1 | //! BigNum implementation |
2 | //! |
3 | //! Large numbers are important for a cryptographic library. OpenSSL implementation |
4 | //! of BigNum uses dynamically assigned memory to store an array of bit chunks. This |
5 | //! allows numbers of any size to be compared and mathematical functions performed. |
6 | //! |
7 | //! OpenSSL wiki describes the [`BIGNUM`] data structure. |
8 | //! |
9 | //! # Examples |
10 | //! |
11 | //! ``` |
12 | //! use openssl::bn::BigNum; |
13 | //! use openssl::error::ErrorStack; |
14 | //! |
15 | //! fn main() -> Result<(), ErrorStack> { |
16 | //! let a = BigNum::new()?; // a = 0 |
17 | //! let b = BigNum::from_dec_str("1234567890123456789012345" )?; |
18 | //! let c = &a * &b; |
19 | //! assert_eq!(a, c); |
20 | //! Ok(()) |
21 | //! } |
22 | //! ``` |
23 | //! |
24 | //! [`BIGNUM`]: https://wiki.openssl.org/index.php/Manual:Bn_internal(3) |
25 | use cfg_if::cfg_if; |
26 | use foreign_types::{ForeignType, ForeignTypeRef}; |
27 | use libc::c_int; |
28 | use std::cmp::Ordering; |
29 | use std::ffi::CString; |
30 | use std::ops::{Add, Deref, Div, Mul, Neg, Rem, Shl, Shr, Sub}; |
31 | use std::{fmt, ptr}; |
32 | |
33 | use crate::asn1::Asn1Integer; |
34 | use crate::error::ErrorStack; |
35 | use crate::string::OpensslString; |
36 | use crate::{cvt, cvt_n, cvt_p, LenType}; |
37 | use openssl_macros::corresponds; |
38 | |
39 | cfg_if! { |
40 | if #[cfg(any(ossl110, libressl350, awslc))] { |
41 | use ffi::{ |
42 | BN_get_rfc3526_prime_1536, BN_get_rfc3526_prime_2048, BN_get_rfc3526_prime_3072, BN_get_rfc3526_prime_4096, |
43 | BN_get_rfc3526_prime_6144, BN_get_rfc3526_prime_8192, BN_is_negative, |
44 | }; |
45 | } else if #[cfg(boringssl)] { |
46 | use ffi::BN_is_negative; |
47 | } else { |
48 | use ffi::{ |
49 | get_rfc3526_prime_1536 as BN_get_rfc3526_prime_1536, |
50 | get_rfc3526_prime_2048 as BN_get_rfc3526_prime_2048, |
51 | get_rfc3526_prime_3072 as BN_get_rfc3526_prime_3072, |
52 | get_rfc3526_prime_4096 as BN_get_rfc3526_prime_4096, |
53 | get_rfc3526_prime_6144 as BN_get_rfc3526_prime_6144, |
54 | get_rfc3526_prime_8192 as BN_get_rfc3526_prime_8192, |
55 | }; |
56 | |
57 | #[allow(bad_style)] |
58 | unsafe fn BN_is_negative(bn: *const ffi::BIGNUM) -> c_int { |
59 | (*bn).neg |
60 | } |
61 | } |
62 | } |
63 | |
64 | cfg_if! { |
65 | if #[cfg(any(ossl110, libressl350))] { |
66 | use ffi::{ |
67 | BN_get_rfc2409_prime_1024, BN_get_rfc2409_prime_768 |
68 | }; |
69 | } else if #[cfg(not(any(boringssl, awslc)))] { |
70 | use ffi::{ |
71 | get_rfc2409_prime_1024 as BN_get_rfc2409_prime_1024, |
72 | get_rfc2409_prime_768 as BN_get_rfc2409_prime_768, |
73 | }; |
74 | } |
75 | } |
76 | |
77 | /// Options for the most significant bits of a randomly generated `BigNum`. |
78 | pub struct MsbOption(c_int); |
79 | |
80 | impl MsbOption { |
81 | /// The most significant bit of the number may be 0. |
82 | pub const MAYBE_ZERO: MsbOption = MsbOption(-1); |
83 | |
84 | /// The most significant bit of the number must be 1. |
85 | pub const ONE: MsbOption = MsbOption(0); |
86 | |
87 | /// The most significant two bits of the number must be 1. |
88 | /// |
89 | /// The number of bits in the product of two such numbers will always be exactly twice the |
90 | /// number of bits in the original numbers. |
91 | pub const TWO_ONES: MsbOption = MsbOption(1); |
92 | } |
93 | |
94 | foreign_type_and_impl_send_sync! { |
95 | type CType = ffi::BN_CTX; |
96 | fn drop = ffi::BN_CTX_free; |
97 | |
98 | /// Temporary storage for BigNums on the secure heap |
99 | /// |
100 | /// BigNum values are stored dynamically and therefore can be expensive |
101 | /// to allocate. BigNumContext and the OpenSSL [`BN_CTX`] structure are used |
102 | /// internally when passing BigNum values between subroutines. |
103 | /// |
104 | /// [`BN_CTX`]: https://www.openssl.org/docs/manmaster/crypto/BN_CTX_new.html |
105 | pub struct BigNumContext; |
106 | /// Reference to [`BigNumContext`] |
107 | /// |
108 | /// [`BigNumContext`]: struct.BigNumContext.html |
109 | pub struct BigNumContextRef; |
110 | } |
111 | |
112 | impl BigNumContext { |
113 | /// Returns a new `BigNumContext`. |
114 | #[corresponds (BN_CTX_new)] |
115 | pub fn new() -> Result<BigNumContext, ErrorStack> { |
116 | unsafe { |
117 | ffi::init(); |
118 | cvt_p(ffi::BN_CTX_new()).map(op:BigNumContext) |
119 | } |
120 | } |
121 | |
122 | /// Returns a new secure `BigNumContext`. |
123 | #[corresponds (BN_CTX_secure_new)] |
124 | #[cfg (ossl110)] |
125 | pub fn new_secure() -> Result<BigNumContext, ErrorStack> { |
126 | unsafe { |
127 | ffi::init(); |
128 | cvt_p(ffi::BN_CTX_secure_new()).map(op:BigNumContext) |
129 | } |
130 | } |
131 | } |
132 | |
133 | foreign_type_and_impl_send_sync! { |
134 | type CType = ffi::BIGNUM; |
135 | fn drop = ffi::BN_free; |
136 | |
137 | /// Dynamically sized large number implementation |
138 | /// |
139 | /// Perform large number mathematics. Create a new BigNum |
140 | /// with [`new`]. Perform standard mathematics on large numbers using |
141 | /// methods from [`Dref<Target = BigNumRef>`] |
142 | /// |
143 | /// OpenSSL documentation at [`BN_new`]. |
144 | /// |
145 | /// [`new`]: struct.BigNum.html#method.new |
146 | /// [`Dref<Target = BigNumRef>`]: struct.BigNum.html#deref-methods |
147 | /// [`BN_new`]: https://www.openssl.org/docs/manmaster/crypto/BN_new.html |
148 | /// |
149 | /// # Examples |
150 | /// ``` |
151 | /// use openssl::bn::BigNum; |
152 | /// # use openssl::error::ErrorStack; |
153 | /// # fn bignums() -> Result< (), ErrorStack > { |
154 | /// let little_big = BigNum::from_u32(std::u32::MAX)?; |
155 | /// assert_eq!(*&little_big.num_bytes(), 4); |
156 | /// # Ok(()) |
157 | /// # } |
158 | /// # fn main () { bignums(); } |
159 | /// ``` |
160 | pub struct BigNum; |
161 | /// Reference to a [`BigNum`] |
162 | /// |
163 | /// [`BigNum`]: struct.BigNum.html |
164 | pub struct BigNumRef; |
165 | } |
166 | |
167 | impl BigNumRef { |
168 | /// Erases the memory used by this `BigNum`, resetting its value to 0. |
169 | /// |
170 | /// This can be used to destroy sensitive data such as keys when they are no longer needed. |
171 | #[corresponds (BN_clear)] |
172 | pub fn clear(&mut self) { |
173 | unsafe { ffi::BN_clear(self.as_ptr()) } |
174 | } |
175 | |
176 | /// Adds a `u32` to `self`. |
177 | #[corresponds (BN_add_word)] |
178 | pub fn add_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
179 | unsafe { cvt(ffi::BN_add_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
180 | } |
181 | |
182 | /// Subtracts a `u32` from `self`. |
183 | #[corresponds (BN_sub_word)] |
184 | pub fn sub_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
185 | unsafe { cvt(ffi::BN_sub_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
186 | } |
187 | |
188 | /// Multiplies a `u32` by `self`. |
189 | #[corresponds (BN_mul_word)] |
190 | pub fn mul_word(&mut self, w: u32) -> Result<(), ErrorStack> { |
191 | unsafe { cvt(ffi::BN_mul_word(self.as_ptr(), w as ffi::BN_ULONG)).map(|_| ()) } |
192 | } |
193 | |
194 | /// Divides `self` by a `u32`, returning the remainder. |
195 | #[corresponds (BN_div_word)] |
196 | #[allow (clippy::useless_conversion)] |
197 | pub fn div_word(&mut self, w: u32) -> Result<u64, ErrorStack> { |
198 | unsafe { |
199 | let r = ffi::BN_div_word(self.as_ptr(), w.into()); |
200 | if r == ffi::BN_ULONG::MAX { |
201 | Err(ErrorStack::get()) |
202 | } else { |
203 | Ok(r.into()) |
204 | } |
205 | } |
206 | } |
207 | |
208 | /// Returns the result of `self` modulo `w`. |
209 | #[corresponds (BN_mod_word)] |
210 | #[allow (clippy::useless_conversion)] |
211 | pub fn mod_word(&self, w: u32) -> Result<u64, ErrorStack> { |
212 | unsafe { |
213 | let r = ffi::BN_mod_word(self.as_ptr(), w.into()); |
214 | if r == ffi::BN_ULONG::MAX { |
215 | Err(ErrorStack::get()) |
216 | } else { |
217 | Ok(r.into()) |
218 | } |
219 | } |
220 | } |
221 | |
222 | /// Places a cryptographically-secure pseudo-random nonnegative |
223 | /// number less than `self` in `rnd`. |
224 | #[corresponds (BN_rand_range)] |
225 | pub fn rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { |
226 | unsafe { cvt(ffi::BN_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } |
227 | } |
228 | |
229 | /// The cryptographically weak counterpart to `rand_in_range`. |
230 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
231 | #[corresponds (BN_pseudo_rand_range)] |
232 | pub fn pseudo_rand_range(&self, rnd: &mut BigNumRef) -> Result<(), ErrorStack> { |
233 | unsafe { cvt(ffi::BN_pseudo_rand_range(rnd.as_ptr(), self.as_ptr())).map(|_| ()) } |
234 | } |
235 | |
236 | /// Sets bit `n`. Equivalent to `self |= (1 << n)`. |
237 | /// |
238 | /// When setting a bit outside of `self`, it is expanded. |
239 | #[corresponds (BN_set_bit)] |
240 | #[allow (clippy::useless_conversion)] |
241 | pub fn set_bit(&mut self, n: i32) -> Result<(), ErrorStack> { |
242 | unsafe { cvt(ffi::BN_set_bit(self.as_ptr(), n.into())).map(|_| ()) } |
243 | } |
244 | |
245 | /// Clears bit `n`, setting it to 0. Equivalent to `self &= ~(1 << n)`. |
246 | /// |
247 | /// When clearing a bit outside of `self`, an error is returned. |
248 | #[corresponds (BN_clear_bit)] |
249 | #[allow (clippy::useless_conversion)] |
250 | pub fn clear_bit(&mut self, n: i32) -> Result<(), ErrorStack> { |
251 | unsafe { cvt(ffi::BN_clear_bit(self.as_ptr(), n.into())).map(|_| ()) } |
252 | } |
253 | |
254 | /// Returns `true` if the `n`th bit of `self` is set to 1, `false` otherwise. |
255 | #[corresponds (BN_is_bit_set)] |
256 | #[allow (clippy::useless_conversion)] |
257 | pub fn is_bit_set(&self, n: i32) -> bool { |
258 | unsafe { ffi::BN_is_bit_set(self.as_ptr(), n.into()) == 1 } |
259 | } |
260 | |
261 | /// Truncates `self` to the lowest `n` bits. |
262 | /// |
263 | /// An error occurs if `self` is already shorter than `n` bits. |
264 | #[corresponds (BN_mask_bits)] |
265 | #[allow (clippy::useless_conversion)] |
266 | pub fn mask_bits(&mut self, n: i32) -> Result<(), ErrorStack> { |
267 | unsafe { cvt(ffi::BN_mask_bits(self.as_ptr(), n.into())).map(|_| ()) } |
268 | } |
269 | |
270 | /// Places `a << 1` in `self`. Equivalent to `self * 2`. |
271 | #[corresponds (BN_lshift1)] |
272 | pub fn lshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { |
273 | unsafe { cvt(ffi::BN_lshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } |
274 | } |
275 | |
276 | /// Places `a >> 1` in `self`. Equivalent to `self / 2`. |
277 | #[corresponds (BN_rshift1)] |
278 | pub fn rshift1(&mut self, a: &BigNumRef) -> Result<(), ErrorStack> { |
279 | unsafe { cvt(ffi::BN_rshift1(self.as_ptr(), a.as_ptr())).map(|_| ()) } |
280 | } |
281 | |
282 | /// Places `a + b` in `self`. [`core::ops::Add`] is also implemented for `BigNumRef`. |
283 | /// |
284 | /// [`core::ops::Add`]: struct.BigNumRef.html#method.add |
285 | #[corresponds (BN_add)] |
286 | pub fn checked_add(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { |
287 | unsafe { cvt(ffi::BN_add(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } |
288 | } |
289 | |
290 | /// Places `a - b` in `self`. [`core::ops::Sub`] is also implemented for `BigNumRef`. |
291 | /// |
292 | /// [`core::ops::Sub`]: struct.BigNumRef.html#method.sub |
293 | #[corresponds (BN_sub)] |
294 | pub fn checked_sub(&mut self, a: &BigNumRef, b: &BigNumRef) -> Result<(), ErrorStack> { |
295 | unsafe { cvt(ffi::BN_sub(self.as_ptr(), a.as_ptr(), b.as_ptr())).map(|_| ()) } |
296 | } |
297 | |
298 | /// Places `a << n` in `self`. Equivalent to `a * 2 ^ n`. |
299 | #[corresponds (BN_lshift)] |
300 | #[allow (clippy::useless_conversion)] |
301 | pub fn lshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { |
302 | unsafe { cvt(ffi::BN_lshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } |
303 | } |
304 | |
305 | /// Places `a >> n` in `self`. Equivalent to `a / 2 ^ n`. |
306 | #[corresponds (BN_rshift)] |
307 | #[allow (clippy::useless_conversion)] |
308 | pub fn rshift(&mut self, a: &BigNumRef, n: i32) -> Result<(), ErrorStack> { |
309 | unsafe { cvt(ffi::BN_rshift(self.as_ptr(), a.as_ptr(), n.into())).map(|_| ()) } |
310 | } |
311 | |
312 | /// Creates a new BigNum with the same value. |
313 | #[corresponds (BN_dup)] |
314 | pub fn to_owned(&self) -> Result<BigNum, ErrorStack> { |
315 | unsafe { cvt_p(ffi::BN_dup(self.as_ptr())).map(|b| BigNum::from_ptr(b)) } |
316 | } |
317 | |
318 | /// Sets the sign of `self`. Pass true to set `self` to a negative. False sets |
319 | /// `self` positive. |
320 | #[corresponds (BN_set_negative)] |
321 | pub fn set_negative(&mut self, negative: bool) { |
322 | unsafe { ffi::BN_set_negative(self.as_ptr(), negative as c_int) } |
323 | } |
324 | |
325 | /// Compare the absolute values of `self` and `oth`. |
326 | /// |
327 | /// # Examples |
328 | /// |
329 | /// ``` |
330 | /// # use openssl::bn::BigNum; |
331 | /// # use std::cmp::Ordering; |
332 | /// let s = -BigNum::from_u32(8).unwrap(); |
333 | /// let o = BigNum::from_u32(8).unwrap(); |
334 | /// |
335 | /// assert_eq!(s.ucmp(&o), Ordering::Equal); |
336 | /// ``` |
337 | #[corresponds (BN_ucmp)] |
338 | pub fn ucmp(&self, oth: &BigNumRef) -> Ordering { |
339 | unsafe { ffi::BN_ucmp(self.as_ptr(), oth.as_ptr()).cmp(&0) } |
340 | } |
341 | |
342 | /// Returns `true` if `self` is negative. |
343 | #[corresponds (BN_is_negative)] |
344 | pub fn is_negative(&self) -> bool { |
345 | unsafe { BN_is_negative(self.as_ptr()) == 1 } |
346 | } |
347 | |
348 | /// Returns `true` is `self` is even. |
349 | #[corresponds (BN_is_even)] |
350 | #[cfg (any(ossl110, boringssl, libressl350, awslc))] |
351 | pub fn is_even(&self) -> bool { |
352 | !self.is_odd() |
353 | } |
354 | |
355 | /// Returns `true` is `self` is odd. |
356 | #[corresponds (BN_is_odd)] |
357 | #[cfg (any(ossl110, boringssl, libressl350, awslc))] |
358 | pub fn is_odd(&self) -> bool { |
359 | unsafe { ffi::BN_is_odd(self.as_ptr()) == 1 } |
360 | } |
361 | |
362 | /// Returns the number of significant bits in `self`. |
363 | #[corresponds (BN_num_bits)] |
364 | #[allow (clippy::unnecessary_cast)] |
365 | pub fn num_bits(&self) -> i32 { |
366 | unsafe { ffi::BN_num_bits(self.as_ptr()) as i32 } |
367 | } |
368 | |
369 | /// Returns the size of `self` in bytes. Implemented natively. |
370 | pub fn num_bytes(&self) -> i32 { |
371 | (self.num_bits() + 7) / 8 |
372 | } |
373 | |
374 | /// Generates a cryptographically strong pseudo-random `BigNum`, placing it in `self`. |
375 | /// |
376 | /// # Parameters |
377 | /// |
378 | /// * `bits`: Length of the number in bits. |
379 | /// * `msb`: The desired properties of the most significant bit. See [`constants`]. |
380 | /// * `odd`: If `true`, the generated number will be odd. |
381 | /// |
382 | /// # Examples |
383 | /// |
384 | /// ``` |
385 | /// use openssl::bn::{BigNum, MsbOption}; |
386 | /// use openssl::error::ErrorStack; |
387 | /// |
388 | /// fn generate_random() -> Result< BigNum, ErrorStack > { |
389 | /// let mut big = BigNum::new()?; |
390 | /// |
391 | /// // Generates a 128-bit odd random number |
392 | /// big.rand(128, MsbOption::MAYBE_ZERO, true); |
393 | /// Ok((big)) |
394 | /// } |
395 | /// ``` |
396 | /// |
397 | /// [`constants`]: index.html#constants |
398 | #[corresponds (BN_rand)] |
399 | #[allow (clippy::useless_conversion)] |
400 | pub fn rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { |
401 | unsafe { |
402 | cvt(ffi::BN_rand( |
403 | self.as_ptr(), |
404 | bits.into(), |
405 | msb.0, |
406 | odd as c_int, |
407 | )) |
408 | .map(|_| ()) |
409 | } |
410 | } |
411 | |
412 | /// The cryptographically weak counterpart to `rand`. Not suitable for key generation. |
413 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
414 | #[corresponds (BN_pseudo_rand)] |
415 | #[allow (clippy::useless_conversion)] |
416 | pub fn pseudo_rand(&mut self, bits: i32, msb: MsbOption, odd: bool) -> Result<(), ErrorStack> { |
417 | unsafe { |
418 | cvt(ffi::BN_pseudo_rand( |
419 | self.as_ptr(), |
420 | bits.into(), |
421 | msb.0, |
422 | odd as c_int, |
423 | )) |
424 | .map(|_| ()) |
425 | } |
426 | } |
427 | |
428 | /// Generates a prime number, placing it in `self`. |
429 | /// |
430 | /// # Parameters |
431 | /// |
432 | /// * `bits`: The length of the prime in bits (lower bound). |
433 | /// * `safe`: If true, returns a "safe" prime `p` so that `(p-1)/2` is also prime. |
434 | /// * `add`/`rem`: If `add` is set to `Some(add)`, `p % add == rem` will hold, where `p` is the |
435 | /// generated prime and `rem` is `1` if not specified (`None`). |
436 | /// |
437 | /// # Examples |
438 | /// |
439 | /// ``` |
440 | /// use openssl::bn::BigNum; |
441 | /// use openssl::error::ErrorStack; |
442 | /// |
443 | /// fn generate_weak_prime() -> Result< BigNum, ErrorStack > { |
444 | /// let mut big = BigNum::new()?; |
445 | /// |
446 | /// // Generates a 128-bit simple prime number |
447 | /// big.generate_prime(128, false, None, None); |
448 | /// Ok((big)) |
449 | /// } |
450 | /// ``` |
451 | #[corresponds (BN_generate_prime_ex)] |
452 | pub fn generate_prime( |
453 | &mut self, |
454 | bits: i32, |
455 | safe: bool, |
456 | add: Option<&BigNumRef>, |
457 | rem: Option<&BigNumRef>, |
458 | ) -> Result<(), ErrorStack> { |
459 | unsafe { |
460 | cvt(ffi::BN_generate_prime_ex( |
461 | self.as_ptr(), |
462 | bits as c_int, |
463 | safe as c_int, |
464 | add.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), |
465 | rem.map(|n| n.as_ptr()).unwrap_or(ptr::null_mut()), |
466 | ptr::null_mut(), |
467 | )) |
468 | .map(|_| ()) |
469 | } |
470 | } |
471 | |
472 | /// Places the result of `a * b` in `self`. |
473 | /// [`core::ops::Mul`] is also implemented for `BigNumRef`. |
474 | /// |
475 | /// [`core::ops::Mul`]: struct.BigNumRef.html#method.mul |
476 | #[corresponds (BN_mul)] |
477 | pub fn checked_mul( |
478 | &mut self, |
479 | a: &BigNumRef, |
480 | b: &BigNumRef, |
481 | ctx: &mut BigNumContextRef, |
482 | ) -> Result<(), ErrorStack> { |
483 | unsafe { |
484 | cvt(ffi::BN_mul( |
485 | self.as_ptr(), |
486 | a.as_ptr(), |
487 | b.as_ptr(), |
488 | ctx.as_ptr(), |
489 | )) |
490 | .map(|_| ()) |
491 | } |
492 | } |
493 | |
494 | /// Places the result of `a / b` in `self`. The remainder is discarded. |
495 | /// [`core::ops::Div`] is also implemented for `BigNumRef`. |
496 | /// |
497 | /// [`core::ops::Div`]: struct.BigNumRef.html#method.div |
498 | #[corresponds (BN_div)] |
499 | pub fn checked_div( |
500 | &mut self, |
501 | a: &BigNumRef, |
502 | b: &BigNumRef, |
503 | ctx: &mut BigNumContextRef, |
504 | ) -> Result<(), ErrorStack> { |
505 | unsafe { |
506 | cvt(ffi::BN_div( |
507 | self.as_ptr(), |
508 | ptr::null_mut(), |
509 | a.as_ptr(), |
510 | b.as_ptr(), |
511 | ctx.as_ptr(), |
512 | )) |
513 | .map(|_| ()) |
514 | } |
515 | } |
516 | |
517 | /// Places the result of `a % b` in `self`. |
518 | #[corresponds (BN_div)] |
519 | pub fn checked_rem( |
520 | &mut self, |
521 | a: &BigNumRef, |
522 | b: &BigNumRef, |
523 | ctx: &mut BigNumContextRef, |
524 | ) -> Result<(), ErrorStack> { |
525 | unsafe { |
526 | cvt(ffi::BN_div( |
527 | ptr::null_mut(), |
528 | self.as_ptr(), |
529 | a.as_ptr(), |
530 | b.as_ptr(), |
531 | ctx.as_ptr(), |
532 | )) |
533 | .map(|_| ()) |
534 | } |
535 | } |
536 | |
537 | /// Places the result of `a / b` in `self` and `a % b` in `rem`. |
538 | #[corresponds (BN_div)] |
539 | pub fn div_rem( |
540 | &mut self, |
541 | rem: &mut BigNumRef, |
542 | a: &BigNumRef, |
543 | b: &BigNumRef, |
544 | ctx: &mut BigNumContextRef, |
545 | ) -> Result<(), ErrorStack> { |
546 | unsafe { |
547 | cvt(ffi::BN_div( |
548 | self.as_ptr(), |
549 | rem.as_ptr(), |
550 | a.as_ptr(), |
551 | b.as_ptr(), |
552 | ctx.as_ptr(), |
553 | )) |
554 | .map(|_| ()) |
555 | } |
556 | } |
557 | |
558 | /// Places the result of `a²` in `self`. |
559 | #[corresponds (BN_sqr)] |
560 | pub fn sqr(&mut self, a: &BigNumRef, ctx: &mut BigNumContextRef) -> Result<(), ErrorStack> { |
561 | unsafe { cvt(ffi::BN_sqr(self.as_ptr(), a.as_ptr(), ctx.as_ptr())).map(|_| ()) } |
562 | } |
563 | |
564 | /// Places the result of `a mod m` in `self`. As opposed to `div_rem` |
565 | /// the result is non-negative. |
566 | #[corresponds (BN_nnmod)] |
567 | pub fn nnmod( |
568 | &mut self, |
569 | a: &BigNumRef, |
570 | m: &BigNumRef, |
571 | ctx: &mut BigNumContextRef, |
572 | ) -> Result<(), ErrorStack> { |
573 | unsafe { |
574 | cvt(ffi::BN_nnmod( |
575 | self.as_ptr(), |
576 | a.as_ptr(), |
577 | m.as_ptr(), |
578 | ctx.as_ptr(), |
579 | )) |
580 | .map(|_| ()) |
581 | } |
582 | } |
583 | |
584 | /// Places the result of `(a + b) mod m` in `self`. |
585 | #[corresponds (BN_mod_add)] |
586 | pub fn mod_add( |
587 | &mut self, |
588 | a: &BigNumRef, |
589 | b: &BigNumRef, |
590 | m: &BigNumRef, |
591 | ctx: &mut BigNumContextRef, |
592 | ) -> Result<(), ErrorStack> { |
593 | unsafe { |
594 | cvt(ffi::BN_mod_add( |
595 | self.as_ptr(), |
596 | a.as_ptr(), |
597 | b.as_ptr(), |
598 | m.as_ptr(), |
599 | ctx.as_ptr(), |
600 | )) |
601 | .map(|_| ()) |
602 | } |
603 | } |
604 | |
605 | /// Places the result of `(a - b) mod m` in `self`. |
606 | #[corresponds (BN_mod_sub)] |
607 | pub fn mod_sub( |
608 | &mut self, |
609 | a: &BigNumRef, |
610 | b: &BigNumRef, |
611 | m: &BigNumRef, |
612 | ctx: &mut BigNumContextRef, |
613 | ) -> Result<(), ErrorStack> { |
614 | unsafe { |
615 | cvt(ffi::BN_mod_sub( |
616 | self.as_ptr(), |
617 | a.as_ptr(), |
618 | b.as_ptr(), |
619 | m.as_ptr(), |
620 | ctx.as_ptr(), |
621 | )) |
622 | .map(|_| ()) |
623 | } |
624 | } |
625 | |
626 | /// Places the result of `(a * b) mod m` in `self`. |
627 | #[corresponds (BN_mod_mul)] |
628 | pub fn mod_mul( |
629 | &mut self, |
630 | a: &BigNumRef, |
631 | b: &BigNumRef, |
632 | m: &BigNumRef, |
633 | ctx: &mut BigNumContextRef, |
634 | ) -> Result<(), ErrorStack> { |
635 | unsafe { |
636 | cvt(ffi::BN_mod_mul( |
637 | self.as_ptr(), |
638 | a.as_ptr(), |
639 | b.as_ptr(), |
640 | m.as_ptr(), |
641 | ctx.as_ptr(), |
642 | )) |
643 | .map(|_| ()) |
644 | } |
645 | } |
646 | |
647 | /// Places the result of `a² mod m` in `self`. |
648 | #[corresponds (BN_mod_sqr)] |
649 | pub fn mod_sqr( |
650 | &mut self, |
651 | a: &BigNumRef, |
652 | m: &BigNumRef, |
653 | ctx: &mut BigNumContextRef, |
654 | ) -> Result<(), ErrorStack> { |
655 | unsafe { |
656 | cvt(ffi::BN_mod_sqr( |
657 | self.as_ptr(), |
658 | a.as_ptr(), |
659 | m.as_ptr(), |
660 | ctx.as_ptr(), |
661 | )) |
662 | .map(|_| ()) |
663 | } |
664 | } |
665 | |
666 | /// Places into `self` the modular square root of `a` such that `self^2 = a (mod p)` |
667 | #[corresponds (BN_mod_sqrt)] |
668 | pub fn mod_sqrt( |
669 | &mut self, |
670 | a: &BigNumRef, |
671 | p: &BigNumRef, |
672 | ctx: &mut BigNumContextRef, |
673 | ) -> Result<(), ErrorStack> { |
674 | unsafe { |
675 | cvt_p(ffi::BN_mod_sqrt( |
676 | self.as_ptr(), |
677 | a.as_ptr(), |
678 | p.as_ptr(), |
679 | ctx.as_ptr(), |
680 | )) |
681 | .map(|_| ()) |
682 | } |
683 | } |
684 | |
685 | /// Places the result of `a^p` in `self`. |
686 | #[corresponds (BN_exp)] |
687 | pub fn exp( |
688 | &mut self, |
689 | a: &BigNumRef, |
690 | p: &BigNumRef, |
691 | ctx: &mut BigNumContextRef, |
692 | ) -> Result<(), ErrorStack> { |
693 | unsafe { |
694 | cvt(ffi::BN_exp( |
695 | self.as_ptr(), |
696 | a.as_ptr(), |
697 | p.as_ptr(), |
698 | ctx.as_ptr(), |
699 | )) |
700 | .map(|_| ()) |
701 | } |
702 | } |
703 | |
704 | /// Places the result of `a^p mod m` in `self`. |
705 | #[corresponds (BN_mod_exp)] |
706 | pub fn mod_exp( |
707 | &mut self, |
708 | a: &BigNumRef, |
709 | p: &BigNumRef, |
710 | m: &BigNumRef, |
711 | ctx: &mut BigNumContextRef, |
712 | ) -> Result<(), ErrorStack> { |
713 | unsafe { |
714 | cvt(ffi::BN_mod_exp( |
715 | self.as_ptr(), |
716 | a.as_ptr(), |
717 | p.as_ptr(), |
718 | m.as_ptr(), |
719 | ctx.as_ptr(), |
720 | )) |
721 | .map(|_| ()) |
722 | } |
723 | } |
724 | |
725 | /// Places the inverse of `a` modulo `n` in `self`. |
726 | #[corresponds (BN_mod_inverse)] |
727 | pub fn mod_inverse( |
728 | &mut self, |
729 | a: &BigNumRef, |
730 | n: &BigNumRef, |
731 | ctx: &mut BigNumContextRef, |
732 | ) -> Result<(), ErrorStack> { |
733 | unsafe { |
734 | cvt_p(ffi::BN_mod_inverse( |
735 | self.as_ptr(), |
736 | a.as_ptr(), |
737 | n.as_ptr(), |
738 | ctx.as_ptr(), |
739 | )) |
740 | .map(|_| ()) |
741 | } |
742 | } |
743 | |
744 | /// Places the greatest common denominator of `a` and `b` in `self`. |
745 | #[corresponds (BN_gcd)] |
746 | pub fn gcd( |
747 | &mut self, |
748 | a: &BigNumRef, |
749 | b: &BigNumRef, |
750 | ctx: &mut BigNumContextRef, |
751 | ) -> Result<(), ErrorStack> { |
752 | unsafe { |
753 | cvt(ffi::BN_gcd( |
754 | self.as_ptr(), |
755 | a.as_ptr(), |
756 | b.as_ptr(), |
757 | ctx.as_ptr(), |
758 | )) |
759 | .map(|_| ()) |
760 | } |
761 | } |
762 | |
763 | /// Checks whether `self` is prime. |
764 | /// |
765 | /// Performs a Miller-Rabin probabilistic primality test with `checks` iterations. |
766 | /// |
767 | /// # Return Value |
768 | /// |
769 | /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. |
770 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
771 | #[corresponds (BN_is_prime_ex)] |
772 | #[allow (clippy::useless_conversion)] |
773 | pub fn is_prime(&self, checks: i32, ctx: &mut BigNumContextRef) -> Result<bool, ErrorStack> { |
774 | unsafe { |
775 | cvt_n(ffi::BN_is_prime_ex( |
776 | self.as_ptr(), |
777 | checks.into(), |
778 | ctx.as_ptr(), |
779 | ptr::null_mut(), |
780 | )) |
781 | .map(|r| r != 0) |
782 | } |
783 | } |
784 | |
785 | /// Checks whether `self` is prime with optional trial division. |
786 | /// |
787 | /// If `do_trial_division` is `true`, first performs trial division by a number of small primes. |
788 | /// Then, like `is_prime`, performs a Miller-Rabin probabilistic primality test with `checks` |
789 | /// iterations. |
790 | /// |
791 | /// # Return Value |
792 | /// |
793 | /// Returns `true` if `self` is prime with an error probability of less than `0.25 ^ checks`. |
794 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
795 | #[corresponds (BN_is_prime_fasttest_ex)] |
796 | #[allow (clippy::useless_conversion)] |
797 | pub fn is_prime_fasttest( |
798 | &self, |
799 | checks: i32, |
800 | ctx: &mut BigNumContextRef, |
801 | do_trial_division: bool, |
802 | ) -> Result<bool, ErrorStack> { |
803 | unsafe { |
804 | cvt_n(ffi::BN_is_prime_fasttest_ex( |
805 | self.as_ptr(), |
806 | checks.into(), |
807 | ctx.as_ptr(), |
808 | do_trial_division as c_int, |
809 | ptr::null_mut(), |
810 | )) |
811 | .map(|r| r != 0) |
812 | } |
813 | } |
814 | |
815 | /// Returns a big-endian byte vector representation of the absolute value of `self`. |
816 | /// |
817 | /// `self` can be recreated by using `from_slice`. |
818 | /// |
819 | /// ``` |
820 | /// # use openssl::bn::BigNum; |
821 | /// let s = -BigNum::from_u32(4543).unwrap(); |
822 | /// let r = BigNum::from_u32(4543).unwrap(); |
823 | /// |
824 | /// let s_vec = s.to_vec(); |
825 | /// assert_eq!(BigNum::from_slice(&s_vec).unwrap(), r); |
826 | /// ``` |
827 | #[corresponds (BN_bn2bin)] |
828 | pub fn to_vec(&self) -> Vec<u8> { |
829 | let size = self.num_bytes() as usize; |
830 | let mut v = Vec::with_capacity(size); |
831 | unsafe { |
832 | ffi::BN_bn2bin(self.as_ptr(), v.as_mut_ptr()); |
833 | v.set_len(size); |
834 | } |
835 | v |
836 | } |
837 | |
838 | /// Returns a big-endian byte vector representation of the absolute value of `self` padded |
839 | /// to `pad_to` bytes. |
840 | /// |
841 | /// If `pad_to` is less than `self.num_bytes()` then an error is returned. |
842 | /// |
843 | /// `self` can be recreated by using `from_slice`. |
844 | /// |
845 | /// ``` |
846 | /// # use openssl::bn::BigNum; |
847 | /// let bn = BigNum::from_u32(0x4543).unwrap(); |
848 | /// |
849 | /// let bn_vec = bn.to_vec_padded(4).unwrap(); |
850 | /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); |
851 | /// |
852 | /// let r = bn.to_vec_padded(1); |
853 | /// assert!(r.is_err()); |
854 | /// |
855 | /// let bn = -BigNum::from_u32(0x4543).unwrap(); |
856 | /// let bn_vec = bn.to_vec_padded(4).unwrap(); |
857 | /// assert_eq!(&bn_vec, &[0, 0, 0x45, 0x43]); |
858 | /// ``` |
859 | #[corresponds (BN_bn2binpad)] |
860 | #[cfg (any(ossl110, libressl340, boringssl, awslc))] |
861 | pub fn to_vec_padded(&self, pad_to: i32) -> Result<Vec<u8>, ErrorStack> { |
862 | let mut v = Vec::with_capacity(pad_to as usize); |
863 | unsafe { |
864 | cvt(ffi::BN_bn2binpad(self.as_ptr(), v.as_mut_ptr(), pad_to))?; |
865 | v.set_len(pad_to as usize); |
866 | } |
867 | Ok(v) |
868 | } |
869 | |
870 | /// Returns a decimal string representation of `self`. |
871 | /// |
872 | /// ``` |
873 | /// # use openssl::bn::BigNum; |
874 | /// let s = -BigNum::from_u32(12345).unwrap(); |
875 | /// |
876 | /// assert_eq!(&**s.to_dec_str().unwrap(), "-12345" ); |
877 | /// ``` |
878 | #[corresponds (BN_bn2dec)] |
879 | pub fn to_dec_str(&self) -> Result<OpensslString, ErrorStack> { |
880 | unsafe { |
881 | let buf = cvt_p(ffi::BN_bn2dec(self.as_ptr()))?; |
882 | Ok(OpensslString::from_ptr(buf)) |
883 | } |
884 | } |
885 | |
886 | /// Returns a hexadecimal string representation of `self`. |
887 | /// |
888 | /// ``` |
889 | /// # use openssl::bn::BigNum; |
890 | /// let s = -BigNum::from_u32(0x99ff).unwrap(); |
891 | /// |
892 | /// assert_eq!(s.to_hex_str().unwrap().to_uppercase(), "-99FF" ); |
893 | /// ``` |
894 | #[corresponds (BN_bn2hex)] |
895 | pub fn to_hex_str(&self) -> Result<OpensslString, ErrorStack> { |
896 | unsafe { |
897 | let buf = cvt_p(ffi::BN_bn2hex(self.as_ptr()))?; |
898 | Ok(OpensslString::from_ptr(buf)) |
899 | } |
900 | } |
901 | |
902 | /// Returns an `Asn1Integer` containing the value of `self`. |
903 | #[corresponds (BN_to_ASN1_INTEGER)] |
904 | pub fn to_asn1_integer(&self) -> Result<Asn1Integer, ErrorStack> { |
905 | unsafe { |
906 | cvt_p(ffi::BN_to_ASN1_INTEGER(self.as_ptr(), ptr::null_mut())) |
907 | .map(|p| Asn1Integer::from_ptr(p)) |
908 | } |
909 | } |
910 | |
911 | /// Force constant time computation on this value. |
912 | #[corresponds (BN_set_flags)] |
913 | #[cfg (ossl110)] |
914 | pub fn set_const_time(&mut self) { |
915 | unsafe { ffi::BN_set_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME) } |
916 | } |
917 | |
918 | /// Returns true if `self` is in const time mode. |
919 | #[corresponds (BN_get_flags)] |
920 | #[cfg (ossl110)] |
921 | pub fn is_const_time(&self) -> bool { |
922 | unsafe { |
923 | let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_CONSTTIME); |
924 | ret == ffi::BN_FLG_CONSTTIME |
925 | } |
926 | } |
927 | |
928 | /// Returns true if `self` was created with [`BigNum::new_secure`]. |
929 | #[corresponds (BN_get_flags)] |
930 | #[cfg (ossl110)] |
931 | pub fn is_secure(&self) -> bool { |
932 | unsafe { |
933 | let ret = ffi::BN_get_flags(self.as_ptr(), ffi::BN_FLG_SECURE); |
934 | ret == ffi::BN_FLG_SECURE |
935 | } |
936 | } |
937 | } |
938 | |
939 | impl BigNum { |
940 | /// Creates a new `BigNum` with the value 0. |
941 | #[corresponds (BN_new)] |
942 | pub fn new() -> Result<BigNum, ErrorStack> { |
943 | unsafe { |
944 | ffi::init(); |
945 | let v = cvt_p(ffi::BN_new())?; |
946 | Ok(BigNum::from_ptr(v)) |
947 | } |
948 | } |
949 | |
950 | /// Returns a new secure `BigNum`. |
951 | #[corresponds (BN_secure_new)] |
952 | #[cfg (ossl110)] |
953 | pub fn new_secure() -> Result<BigNum, ErrorStack> { |
954 | unsafe { |
955 | ffi::init(); |
956 | let v = cvt_p(ffi::BN_secure_new())?; |
957 | Ok(BigNum::from_ptr(v)) |
958 | } |
959 | } |
960 | |
961 | /// Creates a new `BigNum` with the given value. |
962 | #[corresponds (BN_set_word)] |
963 | pub fn from_u32(n: u32) -> Result<BigNum, ErrorStack> { |
964 | BigNum::new().and_then(|v| unsafe { |
965 | cvt(ffi::BN_set_word(v.as_ptr(), n as ffi::BN_ULONG)).map(|_| v) |
966 | }) |
967 | } |
968 | |
969 | /// Creates a `BigNum` from a decimal string. |
970 | #[corresponds (BN_dec2bn)] |
971 | pub fn from_dec_str(s: &str) -> Result<BigNum, ErrorStack> { |
972 | unsafe { |
973 | ffi::init(); |
974 | let c_str = CString::new(s.as_bytes()).unwrap(); |
975 | let mut bn = ptr::null_mut(); |
976 | cvt(ffi::BN_dec2bn(&mut bn, c_str.as_ptr() as *const _))?; |
977 | Ok(BigNum::from_ptr(bn)) |
978 | } |
979 | } |
980 | |
981 | /// Creates a `BigNum` from a hexadecimal string. |
982 | #[corresponds (BN_hex2bn)] |
983 | pub fn from_hex_str(s: &str) -> Result<BigNum, ErrorStack> { |
984 | unsafe { |
985 | ffi::init(); |
986 | let c_str = CString::new(s.as_bytes()).unwrap(); |
987 | let mut bn = ptr::null_mut(); |
988 | cvt(ffi::BN_hex2bn(&mut bn, c_str.as_ptr() as *const _))?; |
989 | Ok(BigNum::from_ptr(bn)) |
990 | } |
991 | } |
992 | |
993 | /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in |
994 | /// the order of magnitude of `2 ^ 768`. This number is used during calculated key |
995 | /// exchanges such as Diffie-Hellman. This number is labeled Oakley group id 1. |
996 | /// |
997 | /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 |
998 | #[corresponds (BN_get_rfc2409_prime_768)] |
999 | #[cfg (not(any(boringssl, awslc)))] |
1000 | pub fn get_rfc2409_prime_768() -> Result<BigNum, ErrorStack> { |
1001 | unsafe { |
1002 | ffi::init(); |
1003 | cvt_p(BN_get_rfc2409_prime_768(ptr::null_mut())).map(BigNum) |
1004 | } |
1005 | } |
1006 | |
1007 | /// Returns a constant used in IKE as defined in [`RFC 2409`]. This prime number is in |
1008 | /// the order of magnitude of `2 ^ 1024`. This number is used during calculated key |
1009 | /// exchanges such as Diffie-Hellman. This number is labeled Oakly group 2. |
1010 | /// |
1011 | /// [`RFC 2409`]: https://tools.ietf.org/html/rfc2409#page-21 |
1012 | #[corresponds (BN_get_rfc2409_prime_1024)] |
1013 | #[cfg (not(any(boringssl, awslc)))] |
1014 | pub fn get_rfc2409_prime_1024() -> Result<BigNum, ErrorStack> { |
1015 | unsafe { |
1016 | ffi::init(); |
1017 | cvt_p(BN_get_rfc2409_prime_1024(ptr::null_mut())).map(BigNum) |
1018 | } |
1019 | } |
1020 | |
1021 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1022 | /// of magnitude of `2 ^ 1536`. This number is used during calculated key |
1023 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 5. |
1024 | /// |
1025 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 |
1026 | #[corresponds (BN_get_rfc3526_prime_1536)] |
1027 | #[cfg (not(boringssl))] |
1028 | pub fn get_rfc3526_prime_1536() -> Result<BigNum, ErrorStack> { |
1029 | unsafe { |
1030 | ffi::init(); |
1031 | cvt_p(BN_get_rfc3526_prime_1536(ptr::null_mut())).map(BigNum) |
1032 | } |
1033 | } |
1034 | |
1035 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1036 | /// of magnitude of `2 ^ 2048`. This number is used during calculated key |
1037 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 14. |
1038 | /// |
1039 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-3 |
1040 | #[corresponds (BN_get_rfc3526_prime_2048)] |
1041 | #[cfg (not(boringssl))] |
1042 | pub fn get_rfc3526_prime_2048() -> Result<BigNum, ErrorStack> { |
1043 | unsafe { |
1044 | ffi::init(); |
1045 | cvt_p(BN_get_rfc3526_prime_2048(ptr::null_mut())).map(BigNum) |
1046 | } |
1047 | } |
1048 | |
1049 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1050 | /// of magnitude of `2 ^ 3072`. This number is used during calculated key |
1051 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 15. |
1052 | /// |
1053 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 |
1054 | #[corresponds (BN_get_rfc3526_prime_3072)] |
1055 | #[cfg (not(boringssl))] |
1056 | pub fn get_rfc3526_prime_3072() -> Result<BigNum, ErrorStack> { |
1057 | unsafe { |
1058 | ffi::init(); |
1059 | cvt_p(BN_get_rfc3526_prime_3072(ptr::null_mut())).map(BigNum) |
1060 | } |
1061 | } |
1062 | |
1063 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1064 | /// of magnitude of `2 ^ 4096`. This number is used during calculated key |
1065 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 16. |
1066 | /// |
1067 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-4 |
1068 | #[corresponds (BN_get_rfc3526_prime_4096)] |
1069 | #[cfg (not(boringssl))] |
1070 | pub fn get_rfc3526_prime_4096() -> Result<BigNum, ErrorStack> { |
1071 | unsafe { |
1072 | ffi::init(); |
1073 | cvt_p(BN_get_rfc3526_prime_4096(ptr::null_mut())).map(BigNum) |
1074 | } |
1075 | } |
1076 | |
1077 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1078 | /// of magnitude of `2 ^ 6144`. This number is used during calculated key |
1079 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 17. |
1080 | /// |
1081 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 |
1082 | #[corresponds (BN_get_rfc3526_prime_6114)] |
1083 | #[cfg (not(boringssl))] |
1084 | pub fn get_rfc3526_prime_6144() -> Result<BigNum, ErrorStack> { |
1085 | unsafe { |
1086 | ffi::init(); |
1087 | cvt_p(BN_get_rfc3526_prime_6144(ptr::null_mut())).map(BigNum) |
1088 | } |
1089 | } |
1090 | |
1091 | /// Returns a constant used in IKE as defined in [`RFC 3526`]. The prime is in the order |
1092 | /// of magnitude of `2 ^ 8192`. This number is used during calculated key |
1093 | /// exchanges such as Diffie-Hellman. This number is labeled MODP group 18. |
1094 | /// |
1095 | /// [`RFC 3526`]: https://tools.ietf.org/html/rfc3526#page-6 |
1096 | #[corresponds (BN_get_rfc3526_prime_8192)] |
1097 | #[cfg (not(boringssl))] |
1098 | pub fn get_rfc3526_prime_8192() -> Result<BigNum, ErrorStack> { |
1099 | unsafe { |
1100 | ffi::init(); |
1101 | cvt_p(BN_get_rfc3526_prime_8192(ptr::null_mut())).map(BigNum) |
1102 | } |
1103 | } |
1104 | |
1105 | /// Creates a new `BigNum` from an unsigned, big-endian encoded number of arbitrary length. |
1106 | /// |
1107 | /// OpenSSL documentation at [`BN_bin2bn`] |
1108 | /// |
1109 | /// [`BN_bin2bn`]: https://www.openssl.org/docs/manmaster/crypto/BN_bin2bn.html |
1110 | /// |
1111 | /// ``` |
1112 | /// # use openssl::bn::BigNum; |
1113 | /// let bignum = BigNum::from_slice(&[0x12, 0x00, 0x34]).unwrap(); |
1114 | /// |
1115 | /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); |
1116 | /// ``` |
1117 | #[corresponds (BN_bin2bn)] |
1118 | pub fn from_slice(n: &[u8]) -> Result<BigNum, ErrorStack> { |
1119 | unsafe { |
1120 | ffi::init(); |
1121 | assert!(n.len() <= LenType::MAX as usize); |
1122 | |
1123 | cvt_p(ffi::BN_bin2bn( |
1124 | n.as_ptr(), |
1125 | n.len() as LenType, |
1126 | ptr::null_mut(), |
1127 | )) |
1128 | .map(|p| BigNum::from_ptr(p)) |
1129 | } |
1130 | } |
1131 | |
1132 | /// Copies data from a slice overwriting what was in the BigNum. |
1133 | /// |
1134 | /// This function can be used to copy data from a slice to a |
1135 | /// [secure BigNum][`BigNum::new_secure`]. |
1136 | /// |
1137 | /// # Examples |
1138 | /// |
1139 | /// ``` |
1140 | /// # use openssl::bn::BigNum; |
1141 | /// let mut bignum = BigNum::new().unwrap(); |
1142 | /// bignum.copy_from_slice(&[0x12, 0x00, 0x34]).unwrap(); |
1143 | /// |
1144 | /// assert_eq!(bignum, BigNum::from_u32(0x120034).unwrap()); |
1145 | /// ``` |
1146 | #[corresponds (BN_bin2bn)] |
1147 | pub fn copy_from_slice(&mut self, n: &[u8]) -> Result<(), ErrorStack> { |
1148 | unsafe { |
1149 | assert!(n.len() <= LenType::MAX as usize); |
1150 | |
1151 | cvt_p(ffi::BN_bin2bn(n.as_ptr(), n.len() as LenType, self.0))?; |
1152 | Ok(()) |
1153 | } |
1154 | } |
1155 | } |
1156 | |
1157 | impl fmt::Debug for BigNumRef { |
1158 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1159 | match self.to_dec_str() { |
1160 | Ok(s: OpensslString) => f.write_str(&s), |
1161 | Err(e: ErrorStack) => Err(e.into()), |
1162 | } |
1163 | } |
1164 | } |
1165 | |
1166 | impl fmt::Debug for BigNum { |
1167 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1168 | match self.to_dec_str() { |
1169 | Ok(s: OpensslString) => f.write_str(&s), |
1170 | Err(e: ErrorStack) => Err(e.into()), |
1171 | } |
1172 | } |
1173 | } |
1174 | |
1175 | impl fmt::Display for BigNumRef { |
1176 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1177 | match self.to_dec_str() { |
1178 | Ok(s: OpensslString) => f.write_str(&s), |
1179 | Err(e: ErrorStack) => Err(e.into()), |
1180 | } |
1181 | } |
1182 | } |
1183 | |
1184 | impl fmt::Display for BigNum { |
1185 | fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
1186 | match self.to_dec_str() { |
1187 | Ok(s: OpensslString) => f.write_str(&s), |
1188 | Err(e: ErrorStack) => Err(e.into()), |
1189 | } |
1190 | } |
1191 | } |
1192 | |
1193 | impl PartialEq<BigNumRef> for BigNumRef { |
1194 | fn eq(&self, oth: &BigNumRef) -> bool { |
1195 | self.cmp(oth) == Ordering::Equal |
1196 | } |
1197 | } |
1198 | |
1199 | impl PartialEq<BigNum> for BigNumRef { |
1200 | fn eq(&self, oth: &BigNum) -> bool { |
1201 | self.eq(oth.deref()) |
1202 | } |
1203 | } |
1204 | |
1205 | impl Eq for BigNumRef {} |
1206 | |
1207 | impl PartialEq for BigNum { |
1208 | fn eq(&self, oth: &BigNum) -> bool { |
1209 | self.deref().eq(oth) |
1210 | } |
1211 | } |
1212 | |
1213 | impl PartialEq<BigNumRef> for BigNum { |
1214 | fn eq(&self, oth: &BigNumRef) -> bool { |
1215 | self.deref().eq(oth) |
1216 | } |
1217 | } |
1218 | |
1219 | impl Eq for BigNum {} |
1220 | |
1221 | impl PartialOrd<BigNumRef> for BigNumRef { |
1222 | fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { |
1223 | Some(self.cmp(oth)) |
1224 | } |
1225 | } |
1226 | |
1227 | impl PartialOrd<BigNum> for BigNumRef { |
1228 | fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { |
1229 | Some(self.cmp(oth.deref())) |
1230 | } |
1231 | } |
1232 | |
1233 | impl Ord for BigNumRef { |
1234 | fn cmp(&self, oth: &BigNumRef) -> Ordering { |
1235 | unsafe { ffi::BN_cmp(self.as_ptr(), b:oth.as_ptr()).cmp(&0) } |
1236 | } |
1237 | } |
1238 | |
1239 | impl PartialOrd for BigNum { |
1240 | fn partial_cmp(&self, oth: &BigNum) -> Option<Ordering> { |
1241 | Some(self.cmp(oth)) |
1242 | } |
1243 | } |
1244 | |
1245 | impl PartialOrd<BigNumRef> for BigNum { |
1246 | fn partial_cmp(&self, oth: &BigNumRef) -> Option<Ordering> { |
1247 | self.deref().partial_cmp(oth) |
1248 | } |
1249 | } |
1250 | |
1251 | impl Ord for BigNum { |
1252 | fn cmp(&self, oth: &BigNum) -> Ordering { |
1253 | self.deref().cmp(oth.deref()) |
1254 | } |
1255 | } |
1256 | |
1257 | macro_rules! delegate { |
1258 | ($t:ident, $m:ident) => { |
1259 | impl<'a, 'b> $t<&'b BigNum> for &'a BigNumRef { |
1260 | type Output = BigNum; |
1261 | |
1262 | fn $m(self, oth: &BigNum) -> BigNum { |
1263 | $t::$m(self, oth.deref()) |
1264 | } |
1265 | } |
1266 | |
1267 | impl<'a, 'b> $t<&'b BigNumRef> for &'a BigNum { |
1268 | type Output = BigNum; |
1269 | |
1270 | fn $m(self, oth: &BigNumRef) -> BigNum { |
1271 | $t::$m(self.deref(), oth) |
1272 | } |
1273 | } |
1274 | |
1275 | impl<'a, 'b> $t<&'b BigNum> for &'a BigNum { |
1276 | type Output = BigNum; |
1277 | |
1278 | fn $m(self, oth: &BigNum) -> BigNum { |
1279 | $t::$m(self.deref(), oth.deref()) |
1280 | } |
1281 | } |
1282 | }; |
1283 | } |
1284 | |
1285 | impl Add<&BigNumRef> for &BigNumRef { |
1286 | type Output = BigNum; |
1287 | |
1288 | fn add(self, oth: &BigNumRef) -> BigNum { |
1289 | let mut r: BigNum = BigNum::new().unwrap(); |
1290 | r.checked_add(self, b:oth).unwrap(); |
1291 | r |
1292 | } |
1293 | } |
1294 | |
1295 | delegate!(Add, add); |
1296 | |
1297 | impl Sub<&BigNumRef> for &BigNumRef { |
1298 | type Output = BigNum; |
1299 | |
1300 | fn sub(self, oth: &BigNumRef) -> BigNum { |
1301 | let mut r: BigNum = BigNum::new().unwrap(); |
1302 | r.checked_sub(self, b:oth).unwrap(); |
1303 | r |
1304 | } |
1305 | } |
1306 | |
1307 | delegate!(Sub, sub); |
1308 | |
1309 | impl Mul<&BigNumRef> for &BigNumRef { |
1310 | type Output = BigNum; |
1311 | |
1312 | fn mul(self, oth: &BigNumRef) -> BigNum { |
1313 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1314 | let mut r: BigNum = BigNum::new().unwrap(); |
1315 | r.checked_mul(self, b:oth, &mut ctx).unwrap(); |
1316 | r |
1317 | } |
1318 | } |
1319 | |
1320 | delegate!(Mul, mul); |
1321 | |
1322 | impl<'b> Div<&'b BigNumRef> for &BigNumRef { |
1323 | type Output = BigNum; |
1324 | |
1325 | fn div(self, oth: &'b BigNumRef) -> BigNum { |
1326 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1327 | let mut r: BigNum = BigNum::new().unwrap(); |
1328 | r.checked_div(self, b:oth, &mut ctx).unwrap(); |
1329 | r |
1330 | } |
1331 | } |
1332 | |
1333 | delegate!(Div, div); |
1334 | |
1335 | impl<'b> Rem<&'b BigNumRef> for &BigNumRef { |
1336 | type Output = BigNum; |
1337 | |
1338 | fn rem(self, oth: &'b BigNumRef) -> BigNum { |
1339 | let mut ctx: BigNumContext = BigNumContext::new().unwrap(); |
1340 | let mut r: BigNum = BigNum::new().unwrap(); |
1341 | r.checked_rem(self, b:oth, &mut ctx).unwrap(); |
1342 | r |
1343 | } |
1344 | } |
1345 | |
1346 | delegate!(Rem, rem); |
1347 | |
1348 | impl Shl<i32> for &BigNumRef { |
1349 | type Output = BigNum; |
1350 | |
1351 | fn shl(self, n: i32) -> BigNum { |
1352 | let mut r: BigNum = BigNum::new().unwrap(); |
1353 | r.lshift(self, n).unwrap(); |
1354 | r |
1355 | } |
1356 | } |
1357 | |
1358 | impl Shl<i32> for &BigNum { |
1359 | type Output = BigNum; |
1360 | |
1361 | fn shl(self, n: i32) -> BigNum { |
1362 | self.deref().shl(n) |
1363 | } |
1364 | } |
1365 | |
1366 | impl Shr<i32> for &BigNumRef { |
1367 | type Output = BigNum; |
1368 | |
1369 | fn shr(self, n: i32) -> BigNum { |
1370 | let mut r: BigNum = BigNum::new().unwrap(); |
1371 | r.rshift(self, n).unwrap(); |
1372 | r |
1373 | } |
1374 | } |
1375 | |
1376 | impl Shr<i32> for &BigNum { |
1377 | type Output = BigNum; |
1378 | |
1379 | fn shr(self, n: i32) -> BigNum { |
1380 | self.deref().shr(n) |
1381 | } |
1382 | } |
1383 | |
1384 | impl Neg for &BigNumRef { |
1385 | type Output = BigNum; |
1386 | |
1387 | fn neg(self) -> BigNum { |
1388 | self.to_owned().unwrap().neg() |
1389 | } |
1390 | } |
1391 | |
1392 | impl Neg for &BigNum { |
1393 | type Output = BigNum; |
1394 | |
1395 | fn neg(self) -> BigNum { |
1396 | self.deref().neg() |
1397 | } |
1398 | } |
1399 | |
1400 | impl Neg for BigNum { |
1401 | type Output = BigNum; |
1402 | |
1403 | fn neg(mut self) -> BigNum { |
1404 | let negative: bool = self.is_negative(); |
1405 | self.set_negative(!negative); |
1406 | self |
1407 | } |
1408 | } |
1409 | |
1410 | #[cfg (test)] |
1411 | mod tests { |
1412 | use crate::bn::{BigNum, BigNumContext}; |
1413 | |
1414 | #[test ] |
1415 | fn test_to_from_slice() { |
1416 | let v0 = BigNum::from_u32(10_203_004).unwrap(); |
1417 | let vec = v0.to_vec(); |
1418 | let v1 = BigNum::from_slice(&vec).unwrap(); |
1419 | |
1420 | assert_eq!(v0, v1); |
1421 | } |
1422 | |
1423 | #[test ] |
1424 | fn test_negation() { |
1425 | let a = BigNum::from_u32(909_829_283).unwrap(); |
1426 | |
1427 | assert!(!a.is_negative()); |
1428 | assert!((-a).is_negative()); |
1429 | } |
1430 | |
1431 | #[test ] |
1432 | fn test_shift() { |
1433 | let a = BigNum::from_u32(909_829_283).unwrap(); |
1434 | |
1435 | assert_eq!(a, &(&a << 1) >> 1); |
1436 | } |
1437 | |
1438 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1439 | #[test ] |
1440 | fn test_rand_range() { |
1441 | let range = BigNum::from_u32(909_829_283).unwrap(); |
1442 | let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); |
1443 | range.rand_range(&mut result).unwrap(); |
1444 | assert!(result >= BigNum::from_u32(0).unwrap() && result < range); |
1445 | } |
1446 | |
1447 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1448 | #[test ] |
1449 | fn test_pseudo_rand_range() { |
1450 | let range = BigNum::from_u32(909_829_283).unwrap(); |
1451 | let mut result = BigNum::from_dec_str(&range.to_dec_str().unwrap()).unwrap(); |
1452 | range.pseudo_rand_range(&mut result).unwrap(); |
1453 | assert!(result >= BigNum::from_u32(0).unwrap() && result < range); |
1454 | } |
1455 | |
1456 | #[cfg (not(osslconf = "OPENSSL_NO_DEPRECATED_3_0" ))] |
1457 | #[test ] |
1458 | fn test_prime_numbers() { |
1459 | let a = BigNum::from_u32(19_029_017).unwrap(); |
1460 | let mut p = BigNum::new().unwrap(); |
1461 | p.generate_prime(128, true, None, Some(&a)).unwrap(); |
1462 | |
1463 | let mut ctx = BigNumContext::new().unwrap(); |
1464 | assert!(p.is_prime(100, &mut ctx).unwrap()); |
1465 | assert!(p.is_prime_fasttest(100, &mut ctx, true).unwrap()); |
1466 | } |
1467 | |
1468 | #[cfg (ossl110)] |
1469 | #[test ] |
1470 | fn test_secure_bn_ctx() { |
1471 | let mut cxt = BigNumContext::new_secure().unwrap(); |
1472 | let a = BigNum::from_u32(8).unwrap(); |
1473 | let b = BigNum::from_u32(3).unwrap(); |
1474 | |
1475 | let mut remainder = BigNum::new().unwrap(); |
1476 | remainder.nnmod(&a, &b, &mut cxt).unwrap(); |
1477 | |
1478 | assert!(remainder.eq(&BigNum::from_u32(2).unwrap())); |
1479 | } |
1480 | |
1481 | #[cfg (ossl110)] |
1482 | #[test ] |
1483 | fn test_secure_bn() { |
1484 | let a = BigNum::new().unwrap(); |
1485 | assert!(!a.is_secure()); |
1486 | |
1487 | let b = BigNum::new_secure().unwrap(); |
1488 | assert!(b.is_secure()) |
1489 | } |
1490 | |
1491 | #[cfg (ossl110)] |
1492 | #[test ] |
1493 | fn test_const_time_bn() { |
1494 | let a = BigNum::new().unwrap(); |
1495 | assert!(!a.is_const_time()); |
1496 | |
1497 | let mut b = BigNum::new().unwrap(); |
1498 | b.set_const_time(); |
1499 | assert!(b.is_const_time()) |
1500 | } |
1501 | |
1502 | #[test ] |
1503 | fn test_mod_sqrt() { |
1504 | let mut ctx = BigNumContext::new().unwrap(); |
1505 | |
1506 | let s = BigNum::from_hex_str("2" ).unwrap(); |
1507 | let p = BigNum::from_hex_str("7DEB1" ).unwrap(); |
1508 | let mut sqrt = BigNum::new().unwrap(); |
1509 | let mut out = BigNum::new().unwrap(); |
1510 | |
1511 | // Square the root because OpenSSL randomly returns one of 2E42C or 4FA85 |
1512 | sqrt.mod_sqrt(&s, &p, &mut ctx).unwrap(); |
1513 | out.mod_sqr(&sqrt, &p, &mut ctx).unwrap(); |
1514 | assert!(out == s); |
1515 | |
1516 | let s = BigNum::from_hex_str("3" ).unwrap(); |
1517 | let p = BigNum::from_hex_str("5" ).unwrap(); |
1518 | assert!(out.mod_sqrt(&s, &p, &mut ctx).is_err()); |
1519 | } |
1520 | |
1521 | #[test ] |
1522 | #[cfg (any(ossl110, boringssl, libressl350, awslc))] |
1523 | fn test_odd_even() { |
1524 | let a = BigNum::from_u32(17).unwrap(); |
1525 | let b = BigNum::from_u32(18).unwrap(); |
1526 | |
1527 | assert!(a.is_odd()); |
1528 | assert!(!b.is_odd()); |
1529 | |
1530 | assert!(!a.is_even()); |
1531 | assert!(b.is_even()); |
1532 | } |
1533 | } |
1534 | |