| 1 | // Copyright 2015-2023 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | //! Multi-precision integers. |
| 16 | //! |
| 17 | //! # Modular Arithmetic. |
| 18 | //! |
| 19 | //! Modular arithmetic is done in finite commutative rings ℤ/mℤ for some |
| 20 | //! modulus *m*. We work in finite commutative rings instead of finite fields |
| 21 | //! because the RSA public modulus *n* is not prime, which means ℤ/nℤ contains |
| 22 | //! nonzero elements that have no multiplicative inverse, so ℤ/nℤ is not a |
| 23 | //! finite field. |
| 24 | //! |
| 25 | //! In some calculations we need to deal with multiple rings at once. For |
| 26 | //! example, RSA private key operations operate in the rings ℤ/nℤ, ℤ/pℤ, and |
| 27 | //! ℤ/qℤ. Types and functions dealing with such rings are all parameterized |
| 28 | //! over a type `M` to ensure that we don't wrongly mix up the math, e.g. by |
| 29 | //! multiplying an element of ℤ/pℤ by an element of ℤ/qℤ modulo q. This follows |
| 30 | //! the "unit" pattern described in [Static checking of units in Servo]. |
| 31 | //! |
| 32 | //! `Elem` also uses the static unit checking pattern to statically track the |
| 33 | //! Montgomery factors that need to be canceled out in each value using it's |
| 34 | //! `E` parameter. |
| 35 | //! |
| 36 | //! [Static checking of units in Servo]: |
| 37 | //! https://blog.mozilla.org/research/2014/06/23/static-checking-of-units-in-servo/ |
| 38 | |
| 39 | use self::boxed_limbs::BoxedLimbs; |
| 40 | pub(crate) use self::{ |
| 41 | modulus::{Modulus, OwnedModulus}, |
| 42 | modulusvalue::OwnedModulusValue, |
| 43 | private_exponent::PrivateExponent, |
| 44 | }; |
| 45 | use super::{inout::AliasingSlices3, limbs512, montgomery::*, LimbSliceError, MAX_LIMBS}; |
| 46 | use crate::{ |
| 47 | bits::BitLength, |
| 48 | c, |
| 49 | error::{self, LenMismatchError}, |
| 50 | limb::{self, Limb, LIMB_BITS}, |
| 51 | polyfill::slice::{self, AsChunks}, |
| 52 | }; |
| 53 | use core::{ |
| 54 | marker::PhantomData, |
| 55 | num::{NonZeroU64, NonZeroUsize}, |
| 56 | }; |
| 57 | |
| 58 | mod boxed_limbs; |
| 59 | mod modulus; |
| 60 | mod modulusvalue; |
| 61 | mod private_exponent; |
| 62 | |
| 63 | pub trait PublicModulus {} |
| 64 | |
| 65 | // When we need to create a new `Elem`, first we create a `Storage` and then |
| 66 | // move its `limbs` into the new element. When we want to recylce an `Elem`'s |
| 67 | // memory allocation, we convert it back into a `Storage`. |
| 68 | pub struct Storage<M> { |
| 69 | limbs: BoxedLimbs<M>, |
| 70 | } |
| 71 | |
| 72 | impl<M, E> From<Elem<M, E>> for Storage<M> { |
| 73 | fn from(elem: Elem<M, E>) -> Self { |
| 74 | Self { limbs: elem.limbs } |
| 75 | } |
| 76 | } |
| 77 | |
| 78 | /// Elements of ℤ/mℤ for some modulus *m*. |
| 79 | // |
| 80 | // Defaulting `E` to `Unencoded` is a convenience for callers from outside this |
| 81 | // submodule. However, for maximum clarity, we always explicitly use |
| 82 | // `Unencoded` within the `bigint` submodule. |
| 83 | pub struct Elem<M, E = Unencoded> { |
| 84 | limbs: BoxedLimbs<M>, |
| 85 | |
| 86 | /// The number of Montgomery factors that need to be canceled out from |
| 87 | /// `value` to get the actual value. |
| 88 | encoding: PhantomData<E>, |
| 89 | } |
| 90 | |
| 91 | impl<M, E> Elem<M, E> { |
| 92 | pub fn clone_into(&self, mut out: Storage<M>) -> Self { |
| 93 | out.limbs.copy_from_slice(&self.limbs); |
| 94 | Self { |
| 95 | limbs: out.limbs, |
| 96 | encoding: self.encoding, |
| 97 | } |
| 98 | } |
| 99 | } |
| 100 | |
| 101 | impl<M, E> Elem<M, E> { |
| 102 | #[inline ] |
| 103 | pub fn is_zero(&self) -> bool { |
| 104 | limb::limbs_are_zero_constant_time(&self.limbs).leak() |
| 105 | } |
| 106 | } |
| 107 | |
| 108 | /// Does a Montgomery reduction on `limbs` assuming they are Montgomery-encoded ('R') and assuming |
| 109 | /// they are the same size as `m`, but perhaps not reduced mod `m`. The result will be |
| 110 | /// fully reduced mod `m`. |
| 111 | /// |
| 112 | /// WARNING: Takes a `Storage` as an in/out value. |
| 113 | fn from_montgomery_amm<M>(mut in_out: Storage<M>, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| 114 | let mut one: [u64; 128] = [0; MAX_LIMBS]; |
| 115 | one[0] = 1; |
| 116 | let one: &[u64] = &one[..m.limbs().len()]; |
| 117 | limbs_mul_mont( |
| 118 | (&mut in_out.limbs[..], one), |
| 119 | m.limbs(), |
| 120 | m.n0(), |
| 121 | m.cpu_features(), |
| 122 | ) |
| 123 | .unwrap_or_else(op:unwrap_impossible_limb_slice_error); |
| 124 | Elem { |
| 125 | limbs: in_out.limbs, |
| 126 | encoding: PhantomData, |
| 127 | } |
| 128 | } |
| 129 | |
| 130 | #[cfg (any(test, not(target_arch = "x86_64" )))] |
| 131 | impl<M> Elem<M, R> { |
| 132 | #[inline ] |
| 133 | pub fn into_unencoded(self, m: &Modulus<M>) -> Elem<M, Unencoded> { |
| 134 | from_montgomery_amm(Storage::from(self), m) |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | impl<M> Elem<M, Unencoded> { |
| 139 | pub fn from_be_bytes_padded( |
| 140 | input: untrusted::Input, |
| 141 | m: &Modulus<M>, |
| 142 | ) -> Result<Self, error::Unspecified> { |
| 143 | Ok(Self { |
| 144 | limbs: BoxedLimbs::from_be_bytes_padded_less_than(input, m)?, |
| 145 | encoding: PhantomData, |
| 146 | }) |
| 147 | } |
| 148 | |
| 149 | #[inline ] |
| 150 | pub fn fill_be_bytes(&self, out: &mut [u8]) { |
| 151 | // See Falko Strenzke, "Manger's Attack revisited", ICICS 2010. |
| 152 | limb::big_endian_from_limbs(&self.limbs, out) |
| 153 | } |
| 154 | } |
| 155 | |
| 156 | pub fn elem_mul_into<M, AF, BF>( |
| 157 | mut out: Storage<M>, |
| 158 | a: &Elem<M, AF>, |
| 159 | b: &Elem<M, BF>, |
| 160 | m: &Modulus<M>, |
| 161 | ) -> Elem<M, <(AF, BF) as ProductEncoding>::Output> |
| 162 | where |
| 163 | (AF, BF): ProductEncoding, |
| 164 | { |
| 165 | limbs_mul_mont( |
| 166 | (out.limbs.as_mut(), b.limbs.as_ref(), a.limbs.as_ref()), |
| 167 | m.limbs(), |
| 168 | m.n0(), |
| 169 | m.cpu_features(), |
| 170 | ) |
| 171 | .unwrap_or_else(op:unwrap_impossible_limb_slice_error); |
| 172 | Elem { |
| 173 | limbs: out.limbs, |
| 174 | encoding: PhantomData, |
| 175 | } |
| 176 | } |
| 177 | |
| 178 | pub fn elem_mul<M, AF, BF>( |
| 179 | a: &Elem<M, AF>, |
| 180 | mut b: Elem<M, BF>, |
| 181 | m: &Modulus<M>, |
| 182 | ) -> Elem<M, <(AF, BF) as ProductEncoding>::Output> |
| 183 | where |
| 184 | (AF, BF): ProductEncoding, |
| 185 | { |
| 186 | limbs_mul_mont( |
| 187 | (&mut b.limbs[..], &a.limbs[..]), |
| 188 | m.limbs(), |
| 189 | m.n0(), |
| 190 | m.cpu_features(), |
| 191 | ) |
| 192 | .unwrap_or_else(op:unwrap_impossible_limb_slice_error); |
| 193 | Elem { |
| 194 | limbs: b.limbs, |
| 195 | encoding: PhantomData, |
| 196 | } |
| 197 | } |
| 198 | |
| 199 | // r *= 2. |
| 200 | fn elem_double<M, AF>(r: &mut Elem<M, AF>, m: &Modulus<M>) { |
| 201 | limb::limbs_double_mod(&mut r.limbs, m.limbs()) |
| 202 | .unwrap_or_else(op:unwrap_impossible_len_mismatch_error) |
| 203 | } |
| 204 | |
| 205 | // TODO: This is currently unused, but we intend to eventually use this to |
| 206 | // reduce elements (x mod q) mod p in the RSA CRT. If/when we do so, we |
| 207 | // should update the testing so it is reflective of that usage, instead of |
| 208 | // the old usage. |
| 209 | pub fn elem_reduced_once<A, M>( |
| 210 | mut r: Storage<M>, |
| 211 | a: &Elem<A, Unencoded>, |
| 212 | m: &Modulus<M>, |
| 213 | other_modulus_len_bits: BitLength, |
| 214 | ) -> Elem<M, Unencoded> { |
| 215 | assert_eq!(m.len_bits(), other_modulus_len_bits); |
| 216 | r.limbs.copy_from_slice(&a.limbs); |
| 217 | limb::limbs_reduce_once_constant_time(&mut r.limbs, m.limbs()) |
| 218 | .unwrap_or_else(op:unwrap_impossible_len_mismatch_error); |
| 219 | Elem { |
| 220 | limbs: r.limbs, |
| 221 | encoding: PhantomData, |
| 222 | } |
| 223 | } |
| 224 | |
| 225 | #[inline ] |
| 226 | pub fn elem_reduced<Larger, Smaller>( |
| 227 | mut r: Storage<Smaller>, |
| 228 | a: &Elem<Larger, Unencoded>, |
| 229 | m: &Modulus<Smaller>, |
| 230 | other_prime_len_bits: BitLength, |
| 231 | ) -> Elem<Smaller, RInverse> { |
| 232 | // This is stricter than required mathematically but this is what we |
| 233 | // guarantee and this is easier to check. The real requirement is that |
| 234 | // that `a < m*R` where `R` is the Montgomery `R` for `m`. |
| 235 | assert_eq!(other_prime_len_bits, m.len_bits()); |
| 236 | |
| 237 | // `limbs_from_mont_in_place` requires this. |
| 238 | assert_eq!(a.limbs.len(), m.limbs().len() * 2); |
| 239 | |
| 240 | let mut tmp: [u64; 128] = [0; MAX_LIMBS]; |
| 241 | let tmp: &mut [u64] = &mut tmp[..a.limbs.len()]; |
| 242 | tmp.copy_from_slice(&a.limbs); |
| 243 | |
| 244 | limbs_from_mont_in_place(&mut r.limbs, tmp, m.limbs(), m.n0()); |
| 245 | Elem { |
| 246 | limbs: r.limbs, |
| 247 | encoding: PhantomData, |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | #[inline ] |
| 252 | fn elem_squared<M, E>( |
| 253 | mut a: Elem<M, E>, |
| 254 | m: &Modulus<M>, |
| 255 | ) -> Elem<M, <(E, E) as ProductEncoding>::Output> |
| 256 | where |
| 257 | (E, E): ProductEncoding, |
| 258 | { |
| 259 | limbs_square_mont(&mut a.limbs, m.limbs(), m.n0(), m.cpu_features()) |
| 260 | .unwrap_or_else(op:unwrap_impossible_limb_slice_error); |
| 261 | Elem { |
| 262 | limbs: a.limbs, |
| 263 | encoding: PhantomData, |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | pub fn elem_widen<Larger, Smaller>( |
| 268 | mut r: Storage<Larger>, |
| 269 | a: Elem<Smaller, Unencoded>, |
| 270 | m: &Modulus<Larger>, |
| 271 | smaller_modulus_bits: BitLength, |
| 272 | ) -> Result<Elem<Larger, Unencoded>, error::Unspecified> { |
| 273 | if smaller_modulus_bits >= m.len_bits() { |
| 274 | return Err(error::Unspecified); |
| 275 | } |
| 276 | let (to_copy: &mut [u64], to_zero: &mut [u64]) = r.limbs.split_at_mut(mid:a.limbs.len()); |
| 277 | to_copy.copy_from_slice(&a.limbs); |
| 278 | to_zero.fill(0); |
| 279 | Ok(Elem { |
| 280 | limbs: r.limbs, |
| 281 | encoding: PhantomData, |
| 282 | }) |
| 283 | } |
| 284 | |
| 285 | // TODO: Document why this works for all Montgomery factors. |
| 286 | pub fn elem_add<M, E>(mut a: Elem<M, E>, b: Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| 287 | limb::limbs_add_assign_mod(&mut a.limbs, &b.limbs, m.limbs()) |
| 288 | .unwrap_or_else(op:unwrap_impossible_len_mismatch_error); |
| 289 | a |
| 290 | } |
| 291 | |
| 292 | // TODO: Document why this works for all Montgomery factors. |
| 293 | pub fn elem_sub<M, E>(mut a: Elem<M, E>, b: &Elem<M, E>, m: &Modulus<M>) -> Elem<M, E> { |
| 294 | prefixed_extern! { |
| 295 | // `r` and `a` may alias. |
| 296 | fn LIMBS_sub_mod( |
| 297 | r: *mut Limb, |
| 298 | a: *const Limb, |
| 299 | b: *const Limb, |
| 300 | m: *const Limb, |
| 301 | num_limbs: c::NonZero_size_t, |
| 302 | ); |
| 303 | } |
| 304 | let num_limbs: NonZero = NonZeroUsize::new(m.limbs().len()).unwrap(); |
| 305 | (a.limbs.as_mut(), b.limbs.as_ref()) |
| 306 | .with_non_dangling_non_null_pointers_rab(num_limbs, |r, a, b| { |
| 307 | let m = m.limbs().as_ptr(); // Also non-dangling because num_limbs is non-zero. |
| 308 | unsafe { LIMBS_sub_mod(r, a, b, m, num_limbs) } |
| 309 | }) |
| 310 | .unwrap_or_else(op:unwrap_impossible_len_mismatch_error); |
| 311 | a |
| 312 | } |
| 313 | |
| 314 | // The value 1, Montgomery-encoded some number of times. |
| 315 | pub struct One<M, E>(Elem<M, E>); |
| 316 | |
| 317 | impl<M> One<M, RR> { |
| 318 | // Returns RR = = R**2 (mod n) where R = 2**r is the smallest power of |
| 319 | // 2**LIMB_BITS such that R > m. |
| 320 | // |
| 321 | // Even though the assembly on some 32-bit platforms works with 64-bit |
| 322 | // values, using `LIMB_BITS` here, rather than `N0::LIMBS_USED * LIMB_BITS`, |
| 323 | // is correct because R**2 will still be a multiple of the latter as |
| 324 | // `N0::LIMBS_USED` is either one or two. |
| 325 | pub(crate) fn newRR(mut out: Storage<M>, m: &Modulus<M>) -> Self { |
| 326 | // The number of limbs in the numbers involved. |
| 327 | let w = m.limbs().len(); |
| 328 | |
| 329 | // The length of the numbers involved, in bits. R = 2**r. |
| 330 | let r = w * LIMB_BITS; |
| 331 | |
| 332 | m.oneR(&mut out.limbs); |
| 333 | let mut acc: Elem<M, R> = Elem { |
| 334 | limbs: out.limbs, |
| 335 | encoding: PhantomData, |
| 336 | }; |
| 337 | |
| 338 | // 2**t * R can be calculated by t doublings starting with R. |
| 339 | // |
| 340 | // Choose a t that divides r and where t doublings are cheaper than 1 squaring. |
| 341 | // |
| 342 | // We could choose other values of t than w. But if t < d then the exponentiation that |
| 343 | // follows would require multiplications. Normally d is 1 (i.e. the modulus length is a |
| 344 | // power of two: RSA 1024, 2048, 4097, 8192) or 3 (RSA 1536, 3072). |
| 345 | // |
| 346 | // XXX(perf): Currently t = w / 2 is slightly faster. TODO(perf): Optimize `elem_double` |
| 347 | // and re-run benchmarks to rebalance this. |
| 348 | let t = w; |
| 349 | let z = w.trailing_zeros(); |
| 350 | let d = w >> z; |
| 351 | debug_assert_eq!(w, d * (1 << z)); |
| 352 | debug_assert!(d <= t); |
| 353 | debug_assert!(t < r); |
| 354 | for _ in 0..t { |
| 355 | elem_double(&mut acc, m); |
| 356 | } |
| 357 | |
| 358 | // Because t | r: |
| 359 | // |
| 360 | // MontExp(2**t * R, r / t) |
| 361 | // = (2**t)**(r / t) * R (mod m) by definition of MontExp. |
| 362 | // = (2**t)**(1/t * r) * R (mod m) |
| 363 | // = (2**(t * 1/t))**r * R (mod m) |
| 364 | // = (2**1)**r * R (mod m) |
| 365 | // = 2**r * R (mod m) |
| 366 | // = R * R (mod m) |
| 367 | // = RR |
| 368 | // |
| 369 | // Like BoringSSL, use t = w (`m.limbs.len()`) which ensures that the exponent is a power |
| 370 | // of two. Consequently, there will be no multiplications in the Montgomery exponentiation; |
| 371 | // there will only be lg(r / t) squarings. |
| 372 | // |
| 373 | // lg(r / t) |
| 374 | // = lg((w * 2**b) / t) |
| 375 | // = lg((t * 2**b) / t) |
| 376 | // = lg(2**b) |
| 377 | // = b |
| 378 | // TODO(MSRV:1.67): const B: u32 = LIMB_BITS.ilog2(); |
| 379 | const B: u32 = if cfg!(target_pointer_width = "64" ) { |
| 380 | 6 |
| 381 | } else if cfg!(target_pointer_width = "32" ) { |
| 382 | 5 |
| 383 | } else { |
| 384 | panic!("unsupported target_pointer_width" ) |
| 385 | }; |
| 386 | #[allow (clippy::assertions_on_constants)] |
| 387 | const _LIMB_BITS_IS_2_POW_B: () = assert!(LIMB_BITS == 1 << B); |
| 388 | debug_assert_eq!(r, t * (1 << B)); |
| 389 | for _ in 0..B { |
| 390 | acc = elem_squared(acc, m); |
| 391 | } |
| 392 | |
| 393 | Self(Elem { |
| 394 | limbs: acc.limbs, |
| 395 | encoding: PhantomData, // PhantomData<RR> |
| 396 | }) |
| 397 | } |
| 398 | } |
| 399 | |
| 400 | impl<M> One<M, RRR> { |
| 401 | pub(crate) fn newRRR(One(oneRR: Elem): One<M, RR>, m: &Modulus<M>) -> Self { |
| 402 | Self(elem_squared(a:oneRR, m)) |
| 403 | } |
| 404 | } |
| 405 | |
| 406 | impl<M, E> AsRef<Elem<M, E>> for One<M, E> { |
| 407 | fn as_ref(&self) -> &Elem<M, E> { |
| 408 | &self.0 |
| 409 | } |
| 410 | } |
| 411 | |
| 412 | impl<M: PublicModulus, E> One<M, E> { |
| 413 | pub fn clone_into(&self, out: Storage<M>) -> Self { |
| 414 | Self(self.0.clone_into(out)) |
| 415 | } |
| 416 | } |
| 417 | |
| 418 | /// Calculates base**exponent (mod m). |
| 419 | /// |
| 420 | /// The run time is a function of the number of limbs in `m` and the bit |
| 421 | /// length and Hamming Weight of `exponent`. The bounds on `m` are pretty |
| 422 | /// obvious but the bounds on `exponent` are less obvious. Callers should |
| 423 | /// document the bounds they place on the maximum value and maximum Hamming |
| 424 | /// weight of `exponent`. |
| 425 | // TODO: The test coverage needs to be expanded, e.g. test with the largest |
| 426 | // accepted exponent and with the most common values of 65537 and 3. |
| 427 | pub(crate) fn elem_exp_vartime<M>( |
| 428 | out: Storage<M>, |
| 429 | base: Elem<M, R>, |
| 430 | exponent: NonZeroU64, |
| 431 | m: &Modulus<M>, |
| 432 | ) -> Elem<M, R> { |
| 433 | // Use what [Knuth] calls the "S-and-X binary method", i.e. variable-time |
| 434 | // square-and-multiply that scans the exponent from the most significant |
| 435 | // bit to the least significant bit (left-to-right). Left-to-right requires |
| 436 | // less storage compared to right-to-left scanning, at the cost of needing |
| 437 | // to compute `exponent.leading_zeros()`, which we assume to be cheap. |
| 438 | // |
| 439 | // As explained in [Knuth], exponentiation by squaring is the most |
| 440 | // efficient algorithm when the Hamming weight is 2 or less. It isn't the |
| 441 | // most efficient for all other, uncommon, exponent values but any |
| 442 | // suboptimality is bounded at least by the small bit length of `exponent` |
| 443 | // as enforced by its type. |
| 444 | // |
| 445 | // This implementation is slightly simplified by taking advantage of the |
| 446 | // fact that we require the exponent to be a positive integer. |
| 447 | // |
| 448 | // [Knuth]: The Art of Computer Programming, Volume 2: Seminumerical |
| 449 | // Algorithms (3rd Edition), Section 4.6.3. |
| 450 | let exponent = exponent.get(); |
| 451 | let mut acc = base.clone_into(out); |
| 452 | let mut bit = 1 << (64 - 1 - exponent.leading_zeros()); |
| 453 | debug_assert!((exponent & bit) != 0); |
| 454 | while bit > 1 { |
| 455 | bit >>= 1; |
| 456 | acc = elem_squared(acc, m); |
| 457 | if (exponent & bit) != 0 { |
| 458 | acc = elem_mul(&base, acc, m); |
| 459 | } |
| 460 | } |
| 461 | acc |
| 462 | } |
| 463 | |
| 464 | pub fn elem_exp_consttime<N, P>( |
| 465 | out: Storage<P>, |
| 466 | base: &Elem<N>, |
| 467 | oneRRR: &One<P, RRR>, |
| 468 | exponent: &PrivateExponent, |
| 469 | p: &Modulus<P>, |
| 470 | other_prime_len_bits: BitLength, |
| 471 | ) -> Result<Elem<P, Unencoded>, LimbSliceError> { |
| 472 | // `elem_exp_consttime_inner` is parameterized on `STORAGE_LIMBS` only so |
| 473 | // we can run tests with larger-than-supported-in-operation test vectors. |
| 474 | elem_exp_consttime_inner::<N, P, { ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS * STORAGE_ENTRIES }>( |
| 475 | out, |
| 476 | base, |
| 477 | oneRRR, |
| 478 | exponent, |
| 479 | m:p, |
| 480 | other_prime_len_bits, |
| 481 | ) |
| 482 | } |
| 483 | |
| 484 | // The maximum modulus size supported for `elem_exp_consttime` in normal |
| 485 | // operation. |
| 486 | const ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS: usize = 2048 / LIMB_BITS; |
| 487 | const _LIMBS_PER_CHUNK_DIVIDES_ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS: () = |
| 488 | assert!(ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS % limbs512::LIMBS_PER_CHUNK == 0); |
| 489 | const WINDOW_BITS: u32 = 5; |
| 490 | const TABLE_ENTRIES: usize = 1 << WINDOW_BITS; |
| 491 | const STORAGE_ENTRIES: usize = TABLE_ENTRIES + if cfg!(target_arch = "x86_64" ) { 3 } else { 0 }; |
| 492 | |
| 493 | #[cfg (not(target_arch = "x86_64" ))] |
| 494 | fn elem_exp_consttime_inner<N, M, const STORAGE_LIMBS: usize>( |
| 495 | out: Storage<M>, |
| 496 | base_mod_n: &Elem<N>, |
| 497 | oneRRR: &One<M, RRR>, |
| 498 | exponent: &PrivateExponent, |
| 499 | m: &Modulus<M>, |
| 500 | other_prime_len_bits: BitLength, |
| 501 | ) -> Result<Elem<M, Unencoded>, LimbSliceError> { |
| 502 | use crate::{bssl, limb::Window}; |
| 503 | |
| 504 | let base_rinverse: Elem<M, RInverse> = elem_reduced(out, base_mod_n, m, other_prime_len_bits); |
| 505 | |
| 506 | let num_limbs = m.limbs().len(); |
| 507 | let m_chunked: AsChunks<Limb, { limbs512::LIMBS_PER_CHUNK }> = match slice::as_chunks(m.limbs()) |
| 508 | { |
| 509 | (m, []) => m, |
| 510 | _ => { |
| 511 | return Err(LimbSliceError::len_mismatch(LenMismatchError::new( |
| 512 | num_limbs, |
| 513 | ))) |
| 514 | } |
| 515 | }; |
| 516 | let cpe = m_chunked.len(); // 512-bit chunks per entry. |
| 517 | |
| 518 | // This code doesn't have the strict alignment requirements that the x86_64 |
| 519 | // version does, but uses the same aligned storage for convenience. |
| 520 | assert!(STORAGE_LIMBS % (STORAGE_ENTRIES * limbs512::LIMBS_PER_CHUNK) == 0); // TODO: `const` |
| 521 | let mut table = limbs512::AlignedStorage::<STORAGE_LIMBS>::zeroed(); |
| 522 | let mut table = table |
| 523 | .aligned_chunks_mut(TABLE_ENTRIES, cpe) |
| 524 | .map_err(LimbSliceError::len_mismatch)?; |
| 525 | |
| 526 | // TODO: Rewrite the below in terms of `AsChunks`. |
| 527 | let table = table.as_flattened_mut(); |
| 528 | |
| 529 | fn gather<M>(table: &[Limb], acc: &mut Elem<M, R>, i: Window) { |
| 530 | prefixed_extern! { |
| 531 | fn LIMBS_select_512_32( |
| 532 | r: *mut Limb, |
| 533 | table: *const Limb, |
| 534 | num_limbs: c::size_t, |
| 535 | i: Window, |
| 536 | ) -> bssl::Result; |
| 537 | } |
| 538 | Result::from(unsafe { |
| 539 | LIMBS_select_512_32(acc.limbs.as_mut_ptr(), table.as_ptr(), acc.limbs.len(), i) |
| 540 | }) |
| 541 | .unwrap(); |
| 542 | } |
| 543 | |
| 544 | fn power<M>( |
| 545 | table: &[Limb], |
| 546 | mut acc: Elem<M, R>, |
| 547 | m: &Modulus<M>, |
| 548 | i: Window, |
| 549 | mut tmp: Elem<M, R>, |
| 550 | ) -> (Elem<M, R>, Elem<M, R>) { |
| 551 | for _ in 0..WINDOW_BITS { |
| 552 | acc = elem_squared(acc, m); |
| 553 | } |
| 554 | gather(table, &mut tmp, i); |
| 555 | let acc = elem_mul(&tmp, acc, m); |
| 556 | (acc, tmp) |
| 557 | } |
| 558 | |
| 559 | fn entry(table: &[Limb], i: usize, num_limbs: usize) -> &[Limb] { |
| 560 | &table[(i * num_limbs)..][..num_limbs] |
| 561 | } |
| 562 | fn entry_mut(table: &mut [Limb], i: usize, num_limbs: usize) -> &mut [Limb] { |
| 563 | &mut table[(i * num_limbs)..][..num_limbs] |
| 564 | } |
| 565 | |
| 566 | // table[0] = base**0 (i.e. 1). |
| 567 | m.oneR(entry_mut(table, 0, num_limbs)); |
| 568 | |
| 569 | // table[1] = base*R == (base/R * RRR)/R |
| 570 | limbs_mul_mont( |
| 571 | ( |
| 572 | entry_mut(table, 1, num_limbs), |
| 573 | base_rinverse.limbs.as_ref(), |
| 574 | oneRRR.as_ref().limbs.as_ref(), |
| 575 | ), |
| 576 | m.limbs(), |
| 577 | m.n0(), |
| 578 | m.cpu_features(), |
| 579 | )?; |
| 580 | for i in 2..TABLE_ENTRIES { |
| 581 | let (src1, src2) = if i % 2 == 0 { |
| 582 | (i / 2, i / 2) |
| 583 | } else { |
| 584 | (i - 1, 1) |
| 585 | }; |
| 586 | let (previous, rest) = table.split_at_mut(num_limbs * i); |
| 587 | let src1 = entry(previous, src1, num_limbs); |
| 588 | let src2 = entry(previous, src2, num_limbs); |
| 589 | let dst = entry_mut(rest, 0, num_limbs); |
| 590 | limbs_mul_mont((dst, src1, src2), m.limbs(), m.n0(), m.cpu_features())?; |
| 591 | } |
| 592 | |
| 593 | let mut acc = Elem { |
| 594 | limbs: base_rinverse.limbs, |
| 595 | encoding: PhantomData, |
| 596 | }; |
| 597 | let tmp = m.alloc_zero(); |
| 598 | let tmp = Elem { |
| 599 | limbs: tmp.limbs, |
| 600 | encoding: PhantomData, |
| 601 | }; |
| 602 | let (acc, _) = limb::fold_5_bit_windows( |
| 603 | exponent.limbs(), |
| 604 | |initial_window| { |
| 605 | gather(&table, &mut acc, initial_window); |
| 606 | (acc, tmp) |
| 607 | }, |
| 608 | |(acc, tmp), window| power(&table, acc, m, window, tmp), |
| 609 | ); |
| 610 | |
| 611 | Ok(acc.into_unencoded(m)) |
| 612 | } |
| 613 | |
| 614 | #[cfg (target_arch = "x86_64" )] |
| 615 | fn elem_exp_consttime_inner<N, M, const STORAGE_LIMBS: usize>( |
| 616 | out: Storage<M>, |
| 617 | base_mod_n: &Elem<N>, |
| 618 | oneRRR: &One<M, RRR>, |
| 619 | exponent: &PrivateExponent, |
| 620 | m: &Modulus<M>, |
| 621 | other_prime_len_bits: BitLength, |
| 622 | ) -> Result<Elem<M, Unencoded>, LimbSliceError> { |
| 623 | use super::x86_64_mont::{ |
| 624 | gather5, mul_mont5, mul_mont_gather5_amm, power5_amm, scatter5, sqr_mont5, |
| 625 | }; |
| 626 | use crate::{ |
| 627 | cpu::{ |
| 628 | intel::{Adx, Bmi2}, |
| 629 | GetFeature as _, |
| 630 | }, |
| 631 | limb::{LeakyWindow, Window}, |
| 632 | polyfill::slice::AsChunksMut, |
| 633 | }; |
| 634 | |
| 635 | let n0 = m.n0(); |
| 636 | |
| 637 | let cpu2 = m.cpu_features().get_feature(); |
| 638 | let cpu3 = m.cpu_features().get_feature(); |
| 639 | |
| 640 | if base_mod_n.limbs.len() != m.limbs().len() * 2 { |
| 641 | return Err(LimbSliceError::len_mismatch(LenMismatchError::new( |
| 642 | base_mod_n.limbs.len(), |
| 643 | ))); |
| 644 | } |
| 645 | |
| 646 | let m_original: AsChunks<Limb, 8> = match slice::as_chunks(m.limbs()) { |
| 647 | (m, []) => m, |
| 648 | _ => return Err(LimbSliceError::len_mismatch(LenMismatchError::new(8))), |
| 649 | }; |
| 650 | let cpe = m_original.len(); // 512-bit chunks per entry |
| 651 | |
| 652 | let oneRRR = &oneRRR.as_ref().limbs; |
| 653 | let oneRRR = match slice::as_chunks(oneRRR) { |
| 654 | (c, []) => c, |
| 655 | _ => { |
| 656 | return Err(LimbSliceError::len_mismatch(LenMismatchError::new( |
| 657 | oneRRR.len(), |
| 658 | ))) |
| 659 | } |
| 660 | }; |
| 661 | |
| 662 | // The x86_64 assembly was written under the assumption that the input data |
| 663 | // is aligned to `MOD_EXP_CTIME_ALIGN` bytes, which was/is 64 in OpenSSL. |
| 664 | // Subsequently, it was changed such that, according to BoringSSL, they |
| 665 | // only require 16 byte alignment. We enforce the old, stronger, alignment |
| 666 | // unless/until we can see a benefit to reducing it. |
| 667 | // |
| 668 | // Similarly, OpenSSL uses the x86_64 assembly functions by giving it only |
| 669 | // inputs `tmp`, `am`, and `np` that immediately follow the table. |
| 670 | // According to BoringSSL, in older versions of the OpenSSL code, this |
| 671 | // extra space was required for memory safety because the assembly code |
| 672 | // would over-read the table; according to BoringSSL, this is no longer the |
| 673 | // case. Regardless, the upstream code also contained comments implying |
| 674 | // that this was also important for performance. For now, we do as OpenSSL |
| 675 | // did/does. |
| 676 | const MOD_EXP_CTIME_ALIGN: usize = 64; |
| 677 | // Required by |
| 678 | const _TABLE_ENTRIES_IS_32: () = assert!(TABLE_ENTRIES == 32); |
| 679 | const _STORAGE_ENTRIES_HAS_3_EXTRA: () = assert!(STORAGE_ENTRIES == TABLE_ENTRIES + 3); |
| 680 | |
| 681 | assert!(STORAGE_LIMBS % (STORAGE_ENTRIES * limbs512::LIMBS_PER_CHUNK) == 0); // TODO: `const` |
| 682 | let mut table = limbs512::AlignedStorage::<STORAGE_LIMBS>::zeroed(); |
| 683 | let mut table = table |
| 684 | .aligned_chunks_mut(STORAGE_ENTRIES, cpe) |
| 685 | .map_err(LimbSliceError::len_mismatch)?; |
| 686 | let (mut table, mut state) = table.split_at_mut(TABLE_ENTRIES * cpe); |
| 687 | assert_eq!((table.as_ptr() as usize) % MOD_EXP_CTIME_ALIGN, 0); |
| 688 | |
| 689 | // These are named `(tmp, am, np)` in BoringSSL. |
| 690 | let (mut acc, mut rest) = state.split_at_mut(cpe); |
| 691 | let (mut base_cached, mut m_cached) = rest.split_at_mut(cpe); |
| 692 | |
| 693 | // "To improve cache locality" according to upstream. |
| 694 | m_cached |
| 695 | .as_flattened_mut() |
| 696 | .copy_from_slice(m_original.as_flattened()); |
| 697 | let m_cached = m_cached.as_ref(); |
| 698 | |
| 699 | let out: Elem<M, RInverse> = elem_reduced(out, base_mod_n, m, other_prime_len_bits); |
| 700 | let base_rinverse = match slice::as_chunks(&out.limbs) { |
| 701 | (c, []) => c, |
| 702 | _ => { |
| 703 | return Err(LimbSliceError::len_mismatch(LenMismatchError::new( |
| 704 | out.limbs.len(), |
| 705 | ))) |
| 706 | } |
| 707 | }; |
| 708 | |
| 709 | // base_cached = base*R == (base/R * RRR)/R |
| 710 | mul_mont5( |
| 711 | base_cached.as_mut(), |
| 712 | base_rinverse, |
| 713 | oneRRR, |
| 714 | m_cached, |
| 715 | n0, |
| 716 | cpu2, |
| 717 | )?; |
| 718 | let base_cached = base_cached.as_ref(); |
| 719 | let mut out = Storage::from(out); // recycle. |
| 720 | |
| 721 | // Fill in all the powers of 2 of `acc` into the table using only squaring and without any |
| 722 | // gathering, storing the last calculated power into `acc`. |
| 723 | fn scatter_powers_of_2( |
| 724 | mut table: AsChunksMut<Limb, 8>, |
| 725 | mut acc: AsChunksMut<Limb, 8>, |
| 726 | m_cached: AsChunks<Limb, 8>, |
| 727 | n0: &N0, |
| 728 | mut i: LeakyWindow, |
| 729 | cpu: Option<(Adx, Bmi2)>, |
| 730 | ) -> Result<(), LimbSliceError> { |
| 731 | loop { |
| 732 | scatter5(acc.as_ref(), table.as_mut(), i)?; |
| 733 | i *= 2; |
| 734 | if i >= TABLE_ENTRIES as LeakyWindow { |
| 735 | break; |
| 736 | } |
| 737 | sqr_mont5(acc.as_mut(), m_cached, n0, cpu)?; |
| 738 | } |
| 739 | Ok(()) |
| 740 | } |
| 741 | |
| 742 | // All entries in `table` will be Montgomery encoded. |
| 743 | |
| 744 | // acc = table[0] = base**0 (i.e. 1). |
| 745 | m.oneR(acc.as_flattened_mut()); |
| 746 | scatter5(acc.as_ref(), table.as_mut(), 0)?; |
| 747 | |
| 748 | // acc = base**1 (i.e. base). |
| 749 | acc.as_flattened_mut() |
| 750 | .copy_from_slice(base_cached.as_flattened()); |
| 751 | |
| 752 | // Fill in entries 1, 2, 4, 8, 16. |
| 753 | scatter_powers_of_2(table.as_mut(), acc.as_mut(), m_cached, n0, 1, cpu2)?; |
| 754 | // Fill in entries 3, 6, 12, 24; 5, 10, 20, 30; 7, 14, 28; 9, 18; 11, 22; 13, 26; 15, 30; |
| 755 | // 17; 19; 21; 23; 25; 27; 29; 31. |
| 756 | for i in (3..(TABLE_ENTRIES as LeakyWindow)).step_by(2) { |
| 757 | let power = Window::from(i - 1); |
| 758 | assert!(power < 32); // Not secret, |
| 759 | unsafe { |
| 760 | mul_mont_gather5_amm( |
| 761 | acc.as_mut(), |
| 762 | base_cached, |
| 763 | table.as_ref(), |
| 764 | m_cached, |
| 765 | n0, |
| 766 | power, |
| 767 | cpu3, |
| 768 | ) |
| 769 | }?; |
| 770 | scatter_powers_of_2(table.as_mut(), acc.as_mut(), m_cached, n0, i, cpu2)?; |
| 771 | } |
| 772 | |
| 773 | let table = table.as_ref(); |
| 774 | |
| 775 | let acc = limb::fold_5_bit_windows( |
| 776 | exponent.limbs(), |
| 777 | |initial_window| { |
| 778 | unsafe { gather5(acc.as_mut(), table, initial_window) } |
| 779 | .unwrap_or_else(unwrap_impossible_limb_slice_error); |
| 780 | acc |
| 781 | }, |
| 782 | |mut acc, window| { |
| 783 | unsafe { power5_amm(acc.as_mut(), table, m_cached, n0, window, cpu3) } |
| 784 | .unwrap_or_else(unwrap_impossible_limb_slice_error); |
| 785 | acc |
| 786 | }, |
| 787 | ); |
| 788 | |
| 789 | // Reuse `base_rinverse`'s limbs to save an allocation. |
| 790 | out.limbs.copy_from_slice(acc.as_flattened()); |
| 791 | Ok(from_montgomery_amm(out, m)) |
| 792 | } |
| 793 | |
| 794 | /// Verified a == b**-1 (mod m), i.e. a**-1 == b (mod m). |
| 795 | pub fn verify_inverses_consttime<M>( |
| 796 | a: &Elem<M, R>, |
| 797 | b: Elem<M, Unencoded>, |
| 798 | m: &Modulus<M>, |
| 799 | ) -> Result<(), error::Unspecified> { |
| 800 | let r: Elem = elem_mul(a, b, m); |
| 801 | limb::verify_limbs_equal_1_leak_bit(&r.limbs) |
| 802 | } |
| 803 | |
| 804 | #[inline ] |
| 805 | pub fn elem_verify_equal_consttime<M, E>( |
| 806 | a: &Elem<M, E>, |
| 807 | b: &Elem<M, E>, |
| 808 | ) -> Result<(), error::Unspecified> { |
| 809 | let equal: BoolMask = limb::limbs_equal_limbs_consttime(&a.limbs, &b.limbs) |
| 810 | .unwrap_or_else(op:unwrap_impossible_len_mismatch_error); |
| 811 | if !equal.leak() { |
| 812 | return Err(error::Unspecified); |
| 813 | } |
| 814 | Ok(()) |
| 815 | } |
| 816 | |
| 817 | #[cold ] |
| 818 | #[inline (never)] |
| 819 | fn unwrap_impossible_len_mismatch_error<T>(LenMismatchError { .. }: LenMismatchError) -> T { |
| 820 | unreachable!() |
| 821 | } |
| 822 | |
| 823 | #[cold ] |
| 824 | #[inline (never)] |
| 825 | fn unwrap_impossible_limb_slice_error(err: LimbSliceError) { |
| 826 | match err { |
| 827 | LimbSliceError::LenMismatch(_) => unreachable!(), |
| 828 | LimbSliceError::TooShort(_) => unreachable!(), |
| 829 | LimbSliceError::TooLong(_) => unreachable!(), |
| 830 | } |
| 831 | } |
| 832 | |
| 833 | #[cfg (test)] |
| 834 | mod tests { |
| 835 | use super::*; |
| 836 | use crate::{cpu, test}; |
| 837 | |
| 838 | // Type-level representation of an arbitrary modulus. |
| 839 | struct M {} |
| 840 | |
| 841 | impl PublicModulus for M {} |
| 842 | |
| 843 | #[test ] |
| 844 | fn test_elem_exp_consttime() { |
| 845 | let cpu_features = cpu::features(); |
| 846 | test::run( |
| 847 | test_file!("../../crypto/fipsmodule/bn/test/mod_exp_tests.txt" ), |
| 848 | |section, test_case| { |
| 849 | assert_eq!(section, "" ); |
| 850 | |
| 851 | let m = consume_modulus::<M>(test_case , "M" ); |
| 852 | let m = m.modulus(cpu_features); |
| 853 | let expected_result = consume_elem(test_case , "ModExp" , &m); |
| 854 | let base = consume_elem(test_case , "A" , &m); |
| 855 | let e = { |
| 856 | let bytes = test_case .consume_bytes("E" ); |
| 857 | PrivateExponent::from_be_bytes_for_test_only(untrusted::Input::from(&bytes), &m) |
| 858 | .expect("valid exponent" ) |
| 859 | }; |
| 860 | |
| 861 | let oneRR = One::newRR(m.alloc_zero(), &m); |
| 862 | let oneRRR = One::newRRR(oneRR, &m); |
| 863 | |
| 864 | // `base` in the test vectors is reduced (mod M) already but |
| 865 | // the API expects the bsae to be (mod N) where N = M * P for |
| 866 | // some other prime of the same length. Fake that here. |
| 867 | // Pretend there's another prime of equal length. |
| 868 | struct N {} |
| 869 | let other_modulus_len_bits = m.len_bits(); |
| 870 | let base: Elem<N> = { |
| 871 | let mut limbs = BoxedLimbs::zero(base.limbs.len() * 2); |
| 872 | limbs[..base.limbs.len()].copy_from_slice(&base.limbs); |
| 873 | Elem { |
| 874 | limbs, |
| 875 | encoding: PhantomData, |
| 876 | } |
| 877 | }; |
| 878 | |
| 879 | let too_big = m.limbs().len() > ELEM_EXP_CONSTTIME_MAX_MODULUS_LIMBS; |
| 880 | let actual_result = if !too_big { |
| 881 | elem_exp_consttime( |
| 882 | m.alloc_zero(), |
| 883 | &base, |
| 884 | &oneRRR, |
| 885 | &e, |
| 886 | &m, |
| 887 | other_modulus_len_bits, |
| 888 | ) |
| 889 | } else { |
| 890 | let actual_result = elem_exp_consttime( |
| 891 | m.alloc_zero(), |
| 892 | &base, |
| 893 | &oneRRR, |
| 894 | &e, |
| 895 | &m, |
| 896 | other_modulus_len_bits, |
| 897 | ); |
| 898 | // TODO: Be more specific with which error we expect? |
| 899 | assert!(actual_result.is_err()); |
| 900 | // Try again with a larger-than-normally-supported limit |
| 901 | elem_exp_consttime_inner::<_, _, { (4096 / LIMB_BITS) * STORAGE_ENTRIES }>( |
| 902 | m.alloc_zero(), |
| 903 | &base, |
| 904 | &oneRRR, |
| 905 | &e, |
| 906 | &m, |
| 907 | other_modulus_len_bits, |
| 908 | ) |
| 909 | }; |
| 910 | match actual_result { |
| 911 | Ok(r) => assert_elem_eq(&r, &expected_result), |
| 912 | Err(LimbSliceError::LenMismatch { .. }) => panic!(), |
| 913 | Err(LimbSliceError::TooLong { .. }) => panic!(), |
| 914 | Err(LimbSliceError::TooShort { .. }) => panic!(), |
| 915 | }; |
| 916 | |
| 917 | Ok(()) |
| 918 | }, |
| 919 | ) |
| 920 | } |
| 921 | |
| 922 | // TODO: fn test_elem_exp_vartime() using |
| 923 | // "src/rsa/bigint_elem_exp_vartime_tests.txt". See that file for details. |
| 924 | // In the meantime, the function is tested indirectly via the RSA |
| 925 | // verification and signing tests. |
| 926 | #[test ] |
| 927 | fn test_elem_mul() { |
| 928 | let cpu_features = cpu::features(); |
| 929 | test::run( |
| 930 | test_file!("../../crypto/fipsmodule/bn/test/mod_mul_tests.txt" ), |
| 931 | |section, test_case| { |
| 932 | assert_eq!(section, "" ); |
| 933 | |
| 934 | let m = consume_modulus::<M>(test_case , "M" ); |
| 935 | let m = m.modulus(cpu_features); |
| 936 | let expected_result = consume_elem(test_case , "ModMul" , &m); |
| 937 | let a = consume_elem(test_case , "A" , &m); |
| 938 | let b = consume_elem(test_case , "B" , &m); |
| 939 | |
| 940 | let b = into_encoded(m.alloc_zero(), b, &m); |
| 941 | let a = into_encoded(m.alloc_zero(), a, &m); |
| 942 | let actual_result = elem_mul(&a, b, &m); |
| 943 | let actual_result = actual_result.into_unencoded(&m); |
| 944 | assert_elem_eq(&actual_result, &expected_result); |
| 945 | |
| 946 | Ok(()) |
| 947 | }, |
| 948 | ) |
| 949 | } |
| 950 | |
| 951 | #[test ] |
| 952 | fn test_elem_squared() { |
| 953 | let cpu_features = cpu::features(); |
| 954 | test::run( |
| 955 | test_file!("bigint_elem_squared_tests.txt" ), |
| 956 | |section, test_case| { |
| 957 | assert_eq!(section, "" ); |
| 958 | |
| 959 | let m = consume_modulus::<M>(test_case , "M" ); |
| 960 | let m = m.modulus(cpu_features); |
| 961 | let expected_result = consume_elem(test_case , "ModSquare" , &m); |
| 962 | let a = consume_elem(test_case , "A" , &m); |
| 963 | |
| 964 | let a = into_encoded(m.alloc_zero(), a, &m); |
| 965 | let actual_result = elem_squared(a, &m); |
| 966 | let actual_result = actual_result.into_unencoded(&m); |
| 967 | assert_elem_eq(&actual_result, &expected_result); |
| 968 | |
| 969 | Ok(()) |
| 970 | }, |
| 971 | ) |
| 972 | } |
| 973 | |
| 974 | #[test ] |
| 975 | fn test_elem_reduced() { |
| 976 | let cpu_features = cpu::features(); |
| 977 | test::run( |
| 978 | test_file!("bigint_elem_reduced_tests.txt" ), |
| 979 | |section, test_case| { |
| 980 | assert_eq!(section, "" ); |
| 981 | |
| 982 | struct M {} |
| 983 | |
| 984 | let m_ = consume_modulus::<M>(test_case , "M" ); |
| 985 | let m = m_.modulus(cpu_features); |
| 986 | let expected_result = consume_elem(test_case , "R" , &m); |
| 987 | let a = |
| 988 | consume_elem_unchecked::<M>(test_case , "A" , expected_result.limbs.len() * 2); |
| 989 | let other_modulus_len_bits = m_.len_bits(); |
| 990 | |
| 991 | let actual_result = elem_reduced(m.alloc_zero(), &a, &m, other_modulus_len_bits); |
| 992 | let oneRR = One::newRR(m.alloc_zero(), &m); |
| 993 | let actual_result = elem_mul(oneRR.as_ref(), actual_result, &m); |
| 994 | assert_elem_eq(&actual_result, &expected_result); |
| 995 | |
| 996 | Ok(()) |
| 997 | }, |
| 998 | ) |
| 999 | } |
| 1000 | |
| 1001 | #[test ] |
| 1002 | fn test_elem_reduced_once() { |
| 1003 | let cpu_features = cpu::features(); |
| 1004 | test::run( |
| 1005 | test_file!("bigint_elem_reduced_once_tests.txt" ), |
| 1006 | |section, test_case| { |
| 1007 | assert_eq!(section, "" ); |
| 1008 | |
| 1009 | struct M {} |
| 1010 | struct O {} |
| 1011 | let m = consume_modulus::<M>(test_case , "m" ); |
| 1012 | let m = m.modulus(cpu_features); |
| 1013 | let a = consume_elem_unchecked::<O>(test_case , "a" , m.limbs().len()); |
| 1014 | let expected_result = consume_elem::<M>(test_case , "r" , &m); |
| 1015 | let other_modulus_len_bits = m.len_bits(); |
| 1016 | |
| 1017 | let actual_result = |
| 1018 | elem_reduced_once(m.alloc_zero(), &a, &m, other_modulus_len_bits); |
| 1019 | assert_elem_eq(&actual_result, &expected_result); |
| 1020 | |
| 1021 | Ok(()) |
| 1022 | }, |
| 1023 | ) |
| 1024 | } |
| 1025 | |
| 1026 | fn consume_elem<M>( |
| 1027 | test_case: &mut test::TestCase, |
| 1028 | name: &str, |
| 1029 | m: &Modulus<M>, |
| 1030 | ) -> Elem<M, Unencoded> { |
| 1031 | let value = test_case .consume_bytes(name); |
| 1032 | Elem::from_be_bytes_padded(untrusted::Input::from(&value), m).unwrap() |
| 1033 | } |
| 1034 | |
| 1035 | fn consume_elem_unchecked<M>( |
| 1036 | test_case: &mut test::TestCase, |
| 1037 | name: &str, |
| 1038 | num_limbs: usize, |
| 1039 | ) -> Elem<M, Unencoded> { |
| 1040 | let bytes = test_case .consume_bytes(name); |
| 1041 | let mut limbs = BoxedLimbs::zero(num_limbs); |
| 1042 | limb::parse_big_endian_and_pad_consttime(untrusted::Input::from(&bytes), &mut limbs) |
| 1043 | .unwrap(); |
| 1044 | Elem { |
| 1045 | limbs, |
| 1046 | encoding: PhantomData, |
| 1047 | } |
| 1048 | } |
| 1049 | |
| 1050 | fn consume_modulus<M>(test_case: &mut test::TestCase, name: &str) -> OwnedModulus<M> { |
| 1051 | let value = test_case .consume_bytes(name); |
| 1052 | OwnedModulus::from( |
| 1053 | OwnedModulusValue::from_be_bytes(untrusted::Input::from(&value)).unwrap(), |
| 1054 | ) |
| 1055 | } |
| 1056 | |
| 1057 | fn assert_elem_eq<M, E>(a: &Elem<M, E>, b: &Elem<M, E>) { |
| 1058 | if elem_verify_equal_consttime(a, b).is_err() { |
| 1059 | panic!("{:x?} != {:x?}" , &*a.limbs, &*b.limbs); |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | fn into_encoded<M>(out: Storage<M>, a: Elem<M, Unencoded>, m: &Modulus<M>) -> Elem<M, R> { |
| 1064 | let oneRR = One::newRR(out, m); |
| 1065 | elem_mul(oneRR.as_ref(), a, m) |
| 1066 | } |
| 1067 | } |
| 1068 | |