| 1 | //! `f32` extension |
| 2 | |
| 3 | use crate::float::F32; |
| 4 | |
| 5 | /// `f32` extension providing various arithmetic approximations and polyfills |
| 6 | /// for `std` functionality. |
| 7 | pub trait F32Ext: Sized { |
| 8 | /// Compute absolute value with a constant-time, data-independent |
| 9 | /// implementation. |
| 10 | fn abs(self) -> f32; |
| 11 | |
| 12 | /// Approximates `acos(x)` in radians in the range `[0, pi]` |
| 13 | fn acos(self) -> f32; |
| 14 | |
| 15 | /// Approximates `asin(x)` in radians in the range `[-pi/2, pi/2]`. |
| 16 | fn asin(self) -> f32; |
| 17 | |
| 18 | /// Approximates `atan(x)` in radians with a maximum error of `0.002`. |
| 19 | fn atan(self) -> f32; |
| 20 | |
| 21 | /// Approximates `atan(x)` normalized to the `[−1,1]` range with a maximum |
| 22 | /// error of `0.1620` degrees. |
| 23 | fn atan_norm(self) -> f32; |
| 24 | |
| 25 | /// Approximates the four quadrant arctangent `atan2(x)` in radians, with |
| 26 | /// a maximum error of `0.002`. |
| 27 | fn atan2(self, other: f32) -> f32; |
| 28 | |
| 29 | /// Approximates the four quadrant arctangent. |
| 30 | /// Normalized to the `[0,4)` range with a maximum error of `0.1620` degrees. |
| 31 | fn atan2_norm(self, other: f32) -> f32; |
| 32 | |
| 33 | /// Approximates floating point ceiling. |
| 34 | fn ceil(self) -> f32; |
| 35 | |
| 36 | /// Copies the sign from one number to another and returns it. |
| 37 | fn copysign(self, sign: f32) -> f32; |
| 38 | |
| 39 | /// Approximates cosine in radians with a maximum error of `0.002`. |
| 40 | fn cos(self) -> f32; |
| 41 | |
| 42 | /// Calculates Euclidean division, the matching method for `rem_euclid`. |
| 43 | fn div_euclid(self, other: f32) -> f32; |
| 44 | |
| 45 | /// Approximates `e^x`. |
| 46 | fn exp(self) -> f32; |
| 47 | |
| 48 | /// Approximates floating point floor. |
| 49 | fn floor(self) -> f32; |
| 50 | |
| 51 | /// Retrieve the fractional part of floating point with sign. |
| 52 | fn fract(self) -> f32; |
| 53 | |
| 54 | /// Approximates the length of the hypotenuse of a right-angle triangle given |
| 55 | /// legs of length `x` and `y`. |
| 56 | fn hypot(self, other: f32) -> f32; |
| 57 | |
| 58 | /// Approximates `1/x` with an average deviation of ~8%. |
| 59 | fn inv(self) -> f32; |
| 60 | |
| 61 | /// Approximates inverse square root with an average deviation of ~5%. |
| 62 | fn invsqrt(self) -> f32; |
| 63 | |
| 64 | /// Approximates `ln(x)`. |
| 65 | fn ln(self) -> f32; |
| 66 | |
| 67 | /// Approximates `log` with an arbitrary base. |
| 68 | fn log(self, base: f32) -> f32; |
| 69 | |
| 70 | /// Approximates `log2`. |
| 71 | fn log2(self) -> f32; |
| 72 | |
| 73 | /// Approximates `log10`. |
| 74 | fn log10(self) -> f32; |
| 75 | |
| 76 | /// Computes `(self * a) + b`. |
| 77 | fn mul_add(self, a: f32, b: f32) -> f32; |
| 78 | |
| 79 | /// Approximates `self^n`. |
| 80 | fn powf(self, n: f32) -> f32; |
| 81 | |
| 82 | /// Approximates `self^n` where n is an `i32` |
| 83 | fn powi(self, n: i32) -> f32; |
| 84 | |
| 85 | /// Returns the reciprocal (inverse) of a number, `1/x`. |
| 86 | fn recip(self) -> f32; |
| 87 | |
| 88 | /// Calculates the least nonnegative remainder of `self (mod other)`. |
| 89 | fn rem_euclid(self, other: f32) -> f32; |
| 90 | |
| 91 | /// Round the number part of floating point with sign. |
| 92 | fn round(self) -> f32; |
| 93 | |
| 94 | /// Returns a number that represents the sign of `self`. |
| 95 | fn signum(self) -> f32; |
| 96 | |
| 97 | /// Approximates sine in radians with a maximum error of `0.002`. |
| 98 | fn sin(self) -> f32; |
| 99 | |
| 100 | /// Simultaneously computes the sine and cosine of the number, `x`. |
| 101 | /// Returns `(sin(x), cos(x))`. |
| 102 | fn sin_cos(self) -> (f32, f32); |
| 103 | |
| 104 | /// Approximates square root with an average deviation of ~5%. |
| 105 | fn sqrt(self) -> f32; |
| 106 | |
| 107 | /// Approximates `tan(x)` in radians with a maximum error of `0.6`. |
| 108 | fn tan(self) -> f32; |
| 109 | |
| 110 | /// Retrieve whole number part of floating point with sign. |
| 111 | fn trunc(self) -> f32; |
| 112 | } |
| 113 | |
| 114 | impl F32Ext for f32 { |
| 115 | #[inline ] |
| 116 | fn abs(self) -> f32 { |
| 117 | F32(self).abs().0 |
| 118 | } |
| 119 | |
| 120 | #[inline ] |
| 121 | fn acos(self) -> f32 { |
| 122 | F32(self).acos().0 |
| 123 | } |
| 124 | |
| 125 | #[inline ] |
| 126 | fn asin(self) -> f32 { |
| 127 | F32(self).asin().0 |
| 128 | } |
| 129 | |
| 130 | #[inline ] |
| 131 | fn atan(self) -> f32 { |
| 132 | F32(self).atan().0 |
| 133 | } |
| 134 | |
| 135 | #[inline ] |
| 136 | fn atan_norm(self) -> f32 { |
| 137 | F32(self).atan_norm().0 |
| 138 | } |
| 139 | |
| 140 | #[inline ] |
| 141 | fn atan2(self, other: f32) -> f32 { |
| 142 | F32(self).atan2(F32(other)).0 |
| 143 | } |
| 144 | |
| 145 | #[inline ] |
| 146 | fn atan2_norm(self, other: f32) -> f32 { |
| 147 | F32(self).atan2_norm(F32(other)).0 |
| 148 | } |
| 149 | |
| 150 | #[inline ] |
| 151 | fn ceil(self) -> f32 { |
| 152 | F32(self).ceil().0 |
| 153 | } |
| 154 | |
| 155 | #[inline ] |
| 156 | fn copysign(self, sign: f32) -> f32 { |
| 157 | F32(self).copysign(F32(sign)).0 |
| 158 | } |
| 159 | |
| 160 | #[inline ] |
| 161 | fn cos(self) -> f32 { |
| 162 | F32(self).cos().0 |
| 163 | } |
| 164 | |
| 165 | #[inline ] |
| 166 | fn div_euclid(self, other: f32) -> f32 { |
| 167 | F32(self).div_euclid(F32(other)).0 |
| 168 | } |
| 169 | |
| 170 | #[inline ] |
| 171 | fn exp(self) -> f32 { |
| 172 | F32(self).exp().0 |
| 173 | } |
| 174 | |
| 175 | #[inline ] |
| 176 | fn floor(self) -> f32 { |
| 177 | F32(self).floor().0 |
| 178 | } |
| 179 | |
| 180 | #[inline ] |
| 181 | fn fract(self) -> f32 { |
| 182 | F32(self).fract().0 |
| 183 | } |
| 184 | |
| 185 | #[inline ] |
| 186 | fn hypot(self, other: f32) -> f32 { |
| 187 | F32(self).hypot(other.into()).0 |
| 188 | } |
| 189 | |
| 190 | #[inline ] |
| 191 | fn inv(self) -> f32 { |
| 192 | F32(self).inv().0 |
| 193 | } |
| 194 | |
| 195 | #[inline ] |
| 196 | fn invsqrt(self) -> f32 { |
| 197 | F32(self).invsqrt().0 |
| 198 | } |
| 199 | |
| 200 | #[inline ] |
| 201 | fn ln(self) -> f32 { |
| 202 | F32(self).ln().0 |
| 203 | } |
| 204 | |
| 205 | #[inline ] |
| 206 | fn log(self, base: f32) -> f32 { |
| 207 | F32(self).log(F32(base)).0 |
| 208 | } |
| 209 | |
| 210 | #[inline ] |
| 211 | fn log2(self) -> f32 { |
| 212 | F32(self).log2().0 |
| 213 | } |
| 214 | |
| 215 | #[inline ] |
| 216 | fn log10(self) -> f32 { |
| 217 | F32(self).log10().0 |
| 218 | } |
| 219 | |
| 220 | #[inline ] |
| 221 | fn mul_add(self, a: f32, b: f32) -> f32 { |
| 222 | F32(self).mul_add(F32(a), F32(b)).0 |
| 223 | } |
| 224 | |
| 225 | #[inline ] |
| 226 | fn powf(self, n: f32) -> f32 { |
| 227 | F32(self).powf(F32(n)).0 |
| 228 | } |
| 229 | |
| 230 | #[inline ] |
| 231 | fn powi(self, n: i32) -> f32 { |
| 232 | F32(self).powi(n).0 |
| 233 | } |
| 234 | |
| 235 | #[inline ] |
| 236 | fn recip(self) -> f32 { |
| 237 | F32(self).recip().0 |
| 238 | } |
| 239 | |
| 240 | #[inline ] |
| 241 | fn rem_euclid(self, other: f32) -> f32 { |
| 242 | F32(self).rem_euclid(F32(other)).0 |
| 243 | } |
| 244 | |
| 245 | #[inline ] |
| 246 | fn round(self) -> f32 { |
| 247 | F32(self).round().0 |
| 248 | } |
| 249 | |
| 250 | #[inline ] |
| 251 | fn signum(self) -> f32 { |
| 252 | F32(self).signum().0 |
| 253 | } |
| 254 | |
| 255 | #[inline ] |
| 256 | fn sin(self) -> f32 { |
| 257 | F32(self).sin().0 |
| 258 | } |
| 259 | |
| 260 | #[inline ] |
| 261 | fn sin_cos(self) -> (f32, f32) { |
| 262 | (F32(self).sin().0, F32(self).cos().0) |
| 263 | } |
| 264 | |
| 265 | #[inline ] |
| 266 | fn sqrt(self) -> f32 { |
| 267 | F32(self).sqrt().0 |
| 268 | } |
| 269 | |
| 270 | #[inline ] |
| 271 | fn tan(self) -> f32 { |
| 272 | F32(self).tan().0 |
| 273 | } |
| 274 | |
| 275 | #[inline ] |
| 276 | fn trunc(self) -> f32 { |
| 277 | F32(self).trunc().0 |
| 278 | } |
| 279 | } |
| 280 | |