubic root finding. |
| 299 | fn nearest(&self, p: Point, _accuracy: f64) -> Nearest { |
| 300 | fn eval_t(p: Point, t_best: &mut f64, r_best: &mut Option<f64>, t: f64, p0: Point) { |
| 301 | let r = (p0 - p).hypot2(); |
| 302 | if r_best.map(|r_best| r < r_best).unwrap_or(true) { |
| 303 | *r_best = Some(r); |
| 304 | *t_best = t; |
| 305 | } |
| 306 | } |
| 307 | fn try_t( |
| 308 | q: &QuadBez, |
| 309 | p: Point, |
| 310 | t_best: &mut f64, |
| 311 | r_best: &mut Option<f64>, |
| 312 | t: f64, |
| 313 | ) -> bool { |
| 314 | if !(0.0..=1.0).contains(&t) { |
| 315 | return true; |
| 316 | } |
| 317 | eval_t(p, t_best, r_best, t, q.eval(t)); |
| 318 | false |
| 319 | } |
| 320 | let d0 = self.p1 - self.p0; |
| 321 | let d1 = self.p0.to_vec2() + self.p2.to_vec2() - 2.0 * self.p1.to_vec2(); |
| 322 | let d = self.p0 - p; |
| 323 | let c0 = d.dot(d0); |
| 324 | let c1 = 2.0 * d0.hypot2() + d.dot(d1); |
| 325 | let c2 = 3.0 * d1.dot(d0); |
| 326 | let c3 = d1.hypot2(); |
| 327 | let roots = solve_cubic(c0, c1, c2, c3); |
| 328 | let mut r_best = None; |
| 329 | let mut t_best = 0.0; |
| 330 | let mut need_ends = false; |
| 331 | if roots.is_empty() { |
| 332 | need_ends = true; |
| 333 | } |
| 334 | for &t in &roots { |
| 335 | need_ends |= try_t(self, p, &mut t_best, &mut r_best, t); |
| 336 | } |
| 337 | if need_ends { |
| 338 | eval_t(p, &mut t_best, &mut r_best, 0.0, self.p0); |
| 339 | eval_t(p, &mut t_best, &mut r_best, 1.0, self.p2); |
| 340 | } |
| 341 | |
| 342 | Nearest { |
| 343 | t: t_best, |
| 344 | distance_sq: r_best.unwrap(), |
| 345 | } |
| 346 | } |
| 347 | } |
| 348 | |
| 349 | impl ParamCurveCurvature for QuadBez {} |
| 350 | |
| 351 | impl ParamCurveExtrema for QuadBez { |
| 352 | fn extrema(&self) -> ArrayVec<f64, MAX_EXTREMA> { |
| 353 | let mut result: ArrayVec = ArrayVec::new(); |
| 354 | let d0: Vec2 = self.p1 - self.p0; |
| 355 | let d1: Vec2 = self.p2 - self.p1; |
| 356 | let dd: Vec2 = d1 - d0; |
| 357 | if dd.x != 0.0 { |
| 358 | let t: f64 = -d0.x / dd.x; |
| 359 | if t > 0.0 && t < 1.0 { |
| 360 | result.push(element:t); |
| 361 | } |
| 362 | } |
| 363 | if dd.y != 0.0 { |
| 364 | let t: f64 = -d0.y / dd.y; |
| 365 | if t > 0.0 && t < 1.0 { |
| 366 | result.push(element:t); |
| 367 | if result.len() == 2 && result[0] > t { |
| 368 | result.swap(a:0, b:1); |
| 369 | } |
| 370 | } |
| 371 | } |
| 372 | result |
| 373 | } |
| 374 | } |
| 375 | |
| 376 | impl Mul<QuadBez> for Affine { |
| 377 | type Output = QuadBez; |
| 378 | |
| 379 | #[inline ] |
| 380 | fn mul(self, other: QuadBez) -> QuadBez { |
| 381 | QuadBez { |
| 382 | p0: self * other.p0, |
| 383 | p1: self * other.p1, |
| 384 | p2: self * other.p2, |
| 385 | } |
| 386 | } |
| 387 | } |
| 388 | |
| 389 | #[cfg (test)] |
| 390 | mod tests { |
| 391 | use crate::{ |
| 392 | Affine, Nearest, ParamCurve, ParamCurveArclen, ParamCurveArea, ParamCurveDeriv, |
| 393 | ParamCurveExtrema, ParamCurveNearest, Point, QuadBez, |
| 394 | }; |
| 395 | |
| 396 | fn assert_near(p0: Point, p1: Point, epsilon: f64) { |
| 397 | assert!((p1 - p0).hypot() < epsilon, "{p0:?} != {p1:?}" ); |
| 398 | } |
| 399 | |
| 400 | #[test ] |
| 401 | fn quadbez_deriv() { |
| 402 | let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0)); |
| 403 | let deriv = q.deriv(); |
| 404 | |
| 405 | let n = 10; |
| 406 | for i in 0..=n { |
| 407 | let t = (i as f64) * (n as f64).recip(); |
| 408 | let delta = 1e-6; |
| 409 | let p = q.eval(t); |
| 410 | let p1 = q.eval(t + delta); |
| 411 | let d_approx = (p1 - p) * delta.recip(); |
| 412 | let d = deriv.eval(t).to_vec2(); |
| 413 | assert!((d - d_approx).hypot() < delta * 2.0); |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | #[test ] |
| 418 | fn quadbez_arclen() { |
| 419 | let q = QuadBez::new((0.0, 0.0), (0.0, 0.5), (1.0, 1.0)); |
| 420 | let true_arclen = 0.5 * 5.0f64.sqrt() + 0.25 * (2.0 + 5.0f64.sqrt()).ln(); |
| 421 | for i in 0..12 { |
| 422 | let accuracy = 0.1f64.powi(i); |
| 423 | let est = q.arclen(accuracy); |
| 424 | let error = est - true_arclen; |
| 425 | assert!(error.abs() < accuracy, "{est} != {true_arclen}" ); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | #[test ] |
| 430 | fn quadbez_arclen_pathological() { |
| 431 | let q = QuadBez::new((-1.0, 0.0), (1.03, 0.0), (1.0, 0.0)); |
| 432 | let true_arclen = 2.0008737864167325; // A rough empirical calculation |
| 433 | let accuracy = 1e-11; |
| 434 | let est = q.arclen(accuracy); |
| 435 | assert!( |
| 436 | (est - true_arclen).abs() < accuracy, |
| 437 | "{est} != {true_arclen}" |
| 438 | ); |
| 439 | } |
| 440 | |
| 441 | #[test ] |
| 442 | fn quadbez_subsegment() { |
| 443 | let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8)); |
| 444 | let t0 = 0.1; |
| 445 | let t1 = 0.8; |
| 446 | let qs = q.subsegment(t0..t1); |
| 447 | let epsilon = 1e-12; |
| 448 | let n = 10; |
| 449 | for i in 0..=n { |
| 450 | let t = (i as f64) * (n as f64).recip(); |
| 451 | let ts = t0 + t * (t1 - t0); |
| 452 | assert_near(q.eval(ts), qs.eval(t), epsilon); |
| 453 | } |
| 454 | } |
| 455 | |
| 456 | #[test ] |
| 457 | fn quadbez_raise() { |
| 458 | let q = QuadBez::new((3.1, 4.1), (5.9, 2.6), (5.3, 5.8)); |
| 459 | let c = q.raise(); |
| 460 | let qd = q.deriv(); |
| 461 | let cd = c.deriv(); |
| 462 | let epsilon = 1e-12; |
| 463 | let n = 10; |
| 464 | for i in 0..=n { |
| 465 | let t = (i as f64) * (n as f64).recip(); |
| 466 | assert_near(q.eval(t), c.eval(t), epsilon); |
| 467 | assert_near(qd.eval(t), cd.eval(t), epsilon); |
| 468 | } |
| 469 | } |
| 470 | |
| 471 | #[test ] |
| 472 | fn quadbez_signed_area() { |
| 473 | // y = 1 - x^2 |
| 474 | let q = QuadBez::new((1.0, 0.0), (0.5, 1.0), (0.0, 1.0)); |
| 475 | let epsilon = 1e-12; |
| 476 | assert!((q.signed_area() - 2.0 / 3.0).abs() < epsilon); |
| 477 | assert!(((Affine::rotate(0.5) * q).signed_area() - 2.0 / 3.0).abs() < epsilon); |
| 478 | assert!(((Affine::translate((0.0, 1.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon); |
| 479 | assert!(((Affine::translate((1.0, 0.0)) * q).signed_area() - 3.5 / 3.0).abs() < epsilon); |
| 480 | } |
| 481 | |
| 482 | fn verify(result: Nearest, expected: f64) { |
| 483 | assert!( |
| 484 | (result.t - expected).abs() < 1e-6, |
| 485 | "got {result:?} expected {expected}" |
| 486 | ); |
| 487 | } |
| 488 | |
| 489 | #[test ] |
| 490 | fn quadbez_nearest() { |
| 491 | // y = x^2 |
| 492 | let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0)); |
| 493 | verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5); |
| 494 | verify(q.nearest((0.0, 0.1).into(), 1e-3), 0.5); |
| 495 | verify(q.nearest((0.0, -0.1).into(), 1e-3), 0.5); |
| 496 | verify(q.nearest((0.5, 0.25).into(), 1e-3), 0.75); |
| 497 | verify(q.nearest((1.0, 1.0).into(), 1e-3), 1.0); |
| 498 | verify(q.nearest((1.1, 1.1).into(), 1e-3), 1.0); |
| 499 | verify(q.nearest((-1.1, 1.1).into(), 1e-3), 0.0); |
| 500 | let a = Affine::rotate(0.5); |
| 501 | verify((a * q).nearest(a * Point::new(0.5, 0.25), 1e-3), 0.75); |
| 502 | } |
| 503 | |
| 504 | // This test exposes a degenerate case in the solver used internally |
| 505 | // by the "nearest" calculation - the cubic term is zero. |
| 506 | #[test ] |
| 507 | fn quadbez_nearest_low_order() { |
| 508 | let q = QuadBez::new((-1.0, 0.0), (0.0, 0.0), (1.0, 0.0)); |
| 509 | |
| 510 | verify(q.nearest((0.0, 0.0).into(), 1e-3), 0.5); |
| 511 | verify(q.nearest((0.0, 1.0).into(), 1e-3), 0.5); |
| 512 | } |
| 513 | |
| 514 | #[test ] |
| 515 | fn quadbez_nearest_rounding_panic() { |
| 516 | let quad = QuadBez::new( |
| 517 | (-1.0394736842105263, 0.0), |
| 518 | (0.8210526315789474, -1.511111111111111), |
| 519 | (0.0, 1.9333333333333333), |
| 520 | ); |
| 521 | let test = Point::new(-1.7976931348623157e308, 0.8571428571428571); |
| 522 | // accuracy ignored |
| 523 | let _res = quad.nearest(test , 1e-6); |
| 524 | // if we got here then we didn't panic |
| 525 | } |
| 526 | |
| 527 | #[test ] |
| 528 | fn quadbez_extrema() { |
| 529 | // y = x^2 |
| 530 | let q = QuadBez::new((-1.0, 1.0), (0.0, -1.0), (1.0, 1.0)); |
| 531 | let extrema = q.extrema(); |
| 532 | assert_eq!(extrema.len(), 1); |
| 533 | assert!((extrema[0] - 0.5).abs() < 1e-6); |
| 534 | |
| 535 | let q = QuadBez::new((0.0, 0.5), (1.0, 1.0), (0.5, 0.0)); |
| 536 | let extrema = q.extrema(); |
| 537 | assert_eq!(extrema.len(), 2); |
| 538 | assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6); |
| 539 | assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6); |
| 540 | |
| 541 | // Reverse direction |
| 542 | let q = QuadBez::new((0.5, 0.0), (1.0, 1.0), (0.0, 0.5)); |
| 543 | let extrema = q.extrema(); |
| 544 | assert_eq!(extrema.len(), 2); |
| 545 | assert!((extrema[0] - 1.0 / 3.0).abs() < 1e-6); |
| 546 | assert!((extrema[1] - 2.0 / 3.0).abs() < 1e-6); |
| 547 | } |
| 548 | } |
| 549 | |