| 1 | // Copyright 2018 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Common mathematical operations |
| 5 | |
| 6 | #![allow (missing_docs)] |
| 7 | |
| 8 | #[cfg (not(feature = "std" ))] |
| 9 | mod sealed { |
| 10 | /// A [sealed trait](https://predr.ag/blog/definitive-guide-to-sealed-traits-in-rust/) |
| 11 | /// which stops [`super::FloatFuncs`] from being implemented outside kurbo. This could |
| 12 | /// be relaxed in the future if there is are good reasons to allow external impls. |
| 13 | /// The benefit from being sealed is that we can add methods without breaking downstream |
| 14 | /// implementations. |
| 15 | pub trait FloatFuncsSealed {} |
| 16 | } |
| 17 | |
| 18 | use arrayvec::ArrayVec; |
| 19 | |
| 20 | /// Defines a trait that chooses between libstd or libm implementations of float methods. |
| 21 | macro_rules! define_float_funcs { |
| 22 | ($( |
| 23 | fn $name:ident(self $(,$arg:ident: $arg_ty:ty)*) -> $ret:ty |
| 24 | => $lname:ident/$lfname:ident; |
| 25 | )+) => { |
| 26 | |
| 27 | /// Since core doesn't depend upon libm, this provides libm implementations |
| 28 | /// of float functions which are typically provided by the std library, when |
| 29 | /// the `std` feature is not enabled. |
| 30 | /// |
| 31 | /// For documentation see the respective functions in the std library. |
| 32 | #[cfg(not(feature = "std" ))] |
| 33 | pub trait FloatFuncs : Sized + sealed::FloatFuncsSealed { |
| 34 | /// Special implementation for signum, because libm doesn't have it. |
| 35 | fn signum(self) -> Self; |
| 36 | |
| 37 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret;)+ |
| 38 | } |
| 39 | |
| 40 | #[cfg(not(feature = "std" ))] |
| 41 | impl sealed::FloatFuncsSealed for f32 {} |
| 42 | |
| 43 | #[cfg(not(feature = "std" ))] |
| 44 | impl FloatFuncs for f32 { |
| 45 | #[inline] |
| 46 | fn signum(self) -> f32 { |
| 47 | if self.is_nan() { |
| 48 | f32::NAN |
| 49 | } else { |
| 50 | 1.0_f32.copysign(self) |
| 51 | } |
| 52 | } |
| 53 | |
| 54 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
| 55 | #[cfg(feature = "libm" )] |
| 56 | return libm::$lfname(self $(,$arg as _)*); |
| 57 | |
| 58 | #[cfg(not(feature = "libm" ))] |
| 59 | compile_error!("kurbo requires either the `std` or `libm` feature" ) |
| 60 | })+ |
| 61 | } |
| 62 | |
| 63 | #[cfg(not(feature = "std" ))] |
| 64 | impl sealed::FloatFuncsSealed for f64 {} |
| 65 | #[cfg(not(feature = "std" ))] |
| 66 | impl FloatFuncs for f64 { |
| 67 | #[inline] |
| 68 | fn signum(self) -> f64 { |
| 69 | if self.is_nan() { |
| 70 | f64::NAN |
| 71 | } else { |
| 72 | 1.0_f64.copysign(self) |
| 73 | } |
| 74 | } |
| 75 | |
| 76 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
| 77 | #[cfg(feature = "libm" )] |
| 78 | return libm::$lname(self $(,$arg as _)*); |
| 79 | |
| 80 | #[cfg(not(feature = "libm" ))] |
| 81 | compile_error!("kurbo requires either the `std` or `libm` feature" ) |
| 82 | })+ |
| 83 | } |
| 84 | } |
| 85 | } |
| 86 | |
| 87 | define_float_funcs! { |
| 88 | fn abs(self) -> Self => fabs/fabsf; |
| 89 | fn acos(self) -> Self => acos/acosf; |
| 90 | fn atan2(self, other: Self) -> Self => atan2/atan2f; |
| 91 | fn cbrt(self) -> Self => cbrt/cbrtf; |
| 92 | fn ceil(self) -> Self => ceil/ceilf; |
| 93 | fn cos(self) -> Self => cos/cosf; |
| 94 | fn copysign(self, sign: Self) -> Self => copysign/copysignf; |
| 95 | fn floor(self) -> Self => floor/floorf; |
| 96 | fn hypot(self, other: Self) -> Self => hypot/hypotf; |
| 97 | fn ln(self) -> Self => log/logf; |
| 98 | fn log2(self) -> Self => log2/log2f; |
| 99 | fn mul_add(self, a: Self, b: Self) -> Self => fma/fmaf; |
| 100 | fn powi(self, n: i32) -> Self => pow/powf; |
| 101 | fn powf(self, n: Self) -> Self => pow/powf; |
| 102 | fn round(self) -> Self => round/roundf; |
| 103 | fn sin(self) -> Self => sin/sinf; |
| 104 | fn sin_cos(self) -> (Self, Self) => sincos/sincosf; |
| 105 | fn sqrt(self) -> Self => sqrt/sqrtf; |
| 106 | fn tan(self) -> Self => tan/tanf; |
| 107 | fn trunc(self) -> Self => trunc/truncf; |
| 108 | } |
| 109 | |
| 110 | /// Adds convenience methods to `f32` and `f64`. |
| 111 | pub trait FloatExt<T> { |
| 112 | /// Rounds to the nearest integer away from zero, |
| 113 | /// unless the provided value is already an integer. |
| 114 | /// |
| 115 | /// It is to `ceil` what `trunc` is to `floor`. |
| 116 | /// |
| 117 | /// # Examples |
| 118 | /// |
| 119 | /// ``` |
| 120 | /// use kurbo::common::FloatExt; |
| 121 | /// |
| 122 | /// let f = 3.7_f64; |
| 123 | /// let g = 3.0_f64; |
| 124 | /// let h = -3.7_f64; |
| 125 | /// let i = -5.1_f32; |
| 126 | /// |
| 127 | /// assert_eq!(f.expand(), 4.0); |
| 128 | /// assert_eq!(g.expand(), 3.0); |
| 129 | /// assert_eq!(h.expand(), -4.0); |
| 130 | /// assert_eq!(i.expand(), -6.0); |
| 131 | /// ``` |
| 132 | fn expand(&self) -> T; |
| 133 | } |
| 134 | |
| 135 | impl FloatExt<f64> for f64 { |
| 136 | #[inline ] |
| 137 | fn expand(&self) -> f64 { |
| 138 | self.abs().ceil().copysign(*self) |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | impl FloatExt<f32> for f32 { |
| 143 | #[inline ] |
| 144 | fn expand(&self) -> f32 { |
| 145 | self.abs().ceil().copysign(*self) |
| 146 | } |
| 147 | } |
| 148 | |
| 149 | /// Find real roots of cubic equation. |
| 150 | /// |
| 151 | /// The implementation is not (yet) fully robust, but it does handle the case |
| 152 | /// where `c3` is zero (in that case, solving the quadratic equation). |
| 153 | /// |
| 154 | /// See: <https://momentsingraphics.de/CubicRoots.html> |
| 155 | /// |
| 156 | /// That implementation is in turn based on Jim Blinn's "How to Solve a Cubic |
| 157 | /// Equation", which is masterful. |
| 158 | /// |
| 159 | /// Return values of x for which c0 + c1 x + c2 x² + c3 x³ = 0. |
| 160 | pub fn solve_cubic(c0: f64, c1: f64, c2: f64, c3: f64) -> ArrayVec<f64, 3> { |
| 161 | let mut result = ArrayVec::new(); |
| 162 | let c3_recip = c3.recip(); |
| 163 | const ONETHIRD: f64 = 1. / 3.; |
| 164 | let scaled_c2 = c2 * (ONETHIRD * c3_recip); |
| 165 | let scaled_c1 = c1 * (ONETHIRD * c3_recip); |
| 166 | let scaled_c0 = c0 * c3_recip; |
| 167 | if !(scaled_c0.is_finite() && scaled_c1.is_finite() && scaled_c2.is_finite()) { |
| 168 | // cubic coefficient is zero or nearly so. |
| 169 | return solve_quadratic(c0, c1, c2).iter().copied().collect(); |
| 170 | } |
| 171 | let (c0, c1, c2) = (scaled_c0, scaled_c1, scaled_c2); |
| 172 | // (d0, d1, d2) is called "Delta" in article |
| 173 | let d0 = (-c2).mul_add(c2, c1); |
| 174 | let d1 = (-c1).mul_add(c2, c0); |
| 175 | let d2 = c2 * c0 - c1 * c1; |
| 176 | // d is called "Discriminant" |
| 177 | let d = 4.0 * d0 * d2 - d1 * d1; |
| 178 | // de is called "Depressed.x", Depressed.y = d0 |
| 179 | let de = (-2.0 * c2).mul_add(d0, d1); |
| 180 | // TODO: handle the cases where these intermediate results overflow. |
| 181 | if d < 0.0 { |
| 182 | let sq = (-0.25 * d).sqrt(); |
| 183 | let r = -0.5 * de; |
| 184 | let t1 = (r + sq).cbrt() + (r - sq).cbrt(); |
| 185 | result.push(t1 - c2); |
| 186 | } else if d == 0.0 { |
| 187 | let t1 = (-d0).sqrt().copysign(de); |
| 188 | result.push(t1 - c2); |
| 189 | result.push(-2.0 * t1 - c2); |
| 190 | } else { |
| 191 | let th = d.sqrt().atan2(-de) * ONETHIRD; |
| 192 | // (th_cos, th_sin) is called "CubicRoot" |
| 193 | let (th_sin, th_cos) = th.sin_cos(); |
| 194 | // (r0, r1, r2) is called "Root" |
| 195 | let r0 = th_cos; |
| 196 | let ss3 = th_sin * 3.0f64.sqrt(); |
| 197 | let r1 = 0.5 * (-th_cos + ss3); |
| 198 | let r2 = 0.5 * (-th_cos - ss3); |
| 199 | let t = 2.0 * (-d0).sqrt(); |
| 200 | result.push(t.mul_add(r0, -c2)); |
| 201 | result.push(t.mul_add(r1, -c2)); |
| 202 | result.push(t.mul_add(r2, -c2)); |
| 203 | } |
| 204 | result |
| 205 | } |
| 206 | |
| 207 | /// Find real roots of quadratic equation. |
| 208 | /// |
| 209 | /// Return values of x for which c0 + c1 x + c2 x² = 0. |
| 210 | /// |
| 211 | /// This function tries to be quite numerically robust. If the equation |
| 212 | /// is nearly linear, it will return the root ignoring the quadratic term; |
| 213 | /// the other root might be out of representable range. In the degenerate |
| 214 | /// case where all coefficients are zero, so that all values of x satisfy |
| 215 | /// the equation, a single `0.0` is returned. |
| 216 | pub fn solve_quadratic(c0: f64, c1: f64, c2: f64) -> ArrayVec<f64, 2> { |
| 217 | let mut result = ArrayVec::new(); |
| 218 | let sc0 = c0 * c2.recip(); |
| 219 | let sc1 = c1 * c2.recip(); |
| 220 | if !sc0.is_finite() || !sc1.is_finite() { |
| 221 | // c2 is zero or very small, treat as linear eqn |
| 222 | let root = -c0 / c1; |
| 223 | if root.is_finite() { |
| 224 | result.push(root); |
| 225 | } else if c0 == 0.0 && c1 == 0.0 { |
| 226 | // Degenerate case |
| 227 | result.push(0.0); |
| 228 | } |
| 229 | return result; |
| 230 | } |
| 231 | let arg = sc1 * sc1 - 4. * sc0; |
| 232 | let root1 = if !arg.is_finite() { |
| 233 | // Likely, calculation of sc1 * sc1 overflowed. Find one root |
| 234 | // using sc1 x + x² = 0, other root as sc0 / root1. |
| 235 | -sc1 |
| 236 | } else { |
| 237 | if arg < 0.0 { |
| 238 | return result; |
| 239 | } else if arg == 0.0 { |
| 240 | result.push(-0.5 * sc1); |
| 241 | return result; |
| 242 | } |
| 243 | // See https://math.stackexchange.com/questions/866331 |
| 244 | -0.5 * (sc1 + arg.sqrt().copysign(sc1)) |
| 245 | }; |
| 246 | let root2 = sc0 / root1; |
| 247 | if root2.is_finite() { |
| 248 | // Sort just to be friendly and make results deterministic. |
| 249 | if root2 > root1 { |
| 250 | result.push(root1); |
| 251 | result.push(root2); |
| 252 | } else { |
| 253 | result.push(root2); |
| 254 | result.push(root1); |
| 255 | } |
| 256 | } else { |
| 257 | result.push(root1); |
| 258 | } |
| 259 | result |
| 260 | } |
| 261 | |
| 262 | /// Compute epsilon relative to coefficient. |
| 263 | /// |
| 264 | /// A helper function from the Orellana and De Michele paper. |
| 265 | fn eps_rel(raw: f64, a: f64) -> f64 { |
| 266 | if a == 0.0 { |
| 267 | raw.abs() |
| 268 | } else { |
| 269 | ((raw - a) / a).abs() |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | /// Find real roots of a quartic equation. |
| 274 | /// |
| 275 | /// This is a fairly literal implementation of the method described in: |
| 276 | /// Algorithm 1010: Boosting Efficiency in Solving Quartic Equations with |
| 277 | /// No Compromise in Accuracy, Orellana and De Michele, ACM |
| 278 | /// Transactions on Mathematical Software, Vol. 46, No. 2, May 2020. |
| 279 | pub fn solve_quartic(c0: f64, c1: f64, c2: f64, c3: f64, c4: f64) -> ArrayVec<f64, 4> { |
| 280 | if c4 == 0.0 { |
| 281 | return solve_cubic(c0, c1, c2, c3).iter().copied().collect(); |
| 282 | } |
| 283 | if c0 == 0.0 { |
| 284 | // Note: appends 0 root at end, doesn't sort. We might want to do that. |
| 285 | return solve_cubic(c1, c2, c3, c4) |
| 286 | .iter() |
| 287 | .copied() |
| 288 | .chain(Some(0.0)) |
| 289 | .collect(); |
| 290 | } |
| 291 | let a = c3 / c4; |
| 292 | let b = c2 / c4; |
| 293 | let c = c1 / c4; |
| 294 | let d = c0 / c4; |
| 295 | if let Some(result) = solve_quartic_inner(a, b, c, d, false) { |
| 296 | return result; |
| 297 | } |
| 298 | // Do polynomial rescaling |
| 299 | const K_Q: f64 = 7.16e76; |
| 300 | for rescale in [false, true] { |
| 301 | if let Some(result) = solve_quartic_inner( |
| 302 | a / K_Q, |
| 303 | b / K_Q.powi(2), |
| 304 | c / K_Q.powi(3), |
| 305 | d / K_Q.powi(4), |
| 306 | rescale, |
| 307 | ) { |
| 308 | return result.iter().map(|x| x * K_Q).collect(); |
| 309 | } |
| 310 | } |
| 311 | // Overflow happened, just return no roots. |
| 312 | //println!("overflow, no roots returned"); |
| 313 | Default::default() |
| 314 | } |
| 315 | |
| 316 | fn solve_quartic_inner(a: f64, b: f64, c: f64, d: f64, rescale: bool) -> Option<ArrayVec<f64, 4>> { |
| 317 | factor_quartic_inner(a, b, c, d, rescale).map(|quadratics: ArrayVec<(f64, f64), 2>| { |
| 318 | quadraticsimpl Iterator |
| 319 | .iter() |
| 320 | .flat_map(|(a: &f64, b: &f64)| solve_quadratic(*b, *a, c2:1.0)) |
| 321 | .collect() |
| 322 | }) |
| 323 | } |
| 324 | |
| 325 | /// Factor a quartic into two quadratics. |
| 326 | /// |
| 327 | /// Attempt to factor a quartic equation into two quadratic equations. Returns `None` either if there |
| 328 | /// is overflow (in which case rescaling might succeed) or the factorization would result in |
| 329 | /// complex coefficients. |
| 330 | /// |
| 331 | /// Discussion question: distinguish the two cases in return value? |
| 332 | pub fn factor_quartic_inner( |
| 333 | a: f64, |
| 334 | b: f64, |
| 335 | c: f64, |
| 336 | d: f64, |
| 337 | rescale: bool, |
| 338 | ) -> Option<ArrayVec<(f64, f64), 2>> { |
| 339 | let calc_eps_q = |a1, b1, a2, b2| { |
| 340 | let eps_a = eps_rel(a1 + a2, a); |
| 341 | let eps_b = eps_rel(b1 + a1 * a2 + b2, b); |
| 342 | let eps_c = eps_rel(b1 * a2 + a1 * b2, c); |
| 343 | eps_a + eps_b + eps_c |
| 344 | }; |
| 345 | let calc_eps_t = |a1, b1, a2, b2| calc_eps_q(a1, b1, a2, b2) + eps_rel(b1 * b2, d); |
| 346 | let disc = 9. * a * a - 24. * b; |
| 347 | let s = if disc >= 0.0 { |
| 348 | -2. * b / (3. * a + disc.sqrt().copysign(a)) |
| 349 | } else { |
| 350 | -0.25 * a |
| 351 | }; |
| 352 | let a_prime = a + 4. * s; |
| 353 | let b_prime = b + 3. * s * (a + 2. * s); |
| 354 | let c_prime = c + s * (2. * b + s * (3. * a + 4. * s)); |
| 355 | let d_prime = d + s * (c + s * (b + s * (a + s))); |
| 356 | let g_prime; |
| 357 | let h_prime; |
| 358 | const K_C: f64 = 3.49e102; |
| 359 | if rescale { |
| 360 | let a_prime_s = a_prime / K_C; |
| 361 | let b_prime_s = b_prime / K_C; |
| 362 | let c_prime_s = c_prime / K_C; |
| 363 | let d_prime_s = d_prime / K_C; |
| 364 | g_prime = a_prime_s * c_prime_s - (4. / K_C) * d_prime_s - (1. / 3.) * b_prime_s.powi(2); |
| 365 | h_prime = (a_prime_s * c_prime_s + (8. / K_C) * d_prime_s - (2. / 9.) * b_prime_s.powi(2)) |
| 366 | * (1. / 3.) |
| 367 | * b_prime_s |
| 368 | - c_prime_s * (c_prime_s / K_C) |
| 369 | - a_prime_s.powi(2) * d_prime_s; |
| 370 | } else { |
| 371 | g_prime = a_prime * c_prime - 4. * d_prime - (1. / 3.) * b_prime.powi(2); |
| 372 | h_prime = |
| 373 | (a_prime * c_prime + 8. * d_prime - (2. / 9.) * b_prime.powi(2)) * (1. / 3.) * b_prime |
| 374 | - c_prime.powi(2) |
| 375 | - a_prime.powi(2) * d_prime; |
| 376 | } |
| 377 | if !(g_prime.is_finite() && h_prime.is_finite()) { |
| 378 | return None; |
| 379 | } |
| 380 | let phi = depressed_cubic_dominant(g_prime, h_prime); |
| 381 | let phi = if rescale { phi * K_C } else { phi }; |
| 382 | let l_1 = a * 0.5; |
| 383 | let l_3 = (1. / 6.) * b + 0.5 * phi; |
| 384 | let delt_2 = c - a * l_3; |
| 385 | let d_2_cand_1 = (2. / 3.) * b - phi - l_1 * l_1; |
| 386 | let l_2_cand_1 = 0.5 * delt_2 / d_2_cand_1; |
| 387 | let l_2_cand_2 = 2. * (d - l_3 * l_3) / delt_2; |
| 388 | let d_2_cand_2 = 0.5 * delt_2 / l_2_cand_2; |
| 389 | let d_2_cand_3 = d_2_cand_1; |
| 390 | let l_2_cand_3 = l_2_cand_2; |
| 391 | let mut d_2_best = 0.0; |
| 392 | let mut l_2_best = 0.0; |
| 393 | let mut eps_l_best = 0.0; |
| 394 | for (i, (d_2, l_2)) in [ |
| 395 | (d_2_cand_1, l_2_cand_1), |
| 396 | (d_2_cand_2, l_2_cand_2), |
| 397 | (d_2_cand_3, l_2_cand_3), |
| 398 | ] |
| 399 | .iter() |
| 400 | .enumerate() |
| 401 | { |
| 402 | let eps_0 = eps_rel(d_2 + l_1 * l_1 + 2. * l_3, b); |
| 403 | let eps_1 = eps_rel(2. * (d_2 * l_2 + l_1 * l_3), c); |
| 404 | let eps_2 = eps_rel(d_2 * l_2 * l_2 + l_3 * l_3, d); |
| 405 | let eps_l = eps_0 + eps_1 + eps_2; |
| 406 | if i == 0 || eps_l < eps_l_best { |
| 407 | d_2_best = *d_2; |
| 408 | l_2_best = *l_2; |
| 409 | eps_l_best = eps_l; |
| 410 | } |
| 411 | } |
| 412 | let d_2 = d_2_best; |
| 413 | let l_2 = l_2_best; |
| 414 | let mut alpha_1; |
| 415 | let mut beta_1; |
| 416 | let mut alpha_2; |
| 417 | let mut beta_2; |
| 418 | //println!("phi = {}, d_2 = {}", phi, d_2); |
| 419 | if d_2 < 0.0 { |
| 420 | let sq = (-d_2).sqrt(); |
| 421 | alpha_1 = l_1 + sq; |
| 422 | beta_1 = l_3 + sq * l_2; |
| 423 | alpha_2 = l_1 - sq; |
| 424 | beta_2 = l_3 - sq * l_2; |
| 425 | if beta_2.abs() < beta_1.abs() { |
| 426 | beta_2 = d / beta_1; |
| 427 | } else if beta_2.abs() > beta_1.abs() { |
| 428 | beta_1 = d / beta_2; |
| 429 | } |
| 430 | let cands; |
| 431 | if alpha_1.abs() != alpha_2.abs() { |
| 432 | if alpha_1.abs() < alpha_2.abs() { |
| 433 | let a1_cand_1 = (c - beta_1 * alpha_2) / beta_2; |
| 434 | let a1_cand_2 = (b - beta_2 - beta_1) / alpha_2; |
| 435 | let a1_cand_3 = a - alpha_2; |
| 436 | // Note: cand 3 is first because it is infallible, simplifying logic |
| 437 | cands = [ |
| 438 | (a1_cand_3, alpha_2), |
| 439 | (a1_cand_1, alpha_2), |
| 440 | (a1_cand_2, alpha_2), |
| 441 | ]; |
| 442 | } else { |
| 443 | let a2_cand_1 = (c - alpha_1 * beta_2) / beta_1; |
| 444 | let a2_cand_2 = (b - beta_2 - beta_1) / alpha_1; |
| 445 | let a2_cand_3 = a - alpha_1; |
| 446 | cands = [ |
| 447 | (alpha_1, a2_cand_3), |
| 448 | (alpha_1, a2_cand_1), |
| 449 | (alpha_1, a2_cand_2), |
| 450 | ]; |
| 451 | } |
| 452 | let mut eps_q_best = 0.0; |
| 453 | for (i, (a1, a2)) in cands.iter().enumerate() { |
| 454 | if a1.is_finite() && a2.is_finite() { |
| 455 | let eps_q = calc_eps_q(*a1, beta_1, *a2, beta_2); |
| 456 | if i == 0 || eps_q < eps_q_best { |
| 457 | alpha_1 = *a1; |
| 458 | alpha_2 = *a2; |
| 459 | eps_q_best = eps_q; |
| 460 | } |
| 461 | } |
| 462 | } |
| 463 | } |
| 464 | } else if d_2 == 0.0 { |
| 465 | let d_3 = d - l_3 * l_3; |
| 466 | alpha_1 = l_1; |
| 467 | beta_1 = l_3 + (-d_3).sqrt(); |
| 468 | alpha_2 = l_1; |
| 469 | beta_2 = l_3 - (-d_3).sqrt(); |
| 470 | if beta_1.abs() > beta_2.abs() { |
| 471 | beta_2 = d / beta_1; |
| 472 | } else if beta_2.abs() > beta_1.abs() { |
| 473 | beta_1 = d / beta_2; |
| 474 | } |
| 475 | // TODO: handle case d_2 is very small? |
| 476 | } else { |
| 477 | // This case means no real roots; in the most general case we might want |
| 478 | // to factor into quadratic equations with complex coefficients. |
| 479 | return None; |
| 480 | } |
| 481 | // Newton-Raphson iteration on alpha/beta coeff's. |
| 482 | let mut eps_t = calc_eps_t(alpha_1, beta_1, alpha_2, beta_2); |
| 483 | for _ in 0..8 { |
| 484 | //println!("a1 {} b1 {} a2 {} b2 {}", alpha_1, beta_1, alpha_2, beta_2); |
| 485 | //println!("eps_t = {:e}", eps_t); |
| 486 | if eps_t == 0.0 { |
| 487 | break; |
| 488 | } |
| 489 | let f_0 = beta_1 * beta_2 - d; |
| 490 | let f_1 = beta_1 * alpha_2 + alpha_1 * beta_2 - c; |
| 491 | let f_2 = beta_1 + alpha_1 * alpha_2 + beta_2 - b; |
| 492 | let f_3 = alpha_1 + alpha_2 - a; |
| 493 | let c_1 = alpha_1 - alpha_2; |
| 494 | let det_j = beta_1 * beta_1 - beta_1 * (alpha_2 * c_1 + 2. * beta_2) |
| 495 | + beta_2 * (alpha_1 * c_1 + beta_2); |
| 496 | if det_j == 0.0 { |
| 497 | break; |
| 498 | } |
| 499 | let inv = det_j.recip(); |
| 500 | let c_2 = beta_2 - beta_1; |
| 501 | let c_3 = beta_1 * alpha_2 - alpha_1 * beta_2; |
| 502 | let dz_0 = c_1 * f_0 + c_2 * f_1 + c_3 * f_2 - (beta_1 * c_2 + alpha_1 * c_3) * f_3; |
| 503 | let dz_1 = (alpha_1 * c_1 + c_2) * f_0 |
| 504 | - beta_1 * c_1 * f_1 |
| 505 | - beta_1 * c_2 * f_2 |
| 506 | - beta_1 * c_3 * f_3; |
| 507 | let dz_2 = -c_1 * f_0 - c_2 * f_1 - c_3 * f_2 + (alpha_2 * c_3 + beta_2 * c_2) * f_3; |
| 508 | let dz_3 = -(alpha_2 * c_1 + c_2) * f_0 |
| 509 | + beta_2 * c_1 * f_1 |
| 510 | + beta_2 * c_2 * f_2 |
| 511 | + beta_2 * c_3 * f_3; |
| 512 | let a1 = alpha_1 - inv * dz_0; |
| 513 | let b1 = beta_1 - inv * dz_1; |
| 514 | let a2 = alpha_2 - inv * dz_2; |
| 515 | let b2 = beta_2 - inv * dz_3; |
| 516 | let new_eps_t = calc_eps_t(a1, b1, a2, b2); |
| 517 | // We break if the new eps is equal, paper keeps going |
| 518 | if new_eps_t < eps_t { |
| 519 | alpha_1 = a1; |
| 520 | beta_1 = b1; |
| 521 | alpha_2 = a2; |
| 522 | beta_2 = b2; |
| 523 | eps_t = new_eps_t; |
| 524 | } else { |
| 525 | //println!("new_eps_t got worse: {:e}", new_eps_t); |
| 526 | break; |
| 527 | } |
| 528 | } |
| 529 | Some([(alpha_1, beta_1), (alpha_2, beta_2)].into()) |
| 530 | } |
| 531 | |
| 532 | /// Dominant root of depressed cubic x^3 + gx + h = 0. |
| 533 | /// |
| 534 | /// Section 2.2 of Orellana and De Michele. |
| 535 | // Note: some of the techniques in here might be useful to improve the |
| 536 | // cubic solver, and vice versa. |
| 537 | fn depressed_cubic_dominant(g: f64, h: f64) -> f64 { |
| 538 | let q = (-1. / 3.) * g; |
| 539 | let r = 0.5 * h; |
| 540 | let phi_0; |
| 541 | let k = if q.abs() < 1e102 && r.abs() < 1e154 { |
| 542 | None |
| 543 | } else if q.abs() < r.abs() { |
| 544 | Some(1. - q * (q / r).powi(2)) |
| 545 | } else { |
| 546 | Some(q.signum() * ((r / q).powi(2) / q - 1.0)) |
| 547 | }; |
| 548 | if k.is_some() && r == 0.0 { |
| 549 | if g > 0.0 { |
| 550 | phi_0 = 0.0; |
| 551 | } else { |
| 552 | phi_0 = (-g).sqrt(); |
| 553 | } |
| 554 | } else if k.map(|k| k < 0.0).unwrap_or_else(|| r * r < q.powi(3)) { |
| 555 | let t = if k.is_some() { |
| 556 | r / q / q.sqrt() |
| 557 | } else { |
| 558 | r / q.powi(3).sqrt() |
| 559 | }; |
| 560 | phi_0 = -2. * q.sqrt() * (t.abs().acos() * (1. / 3.)).cos().copysign(t); |
| 561 | } else { |
| 562 | let a = if let Some(k) = k { |
| 563 | if q.abs() < r.abs() { |
| 564 | -r * (1. + k.sqrt()) |
| 565 | } else { |
| 566 | -r - (q.abs().sqrt() * q * k.sqrt()).copysign(r) |
| 567 | } |
| 568 | } else { |
| 569 | -r - (r * r - q.powi(3)).sqrt().copysign(r) |
| 570 | } |
| 571 | .cbrt(); |
| 572 | let b = if a == 0.0 { 0.0 } else { q / a }; |
| 573 | phi_0 = a + b; |
| 574 | } |
| 575 | // Refine with Newton-Raphson iteration |
| 576 | let mut x = phi_0; |
| 577 | let mut f = (x * x + g) * x + h; |
| 578 | //println!("g = {:e}, h = {:e}, x = {:e}, f = {:e}", g, h, x, f); |
| 579 | const EPS_M: f64 = 2.22045e-16; |
| 580 | if f.abs() < EPS_M * x.powi(3).max(g * x).max(h) { |
| 581 | return x; |
| 582 | } |
| 583 | for _ in 0..8 { |
| 584 | let delt_f = 3. * x * x + g; |
| 585 | if delt_f == 0.0 { |
| 586 | break; |
| 587 | } |
| 588 | let new_x = x - f / delt_f; |
| 589 | let new_f = (new_x * new_x + g) * new_x + h; |
| 590 | //println!("delt_f = {:e}, new_f = {:e}", delt_f, new_f); |
| 591 | if new_f == 0.0 { |
| 592 | return new_x; |
| 593 | } |
| 594 | if new_f.abs() >= f.abs() { |
| 595 | break; |
| 596 | } |
| 597 | x = new_x; |
| 598 | f = new_f; |
| 599 | } |
| 600 | x |
| 601 | } |
| 602 | |
| 603 | /// Solve an arbitrary function for a zero-crossing. |
| 604 | /// |
| 605 | /// This uses the [ITP method], as described in the paper |
| 606 | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]. |
| 607 | /// |
| 608 | /// The values of `ya` and `yb` are given as arguments rather than |
| 609 | /// computed from `f`, as the values may already be known, or they may |
| 610 | /// be less expensive to compute as special cases. |
| 611 | /// |
| 612 | /// It is assumed that `ya < 0.0` and `yb > 0.0`, otherwise unexpected |
| 613 | /// results may occur. |
| 614 | /// |
| 615 | /// The value of `epsilon` must be larger than 2^-63 times `b - a`, |
| 616 | /// otherwise integer overflow may occur. The `a` and `b` parameters |
| 617 | /// represent the lower and upper bounds of the bracket searched for a |
| 618 | /// solution. |
| 619 | /// |
| 620 | /// The ITP method has tuning parameters. This implementation hardwires |
| 621 | /// k2 to 2, both because it avoids an expensive floating point |
| 622 | /// exponentiation, and because this value has been tested to work well |
| 623 | /// with curve fitting problems. |
| 624 | /// |
| 625 | /// The `n0` parameter controls the relative impact of the bisection and |
| 626 | /// secant components. When it is 0, the number of iterations is |
| 627 | /// guaranteed to be no more than the number required by bisection (thus, |
| 628 | /// this method is strictly superior to bisection). However, when the |
| 629 | /// function is smooth, a value of 1 gives the secant method more of a |
| 630 | /// chance to engage, so the average number of iterations is likely |
| 631 | /// lower, though there can be one more iteration than bisection in the |
| 632 | /// worst case. |
| 633 | /// |
| 634 | /// The `k1` parameter is harder to characterize, and interested users |
| 635 | /// are referred to the paper, as well as encouraged to do empirical |
| 636 | /// testing. To match the paper, a value of `0.2 / (b - a)` is |
| 637 | /// suggested, and this is confirmed to give good results. |
| 638 | /// |
| 639 | /// When the function is monotonic, the returned result is guaranteed to |
| 640 | /// be within `epsilon` of the zero crossing. For more detailed analysis, |
| 641 | /// again see the paper. |
| 642 | /// |
| 643 | /// [ITP method]: https://en.wikipedia.org/wiki/ITP_Method |
| 644 | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 |
| 645 | #[allow (clippy::too_many_arguments)] |
| 646 | pub fn solve_itp( |
| 647 | mut f: impl FnMut(f64) -> f64, |
| 648 | mut a: f64, |
| 649 | mut b: f64, |
| 650 | epsilon: f64, |
| 651 | n0: usize, |
| 652 | k1: f64, |
| 653 | mut ya: f64, |
| 654 | mut yb: f64, |
| 655 | ) -> f64 { |
| 656 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
| 657 | let nmax = n0 + n1_2; |
| 658 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
| 659 | while b - a > 2.0 * epsilon { |
| 660 | let x1_2 = 0.5 * (a + b); |
| 661 | let r = scaled_epsilon - 0.5 * (b - a); |
| 662 | let xf = (yb * a - ya * b) / (yb - ya); |
| 663 | let sigma = x1_2 - xf; |
| 664 | // This has k2 = 2 hardwired for efficiency. |
| 665 | let delta = k1 * (b - a).powi(2); |
| 666 | let xt = if delta <= (x1_2 - xf).abs() { |
| 667 | xf + delta.copysign(sigma) |
| 668 | } else { |
| 669 | x1_2 |
| 670 | }; |
| 671 | let xitp = if (xt - x1_2).abs() <= r { |
| 672 | xt |
| 673 | } else { |
| 674 | x1_2 - r.copysign(sigma) |
| 675 | }; |
| 676 | let yitp = f(xitp); |
| 677 | if yitp > 0.0 { |
| 678 | b = xitp; |
| 679 | yb = yitp; |
| 680 | } else if yitp < 0.0 { |
| 681 | a = xitp; |
| 682 | ya = yitp; |
| 683 | } else { |
| 684 | return xitp; |
| 685 | } |
| 686 | scaled_epsilon *= 0.5; |
| 687 | } |
| 688 | 0.5 * (a + b) |
| 689 | } |
| 690 | |
| 691 | /// A variant ITP solver that allows fallible functions. |
| 692 | /// |
| 693 | /// Another difference: it returns the bracket that contains the root, |
| 694 | /// which may be important if the function has a discontinuity. |
| 695 | #[allow (clippy::too_many_arguments)] |
| 696 | pub(crate) fn solve_itp_fallible<E>( |
| 697 | mut f: impl FnMut(f64) -> Result<f64, E>, |
| 698 | mut a: f64, |
| 699 | mut b: f64, |
| 700 | epsilon: f64, |
| 701 | n0: usize, |
| 702 | k1: f64, |
| 703 | mut ya: f64, |
| 704 | mut yb: f64, |
| 705 | ) -> Result<(f64, f64), E> { |
| 706 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
| 707 | let nmax = n0 + n1_2; |
| 708 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
| 709 | while b - a > 2.0 * epsilon { |
| 710 | let x1_2 = 0.5 * (a + b); |
| 711 | let r = scaled_epsilon - 0.5 * (b - a); |
| 712 | let xf = (yb * a - ya * b) / (yb - ya); |
| 713 | let sigma = x1_2 - xf; |
| 714 | // This has k2 = 2 hardwired for efficiency. |
| 715 | let delta = k1 * (b - a).powi(2); |
| 716 | let xt = if delta <= (x1_2 - xf).abs() { |
| 717 | xf + delta.copysign(sigma) |
| 718 | } else { |
| 719 | x1_2 |
| 720 | }; |
| 721 | let xitp = if (xt - x1_2).abs() <= r { |
| 722 | xt |
| 723 | } else { |
| 724 | x1_2 - r.copysign(sigma) |
| 725 | }; |
| 726 | let yitp = f(xitp)?; |
| 727 | if yitp > 0.0 { |
| 728 | b = xitp; |
| 729 | yb = yitp; |
| 730 | } else if yitp < 0.0 { |
| 731 | a = xitp; |
| 732 | ya = yitp; |
| 733 | } else { |
| 734 | return Ok((xitp, xitp)); |
| 735 | } |
| 736 | scaled_epsilon *= 0.5; |
| 737 | } |
| 738 | Ok((a, b)) |
| 739 | } |
| 740 | |
| 741 | // Tables of Legendre-Gauss quadrature coefficients, adapted from: |
| 742 | // <https://pomax.github.io/bezierinfo/legendre-gauss.html> |
| 743 | |
| 744 | pub const GAUSS_LEGENDRE_COEFFS_3: &[(f64, f64)] = &[ |
| 745 | (0.8888888888888888, 0.0000000000000000), |
| 746 | (0.5555555555555556, -0.7745966692414834), |
| 747 | (0.5555555555555556, 0.7745966692414834), |
| 748 | ]; |
| 749 | |
| 750 | pub const GAUSS_LEGENDRE_COEFFS_4: &[(f64, f64)] = &[ |
| 751 | (0.6521451548625461, -0.3399810435848563), |
| 752 | (0.6521451548625461, 0.3399810435848563), |
| 753 | (0.3478548451374538, -0.8611363115940526), |
| 754 | (0.3478548451374538, 0.8611363115940526), |
| 755 | ]; |
| 756 | |
| 757 | pub const GAUSS_LEGENDRE_COEFFS_5: &[(f64, f64)] = &[ |
| 758 | (0.5688888888888889, 0.0000000000000000), |
| 759 | (0.4786286704993665, -0.5384693101056831), |
| 760 | (0.4786286704993665, 0.5384693101056831), |
| 761 | (0.2369268850561891, -0.9061798459386640), |
| 762 | (0.2369268850561891, 0.9061798459386640), |
| 763 | ]; |
| 764 | |
| 765 | pub const GAUSS_LEGENDRE_COEFFS_6: &[(f64, f64)] = &[ |
| 766 | (0.3607615730481386, 0.6612093864662645), |
| 767 | (0.3607615730481386, -0.6612093864662645), |
| 768 | (0.4679139345726910, -0.2386191860831969), |
| 769 | (0.4679139345726910, 0.2386191860831969), |
| 770 | (0.1713244923791704, -0.9324695142031521), |
| 771 | (0.1713244923791704, 0.9324695142031521), |
| 772 | ]; |
| 773 | |
| 774 | pub const GAUSS_LEGENDRE_COEFFS_7: &[(f64, f64)] = &[ |
| 775 | (0.4179591836734694, 0.0000000000000000), |
| 776 | (0.3818300505051189, 0.4058451513773972), |
| 777 | (0.3818300505051189, -0.4058451513773972), |
| 778 | (0.2797053914892766, -0.7415311855993945), |
| 779 | (0.2797053914892766, 0.7415311855993945), |
| 780 | (0.1294849661688697, -0.9491079123427585), |
| 781 | (0.1294849661688697, 0.9491079123427585), |
| 782 | ]; |
| 783 | |
| 784 | pub const GAUSS_LEGENDRE_COEFFS_8: &[(f64, f64)] = &[ |
| 785 | (0.3626837833783620, -0.1834346424956498), |
| 786 | (0.3626837833783620, 0.1834346424956498), |
| 787 | (0.3137066458778873, -0.5255324099163290), |
| 788 | (0.3137066458778873, 0.5255324099163290), |
| 789 | (0.2223810344533745, -0.7966664774136267), |
| 790 | (0.2223810344533745, 0.7966664774136267), |
| 791 | (0.1012285362903763, -0.9602898564975363), |
| 792 | (0.1012285362903763, 0.9602898564975363), |
| 793 | ]; |
| 794 | |
| 795 | pub const GAUSS_LEGENDRE_COEFFS_8_HALF: &[(f64, f64)] = &[ |
| 796 | (0.3626837833783620, 0.1834346424956498), |
| 797 | (0.3137066458778873, 0.5255324099163290), |
| 798 | (0.2223810344533745, 0.7966664774136267), |
| 799 | (0.1012285362903763, 0.9602898564975363), |
| 800 | ]; |
| 801 | |
| 802 | pub const GAUSS_LEGENDRE_COEFFS_9: &[(f64, f64)] = &[ |
| 803 | (0.3302393550012598, 0.0000000000000000), |
| 804 | (0.1806481606948574, -0.8360311073266358), |
| 805 | (0.1806481606948574, 0.8360311073266358), |
| 806 | (0.0812743883615744, -0.9681602395076261), |
| 807 | (0.0812743883615744, 0.9681602395076261), |
| 808 | (0.3123470770400029, -0.3242534234038089), |
| 809 | (0.3123470770400029, 0.3242534234038089), |
| 810 | (0.2606106964029354, -0.6133714327005904), |
| 811 | (0.2606106964029354, 0.6133714327005904), |
| 812 | ]; |
| 813 | |
| 814 | pub const GAUSS_LEGENDRE_COEFFS_11: &[(f64, f64)] = &[ |
| 815 | (0.2729250867779006, 0.0000000000000000), |
| 816 | (0.2628045445102467, -0.2695431559523450), |
| 817 | (0.2628045445102467, 0.2695431559523450), |
| 818 | (0.2331937645919905, -0.5190961292068118), |
| 819 | (0.2331937645919905, 0.5190961292068118), |
| 820 | (0.1862902109277343, -0.7301520055740494), |
| 821 | (0.1862902109277343, 0.7301520055740494), |
| 822 | (0.1255803694649046, -0.8870625997680953), |
| 823 | (0.1255803694649046, 0.8870625997680953), |
| 824 | (0.0556685671161737, -0.9782286581460570), |
| 825 | (0.0556685671161737, 0.9782286581460570), |
| 826 | ]; |
| 827 | |
| 828 | pub const GAUSS_LEGENDRE_COEFFS_16: &[(f64, f64)] = &[ |
| 829 | (0.1894506104550685, -0.0950125098376374), |
| 830 | (0.1894506104550685, 0.0950125098376374), |
| 831 | (0.1826034150449236, -0.2816035507792589), |
| 832 | (0.1826034150449236, 0.2816035507792589), |
| 833 | (0.1691565193950025, -0.4580167776572274), |
| 834 | (0.1691565193950025, 0.4580167776572274), |
| 835 | (0.1495959888165767, -0.6178762444026438), |
| 836 | (0.1495959888165767, 0.6178762444026438), |
| 837 | (0.1246289712555339, -0.7554044083550030), |
| 838 | (0.1246289712555339, 0.7554044083550030), |
| 839 | (0.0951585116824928, -0.8656312023878318), |
| 840 | (0.0951585116824928, 0.8656312023878318), |
| 841 | (0.0622535239386479, -0.9445750230732326), |
| 842 | (0.0622535239386479, 0.9445750230732326), |
| 843 | (0.0271524594117541, -0.9894009349916499), |
| 844 | (0.0271524594117541, 0.9894009349916499), |
| 845 | ]; |
| 846 | |
| 847 | // Just the positive x_i values. |
| 848 | pub const GAUSS_LEGENDRE_COEFFS_16_HALF: &[(f64, f64)] = &[ |
| 849 | (0.1894506104550685, 0.0950125098376374), |
| 850 | (0.1826034150449236, 0.2816035507792589), |
| 851 | (0.1691565193950025, 0.4580167776572274), |
| 852 | (0.1495959888165767, 0.6178762444026438), |
| 853 | (0.1246289712555339, 0.7554044083550030), |
| 854 | (0.0951585116824928, 0.8656312023878318), |
| 855 | (0.0622535239386479, 0.9445750230732326), |
| 856 | (0.0271524594117541, 0.9894009349916499), |
| 857 | ]; |
| 858 | |
| 859 | pub const GAUSS_LEGENDRE_COEFFS_24: &[(f64, f64)] = &[ |
| 860 | (0.1279381953467522, -0.0640568928626056), |
| 861 | (0.1279381953467522, 0.0640568928626056), |
| 862 | (0.1258374563468283, -0.1911188674736163), |
| 863 | (0.1258374563468283, 0.1911188674736163), |
| 864 | (0.1216704729278034, -0.3150426796961634), |
| 865 | (0.1216704729278034, 0.3150426796961634), |
| 866 | (0.1155056680537256, -0.4337935076260451), |
| 867 | (0.1155056680537256, 0.4337935076260451), |
| 868 | (0.1074442701159656, -0.5454214713888396), |
| 869 | (0.1074442701159656, 0.5454214713888396), |
| 870 | (0.0976186521041139, -0.6480936519369755), |
| 871 | (0.0976186521041139, 0.6480936519369755), |
| 872 | (0.0861901615319533, -0.7401241915785544), |
| 873 | (0.0861901615319533, 0.7401241915785544), |
| 874 | (0.0733464814110803, -0.8200019859739029), |
| 875 | (0.0733464814110803, 0.8200019859739029), |
| 876 | (0.0592985849154368, -0.8864155270044011), |
| 877 | (0.0592985849154368, 0.8864155270044011), |
| 878 | (0.0442774388174198, -0.9382745520027328), |
| 879 | (0.0442774388174198, 0.9382745520027328), |
| 880 | (0.0285313886289337, -0.9747285559713095), |
| 881 | (0.0285313886289337, 0.9747285559713095), |
| 882 | (0.0123412297999872, -0.9951872199970213), |
| 883 | (0.0123412297999872, 0.9951872199970213), |
| 884 | ]; |
| 885 | |
| 886 | pub const GAUSS_LEGENDRE_COEFFS_24_HALF: &[(f64, f64)] = &[ |
| 887 | (0.1279381953467522, 0.0640568928626056), |
| 888 | (0.1258374563468283, 0.1911188674736163), |
| 889 | (0.1216704729278034, 0.3150426796961634), |
| 890 | (0.1155056680537256, 0.4337935076260451), |
| 891 | (0.1074442701159656, 0.5454214713888396), |
| 892 | (0.0976186521041139, 0.6480936519369755), |
| 893 | (0.0861901615319533, 0.7401241915785544), |
| 894 | (0.0733464814110803, 0.8200019859739029), |
| 895 | (0.0592985849154368, 0.8864155270044011), |
| 896 | (0.0442774388174198, 0.9382745520027328), |
| 897 | (0.0285313886289337, 0.9747285559713095), |
| 898 | (0.0123412297999872, 0.9951872199970213), |
| 899 | ]; |
| 900 | |
| 901 | pub const GAUSS_LEGENDRE_COEFFS_32: &[(f64, f64)] = &[ |
| 902 | (0.0965400885147278, -0.0483076656877383), |
| 903 | (0.0965400885147278, 0.0483076656877383), |
| 904 | (0.0956387200792749, -0.1444719615827965), |
| 905 | (0.0956387200792749, 0.1444719615827965), |
| 906 | (0.0938443990808046, -0.2392873622521371), |
| 907 | (0.0938443990808046, 0.2392873622521371), |
| 908 | (0.0911738786957639, -0.3318686022821277), |
| 909 | (0.0911738786957639, 0.3318686022821277), |
| 910 | (0.0876520930044038, -0.4213512761306353), |
| 911 | (0.0876520930044038, 0.4213512761306353), |
| 912 | (0.0833119242269467, -0.5068999089322294), |
| 913 | (0.0833119242269467, 0.5068999089322294), |
| 914 | (0.0781938957870703, -0.5877157572407623), |
| 915 | (0.0781938957870703, 0.5877157572407623), |
| 916 | (0.0723457941088485, -0.6630442669302152), |
| 917 | (0.0723457941088485, 0.6630442669302152), |
| 918 | (0.0658222227763618, -0.7321821187402897), |
| 919 | (0.0658222227763618, 0.7321821187402897), |
| 920 | (0.0586840934785355, -0.7944837959679424), |
| 921 | (0.0586840934785355, 0.7944837959679424), |
| 922 | (0.0509980592623762, -0.8493676137325700), |
| 923 | (0.0509980592623762, 0.8493676137325700), |
| 924 | (0.0428358980222267, -0.8963211557660521), |
| 925 | (0.0428358980222267, 0.8963211557660521), |
| 926 | (0.0342738629130214, -0.9349060759377397), |
| 927 | (0.0342738629130214, 0.9349060759377397), |
| 928 | (0.0253920653092621, -0.9647622555875064), |
| 929 | (0.0253920653092621, 0.9647622555875064), |
| 930 | (0.0162743947309057, -0.9856115115452684), |
| 931 | (0.0162743947309057, 0.9856115115452684), |
| 932 | (0.0070186100094701, -0.9972638618494816), |
| 933 | (0.0070186100094701, 0.9972638618494816), |
| 934 | ]; |
| 935 | |
| 936 | pub const GAUSS_LEGENDRE_COEFFS_32_HALF: &[(f64, f64)] = &[ |
| 937 | (0.0965400885147278, 0.0483076656877383), |
| 938 | (0.0956387200792749, 0.1444719615827965), |
| 939 | (0.0938443990808046, 0.2392873622521371), |
| 940 | (0.0911738786957639, 0.3318686022821277), |
| 941 | (0.0876520930044038, 0.4213512761306353), |
| 942 | (0.0833119242269467, 0.5068999089322294), |
| 943 | (0.0781938957870703, 0.5877157572407623), |
| 944 | (0.0723457941088485, 0.6630442669302152), |
| 945 | (0.0658222227763618, 0.7321821187402897), |
| 946 | (0.0586840934785355, 0.7944837959679424), |
| 947 | (0.0509980592623762, 0.8493676137325700), |
| 948 | (0.0428358980222267, 0.8963211557660521), |
| 949 | (0.0342738629130214, 0.9349060759377397), |
| 950 | (0.0253920653092621, 0.9647622555875064), |
| 951 | (0.0162743947309057, 0.9856115115452684), |
| 952 | (0.0070186100094701, 0.9972638618494816), |
| 953 | ]; |
| 954 | |
| 955 | #[cfg (test)] |
| 956 | mod tests { |
| 957 | use crate::common::*; |
| 958 | use arrayvec::ArrayVec; |
| 959 | |
| 960 | fn verify<const N: usize>(mut roots: ArrayVec<f64, N>, expected: &[f64]) { |
| 961 | assert_eq!(expected.len(), roots.len()); |
| 962 | let epsilon = 1e-12; |
| 963 | roots.sort_by(|a, b| a.partial_cmp(b).unwrap()); |
| 964 | for i in 0..expected.len() { |
| 965 | assert!((roots[i] - expected[i]).abs() < epsilon); |
| 966 | } |
| 967 | } |
| 968 | |
| 969 | #[test ] |
| 970 | fn test_solve_cubic() { |
| 971 | verify(solve_cubic(-5.0, 0.0, 0.0, 1.0), &[5.0f64.cbrt()]); |
| 972 | verify(solve_cubic(-5.0, -1.0, 0.0, 1.0), &[1.90416085913492]); |
| 973 | verify(solve_cubic(0.0, -1.0, 0.0, 1.0), &[-1.0, 0.0, 1.0]); |
| 974 | verify(solve_cubic(-2.0, -3.0, 0.0, 1.0), &[-1.0, 2.0]); |
| 975 | verify(solve_cubic(2.0, -3.0, 0.0, 1.0), &[-2.0, 1.0]); |
| 976 | verify( |
| 977 | solve_cubic(2.0 - 1e-12, 5.0, 4.0, 1.0), |
| 978 | &[ |
| 979 | -1.9999999999989995, |
| 980 | -1.0000010000848456, |
| 981 | -0.9999989999161546, |
| 982 | ], |
| 983 | ); |
| 984 | verify(solve_cubic(2.0 + 1e-12, 5.0, 4.0, 1.0), &[-2.0]); |
| 985 | } |
| 986 | |
| 987 | #[test ] |
| 988 | fn test_solve_quadratic() { |
| 989 | verify( |
| 990 | solve_quadratic(-5.0, 0.0, 1.0), |
| 991 | &[-(5.0f64.sqrt()), 5.0f64.sqrt()], |
| 992 | ); |
| 993 | verify(solve_quadratic(5.0, 0.0, 1.0), &[]); |
| 994 | verify(solve_quadratic(5.0, 1.0, 0.0), &[-5.0]); |
| 995 | verify(solve_quadratic(1.0, 2.0, 1.0), &[-1.0]); |
| 996 | } |
| 997 | |
| 998 | #[test ] |
| 999 | fn test_solve_quartic() { |
| 1000 | // These test cases are taken from Orellana and De Michele paper (Table 1). |
| 1001 | fn test_with_roots(coeffs: [f64; 4], roots: &[f64], rel_err: f64) { |
| 1002 | // Note: in paper, coefficients are in decreasing order. |
| 1003 | let mut actual = solve_quartic(coeffs[3], coeffs[2], coeffs[1], coeffs[0], 1.0); |
| 1004 | actual.sort_by(f64::total_cmp); |
| 1005 | assert_eq!(actual.len(), roots.len()); |
| 1006 | for (actual, expected) in actual.iter().zip(roots) { |
| 1007 | assert!( |
| 1008 | (actual - expected).abs() < rel_err * expected.abs(), |
| 1009 | "actual {:e}, expected {:e}, err {:e}" , |
| 1010 | actual, |
| 1011 | expected, |
| 1012 | actual - expected |
| 1013 | ); |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | fn test_vieta_roots(x1: f64, x2: f64, x3: f64, x4: f64, roots: &[f64], rel_err: f64) { |
| 1018 | let a = -(x1 + x2 + x3 + x4); |
| 1019 | let b = x1 * (x2 + x3) + x2 * (x3 + x4) + x4 * (x1 + x3); |
| 1020 | let c = -x1 * x2 * (x3 + x4) - x3 * x4 * (x1 + x2); |
| 1021 | let d = x1 * x2 * x3 * x4; |
| 1022 | test_with_roots([a, b, c, d], roots, rel_err); |
| 1023 | } |
| 1024 | |
| 1025 | fn test_vieta(x1: f64, x2: f64, x3: f64, x4: f64, rel_err: f64) { |
| 1026 | test_vieta_roots(x1, x2, x3, x4, &[x1, x2, x3, x4], rel_err); |
| 1027 | } |
| 1028 | |
| 1029 | // case 1 |
| 1030 | test_vieta(1., 1e3, 1e6, 1e9, 1e-16); |
| 1031 | // case 2 |
| 1032 | test_vieta(2., 2.001, 2.002, 2.003, 1e-6); |
| 1033 | // case 3 |
| 1034 | test_vieta(1e47, 1e49, 1e50, 1e53, 2e-16); |
| 1035 | // case 4 |
| 1036 | test_vieta(-1., 1., 2., 1e14, 1e-16); |
| 1037 | // case 5 |
| 1038 | test_vieta(-2e7, -1., 1., 1e7, 1e-16); |
| 1039 | // case 6 |
| 1040 | test_with_roots( |
| 1041 | [-9000002.0, -9999981999998.0, 19999982e6, -2e13], |
| 1042 | &[-1e6, 1e7], |
| 1043 | 1e-16, |
| 1044 | ); |
| 1045 | // case 7 |
| 1046 | test_with_roots( |
| 1047 | [2000011.0, 1010022000028.0, 11110056e6, 2828e10], |
| 1048 | &[-7., -4.], |
| 1049 | 1e-16, |
| 1050 | ); |
| 1051 | // case 8 |
| 1052 | test_with_roots( |
| 1053 | [-100002011.0, 201101022001.0, -102200111000011.0, 11000011e8], |
| 1054 | &[11., 1e8], |
| 1055 | 1e-16, |
| 1056 | ); |
| 1057 | // cases 9-13 have no real roots |
| 1058 | // case 14 |
| 1059 | test_vieta_roots(1000., 1000., 1000., 1000., &[1000., 1000.], 1e-16); |
| 1060 | // case 15 |
| 1061 | test_vieta_roots(1e-15, 1000., 1000., 1000., &[1e-15, 1000., 1000.], 1e-15); |
| 1062 | // case 16 no real roots |
| 1063 | // case 17 |
| 1064 | test_vieta(10000., 10001., 10010., 10100., 1e-6); |
| 1065 | // case 19 |
| 1066 | test_vieta_roots(1., 1e30, 1e30, 1e44, &[1., 1e30, 1e44], 1e-16); |
| 1067 | // case 20 |
| 1068 | // FAILS, error too big |
| 1069 | test_vieta(1., 1e7, 1e7, 1e14, 1e-7); |
| 1070 | // case 21 doesn't pick up double root |
| 1071 | // case 22 |
| 1072 | test_vieta(1., 10., 1e152, 1e154, 3e-16); |
| 1073 | // case 23 |
| 1074 | test_with_roots( |
| 1075 | [1., 1., 3. / 8., 1e-3], |
| 1076 | &[-0.497314148060048, -0.00268585193995149], |
| 1077 | 2e-15, |
| 1078 | ); |
| 1079 | // case 24 |
| 1080 | const S: f64 = 1e30; |
| 1081 | test_with_roots( |
| 1082 | [-(1. + 1. / S), 1. / S - S * S, S * S + S, -S], |
| 1083 | &[-S, 1e-30, 1., S], |
| 1084 | 2e-16, |
| 1085 | ); |
| 1086 | } |
| 1087 | |
| 1088 | #[test ] |
| 1089 | fn test_solve_itp() { |
| 1090 | let f = |x: f64| x.powi(3) - x - 2.0; |
| 1091 | let x = solve_itp(f, 1., 2., 1e-12, 0, 0.2, f(1.), f(2.)); |
| 1092 | assert!(f(x).abs() < 6e-12); |
| 1093 | } |
| 1094 | |
| 1095 | #[test ] |
| 1096 | fn test_inv_arclen() { |
| 1097 | use crate::{ParamCurve, ParamCurveArclen}; |
| 1098 | let c = crate::CubicBez::new( |
| 1099 | (0.0, 0.0), |
| 1100 | (100.0 / 3.0, 0.0), |
| 1101 | (200.0 / 3.0, 100.0 / 3.0), |
| 1102 | (100.0, 100.0), |
| 1103 | ); |
| 1104 | let target = 100.0; |
| 1105 | let _ = solve_itp( |
| 1106 | |t| c.subsegment(0.0..t).arclen(1e-9) - target, |
| 1107 | 0., |
| 1108 | 1., |
| 1109 | 1e-6, |
| 1110 | 1, |
| 1111 | 0.2, |
| 1112 | -target, |
| 1113 | c.arclen(1e-9) - target, |
| 1114 | ); |
| 1115 | } |
| 1116 | } |
| 1117 | |