1 | // Copyright 2018 the Kurbo Authors |
2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
3 | |
4 | //! Common mathematical operations |
5 | |
6 | #![allow (missing_docs)] |
7 | |
8 | #[cfg (not(feature = "std" ))] |
9 | mod sealed { |
10 | /// A [sealed trait](https://predr.ag/blog/definitive-guide-to-sealed-traits-in-rust/) |
11 | /// which stops [`super::FloatFuncs`] from being implemented outside kurbo. This could |
12 | /// be relaxed in the future if there is are good reasons to allow external impls. |
13 | /// The benefit from being sealed is that we can add methods without breaking downstream |
14 | /// implementations. |
15 | pub trait FloatFuncsSealed {} |
16 | } |
17 | |
18 | use arrayvec::ArrayVec; |
19 | |
20 | /// Defines a trait that chooses between libstd or libm implementations of float methods. |
21 | macro_rules! define_float_funcs { |
22 | ($( |
23 | fn $name:ident(self $(,$arg:ident: $arg_ty:ty)*) -> $ret:ty |
24 | => $lname:ident/$lfname:ident; |
25 | )+) => { |
26 | |
27 | /// Since core doesn't depend upon libm, this provides libm implementations |
28 | /// of float functions which are typically provided by the std library, when |
29 | /// the `std` feature is not enabled. |
30 | /// |
31 | /// For documentation see the respective functions in the std library. |
32 | #[cfg(not(feature = "std" ))] |
33 | pub trait FloatFuncs : Sized + sealed::FloatFuncsSealed { |
34 | /// Special implementation for signum, because libm doesn't have it. |
35 | fn signum(self) -> Self; |
36 | |
37 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret;)+ |
38 | } |
39 | |
40 | #[cfg(not(feature = "std" ))] |
41 | impl sealed::FloatFuncsSealed for f32 {} |
42 | |
43 | #[cfg(not(feature = "std" ))] |
44 | impl FloatFuncs for f32 { |
45 | #[inline] |
46 | fn signum(self) -> f32 { |
47 | if self.is_nan() { |
48 | f32::NAN |
49 | } else { |
50 | 1.0_f32.copysign(self) |
51 | } |
52 | } |
53 | |
54 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
55 | #[cfg(feature = "libm" )] |
56 | return libm::$lfname(self $(,$arg as _)*); |
57 | |
58 | #[cfg(not(feature = "libm" ))] |
59 | compile_error!("kurbo requires either the `std` or `libm` feature" ) |
60 | })+ |
61 | } |
62 | |
63 | #[cfg(not(feature = "std" ))] |
64 | impl sealed::FloatFuncsSealed for f64 {} |
65 | #[cfg(not(feature = "std" ))] |
66 | impl FloatFuncs for f64 { |
67 | #[inline] |
68 | fn signum(self) -> f64 { |
69 | if self.is_nan() { |
70 | f64::NAN |
71 | } else { |
72 | 1.0_f64.copysign(self) |
73 | } |
74 | } |
75 | |
76 | $(fn $name(self $(,$arg: $arg_ty)*) -> $ret { |
77 | #[cfg(feature = "libm" )] |
78 | return libm::$lname(self $(,$arg as _)*); |
79 | |
80 | #[cfg(not(feature = "libm" ))] |
81 | compile_error!("kurbo requires either the `std` or `libm` feature" ) |
82 | })+ |
83 | } |
84 | } |
85 | } |
86 | |
87 | define_float_funcs! { |
88 | fn abs(self) -> Self => fabs/fabsf; |
89 | fn acos(self) -> Self => acos/acosf; |
90 | fn atan2(self, other: Self) -> Self => atan2/atan2f; |
91 | fn cbrt(self) -> Self => cbrt/cbrtf; |
92 | fn ceil(self) -> Self => ceil/ceilf; |
93 | fn cos(self) -> Self => cos/cosf; |
94 | fn copysign(self, sign: Self) -> Self => copysign/copysignf; |
95 | fn floor(self) -> Self => floor/floorf; |
96 | fn hypot(self, other: Self) -> Self => hypot/hypotf; |
97 | fn ln(self) -> Self => log/logf; |
98 | fn log2(self) -> Self => log2/log2f; |
99 | fn mul_add(self, a: Self, b: Self) -> Self => fma/fmaf; |
100 | fn powi(self, n: i32) -> Self => pow/powf; |
101 | fn powf(self, n: Self) -> Self => pow/powf; |
102 | fn round(self) -> Self => round/roundf; |
103 | fn sin(self) -> Self => sin/sinf; |
104 | fn sin_cos(self) -> (Self, Self) => sincos/sincosf; |
105 | fn sqrt(self) -> Self => sqrt/sqrtf; |
106 | fn tan(self) -> Self => tan/tanf; |
107 | fn trunc(self) -> Self => trunc/truncf; |
108 | } |
109 | |
110 | /// Adds convenience methods to `f32` and `f64`. |
111 | pub trait FloatExt<T> { |
112 | /// Rounds to the nearest integer away from zero, |
113 | /// unless the provided value is already an integer. |
114 | /// |
115 | /// It is to `ceil` what `trunc` is to `floor`. |
116 | /// |
117 | /// # Examples |
118 | /// |
119 | /// ``` |
120 | /// use kurbo::common::FloatExt; |
121 | /// |
122 | /// let f = 3.7_f64; |
123 | /// let g = 3.0_f64; |
124 | /// let h = -3.7_f64; |
125 | /// let i = -5.1_f32; |
126 | /// |
127 | /// assert_eq!(f.expand(), 4.0); |
128 | /// assert_eq!(g.expand(), 3.0); |
129 | /// assert_eq!(h.expand(), -4.0); |
130 | /// assert_eq!(i.expand(), -6.0); |
131 | /// ``` |
132 | fn expand(&self) -> T; |
133 | } |
134 | |
135 | impl FloatExt<f64> for f64 { |
136 | #[inline ] |
137 | fn expand(&self) -> f64 { |
138 | self.abs().ceil().copysign(*self) |
139 | } |
140 | } |
141 | |
142 | impl FloatExt<f32> for f32 { |
143 | #[inline ] |
144 | fn expand(&self) -> f32 { |
145 | self.abs().ceil().copysign(*self) |
146 | } |
147 | } |
148 | |
149 | /// Find real roots of cubic equation. |
150 | /// |
151 | /// The implementation is not (yet) fully robust, but it does handle the case |
152 | /// where `c3` is zero (in that case, solving the quadratic equation). |
153 | /// |
154 | /// See: <https://momentsingraphics.de/CubicRoots.html> |
155 | /// |
156 | /// That implementation is in turn based on Jim Blinn's "How to Solve a Cubic |
157 | /// Equation", which is masterful. |
158 | /// |
159 | /// Return values of x for which c0 + c1 x + c2 x² + c3 x³ = 0. |
160 | pub fn solve_cubic(c0: f64, c1: f64, c2: f64, c3: f64) -> ArrayVec<f64, 3> { |
161 | let mut result = ArrayVec::new(); |
162 | let c3_recip = c3.recip(); |
163 | const ONETHIRD: f64 = 1. / 3.; |
164 | let scaled_c2 = c2 * (ONETHIRD * c3_recip); |
165 | let scaled_c1 = c1 * (ONETHIRD * c3_recip); |
166 | let scaled_c0 = c0 * c3_recip; |
167 | if !(scaled_c0.is_finite() && scaled_c1.is_finite() && scaled_c2.is_finite()) { |
168 | // cubic coefficient is zero or nearly so. |
169 | return solve_quadratic(c0, c1, c2).iter().copied().collect(); |
170 | } |
171 | let (c0, c1, c2) = (scaled_c0, scaled_c1, scaled_c2); |
172 | // (d0, d1, d2) is called "Delta" in article |
173 | let d0 = (-c2).mul_add(c2, c1); |
174 | let d1 = (-c1).mul_add(c2, c0); |
175 | let d2 = c2 * c0 - c1 * c1; |
176 | // d is called "Discriminant" |
177 | let d = 4.0 * d0 * d2 - d1 * d1; |
178 | // de is called "Depressed.x", Depressed.y = d0 |
179 | let de = (-2.0 * c2).mul_add(d0, d1); |
180 | // TODO: handle the cases where these intermediate results overflow. |
181 | if d < 0.0 { |
182 | let sq = (-0.25 * d).sqrt(); |
183 | let r = -0.5 * de; |
184 | let t1 = (r + sq).cbrt() + (r - sq).cbrt(); |
185 | result.push(t1 - c2); |
186 | } else if d == 0.0 { |
187 | let t1 = (-d0).sqrt().copysign(de); |
188 | result.push(t1 - c2); |
189 | result.push(-2.0 * t1 - c2); |
190 | } else { |
191 | let th = d.sqrt().atan2(-de) * ONETHIRD; |
192 | // (th_cos, th_sin) is called "CubicRoot" |
193 | let (th_sin, th_cos) = th.sin_cos(); |
194 | // (r0, r1, r2) is called "Root" |
195 | let r0 = th_cos; |
196 | let ss3 = th_sin * 3.0f64.sqrt(); |
197 | let r1 = 0.5 * (-th_cos + ss3); |
198 | let r2 = 0.5 * (-th_cos - ss3); |
199 | let t = 2.0 * (-d0).sqrt(); |
200 | result.push(t.mul_add(r0, -c2)); |
201 | result.push(t.mul_add(r1, -c2)); |
202 | result.push(t.mul_add(r2, -c2)); |
203 | } |
204 | result |
205 | } |
206 | |
207 | /// Find real roots of quadratic equation. |
208 | /// |
209 | /// Return values of x for which c0 + c1 x + c2 x² = 0. |
210 | /// |
211 | /// This function tries to be quite numerically robust. If the equation |
212 | /// is nearly linear, it will return the root ignoring the quadratic term; |
213 | /// the other root might be out of representable range. In the degenerate |
214 | /// case where all coefficients are zero, so that all values of x satisfy |
215 | /// the equation, a single `0.0` is returned. |
216 | pub fn solve_quadratic(c0: f64, c1: f64, c2: f64) -> ArrayVec<f64, 2> { |
217 | let mut result = ArrayVec::new(); |
218 | let sc0 = c0 * c2.recip(); |
219 | let sc1 = c1 * c2.recip(); |
220 | if !sc0.is_finite() || !sc1.is_finite() { |
221 | // c2 is zero or very small, treat as linear eqn |
222 | let root = -c0 / c1; |
223 | if root.is_finite() { |
224 | result.push(root); |
225 | } else if c0 == 0.0 && c1 == 0.0 { |
226 | // Degenerate case |
227 | result.push(0.0); |
228 | } |
229 | return result; |
230 | } |
231 | let arg = sc1 * sc1 - 4. * sc0; |
232 | let root1 = if !arg.is_finite() { |
233 | // Likely, calculation of sc1 * sc1 overflowed. Find one root |
234 | // using sc1 x + x² = 0, other root as sc0 / root1. |
235 | -sc1 |
236 | } else { |
237 | if arg < 0.0 { |
238 | return result; |
239 | } else if arg == 0.0 { |
240 | result.push(-0.5 * sc1); |
241 | return result; |
242 | } |
243 | // See https://math.stackexchange.com/questions/866331 |
244 | -0.5 * (sc1 + arg.sqrt().copysign(sc1)) |
245 | }; |
246 | let root2 = sc0 / root1; |
247 | if root2.is_finite() { |
248 | // Sort just to be friendly and make results deterministic. |
249 | if root2 > root1 { |
250 | result.push(root1); |
251 | result.push(root2); |
252 | } else { |
253 | result.push(root2); |
254 | result.push(root1); |
255 | } |
256 | } else { |
257 | result.push(root1); |
258 | } |
259 | result |
260 | } |
261 | |
262 | /// Compute epsilon relative to coefficient. |
263 | /// |
264 | /// A helper function from the Orellana and De Michele paper. |
265 | fn eps_rel(raw: f64, a: f64) -> f64 { |
266 | if a == 0.0 { |
267 | raw.abs() |
268 | } else { |
269 | ((raw - a) / a).abs() |
270 | } |
271 | } |
272 | |
273 | /// Find real roots of a quartic equation. |
274 | /// |
275 | /// This is a fairly literal implementation of the method described in: |
276 | /// Algorithm 1010: Boosting Efficiency in Solving Quartic Equations with |
277 | /// No Compromise in Accuracy, Orellana and De Michele, ACM |
278 | /// Transactions on Mathematical Software, Vol. 46, No. 2, May 2020. |
279 | pub fn solve_quartic(c0: f64, c1: f64, c2: f64, c3: f64, c4: f64) -> ArrayVec<f64, 4> { |
280 | if c4 == 0.0 { |
281 | return solve_cubic(c0, c1, c2, c3).iter().copied().collect(); |
282 | } |
283 | if c0 == 0.0 { |
284 | // Note: appends 0 root at end, doesn't sort. We might want to do that. |
285 | return solve_cubic(c1, c2, c3, c4) |
286 | .iter() |
287 | .copied() |
288 | .chain(Some(0.0)) |
289 | .collect(); |
290 | } |
291 | let a = c3 / c4; |
292 | let b = c2 / c4; |
293 | let c = c1 / c4; |
294 | let d = c0 / c4; |
295 | if let Some(result) = solve_quartic_inner(a, b, c, d, false) { |
296 | return result; |
297 | } |
298 | // Do polynomial rescaling |
299 | const K_Q: f64 = 7.16e76; |
300 | for rescale in [false, true] { |
301 | if let Some(result) = solve_quartic_inner( |
302 | a / K_Q, |
303 | b / K_Q.powi(2), |
304 | c / K_Q.powi(3), |
305 | d / K_Q.powi(4), |
306 | rescale, |
307 | ) { |
308 | return result.iter().map(|x| x * K_Q).collect(); |
309 | } |
310 | } |
311 | // Overflow happened, just return no roots. |
312 | //println!("overflow, no roots returned"); |
313 | Default::default() |
314 | } |
315 | |
316 | fn solve_quartic_inner(a: f64, b: f64, c: f64, d: f64, rescale: bool) -> Option<ArrayVec<f64, 4>> { |
317 | factor_quartic_inner(a, b, c, d, rescale).map(|quadratics: ArrayVec<(f64, f64), 2>| { |
318 | quadraticsimpl Iterator |
319 | .iter() |
320 | .flat_map(|(a: &f64, b: &f64)| solve_quadratic(*b, *a, c2:1.0)) |
321 | .collect() |
322 | }) |
323 | } |
324 | |
325 | /// Factor a quartic into two quadratics. |
326 | /// |
327 | /// Attempt to factor a quartic equation into two quadratic equations. Returns `None` either if there |
328 | /// is overflow (in which case rescaling might succeed) or the factorization would result in |
329 | /// complex coefficients. |
330 | /// |
331 | /// Discussion question: distinguish the two cases in return value? |
332 | pub fn factor_quartic_inner( |
333 | a: f64, |
334 | b: f64, |
335 | c: f64, |
336 | d: f64, |
337 | rescale: bool, |
338 | ) -> Option<ArrayVec<(f64, f64), 2>> { |
339 | let calc_eps_q = |a1, b1, a2, b2| { |
340 | let eps_a = eps_rel(a1 + a2, a); |
341 | let eps_b = eps_rel(b1 + a1 * a2 + b2, b); |
342 | let eps_c = eps_rel(b1 * a2 + a1 * b2, c); |
343 | eps_a + eps_b + eps_c |
344 | }; |
345 | let calc_eps_t = |a1, b1, a2, b2| calc_eps_q(a1, b1, a2, b2) + eps_rel(b1 * b2, d); |
346 | let disc = 9. * a * a - 24. * b; |
347 | let s = if disc >= 0.0 { |
348 | -2. * b / (3. * a + disc.sqrt().copysign(a)) |
349 | } else { |
350 | -0.25 * a |
351 | }; |
352 | let a_prime = a + 4. * s; |
353 | let b_prime = b + 3. * s * (a + 2. * s); |
354 | let c_prime = c + s * (2. * b + s * (3. * a + 4. * s)); |
355 | let d_prime = d + s * (c + s * (b + s * (a + s))); |
356 | let g_prime; |
357 | let h_prime; |
358 | const K_C: f64 = 3.49e102; |
359 | if rescale { |
360 | let a_prime_s = a_prime / K_C; |
361 | let b_prime_s = b_prime / K_C; |
362 | let c_prime_s = c_prime / K_C; |
363 | let d_prime_s = d_prime / K_C; |
364 | g_prime = a_prime_s * c_prime_s - (4. / K_C) * d_prime_s - (1. / 3.) * b_prime_s.powi(2); |
365 | h_prime = (a_prime_s * c_prime_s + (8. / K_C) * d_prime_s - (2. / 9.) * b_prime_s.powi(2)) |
366 | * (1. / 3.) |
367 | * b_prime_s |
368 | - c_prime_s * (c_prime_s / K_C) |
369 | - a_prime_s.powi(2) * d_prime_s; |
370 | } else { |
371 | g_prime = a_prime * c_prime - 4. * d_prime - (1. / 3.) * b_prime.powi(2); |
372 | h_prime = |
373 | (a_prime * c_prime + 8. * d_prime - (2. / 9.) * b_prime.powi(2)) * (1. / 3.) * b_prime |
374 | - c_prime.powi(2) |
375 | - a_prime.powi(2) * d_prime; |
376 | } |
377 | if !(g_prime.is_finite() && h_prime.is_finite()) { |
378 | return None; |
379 | } |
380 | let phi = depressed_cubic_dominant(g_prime, h_prime); |
381 | let phi = if rescale { phi * K_C } else { phi }; |
382 | let l_1 = a * 0.5; |
383 | let l_3 = (1. / 6.) * b + 0.5 * phi; |
384 | let delt_2 = c - a * l_3; |
385 | let d_2_cand_1 = (2. / 3.) * b - phi - l_1 * l_1; |
386 | let l_2_cand_1 = 0.5 * delt_2 / d_2_cand_1; |
387 | let l_2_cand_2 = 2. * (d - l_3 * l_3) / delt_2; |
388 | let d_2_cand_2 = 0.5 * delt_2 / l_2_cand_2; |
389 | let d_2_cand_3 = d_2_cand_1; |
390 | let l_2_cand_3 = l_2_cand_2; |
391 | let mut d_2_best = 0.0; |
392 | let mut l_2_best = 0.0; |
393 | let mut eps_l_best = 0.0; |
394 | for (i, (d_2, l_2)) in [ |
395 | (d_2_cand_1, l_2_cand_1), |
396 | (d_2_cand_2, l_2_cand_2), |
397 | (d_2_cand_3, l_2_cand_3), |
398 | ] |
399 | .iter() |
400 | .enumerate() |
401 | { |
402 | let eps_0 = eps_rel(d_2 + l_1 * l_1 + 2. * l_3, b); |
403 | let eps_1 = eps_rel(2. * (d_2 * l_2 + l_1 * l_3), c); |
404 | let eps_2 = eps_rel(d_2 * l_2 * l_2 + l_3 * l_3, d); |
405 | let eps_l = eps_0 + eps_1 + eps_2; |
406 | if i == 0 || eps_l < eps_l_best { |
407 | d_2_best = *d_2; |
408 | l_2_best = *l_2; |
409 | eps_l_best = eps_l; |
410 | } |
411 | } |
412 | let d_2 = d_2_best; |
413 | let l_2 = l_2_best; |
414 | let mut alpha_1; |
415 | let mut beta_1; |
416 | let mut alpha_2; |
417 | let mut beta_2; |
418 | //println!("phi = {}, d_2 = {}", phi, d_2); |
419 | if d_2 < 0.0 { |
420 | let sq = (-d_2).sqrt(); |
421 | alpha_1 = l_1 + sq; |
422 | beta_1 = l_3 + sq * l_2; |
423 | alpha_2 = l_1 - sq; |
424 | beta_2 = l_3 - sq * l_2; |
425 | if beta_2.abs() < beta_1.abs() { |
426 | beta_2 = d / beta_1; |
427 | } else if beta_2.abs() > beta_1.abs() { |
428 | beta_1 = d / beta_2; |
429 | } |
430 | let cands; |
431 | if alpha_1.abs() != alpha_2.abs() { |
432 | if alpha_1.abs() < alpha_2.abs() { |
433 | let a1_cand_1 = (c - beta_1 * alpha_2) / beta_2; |
434 | let a1_cand_2 = (b - beta_2 - beta_1) / alpha_2; |
435 | let a1_cand_3 = a - alpha_2; |
436 | // Note: cand 3 is first because it is infallible, simplifying logic |
437 | cands = [ |
438 | (a1_cand_3, alpha_2), |
439 | (a1_cand_1, alpha_2), |
440 | (a1_cand_2, alpha_2), |
441 | ]; |
442 | } else { |
443 | let a2_cand_1 = (c - alpha_1 * beta_2) / beta_1; |
444 | let a2_cand_2 = (b - beta_2 - beta_1) / alpha_1; |
445 | let a2_cand_3 = a - alpha_1; |
446 | cands = [ |
447 | (alpha_1, a2_cand_3), |
448 | (alpha_1, a2_cand_1), |
449 | (alpha_1, a2_cand_2), |
450 | ]; |
451 | } |
452 | let mut eps_q_best = 0.0; |
453 | for (i, (a1, a2)) in cands.iter().enumerate() { |
454 | if a1.is_finite() && a2.is_finite() { |
455 | let eps_q = calc_eps_q(*a1, beta_1, *a2, beta_2); |
456 | if i == 0 || eps_q < eps_q_best { |
457 | alpha_1 = *a1; |
458 | alpha_2 = *a2; |
459 | eps_q_best = eps_q; |
460 | } |
461 | } |
462 | } |
463 | } |
464 | } else if d_2 == 0.0 { |
465 | let d_3 = d - l_3 * l_3; |
466 | alpha_1 = l_1; |
467 | beta_1 = l_3 + (-d_3).sqrt(); |
468 | alpha_2 = l_1; |
469 | beta_2 = l_3 - (-d_3).sqrt(); |
470 | if beta_1.abs() > beta_2.abs() { |
471 | beta_2 = d / beta_1; |
472 | } else if beta_2.abs() > beta_1.abs() { |
473 | beta_1 = d / beta_2; |
474 | } |
475 | // TODO: handle case d_2 is very small? |
476 | } else { |
477 | // This case means no real roots; in the most general case we might want |
478 | // to factor into quadratic equations with complex coefficients. |
479 | return None; |
480 | } |
481 | // Newton-Raphson iteration on alpha/beta coeff's. |
482 | let mut eps_t = calc_eps_t(alpha_1, beta_1, alpha_2, beta_2); |
483 | for _ in 0..8 { |
484 | //println!("a1 {} b1 {} a2 {} b2 {}", alpha_1, beta_1, alpha_2, beta_2); |
485 | //println!("eps_t = {:e}", eps_t); |
486 | if eps_t == 0.0 { |
487 | break; |
488 | } |
489 | let f_0 = beta_1 * beta_2 - d; |
490 | let f_1 = beta_1 * alpha_2 + alpha_1 * beta_2 - c; |
491 | let f_2 = beta_1 + alpha_1 * alpha_2 + beta_2 - b; |
492 | let f_3 = alpha_1 + alpha_2 - a; |
493 | let c_1 = alpha_1 - alpha_2; |
494 | let det_j = beta_1 * beta_1 - beta_1 * (alpha_2 * c_1 + 2. * beta_2) |
495 | + beta_2 * (alpha_1 * c_1 + beta_2); |
496 | if det_j == 0.0 { |
497 | break; |
498 | } |
499 | let inv = det_j.recip(); |
500 | let c_2 = beta_2 - beta_1; |
501 | let c_3 = beta_1 * alpha_2 - alpha_1 * beta_2; |
502 | let dz_0 = c_1 * f_0 + c_2 * f_1 + c_3 * f_2 - (beta_1 * c_2 + alpha_1 * c_3) * f_3; |
503 | let dz_1 = (alpha_1 * c_1 + c_2) * f_0 |
504 | - beta_1 * c_1 * f_1 |
505 | - beta_1 * c_2 * f_2 |
506 | - beta_1 * c_3 * f_3; |
507 | let dz_2 = -c_1 * f_0 - c_2 * f_1 - c_3 * f_2 + (alpha_2 * c_3 + beta_2 * c_2) * f_3; |
508 | let dz_3 = -(alpha_2 * c_1 + c_2) * f_0 |
509 | + beta_2 * c_1 * f_1 |
510 | + beta_2 * c_2 * f_2 |
511 | + beta_2 * c_3 * f_3; |
512 | let a1 = alpha_1 - inv * dz_0; |
513 | let b1 = beta_1 - inv * dz_1; |
514 | let a2 = alpha_2 - inv * dz_2; |
515 | let b2 = beta_2 - inv * dz_3; |
516 | let new_eps_t = calc_eps_t(a1, b1, a2, b2); |
517 | // We break if the new eps is equal, paper keeps going |
518 | if new_eps_t < eps_t { |
519 | alpha_1 = a1; |
520 | beta_1 = b1; |
521 | alpha_2 = a2; |
522 | beta_2 = b2; |
523 | eps_t = new_eps_t; |
524 | } else { |
525 | //println!("new_eps_t got worse: {:e}", new_eps_t); |
526 | break; |
527 | } |
528 | } |
529 | Some([(alpha_1, beta_1), (alpha_2, beta_2)].into()) |
530 | } |
531 | |
532 | /// Dominant root of depressed cubic x^3 + gx + h = 0. |
533 | /// |
534 | /// Section 2.2 of Orellana and De Michele. |
535 | // Note: some of the techniques in here might be useful to improve the |
536 | // cubic solver, and vice versa. |
537 | fn depressed_cubic_dominant(g: f64, h: f64) -> f64 { |
538 | let q = (-1. / 3.) * g; |
539 | let r = 0.5 * h; |
540 | let phi_0; |
541 | let k = if q.abs() < 1e102 && r.abs() < 1e154 { |
542 | None |
543 | } else if q.abs() < r.abs() { |
544 | Some(1. - q * (q / r).powi(2)) |
545 | } else { |
546 | Some(q.signum() * ((r / q).powi(2) / q - 1.0)) |
547 | }; |
548 | if k.is_some() && r == 0.0 { |
549 | if g > 0.0 { |
550 | phi_0 = 0.0; |
551 | } else { |
552 | phi_0 = (-g).sqrt(); |
553 | } |
554 | } else if k.map(|k| k < 0.0).unwrap_or_else(|| r * r < q.powi(3)) { |
555 | let t = if k.is_some() { |
556 | r / q / q.sqrt() |
557 | } else { |
558 | r / q.powi(3).sqrt() |
559 | }; |
560 | phi_0 = -2. * q.sqrt() * (t.abs().acos() * (1. / 3.)).cos().copysign(t); |
561 | } else { |
562 | let a = if let Some(k) = k { |
563 | if q.abs() < r.abs() { |
564 | -r * (1. + k.sqrt()) |
565 | } else { |
566 | -r - (q.abs().sqrt() * q * k.sqrt()).copysign(r) |
567 | } |
568 | } else { |
569 | -r - (r * r - q.powi(3)).sqrt().copysign(r) |
570 | } |
571 | .cbrt(); |
572 | let b = if a == 0.0 { 0.0 } else { q / a }; |
573 | phi_0 = a + b; |
574 | } |
575 | // Refine with Newton-Raphson iteration |
576 | let mut x = phi_0; |
577 | let mut f = (x * x + g) * x + h; |
578 | //println!("g = {:e}, h = {:e}, x = {:e}, f = {:e}", g, h, x, f); |
579 | const EPS_M: f64 = 2.22045e-16; |
580 | if f.abs() < EPS_M * x.powi(3).max(g * x).max(h) { |
581 | return x; |
582 | } |
583 | for _ in 0..8 { |
584 | let delt_f = 3. * x * x + g; |
585 | if delt_f == 0.0 { |
586 | break; |
587 | } |
588 | let new_x = x - f / delt_f; |
589 | let new_f = (new_x * new_x + g) * new_x + h; |
590 | //println!("delt_f = {:e}, new_f = {:e}", delt_f, new_f); |
591 | if new_f == 0.0 { |
592 | return new_x; |
593 | } |
594 | if new_f.abs() >= f.abs() { |
595 | break; |
596 | } |
597 | x = new_x; |
598 | f = new_f; |
599 | } |
600 | x |
601 | } |
602 | |
603 | /// Solve an arbitrary function for a zero-crossing. |
604 | /// |
605 | /// This uses the [ITP method], as described in the paper |
606 | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]. |
607 | /// |
608 | /// The values of `ya` and `yb` are given as arguments rather than |
609 | /// computed from `f`, as the values may already be known, or they may |
610 | /// be less expensive to compute as special cases. |
611 | /// |
612 | /// It is assumed that `ya < 0.0` and `yb > 0.0`, otherwise unexpected |
613 | /// results may occur. |
614 | /// |
615 | /// The value of `epsilon` must be larger than 2^-63 times `b - a`, |
616 | /// otherwise integer overflow may occur. The `a` and `b` parameters |
617 | /// represent the lower and upper bounds of the bracket searched for a |
618 | /// solution. |
619 | /// |
620 | /// The ITP method has tuning parameters. This implementation hardwires |
621 | /// k2 to 2, both because it avoids an expensive floating point |
622 | /// exponentiation, and because this value has been tested to work well |
623 | /// with curve fitting problems. |
624 | /// |
625 | /// The `n0` parameter controls the relative impact of the bisection and |
626 | /// secant components. When it is 0, the number of iterations is |
627 | /// guaranteed to be no more than the number required by bisection (thus, |
628 | /// this method is strictly superior to bisection). However, when the |
629 | /// function is smooth, a value of 1 gives the secant method more of a |
630 | /// chance to engage, so the average number of iterations is likely |
631 | /// lower, though there can be one more iteration than bisection in the |
632 | /// worst case. |
633 | /// |
634 | /// The `k1` parameter is harder to characterize, and interested users |
635 | /// are referred to the paper, as well as encouraged to do empirical |
636 | /// testing. To match the paper, a value of `0.2 / (b - a)` is |
637 | /// suggested, and this is confirmed to give good results. |
638 | /// |
639 | /// When the function is monotonic, the returned result is guaranteed to |
640 | /// be within `epsilon` of the zero crossing. For more detailed analysis, |
641 | /// again see the paper. |
642 | /// |
643 | /// [ITP method]: https://en.wikipedia.org/wiki/ITP_Method |
644 | /// [An Enhancement of the Bisection Method Average Performance Preserving Minmax Optimality]: https://dl.acm.org/doi/10.1145/3423597 |
645 | #[allow (clippy::too_many_arguments)] |
646 | pub fn solve_itp( |
647 | mut f: impl FnMut(f64) -> f64, |
648 | mut a: f64, |
649 | mut b: f64, |
650 | epsilon: f64, |
651 | n0: usize, |
652 | k1: f64, |
653 | mut ya: f64, |
654 | mut yb: f64, |
655 | ) -> f64 { |
656 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
657 | let nmax = n0 + n1_2; |
658 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
659 | while b - a > 2.0 * epsilon { |
660 | let x1_2 = 0.5 * (a + b); |
661 | let r = scaled_epsilon - 0.5 * (b - a); |
662 | let xf = (yb * a - ya * b) / (yb - ya); |
663 | let sigma = x1_2 - xf; |
664 | // This has k2 = 2 hardwired for efficiency. |
665 | let delta = k1 * (b - a).powi(2); |
666 | let xt = if delta <= (x1_2 - xf).abs() { |
667 | xf + delta.copysign(sigma) |
668 | } else { |
669 | x1_2 |
670 | }; |
671 | let xitp = if (xt - x1_2).abs() <= r { |
672 | xt |
673 | } else { |
674 | x1_2 - r.copysign(sigma) |
675 | }; |
676 | let yitp = f(xitp); |
677 | if yitp > 0.0 { |
678 | b = xitp; |
679 | yb = yitp; |
680 | } else if yitp < 0.0 { |
681 | a = xitp; |
682 | ya = yitp; |
683 | } else { |
684 | return xitp; |
685 | } |
686 | scaled_epsilon *= 0.5; |
687 | } |
688 | 0.5 * (a + b) |
689 | } |
690 | |
691 | /// A variant ITP solver that allows fallible functions. |
692 | /// |
693 | /// Another difference: it returns the bracket that contains the root, |
694 | /// which may be important if the function has a discontinuity. |
695 | #[allow (clippy::too_many_arguments)] |
696 | pub(crate) fn solve_itp_fallible<E>( |
697 | mut f: impl FnMut(f64) -> Result<f64, E>, |
698 | mut a: f64, |
699 | mut b: f64, |
700 | epsilon: f64, |
701 | n0: usize, |
702 | k1: f64, |
703 | mut ya: f64, |
704 | mut yb: f64, |
705 | ) -> Result<(f64, f64), E> { |
706 | let n1_2 = (((b - a) / epsilon).log2().ceil() - 1.0).max(0.0) as usize; |
707 | let nmax = n0 + n1_2; |
708 | let mut scaled_epsilon = epsilon * (1u64 << nmax) as f64; |
709 | while b - a > 2.0 * epsilon { |
710 | let x1_2 = 0.5 * (a + b); |
711 | let r = scaled_epsilon - 0.5 * (b - a); |
712 | let xf = (yb * a - ya * b) / (yb - ya); |
713 | let sigma = x1_2 - xf; |
714 | // This has k2 = 2 hardwired for efficiency. |
715 | let delta = k1 * (b - a).powi(2); |
716 | let xt = if delta <= (x1_2 - xf).abs() { |
717 | xf + delta.copysign(sigma) |
718 | } else { |
719 | x1_2 |
720 | }; |
721 | let xitp = if (xt - x1_2).abs() <= r { |
722 | xt |
723 | } else { |
724 | x1_2 - r.copysign(sigma) |
725 | }; |
726 | let yitp = f(xitp)?; |
727 | if yitp > 0.0 { |
728 | b = xitp; |
729 | yb = yitp; |
730 | } else if yitp < 0.0 { |
731 | a = xitp; |
732 | ya = yitp; |
733 | } else { |
734 | return Ok((xitp, xitp)); |
735 | } |
736 | scaled_epsilon *= 0.5; |
737 | } |
738 | Ok((a, b)) |
739 | } |
740 | |
741 | // Tables of Legendre-Gauss quadrature coefficients, adapted from: |
742 | // <https://pomax.github.io/bezierinfo/legendre-gauss.html> |
743 | |
744 | pub const GAUSS_LEGENDRE_COEFFS_3: &[(f64, f64)] = &[ |
745 | (0.8888888888888888, 0.0000000000000000), |
746 | (0.5555555555555556, -0.7745966692414834), |
747 | (0.5555555555555556, 0.7745966692414834), |
748 | ]; |
749 | |
750 | pub const GAUSS_LEGENDRE_COEFFS_4: &[(f64, f64)] = &[ |
751 | (0.6521451548625461, -0.3399810435848563), |
752 | (0.6521451548625461, 0.3399810435848563), |
753 | (0.3478548451374538, -0.8611363115940526), |
754 | (0.3478548451374538, 0.8611363115940526), |
755 | ]; |
756 | |
757 | pub const GAUSS_LEGENDRE_COEFFS_5: &[(f64, f64)] = &[ |
758 | (0.5688888888888889, 0.0000000000000000), |
759 | (0.4786286704993665, -0.5384693101056831), |
760 | (0.4786286704993665, 0.5384693101056831), |
761 | (0.2369268850561891, -0.9061798459386640), |
762 | (0.2369268850561891, 0.9061798459386640), |
763 | ]; |
764 | |
765 | pub const GAUSS_LEGENDRE_COEFFS_6: &[(f64, f64)] = &[ |
766 | (0.3607615730481386, 0.6612093864662645), |
767 | (0.3607615730481386, -0.6612093864662645), |
768 | (0.4679139345726910, -0.2386191860831969), |
769 | (0.4679139345726910, 0.2386191860831969), |
770 | (0.1713244923791704, -0.9324695142031521), |
771 | (0.1713244923791704, 0.9324695142031521), |
772 | ]; |
773 | |
774 | pub const GAUSS_LEGENDRE_COEFFS_7: &[(f64, f64)] = &[ |
775 | (0.4179591836734694, 0.0000000000000000), |
776 | (0.3818300505051189, 0.4058451513773972), |
777 | (0.3818300505051189, -0.4058451513773972), |
778 | (0.2797053914892766, -0.7415311855993945), |
779 | (0.2797053914892766, 0.7415311855993945), |
780 | (0.1294849661688697, -0.9491079123427585), |
781 | (0.1294849661688697, 0.9491079123427585), |
782 | ]; |
783 | |
784 | pub const GAUSS_LEGENDRE_COEFFS_8: &[(f64, f64)] = &[ |
785 | (0.3626837833783620, -0.1834346424956498), |
786 | (0.3626837833783620, 0.1834346424956498), |
787 | (0.3137066458778873, -0.5255324099163290), |
788 | (0.3137066458778873, 0.5255324099163290), |
789 | (0.2223810344533745, -0.7966664774136267), |
790 | (0.2223810344533745, 0.7966664774136267), |
791 | (0.1012285362903763, -0.9602898564975363), |
792 | (0.1012285362903763, 0.9602898564975363), |
793 | ]; |
794 | |
795 | pub const GAUSS_LEGENDRE_COEFFS_8_HALF: &[(f64, f64)] = &[ |
796 | (0.3626837833783620, 0.1834346424956498), |
797 | (0.3137066458778873, 0.5255324099163290), |
798 | (0.2223810344533745, 0.7966664774136267), |
799 | (0.1012285362903763, 0.9602898564975363), |
800 | ]; |
801 | |
802 | pub const GAUSS_LEGENDRE_COEFFS_9: &[(f64, f64)] = &[ |
803 | (0.3302393550012598, 0.0000000000000000), |
804 | (0.1806481606948574, -0.8360311073266358), |
805 | (0.1806481606948574, 0.8360311073266358), |
806 | (0.0812743883615744, -0.9681602395076261), |
807 | (0.0812743883615744, 0.9681602395076261), |
808 | (0.3123470770400029, -0.3242534234038089), |
809 | (0.3123470770400029, 0.3242534234038089), |
810 | (0.2606106964029354, -0.6133714327005904), |
811 | (0.2606106964029354, 0.6133714327005904), |
812 | ]; |
813 | |
814 | pub const GAUSS_LEGENDRE_COEFFS_11: &[(f64, f64)] = &[ |
815 | (0.2729250867779006, 0.0000000000000000), |
816 | (0.2628045445102467, -0.2695431559523450), |
817 | (0.2628045445102467, 0.2695431559523450), |
818 | (0.2331937645919905, -0.5190961292068118), |
819 | (0.2331937645919905, 0.5190961292068118), |
820 | (0.1862902109277343, -0.7301520055740494), |
821 | (0.1862902109277343, 0.7301520055740494), |
822 | (0.1255803694649046, -0.8870625997680953), |
823 | (0.1255803694649046, 0.8870625997680953), |
824 | (0.0556685671161737, -0.9782286581460570), |
825 | (0.0556685671161737, 0.9782286581460570), |
826 | ]; |
827 | |
828 | pub const GAUSS_LEGENDRE_COEFFS_16: &[(f64, f64)] = &[ |
829 | (0.1894506104550685, -0.0950125098376374), |
830 | (0.1894506104550685, 0.0950125098376374), |
831 | (0.1826034150449236, -0.2816035507792589), |
832 | (0.1826034150449236, 0.2816035507792589), |
833 | (0.1691565193950025, -0.4580167776572274), |
834 | (0.1691565193950025, 0.4580167776572274), |
835 | (0.1495959888165767, -0.6178762444026438), |
836 | (0.1495959888165767, 0.6178762444026438), |
837 | (0.1246289712555339, -0.7554044083550030), |
838 | (0.1246289712555339, 0.7554044083550030), |
839 | (0.0951585116824928, -0.8656312023878318), |
840 | (0.0951585116824928, 0.8656312023878318), |
841 | (0.0622535239386479, -0.9445750230732326), |
842 | (0.0622535239386479, 0.9445750230732326), |
843 | (0.0271524594117541, -0.9894009349916499), |
844 | (0.0271524594117541, 0.9894009349916499), |
845 | ]; |
846 | |
847 | // Just the positive x_i values. |
848 | pub const GAUSS_LEGENDRE_COEFFS_16_HALF: &[(f64, f64)] = &[ |
849 | (0.1894506104550685, 0.0950125098376374), |
850 | (0.1826034150449236, 0.2816035507792589), |
851 | (0.1691565193950025, 0.4580167776572274), |
852 | (0.1495959888165767, 0.6178762444026438), |
853 | (0.1246289712555339, 0.7554044083550030), |
854 | (0.0951585116824928, 0.8656312023878318), |
855 | (0.0622535239386479, 0.9445750230732326), |
856 | (0.0271524594117541, 0.9894009349916499), |
857 | ]; |
858 | |
859 | pub const GAUSS_LEGENDRE_COEFFS_24: &[(f64, f64)] = &[ |
860 | (0.1279381953467522, -0.0640568928626056), |
861 | (0.1279381953467522, 0.0640568928626056), |
862 | (0.1258374563468283, -0.1911188674736163), |
863 | (0.1258374563468283, 0.1911188674736163), |
864 | (0.1216704729278034, -0.3150426796961634), |
865 | (0.1216704729278034, 0.3150426796961634), |
866 | (0.1155056680537256, -0.4337935076260451), |
867 | (0.1155056680537256, 0.4337935076260451), |
868 | (0.1074442701159656, -0.5454214713888396), |
869 | (0.1074442701159656, 0.5454214713888396), |
870 | (0.0976186521041139, -0.6480936519369755), |
871 | (0.0976186521041139, 0.6480936519369755), |
872 | (0.0861901615319533, -0.7401241915785544), |
873 | (0.0861901615319533, 0.7401241915785544), |
874 | (0.0733464814110803, -0.8200019859739029), |
875 | (0.0733464814110803, 0.8200019859739029), |
876 | (0.0592985849154368, -0.8864155270044011), |
877 | (0.0592985849154368, 0.8864155270044011), |
878 | (0.0442774388174198, -0.9382745520027328), |
879 | (0.0442774388174198, 0.9382745520027328), |
880 | (0.0285313886289337, -0.9747285559713095), |
881 | (0.0285313886289337, 0.9747285559713095), |
882 | (0.0123412297999872, -0.9951872199970213), |
883 | (0.0123412297999872, 0.9951872199970213), |
884 | ]; |
885 | |
886 | pub const GAUSS_LEGENDRE_COEFFS_24_HALF: &[(f64, f64)] = &[ |
887 | (0.1279381953467522, 0.0640568928626056), |
888 | (0.1258374563468283, 0.1911188674736163), |
889 | (0.1216704729278034, 0.3150426796961634), |
890 | (0.1155056680537256, 0.4337935076260451), |
891 | (0.1074442701159656, 0.5454214713888396), |
892 | (0.0976186521041139, 0.6480936519369755), |
893 | (0.0861901615319533, 0.7401241915785544), |
894 | (0.0733464814110803, 0.8200019859739029), |
895 | (0.0592985849154368, 0.8864155270044011), |
896 | (0.0442774388174198, 0.9382745520027328), |
897 | (0.0285313886289337, 0.9747285559713095), |
898 | (0.0123412297999872, 0.9951872199970213), |
899 | ]; |
900 | |
901 | pub const GAUSS_LEGENDRE_COEFFS_32: &[(f64, f64)] = &[ |
902 | (0.0965400885147278, -0.0483076656877383), |
903 | (0.0965400885147278, 0.0483076656877383), |
904 | (0.0956387200792749, -0.1444719615827965), |
905 | (0.0956387200792749, 0.1444719615827965), |
906 | (0.0938443990808046, -0.2392873622521371), |
907 | (0.0938443990808046, 0.2392873622521371), |
908 | (0.0911738786957639, -0.3318686022821277), |
909 | (0.0911738786957639, 0.3318686022821277), |
910 | (0.0876520930044038, -0.4213512761306353), |
911 | (0.0876520930044038, 0.4213512761306353), |
912 | (0.0833119242269467, -0.5068999089322294), |
913 | (0.0833119242269467, 0.5068999089322294), |
914 | (0.0781938957870703, -0.5877157572407623), |
915 | (0.0781938957870703, 0.5877157572407623), |
916 | (0.0723457941088485, -0.6630442669302152), |
917 | (0.0723457941088485, 0.6630442669302152), |
918 | (0.0658222227763618, -0.7321821187402897), |
919 | (0.0658222227763618, 0.7321821187402897), |
920 | (0.0586840934785355, -0.7944837959679424), |
921 | (0.0586840934785355, 0.7944837959679424), |
922 | (0.0509980592623762, -0.8493676137325700), |
923 | (0.0509980592623762, 0.8493676137325700), |
924 | (0.0428358980222267, -0.8963211557660521), |
925 | (0.0428358980222267, 0.8963211557660521), |
926 | (0.0342738629130214, -0.9349060759377397), |
927 | (0.0342738629130214, 0.9349060759377397), |
928 | (0.0253920653092621, -0.9647622555875064), |
929 | (0.0253920653092621, 0.9647622555875064), |
930 | (0.0162743947309057, -0.9856115115452684), |
931 | (0.0162743947309057, 0.9856115115452684), |
932 | (0.0070186100094701, -0.9972638618494816), |
933 | (0.0070186100094701, 0.9972638618494816), |
934 | ]; |
935 | |
936 | pub const GAUSS_LEGENDRE_COEFFS_32_HALF: &[(f64, f64)] = &[ |
937 | (0.0965400885147278, 0.0483076656877383), |
938 | (0.0956387200792749, 0.1444719615827965), |
939 | (0.0938443990808046, 0.2392873622521371), |
940 | (0.0911738786957639, 0.3318686022821277), |
941 | (0.0876520930044038, 0.4213512761306353), |
942 | (0.0833119242269467, 0.5068999089322294), |
943 | (0.0781938957870703, 0.5877157572407623), |
944 | (0.0723457941088485, 0.6630442669302152), |
945 | (0.0658222227763618, 0.7321821187402897), |
946 | (0.0586840934785355, 0.7944837959679424), |
947 | (0.0509980592623762, 0.8493676137325700), |
948 | (0.0428358980222267, 0.8963211557660521), |
949 | (0.0342738629130214, 0.9349060759377397), |
950 | (0.0253920653092621, 0.9647622555875064), |
951 | (0.0162743947309057, 0.9856115115452684), |
952 | (0.0070186100094701, 0.9972638618494816), |
953 | ]; |
954 | |
955 | #[cfg (test)] |
956 | mod tests { |
957 | use crate::common::*; |
958 | use arrayvec::ArrayVec; |
959 | |
960 | fn verify<const N: usize>(mut roots: ArrayVec<f64, N>, expected: &[f64]) { |
961 | assert_eq!(expected.len(), roots.len()); |
962 | let epsilon = 1e-12; |
963 | roots.sort_by(|a, b| a.partial_cmp(b).unwrap()); |
964 | for i in 0..expected.len() { |
965 | assert!((roots[i] - expected[i]).abs() < epsilon); |
966 | } |
967 | } |
968 | |
969 | #[test ] |
970 | fn test_solve_cubic() { |
971 | verify(solve_cubic(-5.0, 0.0, 0.0, 1.0), &[5.0f64.cbrt()]); |
972 | verify(solve_cubic(-5.0, -1.0, 0.0, 1.0), &[1.90416085913492]); |
973 | verify(solve_cubic(0.0, -1.0, 0.0, 1.0), &[-1.0, 0.0, 1.0]); |
974 | verify(solve_cubic(-2.0, -3.0, 0.0, 1.0), &[-1.0, 2.0]); |
975 | verify(solve_cubic(2.0, -3.0, 0.0, 1.0), &[-2.0, 1.0]); |
976 | verify( |
977 | solve_cubic(2.0 - 1e-12, 5.0, 4.0, 1.0), |
978 | &[ |
979 | -1.9999999999989995, |
980 | -1.0000010000848456, |
981 | -0.9999989999161546, |
982 | ], |
983 | ); |
984 | verify(solve_cubic(2.0 + 1e-12, 5.0, 4.0, 1.0), &[-2.0]); |
985 | } |
986 | |
987 | #[test ] |
988 | fn test_solve_quadratic() { |
989 | verify( |
990 | solve_quadratic(-5.0, 0.0, 1.0), |
991 | &[-(5.0f64.sqrt()), 5.0f64.sqrt()], |
992 | ); |
993 | verify(solve_quadratic(5.0, 0.0, 1.0), &[]); |
994 | verify(solve_quadratic(5.0, 1.0, 0.0), &[-5.0]); |
995 | verify(solve_quadratic(1.0, 2.0, 1.0), &[-1.0]); |
996 | } |
997 | |
998 | #[test ] |
999 | fn test_solve_quartic() { |
1000 | // These test cases are taken from Orellana and De Michele paper (Table 1). |
1001 | fn test_with_roots(coeffs: [f64; 4], roots: &[f64], rel_err: f64) { |
1002 | // Note: in paper, coefficients are in decreasing order. |
1003 | let mut actual = solve_quartic(coeffs[3], coeffs[2], coeffs[1], coeffs[0], 1.0); |
1004 | actual.sort_by(f64::total_cmp); |
1005 | assert_eq!(actual.len(), roots.len()); |
1006 | for (actual, expected) in actual.iter().zip(roots) { |
1007 | assert!( |
1008 | (actual - expected).abs() < rel_err * expected.abs(), |
1009 | "actual {:e}, expected {:e}, err {:e}" , |
1010 | actual, |
1011 | expected, |
1012 | actual - expected |
1013 | ); |
1014 | } |
1015 | } |
1016 | |
1017 | fn test_vieta_roots(x1: f64, x2: f64, x3: f64, x4: f64, roots: &[f64], rel_err: f64) { |
1018 | let a = -(x1 + x2 + x3 + x4); |
1019 | let b = x1 * (x2 + x3) + x2 * (x3 + x4) + x4 * (x1 + x3); |
1020 | let c = -x1 * x2 * (x3 + x4) - x3 * x4 * (x1 + x2); |
1021 | let d = x1 * x2 * x3 * x4; |
1022 | test_with_roots([a, b, c, d], roots, rel_err); |
1023 | } |
1024 | |
1025 | fn test_vieta(x1: f64, x2: f64, x3: f64, x4: f64, rel_err: f64) { |
1026 | test_vieta_roots(x1, x2, x3, x4, &[x1, x2, x3, x4], rel_err); |
1027 | } |
1028 | |
1029 | // case 1 |
1030 | test_vieta(1., 1e3, 1e6, 1e9, 1e-16); |
1031 | // case 2 |
1032 | test_vieta(2., 2.001, 2.002, 2.003, 1e-6); |
1033 | // case 3 |
1034 | test_vieta(1e47, 1e49, 1e50, 1e53, 2e-16); |
1035 | // case 4 |
1036 | test_vieta(-1., 1., 2., 1e14, 1e-16); |
1037 | // case 5 |
1038 | test_vieta(-2e7, -1., 1., 1e7, 1e-16); |
1039 | // case 6 |
1040 | test_with_roots( |
1041 | [-9000002.0, -9999981999998.0, 19999982e6, -2e13], |
1042 | &[-1e6, 1e7], |
1043 | 1e-16, |
1044 | ); |
1045 | // case 7 |
1046 | test_with_roots( |
1047 | [2000011.0, 1010022000028.0, 11110056e6, 2828e10], |
1048 | &[-7., -4.], |
1049 | 1e-16, |
1050 | ); |
1051 | // case 8 |
1052 | test_with_roots( |
1053 | [-100002011.0, 201101022001.0, -102200111000011.0, 11000011e8], |
1054 | &[11., 1e8], |
1055 | 1e-16, |
1056 | ); |
1057 | // cases 9-13 have no real roots |
1058 | // case 14 |
1059 | test_vieta_roots(1000., 1000., 1000., 1000., &[1000., 1000.], 1e-16); |
1060 | // case 15 |
1061 | test_vieta_roots(1e-15, 1000., 1000., 1000., &[1e-15, 1000., 1000.], 1e-15); |
1062 | // case 16 no real roots |
1063 | // case 17 |
1064 | test_vieta(10000., 10001., 10010., 10100., 1e-6); |
1065 | // case 19 |
1066 | test_vieta_roots(1., 1e30, 1e30, 1e44, &[1., 1e30, 1e44], 1e-16); |
1067 | // case 20 |
1068 | // FAILS, error too big |
1069 | test_vieta(1., 1e7, 1e7, 1e14, 1e-7); |
1070 | // case 21 doesn't pick up double root |
1071 | // case 22 |
1072 | test_vieta(1., 10., 1e152, 1e154, 3e-16); |
1073 | // case 23 |
1074 | test_with_roots( |
1075 | [1., 1., 3. / 8., 1e-3], |
1076 | &[-0.497314148060048, -0.00268585193995149], |
1077 | 2e-15, |
1078 | ); |
1079 | // case 24 |
1080 | const S: f64 = 1e30; |
1081 | test_with_roots( |
1082 | [-(1. + 1. / S), 1. / S - S * S, S * S + S, -S], |
1083 | &[-S, 1e-30, 1., S], |
1084 | 2e-16, |
1085 | ); |
1086 | } |
1087 | |
1088 | #[test ] |
1089 | fn test_solve_itp() { |
1090 | let f = |x: f64| x.powi(3) - x - 2.0; |
1091 | let x = solve_itp(f, 1., 2., 1e-12, 0, 0.2, f(1.), f(2.)); |
1092 | assert!(f(x).abs() < 6e-12); |
1093 | } |
1094 | |
1095 | #[test ] |
1096 | fn test_inv_arclen() { |
1097 | use crate::{ParamCurve, ParamCurveArclen}; |
1098 | let c = crate::CubicBez::new( |
1099 | (0.0, 0.0), |
1100 | (100.0 / 3.0, 0.0), |
1101 | (200.0 / 3.0, 100.0 / 3.0), |
1102 | (100.0, 100.0), |
1103 | ); |
1104 | let target = 100.0; |
1105 | let _ = solve_itp( |
1106 | |t| c.subsegment(0.0..t).arclen(1e-9) - target, |
1107 | 0., |
1108 | 1., |
1109 | 1e-6, |
1110 | 1, |
1111 | 0.2, |
1112 | -target, |
1113 | c.arclen(1e-9) - target, |
1114 | ); |
1115 | } |
1116 | } |
1117 | |