| 1 | // Copyright 2021 the Kurbo Authors |
| 2 | // SPDX-License-Identifier: Apache-2.0 OR MIT |
| 3 | |
| 4 | //! Quadratic Bézier splines. |
| 5 | use crate::Point; |
| 6 | |
| 7 | use crate::QuadBez; |
| 8 | use alloc::vec::Vec; |
| 9 | |
| 10 | /// A quadratic Bézier spline in [B-spline](https://en.wikipedia.org/wiki/B-spline) format. |
| 11 | #[derive (Clone, Debug, PartialEq)] |
| 12 | pub struct QuadSpline(Vec<Point>); |
| 13 | |
| 14 | impl QuadSpline { |
| 15 | /// Construct a new `QuadSpline` from an array of [`Point`]s. |
| 16 | #[inline ] |
| 17 | pub fn new(points: Vec<Point>) -> Self { |
| 18 | Self(points) |
| 19 | } |
| 20 | |
| 21 | /// Return the spline's control [`Point`]s. |
| 22 | #[inline ] |
| 23 | pub fn points(&self) -> &[Point] { |
| 24 | &self.0 |
| 25 | } |
| 26 | |
| 27 | /// Return an iterator over the implied [`QuadBez`] sequence. |
| 28 | /// |
| 29 | /// The returned quads are guaranteed to be G1 continuous. |
| 30 | #[inline ] |
| 31 | pub fn to_quads(&self) -> impl Iterator<Item = QuadBez> + '_ { |
| 32 | ToQuadBez { |
| 33 | idx: 0, |
| 34 | points: &self.0, |
| 35 | } |
| 36 | } |
| 37 | } |
| 38 | |
| 39 | struct ToQuadBez<'a> { |
| 40 | idx: usize, |
| 41 | points: &'a Vec<Point>, |
| 42 | } |
| 43 | |
| 44 | impl<'a> Iterator for ToQuadBez<'a> { |
| 45 | type Item = QuadBez; |
| 46 | |
| 47 | fn next(&mut self) -> Option<Self::Item> { |
| 48 | let [mut p0: Point, p1: Point, mut p2: Point]: [Point; 3] = |
| 49 | self.points.get(self.idx..=self.idx + 2)?.try_into().ok()?; |
| 50 | |
| 51 | if self.idx != 0 { |
| 52 | p0 = p0.midpoint(p1); |
| 53 | } |
| 54 | if self.idx + 2 < self.points.len() - 1 { |
| 55 | p2 = p1.midpoint(p2); |
| 56 | } |
| 57 | |
| 58 | self.idx += 1; |
| 59 | |
| 60 | Some(QuadBez { p0, p1, p2 }) |
| 61 | } |
| 62 | } |
| 63 | |
| 64 | #[cfg (test)] |
| 65 | mod tests { |
| 66 | use crate::{Point, QuadBez, QuadSpline}; |
| 67 | |
| 68 | #[test ] |
| 69 | pub fn no_points_no_quads() { |
| 70 | assert!(QuadSpline::new(Vec::new()).to_quads().next().is_none()); |
| 71 | } |
| 72 | |
| 73 | #[test ] |
| 74 | pub fn one_point_no_quads() { |
| 75 | assert!(QuadSpline::new(vec![Point::new(1.0, 1.0)]) |
| 76 | .to_quads() |
| 77 | .next() |
| 78 | .is_none()); |
| 79 | } |
| 80 | |
| 81 | #[test ] |
| 82 | pub fn two_points_no_quads() { |
| 83 | assert!( |
| 84 | QuadSpline::new(vec![Point::new(1.0, 1.0), Point::new(1.0, 1.0)]) |
| 85 | .to_quads() |
| 86 | .next() |
| 87 | .is_none() |
| 88 | ); |
| 89 | } |
| 90 | |
| 91 | #[test ] |
| 92 | pub fn three_points_same_quad() { |
| 93 | let p0 = Point::new(1.0, 1.0); |
| 94 | let p1 = Point::new(2.0, 2.0); |
| 95 | let p2 = Point::new(3.0, 3.0); |
| 96 | assert_eq!( |
| 97 | vec![QuadBez { p0, p1, p2 }], |
| 98 | QuadSpline::new(vec![p0, p1, p2]) |
| 99 | .to_quads() |
| 100 | .collect::<Vec<_>>() |
| 101 | ); |
| 102 | } |
| 103 | |
| 104 | #[test ] |
| 105 | pub fn four_points_implicit_on_curve() { |
| 106 | let p0 = Point::new(1.0, 1.0); |
| 107 | let p1 = Point::new(3.0, 3.0); |
| 108 | let p2 = Point::new(5.0, 5.0); |
| 109 | let p3 = Point::new(8.0, 8.0); |
| 110 | assert_eq!( |
| 111 | vec![ |
| 112 | QuadBez { |
| 113 | p0, |
| 114 | p1, |
| 115 | p2: p1.midpoint(p2) |
| 116 | }, |
| 117 | QuadBez { |
| 118 | p0: p1.midpoint(p2), |
| 119 | p1: p2, |
| 120 | p2: p3 |
| 121 | } |
| 122 | ], |
| 123 | QuadSpline::new(vec![p0, p1, p2, p3]) |
| 124 | .to_quads() |
| 125 | .collect::<Vec<_>>() |
| 126 | ); |
| 127 | } |
| 128 | } |
| 129 | |