1 | //! The symmetric encryption context. |
2 | //! |
3 | //! # Examples |
4 | //! |
5 | //! Encrypt data with AES128 CBC |
6 | //! |
7 | //! ``` |
8 | //! use openssl::cipher::Cipher; |
9 | //! use openssl::cipher_ctx::CipherCtx; |
10 | //! |
11 | //! let cipher = Cipher::aes_128_cbc(); |
12 | //! let data = b"Some Crypto Text" ; |
13 | //! let key = b" \x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F" ; |
14 | //! let iv = b" \x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07" ; |
15 | //! |
16 | //! let mut ctx = CipherCtx::new().unwrap(); |
17 | //! ctx.encrypt_init(Some(cipher), Some(key), Some(iv)).unwrap(); |
18 | //! |
19 | //! let mut ciphertext = vec![]; |
20 | //! ctx.cipher_update_vec(data, &mut ciphertext).unwrap(); |
21 | //! ctx.cipher_final_vec(&mut ciphertext).unwrap(); |
22 | //! |
23 | //! assert_eq!( |
24 | //! b" \xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\x87\x4D\ |
25 | //! \xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1" , |
26 | //! &ciphertext[..], |
27 | //! ); |
28 | //! ``` |
29 | //! |
30 | //! Decrypt data with AES128 CBC |
31 | //! |
32 | //! ``` |
33 | //! use openssl::cipher::Cipher; |
34 | //! use openssl::cipher_ctx::CipherCtx; |
35 | //! |
36 | //! let cipher = Cipher::aes_128_cbc(); |
37 | //! let data = b" \xB4\xB9\xE7\x30\xD6\xD6\xF7\xDE\x77\x3F\x1C\xFF\xB3\x3E\x44\x5A\x91\xD7\x27\x62\ |
38 | //! \x87\x4D\xFB\x3C\x5E\xC4\x59\x72\x4A\xF4\x7C\xA1" ; |
39 | //! let key = b" \x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0A\x0B\x0C\x0D\x0E\x0F" ; |
40 | //! let iv = b" \x00\x01\x02\x03\x04\x05\x06\x07\x00\x01\x02\x03\x04\x05\x06\x07" ; |
41 | //! |
42 | //! let mut ctx = CipherCtx::new().unwrap(); |
43 | //! ctx.decrypt_init(Some(cipher), Some(key), Some(iv)).unwrap(); |
44 | //! |
45 | //! let mut plaintext = vec![]; |
46 | //! ctx.cipher_update_vec(data, &mut plaintext).unwrap(); |
47 | //! ctx.cipher_final_vec(&mut plaintext).unwrap(); |
48 | //! |
49 | //! assert_eq!(b"Some Crypto Text" , &plaintext[..]); |
50 | //! ``` |
51 | #![warn (missing_docs)] |
52 | |
53 | use crate::cipher::CipherRef; |
54 | use crate::error::ErrorStack; |
55 | #[cfg (not(any(boringssl, awslc)))] |
56 | use crate::pkey::{HasPrivate, HasPublic, PKey, PKeyRef}; |
57 | use crate::{cvt, cvt_p}; |
58 | #[cfg (ossl102)] |
59 | use bitflags::bitflags; |
60 | use cfg_if::cfg_if; |
61 | use foreign_types::{ForeignType, ForeignTypeRef}; |
62 | use libc::{c_int, c_uchar}; |
63 | use openssl_macros::corresponds; |
64 | use std::convert::{TryFrom, TryInto}; |
65 | use std::ptr; |
66 | |
67 | cfg_if! { |
68 | if #[cfg(ossl300)] { |
69 | use ffi::EVP_CIPHER_CTX_get0_cipher; |
70 | } else { |
71 | use ffi::EVP_CIPHER_CTX_cipher as EVP_CIPHER_CTX_get0_cipher; |
72 | } |
73 | } |
74 | |
75 | foreign_type_and_impl_send_sync! { |
76 | type CType = ffi::EVP_CIPHER_CTX; |
77 | fn drop = ffi::EVP_CIPHER_CTX_free; |
78 | |
79 | /// A context object used to perform symmetric encryption operations. |
80 | pub struct CipherCtx; |
81 | /// A reference to a [`CipherCtx`]. |
82 | pub struct CipherCtxRef; |
83 | } |
84 | |
85 | #[cfg (ossl102)] |
86 | bitflags! { |
87 | /// Flags for `EVP_CIPHER_CTX`. |
88 | pub struct CipherCtxFlags : c_int { |
89 | /// The flag used to opt into AES key wrap ciphers. |
90 | const FLAG_WRAP_ALLOW = ffi::EVP_CIPHER_CTX_FLAG_WRAP_ALLOW; |
91 | } |
92 | } |
93 | |
94 | impl CipherCtx { |
95 | /// Creates a new context. |
96 | #[corresponds (EVP_CIPHER_CTX_new)] |
97 | pub fn new() -> Result<Self, ErrorStack> { |
98 | ffi::init(); |
99 | |
100 | unsafe { |
101 | let ptr: *mut EVP_CIPHER_CTX = cvt_p(ffi::EVP_CIPHER_CTX_new())?; |
102 | Ok(CipherCtx::from_ptr(ptr)) |
103 | } |
104 | } |
105 | } |
106 | |
107 | impl CipherCtxRef { |
108 | #[corresponds (EVP_CIPHER_CTX_copy)] |
109 | pub fn copy(&mut self, src: &CipherCtxRef) -> Result<(), ErrorStack> { |
110 | unsafe { |
111 | cvt(ffi::EVP_CIPHER_CTX_copy(self.as_ptr(), src.as_ptr()))?; |
112 | Ok(()) |
113 | } |
114 | } |
115 | |
116 | /// Initializes the context for encryption. |
117 | /// |
118 | /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up |
119 | /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used |
120 | /// to, for example, use a nonstandard IV size. |
121 | /// |
122 | /// # Panics |
123 | /// |
124 | /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size |
125 | /// of the cipher, or if a key or IV is provided before a cipher. |
126 | #[corresponds (EVP_EncryptInit_ex)] |
127 | pub fn encrypt_init( |
128 | &mut self, |
129 | type_: Option<&CipherRef>, |
130 | key: Option<&[u8]>, |
131 | iv: Option<&[u8]>, |
132 | ) -> Result<(), ErrorStack> { |
133 | self.cipher_init(type_, key, iv, ffi::EVP_EncryptInit_ex) |
134 | } |
135 | |
136 | /// Initializes the context for decryption. |
137 | /// |
138 | /// Normally this is called once to set all of the cipher, key, and IV. However, this process can be split up |
139 | /// by first setting the cipher with no key or IV and then setting the key and IV with no cipher. This can be used |
140 | /// to, for example, use a nonstandard IV size. |
141 | /// |
142 | /// # Panics |
143 | /// |
144 | /// Panics if the key buffer is smaller than the key size of the cipher, the IV buffer is smaller than the IV size |
145 | /// of the cipher, or if a key or IV is provided before a cipher. |
146 | #[corresponds (EVP_DecryptInit_ex)] |
147 | pub fn decrypt_init( |
148 | &mut self, |
149 | type_: Option<&CipherRef>, |
150 | key: Option<&[u8]>, |
151 | iv: Option<&[u8]>, |
152 | ) -> Result<(), ErrorStack> { |
153 | self.cipher_init(type_, key, iv, ffi::EVP_DecryptInit_ex) |
154 | } |
155 | |
156 | fn cipher_init( |
157 | &mut self, |
158 | type_: Option<&CipherRef>, |
159 | key: Option<&[u8]>, |
160 | iv: Option<&[u8]>, |
161 | f: unsafe extern "C" fn( |
162 | *mut ffi::EVP_CIPHER_CTX, |
163 | *const ffi::EVP_CIPHER, |
164 | *mut ffi::ENGINE, |
165 | *const c_uchar, |
166 | *const c_uchar, |
167 | ) -> c_int, |
168 | ) -> Result<(), ErrorStack> { |
169 | if let Some(key) = key { |
170 | let key_len = type_.map_or_else(|| self.key_length(), |c| c.key_length()); |
171 | assert!(key_len <= key.len()); |
172 | } |
173 | |
174 | if let Some(iv) = iv { |
175 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
176 | assert!(iv_len <= iv.len()); |
177 | } |
178 | |
179 | unsafe { |
180 | cvt(f( |
181 | self.as_ptr(), |
182 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
183 | ptr::null_mut(), |
184 | key.map_or(ptr::null(), |k| k.as_ptr()), |
185 | iv.map_or(ptr::null(), |iv| iv.as_ptr()), |
186 | ))?; |
187 | } |
188 | |
189 | Ok(()) |
190 | } |
191 | |
192 | /// Initializes the context to perform envelope encryption. |
193 | /// |
194 | /// Normally this is called once to set both the cipher and public keys. However, this process may be split up by |
195 | /// first providing the cipher with no public keys and then setting the public keys with no cipher. |
196 | /// |
197 | /// `encrypted_keys` will contain the generated symmetric key encrypted with each corresponding asymmetric private |
198 | /// key. The generated IV will be written to `iv`. |
199 | /// |
200 | /// # Panics |
201 | /// |
202 | /// Panics if `pub_keys` is not the same size as `encrypted_keys`, the IV buffer is smaller than the cipher's IV |
203 | /// size, or if an IV is provided before the cipher. |
204 | #[corresponds (EVP_SealInit)] |
205 | #[cfg (not(any(boringssl, awslc)))] |
206 | pub fn seal_init<T>( |
207 | &mut self, |
208 | type_: Option<&CipherRef>, |
209 | pub_keys: &[PKey<T>], |
210 | encrypted_keys: &mut [Vec<u8>], |
211 | iv: Option<&mut [u8]>, |
212 | ) -> Result<(), ErrorStack> |
213 | where |
214 | T: HasPublic, |
215 | { |
216 | assert_eq!(pub_keys.len(), encrypted_keys.len()); |
217 | if !pub_keys.is_empty() { |
218 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
219 | assert!(iv.as_ref().map_or(0, |b| b.len()) >= iv_len); |
220 | } |
221 | |
222 | for (pub_key, buf) in pub_keys.iter().zip(&mut *encrypted_keys) { |
223 | buf.resize(pub_key.size(), 0); |
224 | } |
225 | |
226 | let mut keys = encrypted_keys |
227 | .iter_mut() |
228 | .map(|b| b.as_mut_ptr()) |
229 | .collect::<Vec<_>>(); |
230 | let mut key_lengths = vec![0; pub_keys.len()]; |
231 | let pub_keys_len = i32::try_from(pub_keys.len()).unwrap(); |
232 | |
233 | unsafe { |
234 | cvt(ffi::EVP_SealInit( |
235 | self.as_ptr(), |
236 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
237 | keys.as_mut_ptr(), |
238 | key_lengths.as_mut_ptr(), |
239 | iv.map_or(ptr::null_mut(), |b| b.as_mut_ptr()), |
240 | pub_keys.as_ptr() as *mut _, |
241 | pub_keys_len, |
242 | ))?; |
243 | } |
244 | |
245 | for (buf, len) in encrypted_keys.iter_mut().zip(key_lengths) { |
246 | buf.truncate(len as usize); |
247 | } |
248 | |
249 | Ok(()) |
250 | } |
251 | |
252 | /// Initializes the context to perform envelope decryption. |
253 | /// |
254 | /// Normally this is called once with all of the arguments present. However, this process may be split up by first |
255 | /// providing the cipher alone and then after providing the rest of the arguments in a second call. |
256 | /// |
257 | /// # Panics |
258 | /// |
259 | /// Panics if the IV buffer is smaller than the cipher's required IV size or if the IV is provided before the |
260 | /// cipher. |
261 | #[corresponds (EVP_OpenInit)] |
262 | #[cfg (not(any(boringssl, awslc)))] |
263 | pub fn open_init<T>( |
264 | &mut self, |
265 | type_: Option<&CipherRef>, |
266 | encrypted_key: &[u8], |
267 | iv: Option<&[u8]>, |
268 | priv_key: Option<&PKeyRef<T>>, |
269 | ) -> Result<(), ErrorStack> |
270 | where |
271 | T: HasPrivate, |
272 | { |
273 | if priv_key.is_some() { |
274 | let iv_len = type_.map_or_else(|| self.iv_length(), |c| c.iv_length()); |
275 | assert!(iv.map_or(0, |b| b.len()) >= iv_len); |
276 | } |
277 | |
278 | let len = c_int::try_from(encrypted_key.len()).unwrap(); |
279 | unsafe { |
280 | cvt(ffi::EVP_OpenInit( |
281 | self.as_ptr(), |
282 | type_.map_or(ptr::null(), |p| p.as_ptr()), |
283 | encrypted_key.as_ptr(), |
284 | len, |
285 | iv.map_or(ptr::null(), |b| b.as_ptr()), |
286 | priv_key.map_or(ptr::null_mut(), ForeignTypeRef::as_ptr), |
287 | ))?; |
288 | } |
289 | |
290 | Ok(()) |
291 | } |
292 | |
293 | fn assert_cipher(&self) { |
294 | unsafe { |
295 | assert!(!EVP_CIPHER_CTX_get0_cipher(self.as_ptr()).is_null()); |
296 | } |
297 | } |
298 | |
299 | /// Returns the block size of the context's cipher. |
300 | /// |
301 | /// Stream ciphers will report a block size of 1. |
302 | /// |
303 | /// # Panics |
304 | /// |
305 | /// Panics if the context has not been initialized with a cipher. |
306 | #[corresponds (EVP_CIPHER_CTX_block_size)] |
307 | pub fn block_size(&self) -> usize { |
308 | self.assert_cipher(); |
309 | |
310 | unsafe { ffi::EVP_CIPHER_CTX_block_size(self.as_ptr()) as usize } |
311 | } |
312 | |
313 | /// Returns the key length of the context's cipher. |
314 | /// |
315 | /// # Panics |
316 | /// |
317 | /// Panics if the context has not been initialized with a cipher. |
318 | #[corresponds (EVP_CIPHER_CTX_key_length)] |
319 | pub fn key_length(&self) -> usize { |
320 | self.assert_cipher(); |
321 | |
322 | unsafe { ffi::EVP_CIPHER_CTX_key_length(self.as_ptr()) as usize } |
323 | } |
324 | |
325 | /// Generates a random key based on the configured cipher. |
326 | /// |
327 | /// # Panics |
328 | /// |
329 | /// Panics if the context has not been initialized with a cipher or if the buffer is smaller than the cipher's key |
330 | /// length. |
331 | #[corresponds (EVP_CIPHER_CTX_rand_key)] |
332 | #[cfg (not(any(boringssl, awslc)))] |
333 | pub fn rand_key(&self, buf: &mut [u8]) -> Result<(), ErrorStack> { |
334 | assert!(buf.len() >= self.key_length()); |
335 | |
336 | unsafe { |
337 | cvt(ffi::EVP_CIPHER_CTX_rand_key( |
338 | self.as_ptr(), |
339 | buf.as_mut_ptr(), |
340 | ))?; |
341 | } |
342 | |
343 | Ok(()) |
344 | } |
345 | |
346 | /// Sets the length of the key expected by the context. |
347 | /// |
348 | /// Only some ciphers support configurable key lengths. |
349 | /// |
350 | /// # Panics |
351 | /// |
352 | /// Panics if the context has not been initialized with a cipher. |
353 | #[corresponds (EVP_CIPHER_CTX_set_key_length)] |
354 | pub fn set_key_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
355 | self.assert_cipher(); |
356 | |
357 | unsafe { |
358 | cvt(ffi::EVP_CIPHER_CTX_set_key_length( |
359 | self.as_ptr(), |
360 | len.try_into().unwrap(), |
361 | ))?; |
362 | } |
363 | |
364 | Ok(()) |
365 | } |
366 | |
367 | /// Returns the length of the IV expected by this context. |
368 | /// |
369 | /// Returns 0 if the cipher does not use an IV. |
370 | /// |
371 | /// # Panics |
372 | /// |
373 | /// Panics if the context has not been initialized with a cipher. |
374 | #[corresponds (EVP_CIPHER_CTX_iv_length)] |
375 | pub fn iv_length(&self) -> usize { |
376 | self.assert_cipher(); |
377 | |
378 | unsafe { ffi::EVP_CIPHER_CTX_iv_length(self.as_ptr()) as usize } |
379 | } |
380 | |
381 | /// Returns the `num` parameter of the cipher. |
382 | /// |
383 | /// Built-in ciphers typically use this to track how much of the |
384 | /// current underlying block has been "used" already. |
385 | /// |
386 | /// # Panics |
387 | /// |
388 | /// Panics if the context has not been initialized with a cipher. |
389 | #[corresponds (EVP_CIPHER_CTX_num)] |
390 | #[cfg (ossl110)] |
391 | pub fn num(&self) -> usize { |
392 | self.assert_cipher(); |
393 | |
394 | unsafe { ffi::EVP_CIPHER_CTX_num(self.as_ptr()) as usize } |
395 | } |
396 | |
397 | /// Sets the length of the IV expected by this context. |
398 | /// |
399 | /// Only some ciphers support configurable IV lengths. |
400 | /// |
401 | /// # Panics |
402 | /// |
403 | /// Panics if the context has not been initialized with a cipher. |
404 | #[corresponds (EVP_CIPHER_CTX_ctrl)] |
405 | pub fn set_iv_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
406 | self.assert_cipher(); |
407 | |
408 | let len = c_int::try_from(len).unwrap(); |
409 | |
410 | unsafe { |
411 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
412 | self.as_ptr(), |
413 | ffi::EVP_CTRL_GCM_SET_IVLEN, |
414 | len, |
415 | ptr::null_mut(), |
416 | ))?; |
417 | } |
418 | |
419 | Ok(()) |
420 | } |
421 | |
422 | /// Returns the length of the authentication tag expected by this context. |
423 | /// |
424 | /// Returns 0 if the cipher is not authenticated. |
425 | /// |
426 | /// # Panics |
427 | /// |
428 | /// Panics if the context has not been initialized with a cipher. |
429 | /// |
430 | /// Requires OpenSSL 3.0.0 or newer. |
431 | #[corresponds (EVP_CIPHER_CTX_get_tag_length)] |
432 | #[cfg (ossl300)] |
433 | pub fn tag_length(&self) -> usize { |
434 | self.assert_cipher(); |
435 | |
436 | unsafe { ffi::EVP_CIPHER_CTX_get_tag_length(self.as_ptr()) as usize } |
437 | } |
438 | |
439 | /// Retrieves the calculated authentication tag from the context. |
440 | /// |
441 | /// This should be called after [`Self::cipher_final`], and is only supported by authenticated ciphers. |
442 | /// |
443 | /// The size of the buffer indicates the size of the tag. While some ciphers support a range of tag sizes, it is |
444 | /// recommended to pick the maximum size. |
445 | #[corresponds (EVP_CIPHER_CTX_ctrl)] |
446 | pub fn tag(&self, tag: &mut [u8]) -> Result<(), ErrorStack> { |
447 | let len = c_int::try_from(tag.len()).unwrap(); |
448 | |
449 | unsafe { |
450 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
451 | self.as_ptr(), |
452 | ffi::EVP_CTRL_GCM_GET_TAG, |
453 | len, |
454 | tag.as_mut_ptr() as *mut _, |
455 | ))?; |
456 | } |
457 | |
458 | Ok(()) |
459 | } |
460 | |
461 | /// Sets the length of the generated authentication tag. |
462 | /// |
463 | /// This must be called when encrypting with a cipher in CCM mode to use a tag size other than the default. |
464 | #[corresponds (EVP_CIPHER_CTX_ctrl)] |
465 | pub fn set_tag_length(&mut self, len: usize) -> Result<(), ErrorStack> { |
466 | let len = c_int::try_from(len).unwrap(); |
467 | |
468 | unsafe { |
469 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
470 | self.as_ptr(), |
471 | ffi::EVP_CTRL_GCM_SET_TAG, |
472 | len, |
473 | ptr::null_mut(), |
474 | ))?; |
475 | } |
476 | |
477 | Ok(()) |
478 | } |
479 | |
480 | /// Sets the authentication tag for verification during decryption. |
481 | #[corresponds (EVP_CIPHER_CTX_ctrl)] |
482 | pub fn set_tag(&mut self, tag: &[u8]) -> Result<(), ErrorStack> { |
483 | let len = c_int::try_from(tag.len()).unwrap(); |
484 | |
485 | unsafe { |
486 | cvt(ffi::EVP_CIPHER_CTX_ctrl( |
487 | self.as_ptr(), |
488 | ffi::EVP_CTRL_GCM_SET_TAG, |
489 | len, |
490 | tag.as_ptr() as *mut _, |
491 | ))?; |
492 | } |
493 | |
494 | Ok(()) |
495 | } |
496 | |
497 | /// Enables or disables padding. |
498 | /// |
499 | /// If padding is disabled, the plaintext must be an exact multiple of the cipher's block size. |
500 | #[corresponds (EVP_CIPHER_CTX_set_padding)] |
501 | pub fn set_padding(&mut self, padding: bool) { |
502 | unsafe { |
503 | ffi::EVP_CIPHER_CTX_set_padding(self.as_ptr(), padding as c_int); |
504 | } |
505 | } |
506 | |
507 | /// Sets the total length of plaintext data. |
508 | /// |
509 | /// This is required for ciphers operating in CCM mode. |
510 | #[corresponds (EVP_CipherUpdate)] |
511 | pub fn set_data_len(&mut self, len: usize) -> Result<(), ErrorStack> { |
512 | let len = c_int::try_from(len).unwrap(); |
513 | |
514 | unsafe { |
515 | cvt(ffi::EVP_CipherUpdate( |
516 | self.as_ptr(), |
517 | ptr::null_mut(), |
518 | &mut 0, |
519 | ptr::null(), |
520 | len, |
521 | ))?; |
522 | } |
523 | |
524 | Ok(()) |
525 | } |
526 | |
527 | /// Set ctx flags. |
528 | /// |
529 | /// This function is currently used to enable AES key wrap feature supported by OpenSSL 1.0.2 or newer. |
530 | #[corresponds (EVP_CIPHER_CTX_set_flags)] |
531 | #[cfg (ossl102)] |
532 | pub fn set_flags(&mut self, flags: CipherCtxFlags) { |
533 | unsafe { |
534 | ffi::EVP_CIPHER_CTX_set_flags(self.as_ptr(), flags.bits()); |
535 | } |
536 | } |
537 | |
538 | /// Writes data into the context. |
539 | /// |
540 | /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD). |
541 | /// |
542 | /// Returns the number of bytes written to `output`. |
543 | /// |
544 | /// # Panics |
545 | /// |
546 | /// Panics if `output` doesn't contain enough space for data to be |
547 | /// written. |
548 | #[corresponds (EVP_CipherUpdate)] |
549 | pub fn cipher_update( |
550 | &mut self, |
551 | input: &[u8], |
552 | output: Option<&mut [u8]>, |
553 | ) -> Result<usize, ErrorStack> { |
554 | if let Some(output) = &output { |
555 | let mut block_size = self.block_size(); |
556 | if block_size == 1 { |
557 | block_size = 0; |
558 | } |
559 | let min_output_size = input.len() + block_size; |
560 | assert!( |
561 | output.len() >= min_output_size, |
562 | "Output buffer size should be at least {} bytes." , |
563 | min_output_size |
564 | ); |
565 | } |
566 | |
567 | unsafe { self.cipher_update_unchecked(input, output) } |
568 | } |
569 | |
570 | /// Writes data into the context. |
571 | /// |
572 | /// Providing no output buffer will cause the input to be considered additional authenticated data (AAD). |
573 | /// |
574 | /// Returns the number of bytes written to `output`. |
575 | /// |
576 | /// This function is the same as [`Self::cipher_update`] but with the |
577 | /// output size check removed. It can be used when the exact |
578 | /// buffer size control is maintained by the caller. |
579 | /// |
580 | /// # Safety |
581 | /// |
582 | /// The caller is expected to provide `output` buffer |
583 | /// large enough to contain correct number of bytes. For streaming |
584 | /// ciphers the output buffer size should be at least as big as |
585 | /// the input buffer. For block ciphers the size of the output |
586 | /// buffer depends on the state of partially updated blocks. |
587 | #[corresponds (EVP_CipherUpdate)] |
588 | pub unsafe fn cipher_update_unchecked( |
589 | &mut self, |
590 | input: &[u8], |
591 | output: Option<&mut [u8]>, |
592 | ) -> Result<usize, ErrorStack> { |
593 | let inlen = c_int::try_from(input.len()).unwrap(); |
594 | |
595 | let mut outlen = 0; |
596 | |
597 | cvt(ffi::EVP_CipherUpdate( |
598 | self.as_ptr(), |
599 | output.map_or(ptr::null_mut(), |b| b.as_mut_ptr()), |
600 | &mut outlen, |
601 | input.as_ptr(), |
602 | inlen, |
603 | ))?; |
604 | |
605 | Ok(outlen as usize) |
606 | } |
607 | |
608 | /// Like [`Self::cipher_update`] except that it appends output to a [`Vec`]. |
609 | pub fn cipher_update_vec( |
610 | &mut self, |
611 | input: &[u8], |
612 | output: &mut Vec<u8>, |
613 | ) -> Result<usize, ErrorStack> { |
614 | let base = output.len(); |
615 | output.resize(base + input.len() + self.block_size(), 0); |
616 | let len = self.cipher_update(input, Some(&mut output[base..]))?; |
617 | output.truncate(base + len); |
618 | |
619 | Ok(len) |
620 | } |
621 | |
622 | /// Like [`Self::cipher_update`] except that it writes output into the |
623 | /// `data` buffer. The `inlen` parameter specifies the number of bytes in |
624 | /// `data` that are considered the input. For streaming ciphers, the size of |
625 | /// `data` must be at least the input size. Otherwise, it must be at least |
626 | /// an additional block size larger. |
627 | /// |
628 | /// Note: Use [`Self::cipher_update`] with no output argument to write AAD. |
629 | /// |
630 | /// # Panics |
631 | /// |
632 | /// This function panics if the input size cannot be represented as `int` or |
633 | /// exceeds the buffer size, or if the output buffer does not contain enough |
634 | /// additional space. |
635 | #[corresponds (EVP_CipherUpdate)] |
636 | pub fn cipher_update_inplace( |
637 | &mut self, |
638 | data: &mut [u8], |
639 | inlen: usize, |
640 | ) -> Result<usize, ErrorStack> { |
641 | assert!(inlen <= data.len(), "Input size may not exceed buffer size" ); |
642 | let block_size = self.block_size(); |
643 | if block_size != 1 { |
644 | assert!( |
645 | data.len() >= inlen + block_size, |
646 | "Output buffer size must be at least {} bytes." , |
647 | inlen + block_size |
648 | ); |
649 | } |
650 | |
651 | let inlen = c_int::try_from(inlen).unwrap(); |
652 | let mut outlen = 0; |
653 | unsafe { |
654 | cvt(ffi::EVP_CipherUpdate( |
655 | self.as_ptr(), |
656 | data.as_mut_ptr(), |
657 | &mut outlen, |
658 | data.as_ptr(), |
659 | inlen, |
660 | )) |
661 | }?; |
662 | |
663 | Ok(outlen as usize) |
664 | } |
665 | |
666 | /// Finalizes the encryption or decryption process. |
667 | /// |
668 | /// Any remaining data will be written to the output buffer. |
669 | /// |
670 | /// Returns the number of bytes written to `output`. |
671 | /// |
672 | /// # Panics |
673 | /// |
674 | /// Panics if `output` is smaller than the cipher's block size. |
675 | #[corresponds (EVP_CipherFinal)] |
676 | pub fn cipher_final(&mut self, output: &mut [u8]) -> Result<usize, ErrorStack> { |
677 | let block_size = self.block_size(); |
678 | if block_size > 1 { |
679 | assert!(output.len() >= block_size); |
680 | } |
681 | |
682 | unsafe { self.cipher_final_unchecked(output) } |
683 | } |
684 | |
685 | /// Finalizes the encryption or decryption process. |
686 | /// |
687 | /// Any remaining data will be written to the output buffer. |
688 | /// |
689 | /// Returns the number of bytes written to `output`. |
690 | /// |
691 | /// This function is the same as [`Self::cipher_final`] but with |
692 | /// the output buffer size check removed. |
693 | /// |
694 | /// # Safety |
695 | /// |
696 | /// The caller is expected to provide `output` buffer |
697 | /// large enough to contain correct number of bytes. For streaming |
698 | /// ciphers the output buffer can be empty, for block ciphers the |
699 | /// output buffer should be at least as big as the block. |
700 | #[corresponds (EVP_CipherFinal)] |
701 | pub unsafe fn cipher_final_unchecked( |
702 | &mut self, |
703 | output: &mut [u8], |
704 | ) -> Result<usize, ErrorStack> { |
705 | let mut outl = 0; |
706 | |
707 | cvt(ffi::EVP_CipherFinal( |
708 | self.as_ptr(), |
709 | output.as_mut_ptr(), |
710 | &mut outl, |
711 | ))?; |
712 | |
713 | Ok(outl as usize) |
714 | } |
715 | |
716 | /// Like [`Self::cipher_final`] except that it appends output to a [`Vec`]. |
717 | pub fn cipher_final_vec(&mut self, output: &mut Vec<u8>) -> Result<usize, ErrorStack> { |
718 | let base = output.len(); |
719 | output.resize(base + self.block_size(), 0); |
720 | let len = self.cipher_final(&mut output[base..])?; |
721 | output.truncate(base + len); |
722 | |
723 | Ok(len) |
724 | } |
725 | } |
726 | |
727 | #[cfg (test)] |
728 | mod test { |
729 | use super::*; |
730 | use crate::{cipher::Cipher, rand::rand_bytes}; |
731 | #[cfg (not(any(boringssl, awslc)))] |
732 | use std::slice; |
733 | |
734 | #[test ] |
735 | #[cfg (not(any(boringssl, awslc)))] |
736 | fn seal_open() { |
737 | let private_pem = include_bytes!("../test/rsa.pem" ); |
738 | let public_pem = include_bytes!("../test/rsa.pem.pub" ); |
739 | let private_key = PKey::private_key_from_pem(private_pem).unwrap(); |
740 | let public_key = PKey::public_key_from_pem(public_pem).unwrap(); |
741 | let cipher = Cipher::aes_256_cbc(); |
742 | let secret = b"My secret message" ; |
743 | |
744 | let mut ctx = CipherCtx::new().unwrap(); |
745 | let mut encrypted_key = vec![]; |
746 | let mut iv = vec![0; cipher.iv_length()]; |
747 | let mut encrypted = vec![]; |
748 | ctx.seal_init( |
749 | Some(cipher), |
750 | &[public_key], |
751 | slice::from_mut(&mut encrypted_key), |
752 | Some(&mut iv), |
753 | ) |
754 | .unwrap(); |
755 | ctx.cipher_update_vec(secret, &mut encrypted).unwrap(); |
756 | ctx.cipher_final_vec(&mut encrypted).unwrap(); |
757 | |
758 | let mut decrypted = vec![]; |
759 | ctx.open_init(Some(cipher), &encrypted_key, Some(&iv), Some(&private_key)) |
760 | .unwrap(); |
761 | ctx.cipher_update_vec(&encrypted, &mut decrypted).unwrap(); |
762 | ctx.cipher_final_vec(&mut decrypted).unwrap(); |
763 | |
764 | assert_eq!(secret, &decrypted[..]); |
765 | } |
766 | |
767 | fn aes_128_cbc(cipher: &CipherRef) { |
768 | // from https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf |
769 | let key = hex::decode("2b7e151628aed2a6abf7158809cf4f3c" ).unwrap(); |
770 | let iv = hex::decode("000102030405060708090a0b0c0d0e0f" ).unwrap(); |
771 | let pt = hex::decode("6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" ) |
772 | .unwrap(); |
773 | let ct = hex::decode("7649abac8119b246cee98e9b12e9197d5086cb9b507219ee95db113a917678b2" ) |
774 | .unwrap(); |
775 | |
776 | let mut ctx = CipherCtx::new().unwrap(); |
777 | |
778 | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
779 | .unwrap(); |
780 | ctx.set_padding(false); |
781 | |
782 | let mut buf = vec![]; |
783 | ctx.cipher_update_vec(&pt, &mut buf).unwrap(); |
784 | ctx.cipher_final_vec(&mut buf).unwrap(); |
785 | |
786 | assert_eq!(buf, ct); |
787 | |
788 | ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv)) |
789 | .unwrap(); |
790 | ctx.set_padding(false); |
791 | |
792 | let mut buf = vec![]; |
793 | ctx.cipher_update_vec(&ct, &mut buf).unwrap(); |
794 | ctx.cipher_final_vec(&mut buf).unwrap(); |
795 | |
796 | assert_eq!(buf, pt); |
797 | } |
798 | |
799 | #[test ] |
800 | #[cfg (ossl300)] |
801 | fn fetched_aes_128_cbc() { |
802 | let cipher = Cipher::fetch(None, "AES-128-CBC" , None).unwrap(); |
803 | aes_128_cbc(&cipher); |
804 | } |
805 | |
806 | #[test ] |
807 | fn default_aes_128_cbc() { |
808 | let cipher = Cipher::aes_128_cbc(); |
809 | aes_128_cbc(cipher); |
810 | } |
811 | |
812 | #[cfg (not(boringssl))] |
813 | #[test ] |
814 | fn default_aes_128_ccm() { |
815 | // from https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/mac/ccmtestvectors.zip |
816 | let cipher = Cipher::aes_128_ccm(); |
817 | aes_ccm( |
818 | cipher, |
819 | "26511fb51fcfa75cb4b44da75a6e5a0e" , |
820 | "ea98ec44f5a86715014783172e" , |
821 | "4da40b80579c1d9a5309f7efecb7c059a2f914511ca5fc10" , |
822 | "e4692b9f06b666c7451b146c8aeb07a6e30c629d28065c3dde5940325b14b810" , |
823 | "1bf0ba0ebb20d8edba59f29a9371750c9c714078f73c335d" , |
824 | "2f1322ac69b848b001476323aed84c47" , |
825 | ); |
826 | } |
827 | |
828 | #[cfg (not(boringssl))] |
829 | #[test ] |
830 | fn default_aes_192_ccm() { |
831 | // from https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/mac/ccmtestvectors.zip |
832 | let cipher = Cipher::aes_192_ccm(); |
833 | aes_ccm( |
834 | cipher, |
835 | "26511fb51fcfa75cb4b44da75a6e5a0eb8d9c8f3b906f886" , |
836 | "ea98ec44f5a86715014783172e" , |
837 | "4da40b80579c1d9a5309f7efecb7c059a2f914511ca5fc10" , |
838 | "e4692b9f06b666c7451b146c8aeb07a6e30c629d28065c3dde5940325b14b810" , |
839 | "30c154c616946eccc2e241d336ad33720953e449a0e6b0f0" , |
840 | "dbf8e9464909bdf337e48093c082a10b" , |
841 | ); |
842 | } |
843 | |
844 | #[cfg (not(boringssl))] |
845 | #[test ] |
846 | fn default_aes_256_ccm() { |
847 | // from https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/mac/ccmtestvectors.zip |
848 | let cipher = Cipher::aes_256_ccm(); |
849 | aes_ccm( |
850 | cipher, |
851 | "314a202f836f9f257e22d8c11757832ae5131d357a72df88f3eff0ffcee0da4e" , |
852 | "3542fbe0f59a6d5f3abf619b7d" , |
853 | "c5b3d71312ea14f2f8fae5bd1a453192b6604a45db75c5ed" , |
854 | "dd4531f158a2fa3bc8a339f770595048f4a42bc1b03f2e824efc6ba4985119d8" , |
855 | "39c2e8f6edfe663b90963b98eb79e2d4f7f28a5053ae8881" , |
856 | "567a6b4426f1667136bed4a5e32a2bc1" , |
857 | ); |
858 | } |
859 | |
860 | #[cfg (not(boringssl))] |
861 | fn aes_ccm( |
862 | cipher: &CipherRef, |
863 | key: &'static str, |
864 | iv: &'static str, |
865 | pt: &'static str, |
866 | aad: &'static str, |
867 | ct: &'static str, |
868 | tag: &'static str, |
869 | ) { |
870 | let key = hex::decode(key).unwrap(); |
871 | let iv = hex::decode(iv).unwrap(); |
872 | let pt = hex::decode(pt).unwrap(); |
873 | let ct = hex::decode(ct).unwrap(); |
874 | let aad = hex::decode(aad).unwrap(); |
875 | let tag = hex::decode(tag).unwrap(); |
876 | |
877 | let mut ctx = CipherCtx::new().unwrap(); |
878 | |
879 | ctx.encrypt_init(Some(cipher), None, None).unwrap(); |
880 | ctx.set_iv_length(iv.len()).unwrap(); |
881 | ctx.set_tag_length(tag.len()).unwrap(); |
882 | ctx.encrypt_init(None, Some(&key), Some(&iv)).unwrap(); |
883 | ctx.set_data_len(pt.len()).unwrap(); |
884 | |
885 | let mut buf = vec![]; |
886 | ctx.cipher_update(&aad, None).unwrap(); |
887 | ctx.cipher_update_vec(&pt, &mut buf).unwrap(); |
888 | ctx.cipher_final_vec(&mut buf).unwrap(); |
889 | assert_eq!(buf, ct); |
890 | |
891 | let mut out_tag = vec![0u8; tag.len()]; |
892 | ctx.tag(&mut out_tag).unwrap(); |
893 | assert_eq!(tag, out_tag); |
894 | |
895 | ctx.decrypt_init(Some(cipher), None, None).unwrap(); |
896 | ctx.set_iv_length(iv.len()).unwrap(); |
897 | ctx.set_tag(&tag).unwrap(); |
898 | ctx.decrypt_init(None, Some(&key), Some(&iv)).unwrap(); |
899 | ctx.set_data_len(pt.len()).unwrap(); |
900 | |
901 | let mut buf = vec![]; |
902 | ctx.cipher_update(&aad, None).unwrap(); |
903 | ctx.cipher_update_vec(&ct, &mut buf).unwrap(); |
904 | // Some older libraries don't support calling EVP_CipherFinal/EVP_DecryptFinal for CCM |
905 | // https://wiki.openssl.org/index.php/EVP_Authenticated_Encryption_and_Decryption#Authenticated_Decryption_using_CCM_mode |
906 | #[cfg (any(ossl111, awslc, boringssl))] |
907 | ctx.cipher_final_vec(&mut buf).unwrap(); |
908 | |
909 | assert_eq!(buf, pt); |
910 | } |
911 | |
912 | #[cfg (not(any(boringssl, awslc)))] |
913 | #[test ] |
914 | fn default_aes_128_xts() { |
915 | // https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/aes/XTSTestVectors.zip |
916 | let cipher = Cipher::aes_128_xts(); |
917 | aes_xts( |
918 | cipher, |
919 | "a1b90cba3f06ac353b2c343876081762090923026e91771815f29dab01932f2f" , |
920 | "4faef7117cda59c66e4b92013e768ad5" , |
921 | "ebabce95b14d3c8d6fb350390790311c" , |
922 | "778ae8b43cb98d5a825081d5be471c63" , |
923 | ); |
924 | } |
925 | |
926 | #[cfg (not(boringssl))] |
927 | #[test ] |
928 | fn default_aes_256_xts() { |
929 | // https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/aes/XTSTestVectors.zip |
930 | let cipher = Cipher::aes_256_xts(); |
931 | aes_xts(cipher, "1ea661c58d943a0e4801e42f4b0947149e7f9f8e3e68d0c7505210bd311a0e7cd6e13ffdf2418d8d1911c004cda58da3d619b7e2b9141e58318eea392cf41b08" , "adf8d92627464ad2f0428e84a9f87564" , "2eedea52cd8215e1acc647e810bbc3642e87287f8d2e57e36c0a24fbc12a202e" , "cbaad0e2f6cea3f50b37f934d46a9b130b9d54f07e34f36af793e86f73c6d7db" ); |
932 | } |
933 | |
934 | #[cfg (not(boringssl))] |
935 | fn aes_xts( |
936 | cipher: &CipherRef, |
937 | key: &'static str, |
938 | i: &'static str, |
939 | pt: &'static str, |
940 | ct: &'static str, |
941 | ) { |
942 | let key = hex::decode(key).unwrap(); |
943 | let i = hex::decode(i).unwrap(); |
944 | let pt = hex::decode(pt).unwrap(); |
945 | let ct = hex::decode(ct).unwrap(); |
946 | |
947 | let mut ctx = CipherCtx::new().unwrap(); |
948 | ctx.encrypt_init(Some(cipher), Some(&key), Some(&i)) |
949 | .unwrap(); |
950 | let mut buf = vec![]; |
951 | ctx.cipher_update_vec(&pt, &mut buf).unwrap(); |
952 | ctx.cipher_final_vec(&mut buf).unwrap(); |
953 | |
954 | assert_eq!(ct, buf); |
955 | |
956 | ctx.decrypt_init(Some(cipher), Some(&key), Some(&i)) |
957 | .unwrap(); |
958 | let mut buf = vec![]; |
959 | ctx.cipher_update_vec(&ct, &mut buf).unwrap(); |
960 | ctx.cipher_final_vec(&mut buf).unwrap(); |
961 | |
962 | assert_eq!(pt, buf); |
963 | } |
964 | |
965 | #[test ] |
966 | fn test_stream_ciphers() { |
967 | #[cfg (not(boringssl))] |
968 | { |
969 | test_stream_cipher(Cipher::aes_128_cfb1()); |
970 | test_stream_cipher(Cipher::aes_128_cfb8()); |
971 | test_stream_cipher(Cipher::aes_128_cfb128()); |
972 | test_stream_cipher(Cipher::aes_192_cfb1()); |
973 | test_stream_cipher(Cipher::aes_192_cfb8()); |
974 | test_stream_cipher(Cipher::aes_192_cfb128()); |
975 | test_stream_cipher(Cipher::aes_256_cfb1()); |
976 | test_stream_cipher(Cipher::aes_256_cfb8()); |
977 | test_stream_cipher(Cipher::aes_256_cfb128()); |
978 | } |
979 | test_stream_cipher(Cipher::aes_192_ctr()); |
980 | test_stream_cipher(Cipher::aes_256_ctr()); |
981 | } |
982 | |
983 | fn test_stream_cipher(cipher: &'static CipherRef) { |
984 | let mut key = vec![0; cipher.key_length()]; |
985 | rand_bytes(&mut key).unwrap(); |
986 | let mut iv = vec![0; cipher.iv_length()]; |
987 | rand_bytes(&mut iv).unwrap(); |
988 | |
989 | let mut ctx = CipherCtx::new().unwrap(); |
990 | |
991 | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
992 | .unwrap(); |
993 | ctx.set_padding(false); |
994 | |
995 | assert_eq!( |
996 | 1, |
997 | cipher.block_size(), |
998 | "Need a stream cipher, not a block cipher" |
999 | ); |
1000 | |
1001 | // update cipher with non-full block |
1002 | // this is a streaming cipher so the number of output bytes |
1003 | // will be the same as the number of input bytes |
1004 | let mut output = vec![0; 32]; |
1005 | let outlen = ctx |
1006 | .cipher_update(&[1; 15], Some(&mut output[0..15])) |
1007 | .unwrap(); |
1008 | assert_eq!(15, outlen); |
1009 | |
1010 | // update cipher with missing bytes from the previous block |
1011 | // as previously it will output the same number of bytes as |
1012 | // the input |
1013 | let outlen = ctx |
1014 | .cipher_update(&[1; 17], Some(&mut output[15..])) |
1015 | .unwrap(); |
1016 | assert_eq!(17, outlen); |
1017 | |
1018 | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
1019 | |
1020 | // encrypt again, but use in-place encryption this time |
1021 | // First reset the IV |
1022 | ctx.encrypt_init(None, None, Some(&iv)).unwrap(); |
1023 | ctx.set_padding(false); |
1024 | let mut data_inplace: [u8; 32] = [1; 32]; |
1025 | let outlen = ctx |
1026 | .cipher_update_inplace(&mut data_inplace[0..15], 15) |
1027 | .unwrap(); |
1028 | assert_eq!(15, outlen); |
1029 | |
1030 | let outlen = ctx |
1031 | .cipher_update_inplace(&mut data_inplace[15..32], 17) |
1032 | .unwrap(); |
1033 | assert_eq!(17, outlen); |
1034 | |
1035 | ctx.cipher_final(&mut [0u8; 0]).unwrap(); |
1036 | |
1037 | // Check that the resulting data is encrypted in the same manner |
1038 | assert_eq!(data_inplace.as_slice(), output.as_slice()); |
1039 | |
1040 | // try to decrypt |
1041 | ctx.decrypt_init(Some(cipher), Some(&key), Some(&iv)) |
1042 | .unwrap(); |
1043 | ctx.set_padding(false); |
1044 | |
1045 | // update cipher with non-full block |
1046 | // expect that the output for stream cipher will contain |
1047 | // the same number of bytes as the input |
1048 | let mut output_decrypted = vec![0; 32]; |
1049 | let outlen = ctx |
1050 | .cipher_update(&output[0..15], Some(&mut output_decrypted[0..15])) |
1051 | .unwrap(); |
1052 | assert_eq!(15, outlen); |
1053 | |
1054 | let outlen = ctx |
1055 | .cipher_update(&output[15..], Some(&mut output_decrypted[15..])) |
1056 | .unwrap(); |
1057 | assert_eq!(17, outlen); |
1058 | |
1059 | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
1060 | // check if the decrypted blocks are the same as input (all ones) |
1061 | assert_eq!(output_decrypted, vec![1; 32]); |
1062 | |
1063 | // decrypt again, but now the output in-place |
1064 | ctx.decrypt_init(None, None, Some(&iv)).unwrap(); |
1065 | ctx.set_padding(false); |
1066 | |
1067 | let outlen = ctx.cipher_update_inplace(&mut output[0..15], 15).unwrap(); |
1068 | assert_eq!(15, outlen); |
1069 | |
1070 | let outlen = ctx.cipher_update_inplace(&mut output[15..], 17).unwrap(); |
1071 | assert_eq!(17, outlen); |
1072 | |
1073 | ctx.cipher_final_vec(&mut vec![0; 0]).unwrap(); |
1074 | assert_eq!(output_decrypted, output); |
1075 | } |
1076 | |
1077 | #[test ] |
1078 | #[should_panic (expected = "Output buffer size should be at least 33 bytes." )] |
1079 | fn full_block_updates_aes_128() { |
1080 | output_buffer_too_small(Cipher::aes_128_cbc()); |
1081 | } |
1082 | |
1083 | #[test ] |
1084 | #[should_panic (expected = "Output buffer size should be at least 33 bytes." )] |
1085 | fn full_block_updates_aes_256() { |
1086 | output_buffer_too_small(Cipher::aes_256_cbc()); |
1087 | } |
1088 | |
1089 | #[test ] |
1090 | #[should_panic (expected = "Output buffer size should be at least 17 bytes." )] |
1091 | fn full_block_updates_3des() { |
1092 | output_buffer_too_small(Cipher::des_ede3_cbc()); |
1093 | } |
1094 | |
1095 | fn output_buffer_too_small(cipher: &'static CipherRef) { |
1096 | let mut key = vec![0; cipher.key_length()]; |
1097 | rand_bytes(&mut key).unwrap(); |
1098 | let mut iv = vec![0; cipher.iv_length()]; |
1099 | rand_bytes(&mut iv).unwrap(); |
1100 | |
1101 | let mut ctx = CipherCtx::new().unwrap(); |
1102 | |
1103 | ctx.encrypt_init(Some(cipher), Some(&key), Some(&iv)) |
1104 | .unwrap(); |
1105 | ctx.set_padding(false); |
1106 | |
1107 | let block_size = cipher.block_size(); |
1108 | assert!(block_size > 1, "Need a block cipher, not a stream cipher" ); |
1109 | |
1110 | ctx.cipher_update(&vec![0; block_size + 1], Some(&mut vec![0; block_size - 1])) |
1111 | .unwrap(); |
1112 | } |
1113 | |
1114 | #[cfg (ossl102)] |
1115 | fn cipher_wrap_test(cipher: &CipherRef, pt: &str, ct: &str, key: &str, iv: Option<&str>) { |
1116 | let pt = hex::decode(pt).unwrap(); |
1117 | let key = hex::decode(key).unwrap(); |
1118 | let expected = hex::decode(ct).unwrap(); |
1119 | let iv = iv.map(|v| hex::decode(v).unwrap()); |
1120 | let padding = 8 - pt.len() % 8; |
1121 | let mut computed = vec![0; pt.len() + padding + cipher.block_size() * 2]; |
1122 | let mut ctx = CipherCtx::new().unwrap(); |
1123 | |
1124 | ctx.set_flags(CipherCtxFlags::FLAG_WRAP_ALLOW); |
1125 | ctx.encrypt_init(Some(cipher), Some(&key), iv.as_deref()) |
1126 | .unwrap(); |
1127 | |
1128 | let count = ctx.cipher_update(&pt, Some(&mut computed)).unwrap(); |
1129 | let rest = ctx.cipher_final(&mut computed[count..]).unwrap(); |
1130 | computed.truncate(count + rest); |
1131 | |
1132 | if computed != expected { |
1133 | println!("Computed: {}" , hex::encode(&computed)); |
1134 | println!("Expected: {}" , hex::encode(&expected)); |
1135 | if computed.len() != expected.len() { |
1136 | println!( |
1137 | "Lengths differ: {} in computed vs {} expected" , |
1138 | computed.len(), |
1139 | expected.len() |
1140 | ); |
1141 | } |
1142 | panic!("test failure" ); |
1143 | } |
1144 | } |
1145 | |
1146 | #[test ] |
1147 | #[cfg (ossl102)] |
1148 | fn test_aes128_wrap() { |
1149 | let pt = "00112233445566778899aabbccddeeff" ; |
1150 | let ct = "7940ff694448b5bb5139c959a4896832e55d69aa04daa27e" ; |
1151 | let key = "2b7e151628aed2a6abf7158809cf4f3c" ; |
1152 | let iv = "0001020304050607" ; |
1153 | |
1154 | cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, Some(iv)); |
1155 | } |
1156 | |
1157 | #[test ] |
1158 | #[cfg (ossl102)] |
1159 | fn test_aes128_wrap_default_iv() { |
1160 | let pt = "00112233445566778899aabbccddeeff" ; |
1161 | let ct = "38f1215f0212526f8a70b51955b9fbdc9fe3041d9832306e" ; |
1162 | let key = "2b7e151628aed2a6abf7158809cf4f3c" ; |
1163 | |
1164 | cipher_wrap_test(Cipher::aes_128_wrap(), pt, ct, key, None); |
1165 | } |
1166 | |
1167 | #[test ] |
1168 | #[cfg (ossl110)] |
1169 | fn test_aes128_wrap_pad() { |
1170 | let pt = "00112233445566778899aabbccddee" ; |
1171 | let ct = "f13998f5ab32ef82a1bdbcbe585e1d837385b529572a1e1b" ; |
1172 | let key = "2b7e151628aed2a6abf7158809cf4f3c" ; |
1173 | let iv = "00010203" ; |
1174 | |
1175 | cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, Some(iv)); |
1176 | } |
1177 | |
1178 | #[test ] |
1179 | #[cfg (ossl110)] |
1180 | fn test_aes128_wrap_pad_default_iv() { |
1181 | let pt = "00112233445566778899aabbccddee" ; |
1182 | let ct = "3a501085fb8cf66f4186b7df851914d471ed823411598add" ; |
1183 | let key = "2b7e151628aed2a6abf7158809cf4f3c" ; |
1184 | |
1185 | cipher_wrap_test(Cipher::aes_128_wrap_pad(), pt, ct, key, None); |
1186 | } |
1187 | |
1188 | #[test ] |
1189 | #[cfg (ossl102)] |
1190 | fn test_aes192_wrap() { |
1191 | let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b" ; |
1192 | let ct = "83b89142dfeeb4871e078bfb81134d33e23fedc19b03a1cf689973d3831b6813" ; |
1193 | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b" ; |
1194 | let iv = "0001020304050607" ; |
1195 | |
1196 | cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, Some(iv)); |
1197 | } |
1198 | |
1199 | #[test ] |
1200 | #[cfg (ossl102)] |
1201 | fn test_aes192_wrap_default_iv() { |
1202 | let pt = "9f6dee187d35302116aecbfd059657efd9f7589c4b5e7f5b" ; |
1203 | let ct = "c02c2cf11505d3e4851030d5534cbf5a1d7eca7ba8839adbf239756daf1b43e6" ; |
1204 | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b" ; |
1205 | |
1206 | cipher_wrap_test(Cipher::aes_192_wrap(), pt, ct, key, None); |
1207 | } |
1208 | |
1209 | #[test ] |
1210 | #[cfg (ossl110)] |
1211 | fn test_aes192_wrap_pad() { |
1212 | let pt = "00112233445566778899aabbccddee" ; |
1213 | let ct = "b4f6bb167ef7caf061a74da82b36ad038ca057ab51e98d3a" ; |
1214 | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b" ; |
1215 | let iv = "00010203" ; |
1216 | |
1217 | cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, Some(iv)); |
1218 | } |
1219 | |
1220 | #[test ] |
1221 | #[cfg (ossl110)] |
1222 | fn test_aes192_wrap_pad_default_iv() { |
1223 | let pt = "00112233445566778899aabbccddee" ; |
1224 | let ct = "b2c37a28cc602753a7c944a4c2555a2df9c98b2eded5312e" ; |
1225 | let key = "8e73b0f7da0e6452c810f32b809079e562f8ead2522c6b7b" ; |
1226 | |
1227 | cipher_wrap_test(Cipher::aes_192_wrap_pad(), pt, ct, key, None); |
1228 | } |
1229 | |
1230 | #[test ] |
1231 | #[cfg (ossl102)] |
1232 | fn test_aes256_wrap() { |
1233 | let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" ; |
1234 | let ct = "cc05da2a7f56f7dd0c144231f90bce58648fa20a8278f5a6b7d13bba6aa57a33229d4333866b7fd6" ; |
1235 | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4" ; |
1236 | let iv = "0001020304050607" ; |
1237 | |
1238 | cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, Some(iv)); |
1239 | } |
1240 | |
1241 | #[test ] |
1242 | #[cfg (ossl102)] |
1243 | fn test_aes256_wrap_default_iv() { |
1244 | let pt = "6bc1bee22e409f96e93d7e117393172aae2d8a571e03ac9c9eb76fac45af8e51" ; |
1245 | let ct = "0b24f068b50e52bc6987868411c36e1b03900866ed12af81eb87cef70a8d1911731c1d7abf789d88" ; |
1246 | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4" ; |
1247 | |
1248 | cipher_wrap_test(Cipher::aes_256_wrap(), pt, ct, key, None); |
1249 | } |
1250 | |
1251 | #[test ] |
1252 | #[cfg (ossl110)] |
1253 | fn test_aes256_wrap_pad() { |
1254 | let pt = "00112233445566778899aabbccddee" ; |
1255 | let ct = "91594e044ccc06130d60e6c84a996aa4f96a9faff8c5f6e7" ; |
1256 | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4" ; |
1257 | let iv = "00010203" ; |
1258 | |
1259 | cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, Some(iv)); |
1260 | } |
1261 | |
1262 | #[test ] |
1263 | #[cfg (ossl110)] |
1264 | fn test_aes256_wrap_pad_default_iv() { |
1265 | let pt = "00112233445566778899aabbccddee" ; |
1266 | let ct = "dc3c166a854afd68aea624a4272693554bf2e4fcbae602cd" ; |
1267 | let key = "603deb1015ca71be2b73aef0857d77811f352c073b6108d72d9810a30914dff4" ; |
1268 | |
1269 | cipher_wrap_test(Cipher::aes_256_wrap_pad(), pt, ct, key, None); |
1270 | } |
1271 | } |
1272 | |