1 | // Copyright 2015-2024 Brian Smith. |
2 | // |
3 | // Permission to use, copy, modify, and/or distribute this software for any |
4 | // purpose with or without fee is hereby granted, provided that the above |
5 | // copyright notice and this permission notice appear in all copies. |
6 | // |
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
14 | |
15 | use super::{ |
16 | super::montgomery::Unencoded, unwrap_impossible_len_mismatch_error, BoxedLimbs, Elem, |
17 | OwnedModulusValue, PublicModulus, Storage, N0, |
18 | }; |
19 | use crate::{ |
20 | bits::BitLength, |
21 | cpu, error, |
22 | limb::{self, Limb, LIMB_BITS}, |
23 | polyfill::LeadingZerosStripped, |
24 | }; |
25 | use core::marker::PhantomData; |
26 | |
27 | /// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed |
28 | /// for efficient Montgomery multiplication modulo *m*. The value must be odd |
29 | /// and larger than 2. The larger-than-1 requirement is imposed, at least, by |
30 | /// the modular inversion code. |
31 | pub struct OwnedModulus<M> { |
32 | inner: OwnedModulusValue<M>, |
33 | |
34 | // n0 * N == -1 (mod r). |
35 | // |
36 | // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This |
37 | // ensures that we can do integer division by |r| by simply ignoring |
38 | // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by |
39 | // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes |
40 | // Montgomery multiplication efficient. |
41 | // |
42 | // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
43 | // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
44 | // multi-limb Montgomery multiplication of a * b (mod n), given the |
45 | // unreduced product t == a * b, we repeatedly calculate: |
46 | // |
47 | // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
48 | // t2 := t1*n0*n |
49 | // t3 := t + t2 |
50 | // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
51 | // |
52 | // In the last step, it would only make sense to ignore the lowest limb of |
53 | // |t3| if it were zero. The middle steps ensure that this is the case: |
54 | // |
55 | // t3 == 0 (mod r) |
56 | // t + t2 == 0 (mod r) |
57 | // t + t1*n0*n == 0 (mod r) |
58 | // t1*n0*n == -t (mod r) |
59 | // t*n0*n == -t (mod r) |
60 | // n0*n == -1 (mod r) |
61 | // n0 == -1/n (mod r) |
62 | // |
63 | // Thus, in each iteration of the loop, we multiply by the constant factor |
64 | // n0, the negative inverse of n (mod r). |
65 | // |
66 | // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the |
67 | // ones that don't, we could use a shorter `R` value and use faster `Limb` |
68 | // calculations instead of double-precision `u64` calculations. |
69 | n0: N0, |
70 | } |
71 | |
72 | impl<M: PublicModulus> Clone for OwnedModulus<M> { |
73 | fn clone(&self) -> Self { |
74 | Self { |
75 | inner: self.inner.clone(), |
76 | n0: self.n0, |
77 | } |
78 | } |
79 | } |
80 | |
81 | impl<M> OwnedModulus<M> { |
82 | pub(crate) fn from(n: OwnedModulusValue<M>) -> Self { |
83 | // n_mod_r = n % r. As explained in the documentation for `n0`, this is |
84 | // done by taking the lowest `N0::LIMBS_USED` limbs of `n`. |
85 | #[allow (clippy::useless_conversion)] |
86 | let n0 = { |
87 | prefixed_extern! { |
88 | fn bn_neg_inv_mod_r_u64(n: u64) -> u64; |
89 | } |
90 | |
91 | // XXX: u64::from isn't guaranteed to be constant time. |
92 | let mut n_mod_r: u64 = u64::from(n.limbs()[0]); |
93 | |
94 | if N0::LIMBS_USED == 2 { |
95 | // XXX: If we use `<< LIMB_BITS` here then 64-bit builds |
96 | // fail to compile because of `deny(exceeding_bitshifts)`. |
97 | debug_assert_eq!(LIMB_BITS, 32); |
98 | n_mod_r |= u64::from(n.limbs()[1]) << 32; |
99 | } |
100 | N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) }) |
101 | }; |
102 | |
103 | Self { inner: n, n0 } |
104 | } |
105 | |
106 | pub fn to_elem<L>(&self, l: &Modulus<L>) -> Result<Elem<L, Unencoded>, error::Unspecified> { |
107 | self.inner.verify_less_than(l)?; |
108 | let mut limbs = BoxedLimbs::zero(l.limbs().len()); |
109 | limbs[..self.inner.limbs().len()].copy_from_slice(self.inner.limbs()); |
110 | Ok(Elem { |
111 | limbs, |
112 | encoding: PhantomData, |
113 | }) |
114 | } |
115 | |
116 | pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus<M> { |
117 | Modulus { |
118 | limbs: self.inner.limbs(), |
119 | n0: self.n0, |
120 | len_bits: self.len_bits(), |
121 | m: PhantomData, |
122 | cpu_features, |
123 | } |
124 | } |
125 | |
126 | pub fn len_bits(&self) -> BitLength { |
127 | self.inner.len_bits() |
128 | } |
129 | } |
130 | |
131 | impl<M: PublicModulus> OwnedModulus<M> { |
132 | pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> { |
133 | LeadingZerosStripped::new(inner:limb::unstripped_be_bytes(self.inner.limbs())) |
134 | } |
135 | } |
136 | |
137 | pub struct Modulus<'a, M> { |
138 | limbs: &'a [Limb], |
139 | n0: N0, |
140 | len_bits: BitLength, |
141 | m: PhantomData<M>, |
142 | cpu_features: cpu::Features, |
143 | } |
144 | |
145 | impl<M> Modulus<'_, M> { |
146 | pub(super) fn oneR(&self, out: &mut [Limb]) { |
147 | assert_eq!(self.limbs.len(), out.len()); |
148 | |
149 | let r = self.limbs.len() * LIMB_BITS; |
150 | |
151 | // out = 2**r - m where m = self. |
152 | limb::limbs_negative_odd(out, self.limbs); |
153 | |
154 | let lg_m = self.len_bits().as_bits(); |
155 | let leading_zero_bits_in_m = r - lg_m; |
156 | |
157 | // When m's length is a multiple of LIMB_BITS, which is the case we |
158 | // most want to optimize for, then we already have |
159 | // out == 2**r - m == 2**r (mod m). |
160 | if leading_zero_bits_in_m != 0 { |
161 | debug_assert!(leading_zero_bits_in_m < LIMB_BITS); |
162 | // Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped |
163 | // all the leading zero bits to ones. Flip them back. |
164 | *out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m; |
165 | |
166 | // Now we have out == 2**(lg m) (mod m). Keep doubling until we get |
167 | // to 2**r (mod m). |
168 | for _ in 0..leading_zero_bits_in_m { |
169 | limb::limbs_double_mod(out, self.limbs) |
170 | .unwrap_or_else(unwrap_impossible_len_mismatch_error); |
171 | } |
172 | } |
173 | |
174 | // Now out == 2**r (mod m) == 1*R. |
175 | } |
176 | |
177 | // TODO: XXX Avoid duplication with `Modulus`. |
178 | pub fn alloc_zero(&self) -> Storage<M> { |
179 | Storage { |
180 | limbs: BoxedLimbs::zero(self.limbs.len()), |
181 | } |
182 | } |
183 | |
184 | #[inline ] |
185 | pub(super) fn limbs(&self) -> &[Limb] { |
186 | self.limbs |
187 | } |
188 | |
189 | #[inline ] |
190 | pub(super) fn n0(&self) -> &N0 { |
191 | &self.n0 |
192 | } |
193 | |
194 | pub fn len_bits(&self) -> BitLength { |
195 | self.len_bits |
196 | } |
197 | |
198 | #[inline ] |
199 | pub(crate) fn cpu_features(&self) -> cpu::Features { |
200 | self.cpu_features |
201 | } |
202 | } |
203 | |