| 1 | // Copyright 2021 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Minimum distance between two Bézier curves |
| 5 | //! |
| 6 | //! This implements the algorithm in "Computing the minimum distance between |
| 7 | //! two Bézier curves", Chen et al., *Journal of Computational and Applied |
| 8 | //! Mathematics* 229(2009), 294-301 |
| 9 | |
| 10 | use crate::Vec2; |
| 11 | use core::cmp::Ordering; |
| 12 | |
| 13 | #[cfg (not(feature = "std" ))] |
| 14 | use crate::common::FloatFuncs; |
| 15 | |
| 16 | pub(crate) fn min_dist_param( |
| 17 | bez1: &[Vec2], |
| 18 | bez2: &[Vec2], |
| 19 | u: (f64, f64), |
| 20 | v: (f64, f64), |
| 21 | epsilon: f64, |
| 22 | best_alpha: Option<f64>, |
| 23 | ) -> (f64, f64, f64) { |
| 24 | assert!(!bez1.is_empty() && !bez2.is_empty()); |
| 25 | let n = bez1.len() - 1; |
| 26 | let m = bez2.len() - 1; |
| 27 | let (umin, umax) = u; |
| 28 | let (vmin, vmax) = v; |
| 29 | let umid = (umin + umax) / 2.0; |
| 30 | let vmid = (vmin + vmax) / 2.0; |
| 31 | let svalues: [(f64, f64, f64); 4] = [ |
| 32 | (S(umin, vmin, bez1, bez2), umin, vmin), |
| 33 | (S(umin, vmax, bez1, bez2), umin, vmax), |
| 34 | (S(umax, vmin, bez1, bez2), umax, vmin), |
| 35 | (S(umax, vmax, bez1, bez2), umax, vmax), |
| 36 | ]; |
| 37 | let alpha: f64 = svalues.iter().map(|(a, _, _)| *a).reduce(f64::min).unwrap(); |
| 38 | if let Some(best) = best_alpha { |
| 39 | if alpha > best { |
| 40 | return (alpha, umid, vmid); |
| 41 | } |
| 42 | } |
| 43 | |
| 44 | if (umax - umin).abs() < epsilon || (vmax - vmin).abs() < epsilon { |
| 45 | return (alpha, umid, vmid); |
| 46 | } |
| 47 | |
| 48 | // Property one: D(r>k) > alpha |
| 49 | let mut is_outside = true; |
| 50 | let mut min_drk = None; |
| 51 | let mut min_ij = None; |
| 52 | for r in 0..(2 * n) { |
| 53 | for k in 0..(2 * m) { |
| 54 | let d_rk = D_rk(r, k, bez1, bez2); |
| 55 | if d_rk < alpha { |
| 56 | is_outside = false; |
| 57 | } |
| 58 | if min_drk.is_none() || Some(d_rk) < min_drk { |
| 59 | min_drk = Some(d_rk); |
| 60 | min_ij = Some((r, k)); |
| 61 | } |
| 62 | } |
| 63 | } |
| 64 | if is_outside { |
| 65 | return (alpha, umid, vmid); |
| 66 | } |
| 67 | |
| 68 | // Property two: boundary check |
| 69 | let mut at_boundary0on_bez1 = true; |
| 70 | let mut at_boundary1on_bez1 = true; |
| 71 | let mut at_boundary0on_bez2 = true; |
| 72 | let mut at_boundary1on_bez2 = true; |
| 73 | for i in 0..2 * n { |
| 74 | for j in 0..2 * m { |
| 75 | let dij = D_rk(i, j, bez1, bez2); |
| 76 | let dkj = D_rk(0, j, bez1, bez2); |
| 77 | if dij < dkj { |
| 78 | at_boundary0on_bez1 = false; |
| 79 | } |
| 80 | let dkj = D_rk(2 * n, j, bez1, bez2); |
| 81 | if dij < dkj { |
| 82 | at_boundary1on_bez1 = false; |
| 83 | } |
| 84 | let dkj = D_rk(i, 0, bez1, bez2); |
| 85 | if dij < dkj { |
| 86 | at_boundary0on_bez2 = false; |
| 87 | } |
| 88 | let dkj = D_rk(i, 2 * m, bez1, bez2); |
| 89 | if dij < dkj { |
| 90 | at_boundary1on_bez2 = false; |
| 91 | } |
| 92 | } |
| 93 | } |
| 94 | if at_boundary0on_bez1 && at_boundary0on_bez2 { |
| 95 | return svalues[0]; |
| 96 | } |
| 97 | if at_boundary0on_bez1 && at_boundary1on_bez2 { |
| 98 | return svalues[1]; |
| 99 | } |
| 100 | if at_boundary1on_bez1 && at_boundary0on_bez2 { |
| 101 | return svalues[2]; |
| 102 | } |
| 103 | if at_boundary1on_bez1 && at_boundary1on_bez2 { |
| 104 | return svalues[3]; |
| 105 | } |
| 106 | |
| 107 | let (min_i, min_j) = min_ij.unwrap(); |
| 108 | let new_umid = umin + (umax - umin) * (min_i as f64 / (2 * n) as f64); |
| 109 | let new_vmid = vmin + (vmax - vmin) * (min_j as f64 / (2 * m) as f64); |
| 110 | |
| 111 | // Subdivide |
| 112 | let results = [ |
| 113 | min_dist_param( |
| 114 | bez1, |
| 115 | bez2, |
| 116 | (umin, new_umid), |
| 117 | (vmin, new_vmid), |
| 118 | epsilon, |
| 119 | Some(alpha), |
| 120 | ), |
| 121 | min_dist_param( |
| 122 | bez1, |
| 123 | bez2, |
| 124 | (umin, new_umid), |
| 125 | (new_vmid, vmax), |
| 126 | epsilon, |
| 127 | Some(alpha), |
| 128 | ), |
| 129 | min_dist_param( |
| 130 | bez1, |
| 131 | bez2, |
| 132 | (new_umid, umax), |
| 133 | (vmin, new_vmid), |
| 134 | epsilon, |
| 135 | Some(alpha), |
| 136 | ), |
| 137 | min_dist_param( |
| 138 | bez1, |
| 139 | bez2, |
| 140 | (new_umid, umax), |
| 141 | (new_vmid, vmax), |
| 142 | epsilon, |
| 143 | Some(alpha), |
| 144 | ), |
| 145 | ]; |
| 146 | |
| 147 | *results |
| 148 | .iter() |
| 149 | .min_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(Ordering::Less)) |
| 150 | .unwrap() |
| 151 | } |
| 152 | |
| 153 | // $ S(u,v)=\sum_{r=0}^{2n} \sum _{k=0}^{2m} D_{r,k} B_{2n}^r(u) B_{2m}^k(v) $ |
| 154 | |
| 155 | #[allow (non_snake_case)] |
| 156 | fn S(u: f64, v: f64, bez1: &[Vec2], bez2: &[Vec2]) -> f64 { |
| 157 | let n: usize = bez1.len() - 1; |
| 158 | let m: usize = bez2.len() - 1; |
| 159 | let mut summand: f64 = 0.0; |
| 160 | for r: usize in 0..=2 * n { |
| 161 | for k: usize in 0..=2 * m { |
| 162 | summand += |
| 163 | D_rk(r, k, bez1, bez2) * basis_function(n:2 * n, i:r, u) * basis_function(n:2 * m, i:k, u:v); |
| 164 | } |
| 165 | } |
| 166 | summand |
| 167 | } |
| 168 | |
| 169 | // $ C_{r,k} = ( \sum_{i=\theta}^\upsilon P_i C_n^i C_n^{r-i} / C_{2n}^r ) \cdot (\sum_{j=\sigma}^\varsigma Q_j C_m^j C_m^{k-j} / C_{2m}^k ) $ |
| 170 | #[allow (non_snake_case)] |
| 171 | fn C_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 { |
| 172 | let n: usize = bez1.len() - 1; |
| 173 | let upsilon: usize = r.min(n); |
| 174 | let theta: usize = r - n.min(r); |
| 175 | let mut left: Vec2 = Vec2::ZERO; |
| 176 | for (i: usize, &item: Vec2) in bez1.iter().enumerate().take(upsilon + 1).skip(theta) { |
| 177 | left += item * (choose(n, k:i) * choose(n, k:r - i)) as f64 / (choose(n:2 * n, k:r) as f64); |
| 178 | } |
| 179 | |
| 180 | let m: usize = bez2.len() - 1; |
| 181 | let varsigma: usize = k.min(m); |
| 182 | let sigma: usize = k - m.min(k); |
| 183 | let mut right: Vec2 = Vec2::ZERO; |
| 184 | for (j: usize, &item: Vec2) in bez2.iter().enumerate().take(varsigma + 1).skip(sigma) { |
| 185 | right += item * (choose(n:m, k:j) * choose(n:m, k:k - j)) as f64 / (choose(n:2 * m, k) as f64); |
| 186 | } |
| 187 | left.dot(right) |
| 188 | } |
| 189 | |
| 190 | // $ A_r=\sum _{i=\theta} ^\upsilon (P_i \cdot P_{r-i}) C_n^i C_n^{r-i} / C_{2n}^r $ |
| 191 | // ($ B_k $ is just the same as $ A_r $ but for the other curve.) |
| 192 | |
| 193 | #[allow (non_snake_case)] |
| 194 | fn A_r(r: usize, p: &[Vec2]) -> f64 { |
| 195 | let n: usize = p.len() - 1; |
| 196 | let upsilon: usize = r.min(n); |
| 197 | let theta: usize = r - n.min(r); |
| 198 | (theta..=upsilon) |
| 199 | .map(|i: usize| { |
| 200 | let dot: f64 = p[i].dot(p[r - i]); // These are bounds checked by the sum limits |
| 201 | let factor: f64 = (choose(n, k:i) * choose(n, k:r - i)) as f64 / (choose(n:2 * n, k:r) as f64); |
| 202 | dot * factor |
| 203 | }) |
| 204 | .sum() |
| 205 | } |
| 206 | |
| 207 | #[allow (non_snake_case)] |
| 208 | fn D_rk(r: usize, k: usize, bez1: &[Vec2], bez2: &[Vec2]) -> f64 { |
| 209 | // In the paper, B_k is used for the second factor, but it's the same thing |
| 210 | A_r(r, p:bez1) + A_r(r:k, p:bez2) - 2.0 * C_rk(r, k, bez1, bez2) |
| 211 | } |
| 212 | |
| 213 | // Bezier basis function |
| 214 | fn basis_function(n: usize, i: usize, u: f64) -> f64 { |
| 215 | choose(n, k:i) as f64 * (1.0 - u).powi((n - i) as i32) * u.powi(i as i32) |
| 216 | } |
| 217 | |
| 218 | // Binomial co-efficient, but returning zeros for values outside of domain |
| 219 | fn choose(n: usize, k: usize) -> u32 { |
| 220 | let mut n: usize = n; |
| 221 | if k > n { |
| 222 | return 0; |
| 223 | } |
| 224 | let mut p: usize = 1; |
| 225 | for i: usize in 1..=(n - k) { |
| 226 | p *= n; |
| 227 | p /= i; |
| 228 | n -= 1; |
| 229 | } |
| 230 | p as u32 |
| 231 | } |
| 232 | |
| 233 | #[cfg (test)] |
| 234 | mod tests { |
| 235 | use crate::mindist::A_r; |
| 236 | use crate::mindist::{choose, D_rk}; |
| 237 | use crate::param_curve::ParamCurve; |
| 238 | use crate::{CubicBez, Line, PathSeg, Vec2}; |
| 239 | |
| 240 | #[test ] |
| 241 | fn test_choose() { |
| 242 | assert_eq!(choose(6, 0), 1); |
| 243 | assert_eq!(choose(6, 1), 6); |
| 244 | assert_eq!(choose(6, 2), 15); |
| 245 | } |
| 246 | |
| 247 | #[test ] |
| 248 | fn test_d_rk() { |
| 249 | let bez1 = vec![ |
| 250 | Vec2::new(129.0, 139.0), |
| 251 | Vec2::new(190.0, 139.0), |
| 252 | Vec2::new(201.0, 364.0), |
| 253 | Vec2::new(90.0, 364.0), |
| 254 | ]; |
| 255 | let bez2 = vec![ |
| 256 | Vec2::new(309.0, 159.0), |
| 257 | Vec2::new(178.0, 159.0), |
| 258 | Vec2::new(215.0, 408.0), |
| 259 | Vec2::new(309.0, 408.0), |
| 260 | ]; |
| 261 | let b = A_r(1, &bez2); |
| 262 | assert!((b - 80283.0).abs() < 0.005, "B_1(Q)={b:?}" ); |
| 263 | let d = D_rk(0, 1, &bez1, &bez2); |
| 264 | assert!((d - 9220.0).abs() < 0.005, "D={d:?}" ); |
| 265 | } |
| 266 | |
| 267 | #[test ] |
| 268 | fn test_mindist() { |
| 269 | let bez1 = PathSeg::Cubic(CubicBez::new( |
| 270 | (129.0, 139.0), |
| 271 | (190.0, 139.0), |
| 272 | (201.0, 364.0), |
| 273 | (90.0, 364.0), |
| 274 | )); |
| 275 | let bez2 = PathSeg::Cubic(CubicBez::new( |
| 276 | (309.0, 159.0), |
| 277 | (178.0, 159.0), |
| 278 | (215.0, 408.0), |
| 279 | (309.0, 408.0), |
| 280 | )); |
| 281 | let mindist = bez1.min_dist(bez2, 0.001); |
| 282 | assert!((mindist.distance - 50.9966).abs() < 0.5); |
| 283 | } |
| 284 | |
| 285 | #[test ] |
| 286 | fn test_overflow() { |
| 287 | let bez1 = PathSeg::Cubic(CubicBez::new( |
| 288 | (232.0, 126.0), |
| 289 | (134.0, 126.0), |
| 290 | (139.0, 232.0), |
| 291 | (141.0, 301.0), |
| 292 | )); |
| 293 | let bez2 = PathSeg::Line(Line::new((359.0, 416.0), (367.0, 755.0))); |
| 294 | let mindist = bez1.min_dist(bez2, 0.001); |
| 295 | assert!((mindist.distance - 246.4731222669117).abs() < 0.5); |
| 296 | } |
| 297 | |
| 298 | #[test ] |
| 299 | fn test_out_of_order() { |
| 300 | let bez1 = PathSeg::Cubic(CubicBez::new( |
| 301 | (287.0, 182.0), |
| 302 | (346.0, 277.0), |
| 303 | (356.0, 299.0), |
| 304 | (359.0, 416.0), |
| 305 | )); |
| 306 | let bez2 = PathSeg::Line(Line::new((141.0, 301.0), (152.0, 709.0))); |
| 307 | let mindist1 = bez1.min_dist(bez2, 0.5); |
| 308 | let mindist2 = bez2.min_dist(bez1, 0.5); |
| 309 | assert!((mindist1.distance - mindist2.distance).abs() < 0.5); |
| 310 | } |
| 311 | |
| 312 | #[test ] |
| 313 | fn test_line_curve() { |
| 314 | let line = PathSeg::Line(Line::new((929.0, 335.0), (911.0, 340.0))); |
| 315 | |
| 316 | let line_as_bez = PathSeg::Cubic(CubicBez::new( |
| 317 | line.eval(0.0), |
| 318 | line.eval(1.0 / 3.0), |
| 319 | line.eval(2.0 / 3.0), |
| 320 | line.eval(1.0), |
| 321 | )); |
| 322 | |
| 323 | let bez2 = PathSeg::Cubic(CubicBez::new( |
| 324 | (1052.0, 401.0), |
| 325 | (1048.0, 305.0), |
| 326 | (1046.0, 216.0), |
| 327 | (1054.0, 146.0), |
| 328 | )); |
| 329 | let mindist_as_bez = line_as_bez.min_dist(bez2, 0.5); |
| 330 | let mindist_as_line = line.min_dist(bez2, 0.5); |
| 331 | assert!((mindist_as_line.distance - mindist_as_bez.distance).abs() < 0.5); |
| 332 | } |
| 333 | } |
| 334 | |