1 | use alloc::string::String; |
2 | |
3 | use regex_automata::{meta, Input, PatternID, PatternSet, PatternSetIter}; |
4 | |
5 | use crate::{Error, RegexSetBuilder}; |
6 | |
7 | /// Match multiple, possibly overlapping, regexes in a single search. |
8 | /// |
9 | /// A regex set corresponds to the union of zero or more regular expressions. |
10 | /// That is, a regex set will match a haystack when at least one of its |
11 | /// constituent regexes matches. A regex set as its formulated here provides a |
12 | /// touch more power: it will also report *which* regular expressions in the |
13 | /// set match. Indeed, this is the key difference between regex sets and a |
14 | /// single `Regex` with many alternates, since only one alternate can match at |
15 | /// a time. |
16 | /// |
17 | /// For example, consider regular expressions to match email addresses and |
18 | /// domains: `[a-z]+@[a-z]+\.(com|org|net)` and `[a-z]+\.(com|org|net)`. If a |
19 | /// regex set is constructed from those regexes, then searching the haystack |
20 | /// `foo@example.com` will report both regexes as matching. Of course, one |
21 | /// could accomplish this by compiling each regex on its own and doing two |
22 | /// searches over the haystack. The key advantage of using a regex set is |
23 | /// that it will report the matching regexes using a *single pass through the |
24 | /// haystack*. If one has hundreds or thousands of regexes to match repeatedly |
25 | /// (like a URL router for a complex web application or a user agent matcher), |
26 | /// then a regex set *can* realize huge performance gains. |
27 | /// |
28 | /// # Limitations |
29 | /// |
30 | /// Regex sets are limited to answering the following two questions: |
31 | /// |
32 | /// 1. Does any regex in the set match? |
33 | /// 2. If so, which regexes in the set match? |
34 | /// |
35 | /// As with the main [`Regex`][crate::Regex] type, it is cheaper to ask (1) |
36 | /// instead of (2) since the matching engines can stop after the first match |
37 | /// is found. |
38 | /// |
39 | /// You cannot directly extract [`Match`][crate::Match] or |
40 | /// [`Captures`][crate::Captures] objects from a regex set. If you need these |
41 | /// operations, the recommended approach is to compile each pattern in the set |
42 | /// independently and scan the exact same haystack a second time with those |
43 | /// independently compiled patterns: |
44 | /// |
45 | /// ``` |
46 | /// use regex::{Regex, RegexSet}; |
47 | /// |
48 | /// let patterns = ["foo" , "bar" ]; |
49 | /// // Both patterns will match different ranges of this string. |
50 | /// let hay = "barfoo" ; |
51 | /// |
52 | /// // Compile a set matching any of our patterns. |
53 | /// let set = RegexSet::new(patterns).unwrap(); |
54 | /// // Compile each pattern independently. |
55 | /// let regexes: Vec<_> = set |
56 | /// .patterns() |
57 | /// .iter() |
58 | /// .map(|pat| Regex::new(pat).unwrap()) |
59 | /// .collect(); |
60 | /// |
61 | /// // Match against the whole set first and identify the individual |
62 | /// // matching patterns. |
63 | /// let matches: Vec<&str> = set |
64 | /// .matches(hay) |
65 | /// .into_iter() |
66 | /// // Dereference the match index to get the corresponding |
67 | /// // compiled pattern. |
68 | /// .map(|index| ®exes[index]) |
69 | /// // To get match locations or any other info, we then have to search the |
70 | /// // exact same haystack again, using our separately-compiled pattern. |
71 | /// .map(|re| re.find(hay).unwrap().as_str()) |
72 | /// .collect(); |
73 | /// |
74 | /// // Matches arrive in the order the constituent patterns were declared, |
75 | /// // not the order they appear in the haystack. |
76 | /// assert_eq!(vec!["foo" , "bar" ], matches); |
77 | /// ``` |
78 | /// |
79 | /// # Performance |
80 | /// |
81 | /// A `RegexSet` has the same performance characteristics as `Regex`. Namely, |
82 | /// search takes `O(m * n)` time, where `m` is proportional to the size of the |
83 | /// regex set and `n` is proportional to the length of the haystack. |
84 | /// |
85 | /// # Trait implementations |
86 | /// |
87 | /// The `Default` trait is implemented for `RegexSet`. The default value |
88 | /// is an empty set. An empty set can also be explicitly constructed via |
89 | /// [`RegexSet::empty`]. |
90 | /// |
91 | /// # Example |
92 | /// |
93 | /// This shows how the above two regexes (for matching email addresses and |
94 | /// domains) might work: |
95 | /// |
96 | /// ``` |
97 | /// use regex::RegexSet; |
98 | /// |
99 | /// let set = RegexSet::new(&[ |
100 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
101 | /// r"[a-z]+\.(com|org|net)" , |
102 | /// ]).unwrap(); |
103 | /// |
104 | /// // Ask whether any regexes in the set match. |
105 | /// assert!(set.is_match("foo@example.com" )); |
106 | /// |
107 | /// // Identify which regexes in the set match. |
108 | /// let matches: Vec<_> = set.matches("foo@example.com" ).into_iter().collect(); |
109 | /// assert_eq!(vec![0, 1], matches); |
110 | /// |
111 | /// // Try again, but with a haystack that only matches one of the regexes. |
112 | /// let matches: Vec<_> = set.matches("example.com" ).into_iter().collect(); |
113 | /// assert_eq!(vec![1], matches); |
114 | /// |
115 | /// // Try again, but with a haystack that doesn't match any regex in the set. |
116 | /// let matches: Vec<_> = set.matches("example" ).into_iter().collect(); |
117 | /// assert!(matches.is_empty()); |
118 | /// ``` |
119 | /// |
120 | /// Note that it would be possible to adapt the above example to using `Regex` |
121 | /// with an expression like: |
122 | /// |
123 | /// ```text |
124 | /// (?P<email>[a-z]+@(?P<email_domain>[a-z]+[.](com|org|net)))|(?P<domain>[a-z]+[.](com|org|net)) |
125 | /// ``` |
126 | /// |
127 | /// After a match, one could then inspect the capture groups to figure out |
128 | /// which alternates matched. The problem is that it is hard to make this |
129 | /// approach scale when there are many regexes since the overlap between each |
130 | /// alternate isn't always obvious to reason about. |
131 | #[derive (Clone)] |
132 | pub struct RegexSet { |
133 | pub(crate) meta: meta::Regex, |
134 | pub(crate) patterns: alloc::sync::Arc<[String]>, |
135 | } |
136 | |
137 | impl RegexSet { |
138 | /// Create a new regex set with the given regular expressions. |
139 | /// |
140 | /// This takes an iterator of `S`, where `S` is something that can produce |
141 | /// a `&str`. If any of the strings in the iterator are not valid regular |
142 | /// expressions, then an error is returned. |
143 | /// |
144 | /// # Example |
145 | /// |
146 | /// Create a new regex set from an iterator of strings: |
147 | /// |
148 | /// ``` |
149 | /// use regex::RegexSet; |
150 | /// |
151 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
152 | /// assert!(set.is_match("foo" )); |
153 | /// ``` |
154 | pub fn new<I, S>(exprs: I) -> Result<RegexSet, Error> |
155 | where |
156 | S: AsRef<str>, |
157 | I: IntoIterator<Item = S>, |
158 | { |
159 | RegexSetBuilder::new(exprs).build() |
160 | } |
161 | |
162 | /// Create a new empty regex set. |
163 | /// |
164 | /// An empty regex never matches anything. |
165 | /// |
166 | /// This is a convenience function for `RegexSet::new([])`, but doesn't |
167 | /// require one to specify the type of the input. |
168 | /// |
169 | /// # Example |
170 | /// |
171 | /// ``` |
172 | /// use regex::RegexSet; |
173 | /// |
174 | /// let set = RegexSet::empty(); |
175 | /// assert!(set.is_empty()); |
176 | /// // an empty set matches nothing |
177 | /// assert!(!set.is_match("" )); |
178 | /// ``` |
179 | pub fn empty() -> RegexSet { |
180 | let empty: [&str; 0] = []; |
181 | RegexSetBuilder::new(empty).build().unwrap() |
182 | } |
183 | |
184 | /// Returns true if and only if one of the regexes in this set matches |
185 | /// the haystack given. |
186 | /// |
187 | /// This method should be preferred if you only need to test whether any |
188 | /// of the regexes in the set should match, but don't care about *which* |
189 | /// regexes matched. This is because the underlying matching engine will |
190 | /// quit immediately after seeing the first match instead of continuing to |
191 | /// find all matches. |
192 | /// |
193 | /// Note that as with searches using [`Regex`](crate::Regex), the |
194 | /// expression is unanchored by default. That is, if the regex does not |
195 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
196 | /// to match anywhere in the haystack. |
197 | /// |
198 | /// # Example |
199 | /// |
200 | /// Tests whether a set matches somewhere in a haystack: |
201 | /// |
202 | /// ``` |
203 | /// use regex::RegexSet; |
204 | /// |
205 | /// let set = RegexSet::new([r"\w+" , r"\d+" ]).unwrap(); |
206 | /// assert!(set.is_match("foo" )); |
207 | /// assert!(!set.is_match("☃" )); |
208 | /// ``` |
209 | #[inline ] |
210 | pub fn is_match(&self, haystack: &str) -> bool { |
211 | self.is_match_at(haystack, 0) |
212 | } |
213 | |
214 | /// Returns true if and only if one of the regexes in this set matches the |
215 | /// haystack given, with the search starting at the offset given. |
216 | /// |
217 | /// The significance of the starting point is that it takes the surrounding |
218 | /// context into consideration. For example, the `\A` anchor can only |
219 | /// match when `start == 0`. |
220 | /// |
221 | /// # Panics |
222 | /// |
223 | /// This panics when `start >= haystack.len() + 1`. |
224 | /// |
225 | /// # Example |
226 | /// |
227 | /// This example shows the significance of `start`. Namely, consider a |
228 | /// haystack `foobar` and a desire to execute a search starting at offset |
229 | /// `3`. You could search a substring explicitly, but then the look-around |
230 | /// assertions won't work correctly. Instead, you can use this method to |
231 | /// specify the start position of a search. |
232 | /// |
233 | /// ``` |
234 | /// use regex::RegexSet; |
235 | /// |
236 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
237 | /// let hay = "foobar" ; |
238 | /// // We get a match here, but it's probably not intended. |
239 | /// assert!(set.is_match(&hay[3..])); |
240 | /// // No match because the assertions take the context into account. |
241 | /// assert!(!set.is_match_at(hay, 3)); |
242 | /// ``` |
243 | #[inline ] |
244 | pub fn is_match_at(&self, haystack: &str, start: usize) -> bool { |
245 | self.meta.is_match(Input::new(haystack).span(start..haystack.len())) |
246 | } |
247 | |
248 | /// Returns the set of regexes that match in the given haystack. |
249 | /// |
250 | /// The set returned contains the index of each regex that matches in |
251 | /// the given haystack. The index is in correspondence with the order of |
252 | /// regular expressions given to `RegexSet`'s constructor. |
253 | /// |
254 | /// The set can also be used to iterate over the matched indices. The order |
255 | /// of iteration is always ascending with respect to the matching indices. |
256 | /// |
257 | /// Note that as with searches using [`Regex`](crate::Regex), the |
258 | /// expression is unanchored by default. That is, if the regex does not |
259 | /// start with `^` or `\A`, or end with `$` or `\z`, then it is permitted |
260 | /// to match anywhere in the haystack. |
261 | /// |
262 | /// # Example |
263 | /// |
264 | /// Tests which regular expressions match the given haystack: |
265 | /// |
266 | /// ``` |
267 | /// use regex::RegexSet; |
268 | /// |
269 | /// let set = RegexSet::new([ |
270 | /// r"\w+" , |
271 | /// r"\d+" , |
272 | /// r"\pL+" , |
273 | /// r"foo" , |
274 | /// r"bar" , |
275 | /// r"barfoo" , |
276 | /// r"foobar" , |
277 | /// ]).unwrap(); |
278 | /// let matches: Vec<_> = set.matches("foobar" ).into_iter().collect(); |
279 | /// assert_eq!(matches, vec![0, 2, 3, 4, 6]); |
280 | /// |
281 | /// // You can also test whether a particular regex matched: |
282 | /// let matches = set.matches("foobar" ); |
283 | /// assert!(!matches.matched(5)); |
284 | /// assert!(matches.matched(6)); |
285 | /// ``` |
286 | #[inline ] |
287 | pub fn matches(&self, haystack: &str) -> SetMatches { |
288 | self.matches_at(haystack, 0) |
289 | } |
290 | |
291 | /// Returns the set of regexes that match in the given haystack. |
292 | /// |
293 | /// The set returned contains the index of each regex that matches in |
294 | /// the given haystack. The index is in correspondence with the order of |
295 | /// regular expressions given to `RegexSet`'s constructor. |
296 | /// |
297 | /// The set can also be used to iterate over the matched indices. The order |
298 | /// of iteration is always ascending with respect to the matching indices. |
299 | /// |
300 | /// The significance of the starting point is that it takes the surrounding |
301 | /// context into consideration. For example, the `\A` anchor can only |
302 | /// match when `start == 0`. |
303 | /// |
304 | /// # Panics |
305 | /// |
306 | /// This panics when `start >= haystack.len() + 1`. |
307 | /// |
308 | /// # Example |
309 | /// |
310 | /// Tests which regular expressions match the given haystack: |
311 | /// |
312 | /// ``` |
313 | /// use regex::RegexSet; |
314 | /// |
315 | /// let set = RegexSet::new([r"\bbar\b" , r"(?m)^bar$" ]).unwrap(); |
316 | /// let hay = "foobar" ; |
317 | /// // We get matches here, but it's probably not intended. |
318 | /// let matches: Vec<_> = set.matches(&hay[3..]).into_iter().collect(); |
319 | /// assert_eq!(matches, vec![0, 1]); |
320 | /// // No matches because the assertions take the context into account. |
321 | /// let matches: Vec<_> = set.matches_at(hay, 3).into_iter().collect(); |
322 | /// assert_eq!(matches, vec![]); |
323 | /// ``` |
324 | #[inline ] |
325 | pub fn matches_at(&self, haystack: &str, start: usize) -> SetMatches { |
326 | let input = Input::new(haystack).span(start..haystack.len()); |
327 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
328 | self.meta.which_overlapping_matches(&input, &mut patset); |
329 | SetMatches(patset) |
330 | } |
331 | |
332 | /// Returns the same as matches, but starts the search at the given |
333 | /// offset and stores the matches into the slice given. |
334 | /// |
335 | /// The significance of the starting point is that it takes the surrounding |
336 | /// context into consideration. For example, the `\A` anchor can only |
337 | /// match when `start == 0`. |
338 | /// |
339 | /// `matches` must have a length that is at least the number of regexes |
340 | /// in this set. |
341 | /// |
342 | /// This method returns true if and only if at least one member of |
343 | /// `matches` is true after executing the set against `haystack`. |
344 | #[doc (hidden)] |
345 | #[inline ] |
346 | pub fn matches_read_at( |
347 | &self, |
348 | matches: &mut [bool], |
349 | haystack: &str, |
350 | start: usize, |
351 | ) -> bool { |
352 | // This is pretty dumb. We should try to fix this, but the |
353 | // regex-automata API doesn't provide a way to store matches in an |
354 | // arbitrary &mut [bool]. Thankfully, this API is doc(hidden) and |
355 | // thus not public... But regex-capi currently uses it. We should |
356 | // fix regex-capi to use a PatternSet, maybe? Not sure... PatternSet |
357 | // is in regex-automata, not regex. So maybe we should just accept a |
358 | // 'SetMatches', which is basically just a newtype around PatternSet. |
359 | let mut patset = PatternSet::new(self.meta.pattern_len()); |
360 | let mut input = Input::new(haystack); |
361 | input.set_start(start); |
362 | self.meta.which_overlapping_matches(&input, &mut patset); |
363 | for pid in patset.iter() { |
364 | matches[pid] = true; |
365 | } |
366 | !patset.is_empty() |
367 | } |
368 | |
369 | /// An alias for `matches_read_at` to preserve backward compatibility. |
370 | /// |
371 | /// The `regex-capi` crate used this method, so to avoid breaking that |
372 | /// crate, we continue to export it as an undocumented API. |
373 | #[doc (hidden)] |
374 | #[inline ] |
375 | pub fn read_matches_at( |
376 | &self, |
377 | matches: &mut [bool], |
378 | haystack: &str, |
379 | start: usize, |
380 | ) -> bool { |
381 | self.matches_read_at(matches, haystack, start) |
382 | } |
383 | |
384 | /// Returns the total number of regexes in this set. |
385 | /// |
386 | /// # Example |
387 | /// |
388 | /// ``` |
389 | /// use regex::RegexSet; |
390 | /// |
391 | /// assert_eq!(0, RegexSet::empty().len()); |
392 | /// assert_eq!(1, RegexSet::new([r"[0-9]" ]).unwrap().len()); |
393 | /// assert_eq!(2, RegexSet::new([r"[0-9]" , r"[a-z]" ]).unwrap().len()); |
394 | /// ``` |
395 | #[inline ] |
396 | pub fn len(&self) -> usize { |
397 | self.meta.pattern_len() |
398 | } |
399 | |
400 | /// Returns `true` if this set contains no regexes. |
401 | /// |
402 | /// # Example |
403 | /// |
404 | /// ``` |
405 | /// use regex::RegexSet; |
406 | /// |
407 | /// assert!(RegexSet::empty().is_empty()); |
408 | /// assert!(!RegexSet::new([r"[0-9]" ]).unwrap().is_empty()); |
409 | /// ``` |
410 | #[inline ] |
411 | pub fn is_empty(&self) -> bool { |
412 | self.meta.pattern_len() == 0 |
413 | } |
414 | |
415 | /// Returns the regex patterns that this regex set was constructed from. |
416 | /// |
417 | /// This function can be used to determine the pattern for a match. The |
418 | /// slice returned has exactly as many patterns givens to this regex set, |
419 | /// and the order of the slice is the same as the order of the patterns |
420 | /// provided to the set. |
421 | /// |
422 | /// # Example |
423 | /// |
424 | /// ``` |
425 | /// use regex::RegexSet; |
426 | /// |
427 | /// let set = RegexSet::new(&[ |
428 | /// r"\w+" , |
429 | /// r"\d+" , |
430 | /// r"\pL+" , |
431 | /// r"foo" , |
432 | /// r"bar" , |
433 | /// r"barfoo" , |
434 | /// r"foobar" , |
435 | /// ]).unwrap(); |
436 | /// let matches: Vec<_> = set |
437 | /// .matches("foobar" ) |
438 | /// .into_iter() |
439 | /// .map(|index| &set.patterns()[index]) |
440 | /// .collect(); |
441 | /// assert_eq!(matches, vec![r"\w+" , r"\pL+" , r"foo" , r"bar" , r"foobar" ]); |
442 | /// ``` |
443 | #[inline ] |
444 | pub fn patterns(&self) -> &[String] { |
445 | &self.patterns |
446 | } |
447 | } |
448 | |
449 | impl Default for RegexSet { |
450 | fn default() -> Self { |
451 | RegexSet::empty() |
452 | } |
453 | } |
454 | |
455 | /// A set of matches returned by a regex set. |
456 | /// |
457 | /// Values of this type are constructed by [`RegexSet::matches`]. |
458 | #[derive (Clone, Debug)] |
459 | pub struct SetMatches(PatternSet); |
460 | |
461 | impl SetMatches { |
462 | /// Whether this set contains any matches. |
463 | /// |
464 | /// # Example |
465 | /// |
466 | /// ``` |
467 | /// use regex::RegexSet; |
468 | /// |
469 | /// let set = RegexSet::new(&[ |
470 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
471 | /// r"[a-z]+\.(com|org|net)" , |
472 | /// ]).unwrap(); |
473 | /// let matches = set.matches("foo@example.com" ); |
474 | /// assert!(matches.matched_any()); |
475 | /// ``` |
476 | #[inline ] |
477 | pub fn matched_any(&self) -> bool { |
478 | !self.0.is_empty() |
479 | } |
480 | |
481 | /// Whether all patterns in this set matched. |
482 | /// |
483 | /// # Example |
484 | /// |
485 | /// ``` |
486 | /// use regex::RegexSet; |
487 | /// |
488 | /// let set = RegexSet::new(&[ |
489 | /// r"^foo" , |
490 | /// r"[a-z]+\.com" , |
491 | /// ]).unwrap(); |
492 | /// let matches = set.matches("foo.example.com" ); |
493 | /// assert!(matches.matched_all()); |
494 | /// ``` |
495 | pub fn matched_all(&self) -> bool { |
496 | self.0.is_full() |
497 | } |
498 | |
499 | /// Whether the regex at the given index matched. |
500 | /// |
501 | /// The index for a regex is determined by its insertion order upon the |
502 | /// initial construction of a `RegexSet`, starting at `0`. |
503 | /// |
504 | /// # Panics |
505 | /// |
506 | /// If `index` is greater than or equal to the number of regexes in the |
507 | /// original set that produced these matches. Equivalently, when `index` |
508 | /// is greater than or equal to [`SetMatches::len`]. |
509 | /// |
510 | /// # Example |
511 | /// |
512 | /// ``` |
513 | /// use regex::RegexSet; |
514 | /// |
515 | /// let set = RegexSet::new([ |
516 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
517 | /// r"[a-z]+\.(com|org|net)" , |
518 | /// ]).unwrap(); |
519 | /// let matches = set.matches("example.com" ); |
520 | /// assert!(!matches.matched(0)); |
521 | /// assert!(matches.matched(1)); |
522 | /// ``` |
523 | #[inline ] |
524 | pub fn matched(&self, index: usize) -> bool { |
525 | self.0.contains(PatternID::new_unchecked(index)) |
526 | } |
527 | |
528 | /// The total number of regexes in the set that created these matches. |
529 | /// |
530 | /// **WARNING:** This always returns the same value as [`RegexSet::len`]. |
531 | /// In particular, it does *not* return the number of elements yielded by |
532 | /// [`SetMatches::iter`]. The only way to determine the total number of |
533 | /// matched regexes is to iterate over them. |
534 | /// |
535 | /// # Example |
536 | /// |
537 | /// Notice that this method returns the total number of regexes in the |
538 | /// original set, and *not* the total number of regexes that matched. |
539 | /// |
540 | /// ``` |
541 | /// use regex::RegexSet; |
542 | /// |
543 | /// let set = RegexSet::new([ |
544 | /// r"[a-z]+@[a-z]+\.(com|org|net)" , |
545 | /// r"[a-z]+\.(com|org|net)" , |
546 | /// ]).unwrap(); |
547 | /// let matches = set.matches("example.com" ); |
548 | /// // Total number of patterns that matched. |
549 | /// assert_eq!(1, matches.iter().count()); |
550 | /// // Total number of patterns in the set. |
551 | /// assert_eq!(2, matches.len()); |
552 | /// ``` |
553 | #[inline ] |
554 | pub fn len(&self) -> usize { |
555 | self.0.capacity() |
556 | } |
557 | |
558 | /// Returns an iterator over the indices of the regexes that matched. |
559 | /// |
560 | /// This will always produces matches in ascending order, where the index |
561 | /// yielded corresponds to the index of the regex that matched with respect |
562 | /// to its position when initially building the set. |
563 | /// |
564 | /// # Example |
565 | /// |
566 | /// ``` |
567 | /// use regex::RegexSet; |
568 | /// |
569 | /// let set = RegexSet::new([ |
570 | /// r"[0-9]" , |
571 | /// r"[a-z]" , |
572 | /// r"[A-Z]" , |
573 | /// r"\p{Greek}" , |
574 | /// ]).unwrap(); |
575 | /// let hay = "βa1" ; |
576 | /// let matches: Vec<_> = set.matches(hay).iter().collect(); |
577 | /// assert_eq!(matches, vec![0, 1, 3]); |
578 | /// ``` |
579 | /// |
580 | /// Note that `SetMatches` also implemnets the `IntoIterator` trait, so |
581 | /// this method is not always needed. For example: |
582 | /// |
583 | /// ``` |
584 | /// use regex::RegexSet; |
585 | /// |
586 | /// let set = RegexSet::new([ |
587 | /// r"[0-9]" , |
588 | /// r"[a-z]" , |
589 | /// r"[A-Z]" , |
590 | /// r"\p{Greek}" , |
591 | /// ]).unwrap(); |
592 | /// let hay = "βa1" ; |
593 | /// let mut matches = vec![]; |
594 | /// for index in set.matches(hay) { |
595 | /// matches.push(index); |
596 | /// } |
597 | /// assert_eq!(matches, vec![0, 1, 3]); |
598 | /// ``` |
599 | #[inline ] |
600 | pub fn iter(&self) -> SetMatchesIter<'_> { |
601 | SetMatchesIter(self.0.iter()) |
602 | } |
603 | } |
604 | |
605 | impl IntoIterator for SetMatches { |
606 | type IntoIter = SetMatchesIntoIter; |
607 | type Item = usize; |
608 | |
609 | fn into_iter(self) -> Self::IntoIter { |
610 | let it: Range = 0..self.0.capacity(); |
611 | SetMatchesIntoIter { patset: self.0, it } |
612 | } |
613 | } |
614 | |
615 | impl<'a> IntoIterator for &'a SetMatches { |
616 | type IntoIter = SetMatchesIter<'a>; |
617 | type Item = usize; |
618 | |
619 | fn into_iter(self) -> Self::IntoIter { |
620 | self.iter() |
621 | } |
622 | } |
623 | |
624 | /// An owned iterator over the set of matches from a regex set. |
625 | /// |
626 | /// This will always produces matches in ascending order of index, where the |
627 | /// index corresponds to the index of the regex that matched with respect to |
628 | /// its position when initially building the set. |
629 | /// |
630 | /// This iterator is created by calling `SetMatches::into_iter` via the |
631 | /// `IntoIterator` trait. This is automatically done in `for` loops. |
632 | /// |
633 | /// # Example |
634 | /// |
635 | /// ``` |
636 | /// use regex::RegexSet; |
637 | /// |
638 | /// let set = RegexSet::new([ |
639 | /// r"[0-9]" , |
640 | /// r"[a-z]" , |
641 | /// r"[A-Z]" , |
642 | /// r"\p{Greek}" , |
643 | /// ]).unwrap(); |
644 | /// let hay = "βa1" ; |
645 | /// let mut matches = vec![]; |
646 | /// for index in set.matches(hay) { |
647 | /// matches.push(index); |
648 | /// } |
649 | /// assert_eq!(matches, vec![0, 1, 3]); |
650 | /// ``` |
651 | #[derive (Debug)] |
652 | pub struct SetMatchesIntoIter { |
653 | patset: PatternSet, |
654 | it: core::ops::Range<usize>, |
655 | } |
656 | |
657 | impl Iterator for SetMatchesIntoIter { |
658 | type Item = usize; |
659 | |
660 | fn next(&mut self) -> Option<usize> { |
661 | loop { |
662 | let id: usize = self.it.next()?; |
663 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
664 | return Some(id); |
665 | } |
666 | } |
667 | } |
668 | |
669 | fn size_hint(&self) -> (usize, Option<usize>) { |
670 | self.it.size_hint() |
671 | } |
672 | } |
673 | |
674 | impl DoubleEndedIterator for SetMatchesIntoIter { |
675 | fn next_back(&mut self) -> Option<usize> { |
676 | loop { |
677 | let id: usize = self.it.next_back()?; |
678 | if self.patset.contains(pid:PatternID::new_unchecked(id)) { |
679 | return Some(id); |
680 | } |
681 | } |
682 | } |
683 | } |
684 | |
685 | impl core::iter::FusedIterator for SetMatchesIntoIter {} |
686 | |
687 | /// A borrowed iterator over the set of matches from a regex set. |
688 | /// |
689 | /// The lifetime `'a` refers to the lifetime of the [`SetMatches`] value that |
690 | /// created this iterator. |
691 | /// |
692 | /// This will always produces matches in ascending order, where the index |
693 | /// corresponds to the index of the regex that matched with respect to its |
694 | /// position when initially building the set. |
695 | /// |
696 | /// This iterator is created by the [`SetMatches::iter`] method. |
697 | #[derive (Clone, Debug)] |
698 | pub struct SetMatchesIter<'a>(PatternSetIter<'a>); |
699 | |
700 | impl<'a> Iterator for SetMatchesIter<'a> { |
701 | type Item = usize; |
702 | |
703 | fn next(&mut self) -> Option<usize> { |
704 | self.0.next().map(|pid: PatternID| pid.as_usize()) |
705 | } |
706 | |
707 | fn size_hint(&self) -> (usize, Option<usize>) { |
708 | self.0.size_hint() |
709 | } |
710 | } |
711 | |
712 | impl<'a> DoubleEndedIterator for SetMatchesIter<'a> { |
713 | fn next_back(&mut self) -> Option<usize> { |
714 | self.0.next_back().map(|pid: PatternID| pid.as_usize()) |
715 | } |
716 | } |
717 | |
718 | impl<'a> core::iter::FusedIterator for SetMatchesIter<'a> {} |
719 | |
720 | impl core::fmt::Debug for RegexSet { |
721 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
722 | write!(f, "RegexSet( {:?})" , self.patterns()) |
723 | } |
724 | } |
725 | |