| 1 | /* |
| 2 | "A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964) |
| 3 | "Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001) |
| 4 | "An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004) |
| 5 | |
| 6 | approximation method: |
| 7 | |
| 8 | (x - 0.5) S(x) |
| 9 | Gamma(x) = (x + g - 0.5) * ---------------- |
| 10 | exp(x + g - 0.5) |
| 11 | |
| 12 | with |
| 13 | a1 a2 a3 aN |
| 14 | S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ] |
| 15 | x + 1 x + 2 x + 3 x + N |
| 16 | |
| 17 | with a0, a1, a2, a3,.. aN constants which depend on g. |
| 18 | |
| 19 | for x < 0 the following reflection formula is used: |
| 20 | |
| 21 | Gamma(x)*Gamma(-x) = -pi/(x sin(pi x)) |
| 22 | |
| 23 | most ideas and constants are from boost and python |
| 24 | */ |
| 25 | use super::{exp, floor, k_cos, k_sin, pow}; |
| 26 | |
| 27 | const PI: f64 = 3.141592653589793238462643383279502884; |
| 28 | |
| 29 | /* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */ |
| 30 | fn sinpi(mut x: f64) -> f64 { |
| 31 | let mut n: isize; |
| 32 | |
| 33 | /* argument reduction: x = |x| mod 2 */ |
| 34 | /* spurious inexact when x is odd int */ |
| 35 | x = x * 0.5; |
| 36 | x = 2.0 * (x - floor(x)); |
| 37 | |
| 38 | /* reduce x into [-.25,.25] */ |
| 39 | n = (4.0 * x) as isize; |
| 40 | n = div!(n + 1, 2); |
| 41 | x -= (n as f64) * 0.5; |
| 42 | |
| 43 | x *= PI; |
| 44 | match n { |
| 45 | 1 => k_cos(x, y:0.0), |
| 46 | 2 => k_sin(-x, y:0.0, iy:0), |
| 47 | 3 => -k_cos(x, y:0.0), |
| 48 | // 0 |
| 49 | _ => k_sin(x, y:0.0, iy:0), |
| 50 | } |
| 51 | } |
| 52 | |
| 53 | const N: usize = 12; |
| 54 | //static const double g = 6.024680040776729583740234375; |
| 55 | const GMHALF: f64 = 5.524680040776729583740234375; |
| 56 | const SNUM: [f64; N + 1] = [ |
| 57 | 23531376880.410759688572007674451636754734846804940, |
| 58 | 42919803642.649098768957899047001988850926355848959, |
| 59 | 35711959237.355668049440185451547166705960488635843, |
| 60 | 17921034426.037209699919755754458931112671403265390, |
| 61 | 6039542586.3520280050642916443072979210699388420708, |
| 62 | 1439720407.3117216736632230727949123939715485786772, |
| 63 | 248874557.86205415651146038641322942321632125127801, |
| 64 | 31426415.585400194380614231628318205362874684987640, |
| 65 | 2876370.6289353724412254090516208496135991145378768, |
| 66 | 186056.26539522349504029498971604569928220784236328, |
| 67 | 8071.6720023658162106380029022722506138218516325024, |
| 68 | 210.82427775157934587250973392071336271166969580291, |
| 69 | 2.5066282746310002701649081771338373386264310793408, |
| 70 | ]; |
| 71 | const SDEN: [f64; N + 1] = [ |
| 72 | 0.0, |
| 73 | 39916800.0, |
| 74 | 120543840.0, |
| 75 | 150917976.0, |
| 76 | 105258076.0, |
| 77 | 45995730.0, |
| 78 | 13339535.0, |
| 79 | 2637558.0, |
| 80 | 357423.0, |
| 81 | 32670.0, |
| 82 | 1925.0, |
| 83 | 66.0, |
| 84 | 1.0, |
| 85 | ]; |
| 86 | /* n! for small integer n */ |
| 87 | const FACT: [f64; 23] = [ |
| 88 | 1.0, |
| 89 | 1.0, |
| 90 | 2.0, |
| 91 | 6.0, |
| 92 | 24.0, |
| 93 | 120.0, |
| 94 | 720.0, |
| 95 | 5040.0, |
| 96 | 40320.0, |
| 97 | 362880.0, |
| 98 | 3628800.0, |
| 99 | 39916800.0, |
| 100 | 479001600.0, |
| 101 | 6227020800.0, |
| 102 | 87178291200.0, |
| 103 | 1307674368000.0, |
| 104 | 20922789888000.0, |
| 105 | 355687428096000.0, |
| 106 | 6402373705728000.0, |
| 107 | 121645100408832000.0, |
| 108 | 2432902008176640000.0, |
| 109 | 51090942171709440000.0, |
| 110 | 1124000727777607680000.0, |
| 111 | ]; |
| 112 | |
| 113 | /* S(x) rational function for positive x */ |
| 114 | fn s(x: f64) -> f64 { |
| 115 | let mut num: f64 = 0.0; |
| 116 | let mut den: f64 = 0.0; |
| 117 | |
| 118 | /* to avoid overflow handle large x differently */ |
| 119 | if x < 8.0 { |
| 120 | for i: usize in (0..=N).rev() { |
| 121 | num = num * x + i!(SNUM, i); |
| 122 | den = den * x + i!(SDEN, i); |
| 123 | } |
| 124 | } else { |
| 125 | for i: usize in 0..=N { |
| 126 | num = num / x + i!(SNUM, i); |
| 127 | den = den / x + i!(SDEN, i); |
| 128 | } |
| 129 | } |
| 130 | return num / den; |
| 131 | } |
| 132 | |
| 133 | /// The [Gamma function](https://en.wikipedia.org/wiki/Gamma_function) (f64). |
| 134 | #[cfg_attr (all(test, assert_no_panic), no_panic::no_panic)] |
| 135 | pub fn tgamma(mut x: f64) -> f64 { |
| 136 | let u: u64 = x.to_bits(); |
| 137 | let absx: f64; |
| 138 | let mut y: f64; |
| 139 | let mut dy: f64; |
| 140 | let mut z: f64; |
| 141 | let mut r: f64; |
| 142 | let ix: u32 = ((u >> 32) as u32) & 0x7fffffff; |
| 143 | let sign: bool = (u >> 63) != 0; |
| 144 | |
| 145 | /* special cases */ |
| 146 | if ix >= 0x7ff00000 { |
| 147 | /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */ |
| 148 | return x + f64::INFINITY; |
| 149 | } |
| 150 | if ix < ((0x3ff - 54) << 20) { |
| 151 | /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */ |
| 152 | return 1.0 / x; |
| 153 | } |
| 154 | |
| 155 | /* integer arguments */ |
| 156 | /* raise inexact when non-integer */ |
| 157 | if x == floor(x) { |
| 158 | if sign { |
| 159 | return 0.0 / 0.0; |
| 160 | } |
| 161 | if x <= FACT.len() as f64 { |
| 162 | return i!(FACT, (x as usize) - 1); |
| 163 | } |
| 164 | } |
| 165 | |
| 166 | /* x >= 172: tgamma(x)=inf with overflow */ |
| 167 | /* x =< -184: tgamma(x)=+-0 with underflow */ |
| 168 | if ix >= 0x40670000 { |
| 169 | /* |x| >= 184 */ |
| 170 | if sign { |
| 171 | let x1p_126 = f64::from_bits(0x3810000000000000); // 0x1p-126 == 2^-126 |
| 172 | force_eval!((x1p_126 / x) as f32); |
| 173 | if floor(x) * 0.5 == floor(x * 0.5) { |
| 174 | return 0.0; |
| 175 | } else { |
| 176 | return -0.0; |
| 177 | } |
| 178 | } |
| 179 | let x1p1023 = f64::from_bits(0x7fe0000000000000); // 0x1p1023 == 2^1023 |
| 180 | x *= x1p1023; |
| 181 | return x; |
| 182 | } |
| 183 | |
| 184 | absx = if sign { -x } else { x }; |
| 185 | |
| 186 | /* handle the error of x + g - 0.5 */ |
| 187 | y = absx + GMHALF; |
| 188 | if absx > GMHALF { |
| 189 | dy = y - absx; |
| 190 | dy -= GMHALF; |
| 191 | } else { |
| 192 | dy = y - GMHALF; |
| 193 | dy -= absx; |
| 194 | } |
| 195 | |
| 196 | z = absx - 0.5; |
| 197 | r = s(absx) * exp(-y); |
| 198 | if x < 0.0 { |
| 199 | /* reflection formula for negative x */ |
| 200 | /* sinpi(absx) is not 0, integers are already handled */ |
| 201 | r = -PI / (sinpi(absx) * absx * r); |
| 202 | dy = -dy; |
| 203 | z = -z; |
| 204 | } |
| 205 | r += dy * (GMHALF + 0.5) * r / y; |
| 206 | z = pow(y, 0.5 * z); |
| 207 | y = r * z * z; |
| 208 | return y; |
| 209 | } |
| 210 | |