| 1 | //! Rivest–Shamir–Adleman cryptosystem |
| 2 | //! |
| 3 | //! RSA is one of the earliest asymmetric public key encryption schemes. |
| 4 | //! Like many other cryptosystems, RSA relies on the presumed difficulty of a hard |
| 5 | //! mathematical problem, namely factorization of the product of two large prime |
| 6 | //! numbers. At the moment there does not exist an algorithm that can factor such |
| 7 | //! large numbers in reasonable time. RSA is used in a wide variety of |
| 8 | //! applications including digital signatures and key exchanges such as |
| 9 | //! establishing a TLS/SSL connection. |
| 10 | //! |
| 11 | //! The RSA acronym is derived from the first letters of the surnames of the |
| 12 | //! algorithm's founding trio. |
| 13 | //! |
| 14 | //! # Example |
| 15 | //! |
| 16 | //! Generate a 2048-bit RSA key pair and use the public key to encrypt some data. |
| 17 | //! |
| 18 | //! ```rust |
| 19 | //! use openssl::rsa::{Rsa, Padding}; |
| 20 | //! |
| 21 | //! let rsa = Rsa::generate(2048).unwrap(); |
| 22 | //! let data = b"foobar" ; |
| 23 | //! let mut buf = vec![0; rsa.size() as usize]; |
| 24 | //! let encrypted_len = rsa.public_encrypt(data, &mut buf, Padding::PKCS1).unwrap(); |
| 25 | //! ``` |
| 26 | use cfg_if::cfg_if; |
| 27 | use foreign_types::{ForeignType, ForeignTypeRef}; |
| 28 | use libc::c_int; |
| 29 | use std::fmt; |
| 30 | use std::mem; |
| 31 | use std::ptr; |
| 32 | |
| 33 | use crate::bn::{BigNum, BigNumRef}; |
| 34 | use crate::error::ErrorStack; |
| 35 | use crate::pkey::{HasPrivate, HasPublic, Private, Public}; |
| 36 | use crate::util::ForeignTypeRefExt; |
| 37 | use crate::{cvt, cvt_n, cvt_p, LenType}; |
| 38 | use openssl_macros::corresponds; |
| 39 | |
| 40 | /// Type of encryption padding to use. |
| 41 | /// |
| 42 | /// Random length padding is primarily used to prevent attackers from |
| 43 | /// predicting or knowing the exact length of a plaintext message that |
| 44 | /// can possibly lead to breaking encryption. |
| 45 | #[derive (Debug, Copy, Clone, PartialEq, Eq)] |
| 46 | pub struct Padding(c_int); |
| 47 | |
| 48 | impl Padding { |
| 49 | pub const NONE: Padding = Padding(ffi::RSA_NO_PADDING); |
| 50 | pub const PKCS1: Padding = Padding(ffi::RSA_PKCS1_PADDING); |
| 51 | pub const PKCS1_OAEP: Padding = Padding(ffi::RSA_PKCS1_OAEP_PADDING); |
| 52 | pub const PKCS1_PSS: Padding = Padding(ffi::RSA_PKCS1_PSS_PADDING); |
| 53 | |
| 54 | /// Creates a `Padding` from an integer representation. |
| 55 | pub fn from_raw(value: c_int) -> Padding { |
| 56 | Padding(value) |
| 57 | } |
| 58 | |
| 59 | /// Returns the integer representation of `Padding`. |
| 60 | #[allow (clippy::trivially_copy_pass_by_ref)] |
| 61 | pub fn as_raw(&self) -> c_int { |
| 62 | self.0 |
| 63 | } |
| 64 | } |
| 65 | |
| 66 | generic_foreign_type_and_impl_send_sync! { |
| 67 | type CType = ffi::RSA; |
| 68 | fn drop = ffi::RSA_free; |
| 69 | |
| 70 | /// An RSA key. |
| 71 | pub struct Rsa<T>; |
| 72 | |
| 73 | /// Reference to `RSA` |
| 74 | pub struct RsaRef<T>; |
| 75 | } |
| 76 | |
| 77 | impl<T> Clone for Rsa<T> { |
| 78 | fn clone(&self) -> Rsa<T> { |
| 79 | (**self).to_owned() |
| 80 | } |
| 81 | } |
| 82 | |
| 83 | impl<T> ToOwned for RsaRef<T> { |
| 84 | type Owned = Rsa<T>; |
| 85 | |
| 86 | fn to_owned(&self) -> Rsa<T> { |
| 87 | unsafe { |
| 88 | ffi::RSA_up_ref(self.as_ptr()); |
| 89 | Rsa::from_ptr(self.as_ptr()) |
| 90 | } |
| 91 | } |
| 92 | } |
| 93 | |
| 94 | impl<T> RsaRef<T> |
| 95 | where |
| 96 | T: HasPrivate, |
| 97 | { |
| 98 | private_key_to_pem! { |
| 99 | /// Serializes the private key to a PEM-encoded PKCS#1 RSAPrivateKey structure. |
| 100 | /// |
| 101 | /// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`. |
| 102 | #[corresponds (PEM_write_bio_RSAPrivateKey)] |
| 103 | private_key_to_pem, |
| 104 | /// Serializes the private key to a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure. |
| 105 | /// |
| 106 | /// The output will have a header of `-----BEGIN RSA PRIVATE KEY-----`. |
| 107 | #[corresponds (PEM_write_bio_RSAPrivateKey)] |
| 108 | private_key_to_pem_passphrase, |
| 109 | ffi::PEM_write_bio_RSAPrivateKey |
| 110 | } |
| 111 | |
| 112 | to_der! { |
| 113 | /// Serializes the private key to a DER-encoded PKCS#1 RSAPrivateKey structure. |
| 114 | #[corresponds (i2d_RSAPrivateKey)] |
| 115 | private_key_to_der, |
| 116 | ffi::i2d_RSAPrivateKey |
| 117 | } |
| 118 | |
| 119 | /// Decrypts data using the private key, returning the number of decrypted bytes. |
| 120 | /// |
| 121 | /// # Panics |
| 122 | /// |
| 123 | /// Panics if `self` has no private components, or if `to` is smaller |
| 124 | /// than `self.size()`. |
| 125 | #[corresponds (RSA_private_decrypt)] |
| 126 | pub fn private_decrypt( |
| 127 | &self, |
| 128 | from: &[u8], |
| 129 | to: &mut [u8], |
| 130 | padding: Padding, |
| 131 | ) -> Result<usize, ErrorStack> { |
| 132 | assert!(from.len() <= i32::MAX as usize); |
| 133 | assert!(to.len() >= self.size() as usize); |
| 134 | |
| 135 | unsafe { |
| 136 | let len = cvt_n(ffi::RSA_private_decrypt( |
| 137 | from.len() as LenType, |
| 138 | from.as_ptr(), |
| 139 | to.as_mut_ptr(), |
| 140 | self.as_ptr(), |
| 141 | padding.0, |
| 142 | ))?; |
| 143 | Ok(len as usize) |
| 144 | } |
| 145 | } |
| 146 | |
| 147 | /// Encrypts data using the private key, returning the number of encrypted bytes. |
| 148 | /// |
| 149 | /// # Panics |
| 150 | /// |
| 151 | /// Panics if `self` has no private components, or if `to` is smaller |
| 152 | /// than `self.size()`. |
| 153 | #[corresponds (RSA_private_encrypt)] |
| 154 | pub fn private_encrypt( |
| 155 | &self, |
| 156 | from: &[u8], |
| 157 | to: &mut [u8], |
| 158 | padding: Padding, |
| 159 | ) -> Result<usize, ErrorStack> { |
| 160 | assert!(from.len() <= i32::MAX as usize); |
| 161 | assert!(to.len() >= self.size() as usize); |
| 162 | |
| 163 | unsafe { |
| 164 | let len = cvt_n(ffi::RSA_private_encrypt( |
| 165 | from.len() as LenType, |
| 166 | from.as_ptr(), |
| 167 | to.as_mut_ptr(), |
| 168 | self.as_ptr(), |
| 169 | padding.0, |
| 170 | ))?; |
| 171 | Ok(len as usize) |
| 172 | } |
| 173 | } |
| 174 | |
| 175 | /// Returns a reference to the private exponent of the key. |
| 176 | #[corresponds (RSA_get0_key)] |
| 177 | pub fn d(&self) -> &BigNumRef { |
| 178 | unsafe { |
| 179 | let mut d = ptr::null(); |
| 180 | RSA_get0_key(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut d); |
| 181 | BigNumRef::from_const_ptr(d) |
| 182 | } |
| 183 | } |
| 184 | |
| 185 | /// Returns a reference to the first factor of the exponent of the key. |
| 186 | #[corresponds (RSA_get0_factors)] |
| 187 | pub fn p(&self) -> Option<&BigNumRef> { |
| 188 | unsafe { |
| 189 | let mut p = ptr::null(); |
| 190 | RSA_get0_factors(self.as_ptr(), &mut p, ptr::null_mut()); |
| 191 | BigNumRef::from_const_ptr_opt(p) |
| 192 | } |
| 193 | } |
| 194 | |
| 195 | /// Returns a reference to the second factor of the exponent of the key. |
| 196 | #[corresponds (RSA_get0_factors)] |
| 197 | pub fn q(&self) -> Option<&BigNumRef> { |
| 198 | unsafe { |
| 199 | let mut q = ptr::null(); |
| 200 | RSA_get0_factors(self.as_ptr(), ptr::null_mut(), &mut q); |
| 201 | BigNumRef::from_const_ptr_opt(q) |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | /// Returns a reference to the first exponent used for CRT calculations. |
| 206 | #[corresponds (RSA_get0_crt_params)] |
| 207 | pub fn dmp1(&self) -> Option<&BigNumRef> { |
| 208 | unsafe { |
| 209 | let mut dp = ptr::null(); |
| 210 | RSA_get0_crt_params(self.as_ptr(), &mut dp, ptr::null_mut(), ptr::null_mut()); |
| 211 | BigNumRef::from_const_ptr_opt(dp) |
| 212 | } |
| 213 | } |
| 214 | |
| 215 | /// Returns a reference to the second exponent used for CRT calculations. |
| 216 | #[corresponds (RSA_get0_crt_params)] |
| 217 | pub fn dmq1(&self) -> Option<&BigNumRef> { |
| 218 | unsafe { |
| 219 | let mut dq = ptr::null(); |
| 220 | RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), &mut dq, ptr::null_mut()); |
| 221 | BigNumRef::from_const_ptr_opt(dq) |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | /// Returns a reference to the coefficient used for CRT calculations. |
| 226 | #[corresponds (RSA_get0_crt_params)] |
| 227 | pub fn iqmp(&self) -> Option<&BigNumRef> { |
| 228 | unsafe { |
| 229 | let mut qi = ptr::null(); |
| 230 | RSA_get0_crt_params(self.as_ptr(), ptr::null_mut(), ptr::null_mut(), &mut qi); |
| 231 | BigNumRef::from_const_ptr_opt(qi) |
| 232 | } |
| 233 | } |
| 234 | |
| 235 | /// Validates RSA parameters for correctness |
| 236 | #[corresponds (RSA_check_key)] |
| 237 | pub fn check_key(&self) -> Result<bool, ErrorStack> { |
| 238 | unsafe { |
| 239 | let result = ffi::RSA_check_key(self.as_ptr()); |
| 240 | if result != 1 { |
| 241 | let errors = ErrorStack::get(); |
| 242 | if errors.errors().is_empty() { |
| 243 | Ok(false) |
| 244 | } else { |
| 245 | Err(errors) |
| 246 | } |
| 247 | } else { |
| 248 | Ok(true) |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | } |
| 253 | |
| 254 | impl<T> RsaRef<T> |
| 255 | where |
| 256 | T: HasPublic, |
| 257 | { |
| 258 | to_pem! { |
| 259 | /// Serializes the public key into a PEM-encoded SubjectPublicKeyInfo structure. |
| 260 | /// |
| 261 | /// The output will have a header of `-----BEGIN PUBLIC KEY-----`. |
| 262 | #[corresponds (PEM_write_bio_RSA_PUBKEY)] |
| 263 | public_key_to_pem, |
| 264 | ffi::PEM_write_bio_RSA_PUBKEY |
| 265 | } |
| 266 | |
| 267 | to_der! { |
| 268 | /// Serializes the public key into a DER-encoded SubjectPublicKeyInfo structure. |
| 269 | #[corresponds (i2d_RSA_PUBKEY)] |
| 270 | public_key_to_der, |
| 271 | ffi::i2d_RSA_PUBKEY |
| 272 | } |
| 273 | |
| 274 | to_pem! { |
| 275 | /// Serializes the public key into a PEM-encoded PKCS#1 RSAPublicKey structure. |
| 276 | /// |
| 277 | /// The output will have a header of `-----BEGIN RSA PUBLIC KEY-----`. |
| 278 | #[corresponds (PEM_write_bio_RSAPublicKey)] |
| 279 | public_key_to_pem_pkcs1, |
| 280 | ffi::PEM_write_bio_RSAPublicKey |
| 281 | } |
| 282 | |
| 283 | to_der! { |
| 284 | /// Serializes the public key into a DER-encoded PKCS#1 RSAPublicKey structure. |
| 285 | #[corresponds (i2d_RSAPublicKey)] |
| 286 | public_key_to_der_pkcs1, |
| 287 | ffi::i2d_RSAPublicKey |
| 288 | } |
| 289 | |
| 290 | /// Returns the size of the modulus in bytes. |
| 291 | #[corresponds (RSA_size)] |
| 292 | pub fn size(&self) -> u32 { |
| 293 | unsafe { ffi::RSA_size(self.as_ptr()) as u32 } |
| 294 | } |
| 295 | |
| 296 | /// Decrypts data using the public key, returning the number of decrypted bytes. |
| 297 | /// |
| 298 | /// # Panics |
| 299 | /// |
| 300 | /// Panics if `to` is smaller than `self.size()`. |
| 301 | #[corresponds (RSA_public_decrypt)] |
| 302 | pub fn public_decrypt( |
| 303 | &self, |
| 304 | from: &[u8], |
| 305 | to: &mut [u8], |
| 306 | padding: Padding, |
| 307 | ) -> Result<usize, ErrorStack> { |
| 308 | assert!(from.len() <= i32::MAX as usize); |
| 309 | assert!(to.len() >= self.size() as usize); |
| 310 | |
| 311 | unsafe { |
| 312 | let len = cvt_n(ffi::RSA_public_decrypt( |
| 313 | from.len() as LenType, |
| 314 | from.as_ptr(), |
| 315 | to.as_mut_ptr(), |
| 316 | self.as_ptr(), |
| 317 | padding.0, |
| 318 | ))?; |
| 319 | Ok(len as usize) |
| 320 | } |
| 321 | } |
| 322 | |
| 323 | /// Encrypts data using the public key, returning the number of encrypted bytes. |
| 324 | /// |
| 325 | /// # Panics |
| 326 | /// |
| 327 | /// Panics if `to` is smaller than `self.size()`. |
| 328 | #[corresponds (RSA_public_encrypt)] |
| 329 | pub fn public_encrypt( |
| 330 | &self, |
| 331 | from: &[u8], |
| 332 | to: &mut [u8], |
| 333 | padding: Padding, |
| 334 | ) -> Result<usize, ErrorStack> { |
| 335 | assert!(from.len() <= i32::MAX as usize); |
| 336 | assert!(to.len() >= self.size() as usize); |
| 337 | |
| 338 | unsafe { |
| 339 | let len = cvt_n(ffi::RSA_public_encrypt( |
| 340 | from.len() as LenType, |
| 341 | from.as_ptr(), |
| 342 | to.as_mut_ptr(), |
| 343 | self.as_ptr(), |
| 344 | padding.0, |
| 345 | ))?; |
| 346 | Ok(len as usize) |
| 347 | } |
| 348 | } |
| 349 | |
| 350 | /// Returns a reference to the modulus of the key. |
| 351 | #[corresponds (RSA_get0_key)] |
| 352 | pub fn n(&self) -> &BigNumRef { |
| 353 | unsafe { |
| 354 | let mut n = ptr::null(); |
| 355 | RSA_get0_key(self.as_ptr(), &mut n, ptr::null_mut(), ptr::null_mut()); |
| 356 | BigNumRef::from_const_ptr(n) |
| 357 | } |
| 358 | } |
| 359 | |
| 360 | /// Returns a reference to the public exponent of the key. |
| 361 | #[corresponds (RSA_get0_key)] |
| 362 | pub fn e(&self) -> &BigNumRef { |
| 363 | unsafe { |
| 364 | let mut e = ptr::null(); |
| 365 | RSA_get0_key(self.as_ptr(), ptr::null_mut(), &mut e, ptr::null_mut()); |
| 366 | BigNumRef::from_const_ptr(e) |
| 367 | } |
| 368 | } |
| 369 | } |
| 370 | |
| 371 | impl Rsa<Public> { |
| 372 | /// Creates a new RSA key with only public components. |
| 373 | /// |
| 374 | /// `n` is the modulus common to both public and private key. |
| 375 | /// `e` is the public exponent. |
| 376 | /// |
| 377 | /// This corresponds to [`RSA_new`] and uses [`RSA_set0_key`]. |
| 378 | /// |
| 379 | /// [`RSA_new`]: https://www.openssl.org/docs/manmaster/crypto/RSA_new.html |
| 380 | /// [`RSA_set0_key`]: https://www.openssl.org/docs/manmaster/crypto/RSA_set0_key.html |
| 381 | pub fn from_public_components(n: BigNum, e: BigNum) -> Result<Rsa<Public>, ErrorStack> { |
| 382 | unsafe { |
| 383 | let rsa = cvt_p(ffi::RSA_new())?; |
| 384 | RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), ptr::null_mut()); |
| 385 | mem::forget((n, e)); |
| 386 | Ok(Rsa::from_ptr(rsa)) |
| 387 | } |
| 388 | } |
| 389 | |
| 390 | from_pem! { |
| 391 | /// Decodes a PEM-encoded SubjectPublicKeyInfo structure containing an RSA key. |
| 392 | /// |
| 393 | /// The input should have a header of `-----BEGIN PUBLIC KEY-----`. |
| 394 | #[corresponds (PEM_read_bio_RSA_PUBKEY)] |
| 395 | public_key_from_pem, |
| 396 | Rsa<Public>, |
| 397 | ffi::PEM_read_bio_RSA_PUBKEY |
| 398 | } |
| 399 | |
| 400 | from_pem! { |
| 401 | /// Decodes a PEM-encoded PKCS#1 RSAPublicKey structure. |
| 402 | /// |
| 403 | /// The input should have a header of `-----BEGIN RSA PUBLIC KEY-----`. |
| 404 | #[corresponds (PEM_read_bio_RSAPublicKey)] |
| 405 | public_key_from_pem_pkcs1, |
| 406 | Rsa<Public>, |
| 407 | ffi::PEM_read_bio_RSAPublicKey |
| 408 | } |
| 409 | |
| 410 | from_der! { |
| 411 | /// Decodes a DER-encoded SubjectPublicKeyInfo structure containing an RSA key. |
| 412 | #[corresponds (d2i_RSA_PUBKEY)] |
| 413 | public_key_from_der, |
| 414 | Rsa<Public>, |
| 415 | ffi::d2i_RSA_PUBKEY |
| 416 | } |
| 417 | |
| 418 | from_der! { |
| 419 | /// Decodes a DER-encoded PKCS#1 RSAPublicKey structure. |
| 420 | #[corresponds (d2i_RSAPublicKey)] |
| 421 | public_key_from_der_pkcs1, |
| 422 | Rsa<Public>, |
| 423 | ffi::d2i_RSAPublicKey |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | pub struct RsaPrivateKeyBuilder { |
| 428 | rsa: Rsa<Private>, |
| 429 | } |
| 430 | |
| 431 | impl RsaPrivateKeyBuilder { |
| 432 | /// Creates a new `RsaPrivateKeyBuilder`. |
| 433 | /// |
| 434 | /// `n` is the modulus common to both public and private key. |
| 435 | /// `e` is the public exponent and `d` is the private exponent. |
| 436 | /// |
| 437 | /// This corresponds to [`RSA_new`] and uses [`RSA_set0_key`]. |
| 438 | /// |
| 439 | /// [`RSA_new`]: https://www.openssl.org/docs/manmaster/crypto/RSA_new.html |
| 440 | /// [`RSA_set0_key`]: https://www.openssl.org/docs/manmaster/crypto/RSA_set0_key.html |
| 441 | pub fn new(n: BigNum, e: BigNum, d: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> { |
| 442 | unsafe { |
| 443 | let rsa = cvt_p(ffi::RSA_new())?; |
| 444 | RSA_set0_key(rsa, n.as_ptr(), e.as_ptr(), d.as_ptr()); |
| 445 | mem::forget((n, e, d)); |
| 446 | Ok(RsaPrivateKeyBuilder { |
| 447 | rsa: Rsa::from_ptr(rsa), |
| 448 | }) |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | /// Sets the factors of the Rsa key. |
| 453 | /// |
| 454 | /// `p` and `q` are the first and second factors of `n`. |
| 455 | #[corresponds (RSA_set0_factors)] |
| 456 | // FIXME should be infallible |
| 457 | pub fn set_factors(self, p: BigNum, q: BigNum) -> Result<RsaPrivateKeyBuilder, ErrorStack> { |
| 458 | unsafe { |
| 459 | RSA_set0_factors(self.rsa.as_ptr(), p.as_ptr(), q.as_ptr()); |
| 460 | mem::forget((p, q)); |
| 461 | } |
| 462 | Ok(self) |
| 463 | } |
| 464 | |
| 465 | /// Sets the Chinese Remainder Theorem params of the Rsa key. |
| 466 | /// |
| 467 | /// `dmp1`, `dmq1`, and `iqmp` are the exponents and coefficient for |
| 468 | /// CRT calculations which is used to speed up RSA operations. |
| 469 | #[corresponds (RSA_set0_crt_params)] |
| 470 | // FIXME should be infallible |
| 471 | pub fn set_crt_params( |
| 472 | self, |
| 473 | dmp1: BigNum, |
| 474 | dmq1: BigNum, |
| 475 | iqmp: BigNum, |
| 476 | ) -> Result<RsaPrivateKeyBuilder, ErrorStack> { |
| 477 | unsafe { |
| 478 | RSA_set0_crt_params( |
| 479 | self.rsa.as_ptr(), |
| 480 | dmp1.as_ptr(), |
| 481 | dmq1.as_ptr(), |
| 482 | iqmp.as_ptr(), |
| 483 | ); |
| 484 | mem::forget((dmp1, dmq1, iqmp)); |
| 485 | } |
| 486 | Ok(self) |
| 487 | } |
| 488 | |
| 489 | /// Returns the Rsa key. |
| 490 | pub fn build(self) -> Rsa<Private> { |
| 491 | self.rsa |
| 492 | } |
| 493 | } |
| 494 | |
| 495 | impl Rsa<Private> { |
| 496 | /// Creates a new RSA key with private components (public components are assumed). |
| 497 | /// |
| 498 | /// This a convenience method over: |
| 499 | /// ``` |
| 500 | /// # use openssl::rsa::RsaPrivateKeyBuilder; |
| 501 | /// # fn main() -> Result<(), Box<dyn std::error::Error>> { |
| 502 | /// # let bn = || openssl::bn::BigNum::new().unwrap(); |
| 503 | /// # let (n, e, d, p, q, dmp1, dmq1, iqmp) = (bn(), bn(), bn(), bn(), bn(), bn(), bn(), bn()); |
| 504 | /// RsaPrivateKeyBuilder::new(n, e, d)? |
| 505 | /// .set_factors(p, q)? |
| 506 | /// .set_crt_params(dmp1, dmq1, iqmp)? |
| 507 | /// .build(); |
| 508 | /// # Ok(()) } |
| 509 | /// ``` |
| 510 | #[allow (clippy::too_many_arguments, clippy::many_single_char_names)] |
| 511 | pub fn from_private_components( |
| 512 | n: BigNum, |
| 513 | e: BigNum, |
| 514 | d: BigNum, |
| 515 | p: BigNum, |
| 516 | q: BigNum, |
| 517 | dmp1: BigNum, |
| 518 | dmq1: BigNum, |
| 519 | iqmp: BigNum, |
| 520 | ) -> Result<Rsa<Private>, ErrorStack> { |
| 521 | Ok(RsaPrivateKeyBuilder::new(n, e, d)? |
| 522 | .set_factors(p, q)? |
| 523 | .set_crt_params(dmp1, dmq1, iqmp)? |
| 524 | .build()) |
| 525 | } |
| 526 | |
| 527 | /// Generates a public/private key pair with the specified size. |
| 528 | /// |
| 529 | /// The public exponent will be 65537. |
| 530 | #[corresponds (RSA_generate_key_ex)] |
| 531 | pub fn generate(bits: u32) -> Result<Rsa<Private>, ErrorStack> { |
| 532 | let e = BigNum::from_u32(ffi::RSA_F4 as u32)?; |
| 533 | Rsa::generate_with_e(bits, &e) |
| 534 | } |
| 535 | |
| 536 | /// Generates a public/private key pair with the specified size and a custom exponent. |
| 537 | /// |
| 538 | /// Unless you have specific needs and know what you're doing, use `Rsa::generate` instead. |
| 539 | #[corresponds (RSA_generate_key_ex)] |
| 540 | pub fn generate_with_e(bits: u32, e: &BigNumRef) -> Result<Rsa<Private>, ErrorStack> { |
| 541 | unsafe { |
| 542 | let rsa = Rsa::from_ptr(cvt_p(ffi::RSA_new())?); |
| 543 | cvt(ffi::RSA_generate_key_ex( |
| 544 | rsa.0, |
| 545 | bits as c_int, |
| 546 | e.as_ptr(), |
| 547 | ptr::null_mut(), |
| 548 | ))?; |
| 549 | Ok(rsa) |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | // FIXME these need to identify input formats |
| 554 | private_key_from_pem! { |
| 555 | /// Deserializes a private key from a PEM-encoded PKCS#1 RSAPrivateKey structure. |
| 556 | #[corresponds (PEM_read_bio_RSAPrivateKey)] |
| 557 | private_key_from_pem, |
| 558 | |
| 559 | /// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure. |
| 560 | #[corresponds (PEM_read_bio_RSAPrivateKey)] |
| 561 | private_key_from_pem_passphrase, |
| 562 | |
| 563 | /// Deserializes a private key from a PEM-encoded encrypted PKCS#1 RSAPrivateKey structure. |
| 564 | /// |
| 565 | /// The callback should fill the password into the provided buffer and return its length. |
| 566 | #[corresponds (PEM_read_bio_RSAPrivateKey)] |
| 567 | private_key_from_pem_callback, |
| 568 | Rsa<Private>, |
| 569 | ffi::PEM_read_bio_RSAPrivateKey |
| 570 | } |
| 571 | |
| 572 | from_der! { |
| 573 | /// Decodes a DER-encoded PKCS#1 RSAPrivateKey structure. |
| 574 | #[corresponds (d2i_RSAPrivateKey)] |
| 575 | private_key_from_der, |
| 576 | Rsa<Private>, |
| 577 | ffi::d2i_RSAPrivateKey |
| 578 | } |
| 579 | } |
| 580 | |
| 581 | impl<T> fmt::Debug for Rsa<T> { |
| 582 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| 583 | write!(f, "Rsa" ) |
| 584 | } |
| 585 | } |
| 586 | |
| 587 | cfg_if! { |
| 588 | if #[cfg(any(ossl110, libressl273, boringssl, awslc))] { |
| 589 | use ffi::{ |
| 590 | RSA_get0_key, RSA_get0_factors, RSA_get0_crt_params, RSA_set0_key, RSA_set0_factors, |
| 591 | RSA_set0_crt_params, |
| 592 | }; |
| 593 | } else { |
| 594 | #[allow(bad_style)] |
| 595 | unsafe fn RSA_get0_key( |
| 596 | r: *const ffi::RSA, |
| 597 | n: *mut *const ffi::BIGNUM, |
| 598 | e: *mut *const ffi::BIGNUM, |
| 599 | d: *mut *const ffi::BIGNUM, |
| 600 | ) { |
| 601 | if !n.is_null() { |
| 602 | *n = (*r).n; |
| 603 | } |
| 604 | if !e.is_null() { |
| 605 | *e = (*r).e; |
| 606 | } |
| 607 | if !d.is_null() { |
| 608 | *d = (*r).d; |
| 609 | } |
| 610 | } |
| 611 | |
| 612 | #[allow(bad_style)] |
| 613 | unsafe fn RSA_get0_factors( |
| 614 | r: *const ffi::RSA, |
| 615 | p: *mut *const ffi::BIGNUM, |
| 616 | q: *mut *const ffi::BIGNUM, |
| 617 | ) { |
| 618 | if !p.is_null() { |
| 619 | *p = (*r).p; |
| 620 | } |
| 621 | if !q.is_null() { |
| 622 | *q = (*r).q; |
| 623 | } |
| 624 | } |
| 625 | |
| 626 | #[allow(bad_style)] |
| 627 | unsafe fn RSA_get0_crt_params( |
| 628 | r: *const ffi::RSA, |
| 629 | dmp1: *mut *const ffi::BIGNUM, |
| 630 | dmq1: *mut *const ffi::BIGNUM, |
| 631 | iqmp: *mut *const ffi::BIGNUM, |
| 632 | ) { |
| 633 | if !dmp1.is_null() { |
| 634 | *dmp1 = (*r).dmp1; |
| 635 | } |
| 636 | if !dmq1.is_null() { |
| 637 | *dmq1 = (*r).dmq1; |
| 638 | } |
| 639 | if !iqmp.is_null() { |
| 640 | *iqmp = (*r).iqmp; |
| 641 | } |
| 642 | } |
| 643 | |
| 644 | #[allow(bad_style)] |
| 645 | unsafe fn RSA_set0_key( |
| 646 | r: *mut ffi::RSA, |
| 647 | n: *mut ffi::BIGNUM, |
| 648 | e: *mut ffi::BIGNUM, |
| 649 | d: *mut ffi::BIGNUM, |
| 650 | ) -> c_int { |
| 651 | (*r).n = n; |
| 652 | (*r).e = e; |
| 653 | (*r).d = d; |
| 654 | 1 |
| 655 | } |
| 656 | |
| 657 | #[allow(bad_style)] |
| 658 | unsafe fn RSA_set0_factors( |
| 659 | r: *mut ffi::RSA, |
| 660 | p: *mut ffi::BIGNUM, |
| 661 | q: *mut ffi::BIGNUM, |
| 662 | ) -> c_int { |
| 663 | (*r).p = p; |
| 664 | (*r).q = q; |
| 665 | 1 |
| 666 | } |
| 667 | |
| 668 | #[allow(bad_style)] |
| 669 | unsafe fn RSA_set0_crt_params( |
| 670 | r: *mut ffi::RSA, |
| 671 | dmp1: *mut ffi::BIGNUM, |
| 672 | dmq1: *mut ffi::BIGNUM, |
| 673 | iqmp: *mut ffi::BIGNUM, |
| 674 | ) -> c_int { |
| 675 | (*r).dmp1 = dmp1; |
| 676 | (*r).dmq1 = dmq1; |
| 677 | (*r).iqmp = iqmp; |
| 678 | 1 |
| 679 | } |
| 680 | } |
| 681 | } |
| 682 | |
| 683 | #[cfg (test)] |
| 684 | mod test { |
| 685 | use crate::symm::Cipher; |
| 686 | |
| 687 | use super::*; |
| 688 | |
| 689 | #[test ] |
| 690 | fn test_from_password() { |
| 691 | let key = include_bytes!("../test/rsa-encrypted.pem" ); |
| 692 | Rsa::private_key_from_pem_passphrase(key, b"mypass" ).unwrap(); |
| 693 | } |
| 694 | |
| 695 | #[test ] |
| 696 | fn test_from_password_callback() { |
| 697 | let mut password_queried = false; |
| 698 | let key = include_bytes!("../test/rsa-encrypted.pem" ); |
| 699 | Rsa::private_key_from_pem_callback(key, |password| { |
| 700 | password_queried = true; |
| 701 | password[..6].copy_from_slice(b"mypass" ); |
| 702 | Ok(6) |
| 703 | }) |
| 704 | .unwrap(); |
| 705 | |
| 706 | assert!(password_queried); |
| 707 | } |
| 708 | |
| 709 | #[test ] |
| 710 | fn test_to_password() { |
| 711 | let key = Rsa::generate(2048).unwrap(); |
| 712 | let pem = key |
| 713 | .private_key_to_pem_passphrase(Cipher::aes_128_cbc(), b"foobar" ) |
| 714 | .unwrap(); |
| 715 | Rsa::private_key_from_pem_passphrase(&pem, b"foobar" ).unwrap(); |
| 716 | assert!(Rsa::private_key_from_pem_passphrase(&pem, b"fizzbuzz" ).is_err()); |
| 717 | } |
| 718 | |
| 719 | #[test ] |
| 720 | fn test_public_encrypt_private_decrypt_with_padding() { |
| 721 | let key = include_bytes!("../test/rsa.pem.pub" ); |
| 722 | let public_key = Rsa::public_key_from_pem(key).unwrap(); |
| 723 | |
| 724 | let mut result = vec![0; public_key.size() as usize]; |
| 725 | let original_data = b"This is test" ; |
| 726 | let len = public_key |
| 727 | .public_encrypt(original_data, &mut result, Padding::PKCS1) |
| 728 | .unwrap(); |
| 729 | assert_eq!(len, 256); |
| 730 | |
| 731 | let pkey = include_bytes!("../test/rsa.pem" ); |
| 732 | let private_key = Rsa::private_key_from_pem(pkey).unwrap(); |
| 733 | let mut dec_result = vec![0; private_key.size() as usize]; |
| 734 | let len = private_key |
| 735 | .private_decrypt(&result, &mut dec_result, Padding::PKCS1) |
| 736 | .unwrap(); |
| 737 | |
| 738 | assert_eq!(&dec_result[..len], original_data); |
| 739 | } |
| 740 | |
| 741 | #[test ] |
| 742 | fn test_private_encrypt() { |
| 743 | let k0 = super::Rsa::generate(512).unwrap(); |
| 744 | let k0pkey = k0.public_key_to_pem().unwrap(); |
| 745 | let k1 = super::Rsa::public_key_from_pem(&k0pkey).unwrap(); |
| 746 | |
| 747 | let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; |
| 748 | |
| 749 | let mut emesg = vec![0; k0.size() as usize]; |
| 750 | k0.private_encrypt(&msg, &mut emesg, Padding::PKCS1) |
| 751 | .unwrap(); |
| 752 | let mut dmesg = vec![0; k1.size() as usize]; |
| 753 | let len = k1 |
| 754 | .public_decrypt(&emesg, &mut dmesg, Padding::PKCS1) |
| 755 | .unwrap(); |
| 756 | assert_eq!(msg, &dmesg[..len]); |
| 757 | } |
| 758 | |
| 759 | #[test ] |
| 760 | fn test_public_encrypt() { |
| 761 | let k0 = super::Rsa::generate(512).unwrap(); |
| 762 | let k0pkey = k0.private_key_to_pem().unwrap(); |
| 763 | let k1 = super::Rsa::private_key_from_pem(&k0pkey).unwrap(); |
| 764 | |
| 765 | let msg = vec![0xdeu8, 0xadu8, 0xd0u8, 0x0du8]; |
| 766 | |
| 767 | let mut emesg = vec![0; k0.size() as usize]; |
| 768 | k0.public_encrypt(&msg, &mut emesg, Padding::PKCS1).unwrap(); |
| 769 | let mut dmesg = vec![0; k1.size() as usize]; |
| 770 | let len = k1 |
| 771 | .private_decrypt(&emesg, &mut dmesg, Padding::PKCS1) |
| 772 | .unwrap(); |
| 773 | assert_eq!(msg, &dmesg[..len]); |
| 774 | } |
| 775 | |
| 776 | #[test ] |
| 777 | fn test_public_key_from_pem_pkcs1() { |
| 778 | let key = include_bytes!("../test/pkcs1.pem.pub" ); |
| 779 | Rsa::public_key_from_pem_pkcs1(key).unwrap(); |
| 780 | } |
| 781 | |
| 782 | #[test ] |
| 783 | #[should_panic ] |
| 784 | fn test_public_key_from_pem_pkcs1_file_panic() { |
| 785 | let key = include_bytes!("../test/key.pem.pub" ); |
| 786 | Rsa::public_key_from_pem_pkcs1(key).unwrap(); |
| 787 | } |
| 788 | |
| 789 | #[test ] |
| 790 | fn test_public_key_to_pem_pkcs1() { |
| 791 | let keypair = super::Rsa::generate(512).unwrap(); |
| 792 | let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap(); |
| 793 | super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap(); |
| 794 | } |
| 795 | |
| 796 | #[test ] |
| 797 | #[should_panic ] |
| 798 | fn test_public_key_from_pem_pkcs1_generate_panic() { |
| 799 | let keypair = super::Rsa::generate(512).unwrap(); |
| 800 | let pubkey_pem = keypair.public_key_to_pem().unwrap(); |
| 801 | super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap(); |
| 802 | } |
| 803 | |
| 804 | #[test ] |
| 805 | fn test_pem_pkcs1_encrypt() { |
| 806 | let keypair = super::Rsa::generate(2048).unwrap(); |
| 807 | let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap(); |
| 808 | let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap(); |
| 809 | let msg = b"Hello, world!" ; |
| 810 | |
| 811 | let mut encrypted = vec![0; pubkey.size() as usize]; |
| 812 | let len = pubkey |
| 813 | .public_encrypt(msg, &mut encrypted, Padding::PKCS1) |
| 814 | .unwrap(); |
| 815 | assert!(len > msg.len()); |
| 816 | let mut decrypted = vec![0; keypair.size() as usize]; |
| 817 | let len = keypair |
| 818 | .private_decrypt(&encrypted, &mut decrypted, Padding::PKCS1) |
| 819 | .unwrap(); |
| 820 | assert_eq!(len, msg.len()); |
| 821 | assert_eq!(&decrypted[..len], msg); |
| 822 | } |
| 823 | |
| 824 | #[test ] |
| 825 | fn test_pem_pkcs1_padding() { |
| 826 | let keypair = super::Rsa::generate(2048).unwrap(); |
| 827 | let pubkey_pem = keypair.public_key_to_pem_pkcs1().unwrap(); |
| 828 | let pubkey = super::Rsa::public_key_from_pem_pkcs1(&pubkey_pem).unwrap(); |
| 829 | let msg = b"foo" ; |
| 830 | |
| 831 | let mut encrypted1 = vec![0; pubkey.size() as usize]; |
| 832 | let mut encrypted2 = vec![0; pubkey.size() as usize]; |
| 833 | let len1 = pubkey |
| 834 | .public_encrypt(msg, &mut encrypted1, Padding::PKCS1) |
| 835 | .unwrap(); |
| 836 | let len2 = pubkey |
| 837 | .public_encrypt(msg, &mut encrypted2, Padding::PKCS1) |
| 838 | .unwrap(); |
| 839 | assert!(len1 > (msg.len() + 1)); |
| 840 | assert_eq!(len1, len2); |
| 841 | assert_ne!(encrypted1, encrypted2); |
| 842 | } |
| 843 | |
| 844 | #[test ] |
| 845 | #[allow (clippy::redundant_clone)] |
| 846 | fn clone() { |
| 847 | let key = Rsa::generate(2048).unwrap(); |
| 848 | drop(key.clone()); |
| 849 | } |
| 850 | |
| 851 | #[test ] |
| 852 | fn generate_with_e() { |
| 853 | let e = BigNum::from_u32(0x10001).unwrap(); |
| 854 | Rsa::generate_with_e(2048, &e).unwrap(); |
| 855 | } |
| 856 | |
| 857 | #[test ] |
| 858 | fn test_check_key() { |
| 859 | let k = Rsa::private_key_from_pem_passphrase( |
| 860 | include_bytes!("../test/rsa-encrypted.pem" ), |
| 861 | b"mypass" , |
| 862 | ) |
| 863 | .unwrap(); |
| 864 | assert!(matches!(k.check_key(), Ok(true))); |
| 865 | assert!(ErrorStack::get().errors().is_empty()); |
| 866 | |
| 867 | // BoringSSL simply rejects this key, because its corrupted! |
| 868 | if let Ok(k) = Rsa::private_key_from_pem(include_bytes!("../test/corrupted-rsa.pem" )) { |
| 869 | assert!(matches!(k.check_key(), Ok(false) | Err(_))); |
| 870 | assert!(ErrorStack::get().errors().is_empty()); |
| 871 | } |
| 872 | } |
| 873 | } |
| 874 | |