| 1 | // Copyright 2019 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! A rectangle with rounded corners. |
| 5 | |
| 6 | use core::f64::consts::{FRAC_PI_2, FRAC_PI_4}; |
| 7 | use core::ops::{Add, Sub}; |
| 8 | |
| 9 | use crate::{arc::ArcAppendIter, Arc, PathEl, Point, Rect, RoundedRectRadii, Shape, Size, Vec2}; |
| 10 | |
| 11 | #[cfg (not(feature = "std" ))] |
| 12 | use crate::common::FloatFuncs; |
| 13 | |
| 14 | /// A rectangle with equally rounded corners. |
| 15 | /// |
| 16 | /// By construction the rounded rectangle will have |
| 17 | /// non-negative dimensions and radii clamped to half size of the rect. |
| 18 | /// |
| 19 | /// The easiest way to create a `RoundedRect` is often to create a [`Rect`], |
| 20 | /// and then call [`to_rounded_rect`]. |
| 21 | /// |
| 22 | /// ``` |
| 23 | /// use kurbo::{RoundedRect, RoundedRectRadii}; |
| 24 | /// |
| 25 | /// // Create a rounded rectangle with a single radius for all corners: |
| 26 | /// RoundedRect::new(0.0, 0.0, 10.0, 10.0, 5.0); |
| 27 | /// |
| 28 | /// // Or, specify different radii for each corner, clockwise from the top-left: |
| 29 | /// RoundedRect::new(0.0, 0.0, 10.0, 10.0, (1.0, 2.0, 3.0, 4.0)); |
| 30 | /// ``` |
| 31 | /// |
| 32 | /// [`to_rounded_rect`]: Rect::to_rounded_rect |
| 33 | #[derive (Clone, Copy, Default, Debug, PartialEq)] |
| 34 | #[cfg_attr (feature = "schemars" , derive(schemars::JsonSchema))] |
| 35 | #[cfg_attr (feature = "serde" , derive(serde::Serialize, serde::Deserialize))] |
| 36 | pub struct RoundedRect { |
| 37 | /// Coordinates of the rectangle. |
| 38 | rect: Rect, |
| 39 | /// Radius of all four corners. |
| 40 | radii: RoundedRectRadii, |
| 41 | } |
| 42 | |
| 43 | impl RoundedRect { |
| 44 | /// A new rectangle from minimum and maximum coordinates. |
| 45 | /// |
| 46 | /// The result will have non-negative width, height and radii. |
| 47 | #[inline ] |
| 48 | pub fn new( |
| 49 | x0: f64, |
| 50 | y0: f64, |
| 51 | x1: f64, |
| 52 | y1: f64, |
| 53 | radii: impl Into<RoundedRectRadii>, |
| 54 | ) -> RoundedRect { |
| 55 | RoundedRect::from_rect(Rect::new(x0, y0, x1, y1), radii) |
| 56 | } |
| 57 | |
| 58 | /// A new rounded rectangle from a rectangle and corner radii. |
| 59 | /// |
| 60 | /// The result will have non-negative width, height and radii. |
| 61 | /// |
| 62 | /// See also [`Rect::to_rounded_rect`], which offers the same utility. |
| 63 | #[inline ] |
| 64 | pub fn from_rect(rect: Rect, radii: impl Into<RoundedRectRadii>) -> RoundedRect { |
| 65 | let rect = rect.abs(); |
| 66 | let shortest_side_length = (rect.width()).min(rect.height()); |
| 67 | let radii = radii.into().abs().clamp(shortest_side_length / 2.0); |
| 68 | |
| 69 | RoundedRect { rect, radii } |
| 70 | } |
| 71 | |
| 72 | /// A new rectangle from two [`Point`]s. |
| 73 | /// |
| 74 | /// The result will have non-negative width, height and radius. |
| 75 | #[inline ] |
| 76 | pub fn from_points( |
| 77 | p0: impl Into<Point>, |
| 78 | p1: impl Into<Point>, |
| 79 | radii: impl Into<RoundedRectRadii>, |
| 80 | ) -> RoundedRect { |
| 81 | Rect::from_points(p0, p1).to_rounded_rect(radii) |
| 82 | } |
| 83 | |
| 84 | /// A new rectangle from origin and size. |
| 85 | /// |
| 86 | /// The result will have non-negative width, height and radius. |
| 87 | #[inline ] |
| 88 | pub fn from_origin_size( |
| 89 | origin: impl Into<Point>, |
| 90 | size: impl Into<Size>, |
| 91 | radii: impl Into<RoundedRectRadii>, |
| 92 | ) -> RoundedRect { |
| 93 | Rect::from_origin_size(origin, size).to_rounded_rect(radii) |
| 94 | } |
| 95 | |
| 96 | /// The width of the rectangle. |
| 97 | #[inline ] |
| 98 | pub fn width(&self) -> f64 { |
| 99 | self.rect.width() |
| 100 | } |
| 101 | |
| 102 | /// The height of the rectangle. |
| 103 | #[inline ] |
| 104 | pub fn height(&self) -> f64 { |
| 105 | self.rect.height() |
| 106 | } |
| 107 | |
| 108 | /// Radii of the rounded corners. |
| 109 | #[inline ] |
| 110 | pub fn radii(&self) -> RoundedRectRadii { |
| 111 | self.radii |
| 112 | } |
| 113 | |
| 114 | /// The (non-rounded) rectangle. |
| 115 | pub fn rect(&self) -> Rect { |
| 116 | self.rect |
| 117 | } |
| 118 | |
| 119 | /// The origin of the rectangle. |
| 120 | /// |
| 121 | /// This is the top left corner in a y-down space. |
| 122 | #[inline ] |
| 123 | pub fn origin(&self) -> Point { |
| 124 | self.rect.origin() |
| 125 | } |
| 126 | |
| 127 | /// The center point of the rectangle. |
| 128 | #[inline ] |
| 129 | pub fn center(&self) -> Point { |
| 130 | self.rect.center() |
| 131 | } |
| 132 | |
| 133 | /// Is this rounded rectangle finite? |
| 134 | #[inline ] |
| 135 | pub fn is_finite(&self) -> bool { |
| 136 | self.rect.is_finite() && self.radii.is_finite() |
| 137 | } |
| 138 | |
| 139 | /// Is this rounded rectangle NaN? |
| 140 | #[inline ] |
| 141 | pub fn is_nan(&self) -> bool { |
| 142 | self.rect.is_nan() || self.radii.is_nan() |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | #[doc (hidden)] |
| 147 | pub struct RoundedRectPathIter { |
| 148 | idx: usize, |
| 149 | rect: RectPathIter, |
| 150 | arcs: [ArcAppendIter; 4], |
| 151 | } |
| 152 | |
| 153 | impl Shape for RoundedRect { |
| 154 | type PathElementsIter<'iter> = RoundedRectPathIter; |
| 155 | |
| 156 | fn path_elements(&self, tolerance: f64) -> RoundedRectPathIter { |
| 157 | let radii = self.radii(); |
| 158 | |
| 159 | let build_arc_iter = |i, center, ellipse_radii| { |
| 160 | let arc = Arc { |
| 161 | center, |
| 162 | radii: ellipse_radii, |
| 163 | start_angle: FRAC_PI_2 * i as f64, |
| 164 | sweep_angle: FRAC_PI_2, |
| 165 | x_rotation: 0.0, |
| 166 | }; |
| 167 | arc.append_iter(tolerance) |
| 168 | }; |
| 169 | |
| 170 | // Note: order follows the rectangle path iterator. |
| 171 | let arcs = [ |
| 172 | build_arc_iter( |
| 173 | 2, |
| 174 | Point { |
| 175 | x: self.rect.x0 + radii.top_left, |
| 176 | y: self.rect.y0 + radii.top_left, |
| 177 | }, |
| 178 | Vec2 { |
| 179 | x: radii.top_left, |
| 180 | y: radii.top_left, |
| 181 | }, |
| 182 | ), |
| 183 | build_arc_iter( |
| 184 | 3, |
| 185 | Point { |
| 186 | x: self.rect.x1 - radii.top_right, |
| 187 | y: self.rect.y0 + radii.top_right, |
| 188 | }, |
| 189 | Vec2 { |
| 190 | x: radii.top_right, |
| 191 | y: radii.top_right, |
| 192 | }, |
| 193 | ), |
| 194 | build_arc_iter( |
| 195 | 0, |
| 196 | Point { |
| 197 | x: self.rect.x1 - radii.bottom_right, |
| 198 | y: self.rect.y1 - radii.bottom_right, |
| 199 | }, |
| 200 | Vec2 { |
| 201 | x: radii.bottom_right, |
| 202 | y: radii.bottom_right, |
| 203 | }, |
| 204 | ), |
| 205 | build_arc_iter( |
| 206 | 1, |
| 207 | Point { |
| 208 | x: self.rect.x0 + radii.bottom_left, |
| 209 | y: self.rect.y1 - radii.bottom_left, |
| 210 | }, |
| 211 | Vec2 { |
| 212 | x: radii.bottom_left, |
| 213 | y: radii.bottom_left, |
| 214 | }, |
| 215 | ), |
| 216 | ]; |
| 217 | |
| 218 | let rect = RectPathIter { |
| 219 | rect: self.rect, |
| 220 | ix: 0, |
| 221 | radii, |
| 222 | }; |
| 223 | |
| 224 | RoundedRectPathIter { idx: 0, rect, arcs } |
| 225 | } |
| 226 | |
| 227 | #[inline ] |
| 228 | fn area(&self) -> f64 { |
| 229 | // A corner is a quarter-circle, i.e. |
| 230 | // .............# |
| 231 | // . ###### |
| 232 | // . ######### |
| 233 | // . ########### |
| 234 | // . ############ |
| 235 | // .############# |
| 236 | // ############## |
| 237 | // |-----r------| |
| 238 | // For each corner, we need to subtract the square that bounds this |
| 239 | // quarter-circle, and add back in the area of quarter circle. |
| 240 | |
| 241 | let radii = self.radii(); |
| 242 | |
| 243 | // Start with the area of the bounding rectangle. For each corner, |
| 244 | // subtract the area of the corner under the quarter-circle, and add |
| 245 | // back the area of the quarter-circle. |
| 246 | self.rect.area() |
| 247 | + [ |
| 248 | radii.top_left, |
| 249 | radii.top_right, |
| 250 | radii.bottom_right, |
| 251 | radii.bottom_left, |
| 252 | ] |
| 253 | .iter() |
| 254 | .map(|radius| (FRAC_PI_4 - 1.0) * radius * radius) |
| 255 | .sum::<f64>() |
| 256 | } |
| 257 | |
| 258 | #[inline ] |
| 259 | fn perimeter(&self, _accuracy: f64) -> f64 { |
| 260 | // A corner is a quarter-circle, i.e. |
| 261 | // .............# |
| 262 | // . # |
| 263 | // . # |
| 264 | // . # |
| 265 | // . # |
| 266 | // .# |
| 267 | // # |
| 268 | // |-----r------| |
| 269 | // If we start with the bounding rectangle, then subtract 2r (the |
| 270 | // straight edge outside the circle) and add 1/4 * pi * (2r) (the |
| 271 | // perimeter of the quarter-circle) for each corner with radius r, we |
| 272 | // get the perimeter of the shape. |
| 273 | |
| 274 | let radii = self.radii(); |
| 275 | |
| 276 | // Start with the full perimeter. For each corner, subtract the |
| 277 | // border surrounding the rounded corner and add the quarter-circle |
| 278 | // perimeter. |
| 279 | self.rect.perimeter(1.0) |
| 280 | + ([ |
| 281 | radii.top_left, |
| 282 | radii.top_right, |
| 283 | radii.bottom_right, |
| 284 | radii.bottom_left, |
| 285 | ]) |
| 286 | .iter() |
| 287 | .map(|radius| (-2.0 + FRAC_PI_2) * radius) |
| 288 | .sum::<f64>() |
| 289 | } |
| 290 | |
| 291 | #[inline ] |
| 292 | fn winding(&self, mut pt: Point) -> i32 { |
| 293 | let center = self.center(); |
| 294 | |
| 295 | // 1. Translate the point relative to the center of the rectangle. |
| 296 | pt.x -= center.x; |
| 297 | pt.y -= center.y; |
| 298 | |
| 299 | // 2. Pick a radius value to use based on which quadrant the point is |
| 300 | // in. |
| 301 | let radii = self.radii(); |
| 302 | let radius = match pt { |
| 303 | pt if pt.x < 0.0 && pt.y < 0.0 => radii.top_left, |
| 304 | pt if pt.x >= 0.0 && pt.y < 0.0 => radii.top_right, |
| 305 | pt if pt.x >= 0.0 && pt.y >= 0.0 => radii.bottom_right, |
| 306 | pt if pt.x < 0.0 && pt.y >= 0.0 => radii.bottom_left, |
| 307 | _ => 0.0, |
| 308 | }; |
| 309 | |
| 310 | // 3. This is the width and height of a rectangle with one corner at |
| 311 | // the center of the rounded rectangle, and another corner at the |
| 312 | // center of the relevant corner circle. |
| 313 | let inside_half_width = (self.width() / 2.0 - radius).max(0.0); |
| 314 | let inside_half_height = (self.height() / 2.0 - radius).max(0.0); |
| 315 | |
| 316 | // 4. Three things are happening here. |
| 317 | // |
| 318 | // First, the x- and y-values are being reflected into the positive |
| 319 | // (bottom-right quadrant). The radius has already been determined, |
| 320 | // so it doesn't matter what quadrant is used. |
| 321 | // |
| 322 | // After reflecting, the points are clamped so that their x- and y- |
| 323 | // values can't be lower than the x- and y- values of the center of |
| 324 | // the corner circle, and the coordinate system is transformed |
| 325 | // again, putting (0, 0) at the center of the corner circle. |
| 326 | let px = (pt.x.abs() - inside_half_width).max(0.0); |
| 327 | let py = (pt.y.abs() - inside_half_height).max(0.0); |
| 328 | |
| 329 | // 5. The transforms above clamp all input points such that they will |
| 330 | // be inside the rounded rectangle if the corresponding output point |
| 331 | // (px, py) is inside a circle centered around the origin with the |
| 332 | // given radius. |
| 333 | let inside = px * px + py * py <= radius * radius; |
| 334 | if inside { |
| 335 | 1 |
| 336 | } else { |
| 337 | 0 |
| 338 | } |
| 339 | } |
| 340 | |
| 341 | #[inline ] |
| 342 | fn bounding_box(&self) -> Rect { |
| 343 | self.rect.bounding_box() |
| 344 | } |
| 345 | |
| 346 | #[inline ] |
| 347 | fn as_rounded_rect(&self) -> Option<RoundedRect> { |
| 348 | Some(*self) |
| 349 | } |
| 350 | } |
| 351 | |
| 352 | struct RectPathIter { |
| 353 | rect: Rect, |
| 354 | radii: RoundedRectRadii, |
| 355 | ix: usize, |
| 356 | } |
| 357 | |
| 358 | // This is clockwise in a y-down coordinate system for positive area. |
| 359 | impl Iterator for RectPathIter { |
| 360 | type Item = PathEl; |
| 361 | |
| 362 | fn next(&mut self) -> Option<PathEl> { |
| 363 | self.ix += 1; |
| 364 | match self.ix { |
| 365 | 1 => Some(PathEl::MoveTo(Point::new( |
| 366 | self.rect.x0, |
| 367 | self.rect.y0 + self.radii.top_left, |
| 368 | ))), |
| 369 | 2 => Some(PathEl::LineTo(Point::new( |
| 370 | self.rect.x1 - self.radii.top_right, |
| 371 | self.rect.y0, |
| 372 | ))), |
| 373 | 3 => Some(PathEl::LineTo(Point::new( |
| 374 | self.rect.x1, |
| 375 | self.rect.y1 - self.radii.bottom_right, |
| 376 | ))), |
| 377 | 4 => Some(PathEl::LineTo(Point::new( |
| 378 | self.rect.x0 + self.radii.bottom_left, |
| 379 | self.rect.y1, |
| 380 | ))), |
| 381 | 5 => Some(PathEl::ClosePath), |
| 382 | _ => None, |
| 383 | } |
| 384 | } |
| 385 | } |
| 386 | |
| 387 | // This is clockwise in a y-down coordinate system for positive area. |
| 388 | impl Iterator for RoundedRectPathIter { |
| 389 | type Item = PathEl; |
| 390 | |
| 391 | fn next(&mut self) -> Option<PathEl> { |
| 392 | if self.idx > 4 { |
| 393 | return None; |
| 394 | } |
| 395 | |
| 396 | // Iterate between rectangle and arc iterators. |
| 397 | // Rect iterator will start and end the path. |
| 398 | |
| 399 | // Initial point set by the rect iterator |
| 400 | if self.idx == 0 { |
| 401 | self.idx += 1; |
| 402 | return self.rect.next(); |
| 403 | } |
| 404 | |
| 405 | // Generate the arc curve elements. |
| 406 | // If we reached the end of the arc, add a line towards next arc (rect iterator). |
| 407 | match self.arcs[self.idx - 1].next() { |
| 408 | Some(elem) => Some(elem), |
| 409 | None => { |
| 410 | self.idx += 1; |
| 411 | self.rect.next() |
| 412 | } |
| 413 | } |
| 414 | } |
| 415 | } |
| 416 | |
| 417 | impl Add<Vec2> for RoundedRect { |
| 418 | type Output = RoundedRect; |
| 419 | |
| 420 | #[inline ] |
| 421 | fn add(self, v: Vec2) -> RoundedRect { |
| 422 | RoundedRect::from_rect(self.rect + v, self.radii) |
| 423 | } |
| 424 | } |
| 425 | |
| 426 | impl Sub<Vec2> for RoundedRect { |
| 427 | type Output = RoundedRect; |
| 428 | |
| 429 | #[inline ] |
| 430 | fn sub(self, v: Vec2) -> RoundedRect { |
| 431 | RoundedRect::from_rect(self.rect - v, self.radii) |
| 432 | } |
| 433 | } |
| 434 | |
| 435 | #[cfg (test)] |
| 436 | mod tests { |
| 437 | use crate::{Circle, Point, Rect, RoundedRect, Shape}; |
| 438 | |
| 439 | #[test ] |
| 440 | fn area() { |
| 441 | let epsilon = 1e-9; |
| 442 | |
| 443 | // Extremum: 0.0 radius corner -> rectangle |
| 444 | let rect = Rect::new(0.0, 0.0, 100.0, 100.0); |
| 445 | let rounded_rect = RoundedRect::new(0.0, 0.0, 100.0, 100.0, 0.0); |
| 446 | assert!((rect.area() - rounded_rect.area()).abs() < epsilon); |
| 447 | |
| 448 | // Extremum: half-size radius corner -> circle |
| 449 | let circle = Circle::new((0.0, 0.0), 50.0); |
| 450 | let rounded_rect = RoundedRect::new(0.0, 0.0, 100.0, 100.0, 50.0); |
| 451 | assert!((circle.area() - rounded_rect.area()).abs() < epsilon); |
| 452 | } |
| 453 | |
| 454 | #[test ] |
| 455 | fn winding() { |
| 456 | let rect = RoundedRect::new(-5.0, -5.0, 10.0, 20.0, (5.0, 5.0, 5.0, 0.0)); |
| 457 | assert_eq!(rect.winding(Point::new(0.0, 0.0)), 1); |
| 458 | assert_eq!(rect.winding(Point::new(-5.0, 0.0)), 1); // left edge |
| 459 | assert_eq!(rect.winding(Point::new(0.0, 20.0)), 1); // bottom edge |
| 460 | assert_eq!(rect.winding(Point::new(10.0, 20.0)), 0); // bottom-right corner |
| 461 | assert_eq!(rect.winding(Point::new(-5.0, 20.0)), 1); // bottom-left corner (has a radius of 0) |
| 462 | assert_eq!(rect.winding(Point::new(-10.0, 0.0)), 0); |
| 463 | |
| 464 | let rect = RoundedRect::new(-10.0, -20.0, 10.0, 20.0, 0.0); // rectangle |
| 465 | assert_eq!(rect.winding(Point::new(10.0, 20.0)), 1); // bottom-right corner |
| 466 | } |
| 467 | |
| 468 | #[test ] |
| 469 | fn bez_conversion() { |
| 470 | let rect = RoundedRect::new(-5.0, -5.0, 10.0, 20.0, 5.0); |
| 471 | let p = rect.to_path(1e-9); |
| 472 | // Note: could be more systematic about tolerance tightness. |
| 473 | let epsilon = 1e-7; |
| 474 | assert!((rect.area() - p.area()).abs() < epsilon); |
| 475 | assert_eq!(p.winding(Point::new(0.0, 0.0)), 1); |
| 476 | } |
| 477 | } |
| 478 | |