| 1 | // Copyright 2015-2024 Brian Smith. |
| 2 | // |
| 3 | // Permission to use, copy, modify, and/or distribute this software for any |
| 4 | // purpose with or without fee is hereby granted, provided that the above |
| 5 | // copyright notice and this permission notice appear in all copies. |
| 6 | // |
| 7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| 8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| 10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| 12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| 13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 14 | |
| 15 | use super::{ |
| 16 | super::montgomery::Unencoded, unwrap_impossible_len_mismatch_error, BoxedLimbs, Elem, |
| 17 | OwnedModulusValue, PublicModulus, Storage, N0, |
| 18 | }; |
| 19 | use crate::{ |
| 20 | bits::BitLength, |
| 21 | cpu, error, |
| 22 | limb::{self, Limb, LIMB_BITS}, |
| 23 | polyfill::LeadingZerosStripped, |
| 24 | }; |
| 25 | use core::marker::PhantomData; |
| 26 | |
| 27 | /// The modulus *m* for a ring ℤ/mℤ, along with the precomputed values needed |
| 28 | /// for efficient Montgomery multiplication modulo *m*. The value must be odd |
| 29 | /// and larger than 2. The larger-than-1 requirement is imposed, at least, by |
| 30 | /// the modular inversion code. |
| 31 | pub struct OwnedModulus<M> { |
| 32 | inner: OwnedModulusValue<M>, |
| 33 | |
| 34 | // n0 * N == -1 (mod r). |
| 35 | // |
| 36 | // r == 2**(N0::LIMBS_USED * LIMB_BITS) and LG_LITTLE_R == lg(r). This |
| 37 | // ensures that we can do integer division by |r| by simply ignoring |
| 38 | // `N0::LIMBS_USED` limbs. Similarly, we can calculate values modulo `r` by |
| 39 | // just looking at the lowest `N0::LIMBS_USED` limbs. This is what makes |
| 40 | // Montgomery multiplication efficient. |
| 41 | // |
| 42 | // As shown in Algorithm 1 of "Fast Prime Field Elliptic Curve Cryptography |
| 43 | // with 256 Bit Primes" by Shay Gueron and Vlad Krasnov, in the loop of a |
| 44 | // multi-limb Montgomery multiplication of a * b (mod n), given the |
| 45 | // unreduced product t == a * b, we repeatedly calculate: |
| 46 | // |
| 47 | // t1 := t % r |t1| is |t|'s lowest limb (see previous paragraph). |
| 48 | // t2 := t1*n0*n |
| 49 | // t3 := t + t2 |
| 50 | // t := t3 / r copy all limbs of |t3| except the lowest to |t|. |
| 51 | // |
| 52 | // In the last step, it would only make sense to ignore the lowest limb of |
| 53 | // |t3| if it were zero. The middle steps ensure that this is the case: |
| 54 | // |
| 55 | // t3 == 0 (mod r) |
| 56 | // t + t2 == 0 (mod r) |
| 57 | // t + t1*n0*n == 0 (mod r) |
| 58 | // t1*n0*n == -t (mod r) |
| 59 | // t*n0*n == -t (mod r) |
| 60 | // n0*n == -1 (mod r) |
| 61 | // n0 == -1/n (mod r) |
| 62 | // |
| 63 | // Thus, in each iteration of the loop, we multiply by the constant factor |
| 64 | // n0, the negative inverse of n (mod r). |
| 65 | // |
| 66 | // TODO(perf): Not all 32-bit platforms actually make use of n0[1]. For the |
| 67 | // ones that don't, we could use a shorter `R` value and use faster `Limb` |
| 68 | // calculations instead of double-precision `u64` calculations. |
| 69 | n0: N0, |
| 70 | } |
| 71 | |
| 72 | impl<M: PublicModulus> Clone for OwnedModulus<M> { |
| 73 | fn clone(&self) -> Self { |
| 74 | Self { |
| 75 | inner: self.inner.clone(), |
| 76 | n0: self.n0, |
| 77 | } |
| 78 | } |
| 79 | } |
| 80 | |
| 81 | impl<M> OwnedModulus<M> { |
| 82 | pub(crate) fn from(n: OwnedModulusValue<M>) -> Self { |
| 83 | // n_mod_r = n % r. As explained in the documentation for `n0`, this is |
| 84 | // done by taking the lowest `N0::LIMBS_USED` limbs of `n`. |
| 85 | #[allow (clippy::useless_conversion)] |
| 86 | let n0 = { |
| 87 | prefixed_extern! { |
| 88 | fn bn_neg_inv_mod_r_u64(n: u64) -> u64; |
| 89 | } |
| 90 | |
| 91 | // XXX: u64::from isn't guaranteed to be constant time. |
| 92 | let mut n_mod_r: u64 = u64::from(n.limbs()[0]); |
| 93 | |
| 94 | if N0::LIMBS_USED == 2 { |
| 95 | // XXX: If we use `<< LIMB_BITS` here then 64-bit builds |
| 96 | // fail to compile because of `deny(exceeding_bitshifts)`. |
| 97 | debug_assert_eq!(LIMB_BITS, 32); |
| 98 | n_mod_r |= u64::from(n.limbs()[1]) << 32; |
| 99 | } |
| 100 | N0::precalculated(unsafe { bn_neg_inv_mod_r_u64(n_mod_r) }) |
| 101 | }; |
| 102 | |
| 103 | Self { inner: n, n0 } |
| 104 | } |
| 105 | |
| 106 | pub fn to_elem<L>(&self, l: &Modulus<L>) -> Result<Elem<L, Unencoded>, error::Unspecified> { |
| 107 | self.inner.verify_less_than(l)?; |
| 108 | let mut limbs = BoxedLimbs::zero(l.limbs().len()); |
| 109 | limbs[..self.inner.limbs().len()].copy_from_slice(self.inner.limbs()); |
| 110 | Ok(Elem { |
| 111 | limbs, |
| 112 | encoding: PhantomData, |
| 113 | }) |
| 114 | } |
| 115 | |
| 116 | pub(crate) fn modulus(&self, cpu_features: cpu::Features) -> Modulus<M> { |
| 117 | Modulus { |
| 118 | limbs: self.inner.limbs(), |
| 119 | n0: self.n0, |
| 120 | len_bits: self.len_bits(), |
| 121 | m: PhantomData, |
| 122 | cpu_features, |
| 123 | } |
| 124 | } |
| 125 | |
| 126 | pub fn len_bits(&self) -> BitLength { |
| 127 | self.inner.len_bits() |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | impl<M: PublicModulus> OwnedModulus<M> { |
| 132 | pub fn be_bytes(&self) -> LeadingZerosStripped<impl ExactSizeIterator<Item = u8> + Clone + '_> { |
| 133 | LeadingZerosStripped::new(inner:limb::unstripped_be_bytes(self.inner.limbs())) |
| 134 | } |
| 135 | } |
| 136 | |
| 137 | pub struct Modulus<'a, M> { |
| 138 | limbs: &'a [Limb], |
| 139 | n0: N0, |
| 140 | len_bits: BitLength, |
| 141 | m: PhantomData<M>, |
| 142 | cpu_features: cpu::Features, |
| 143 | } |
| 144 | |
| 145 | impl<M> Modulus<'_, M> { |
| 146 | pub(super) fn oneR(&self, out: &mut [Limb]) { |
| 147 | assert_eq!(self.limbs.len(), out.len()); |
| 148 | |
| 149 | let r = self.limbs.len() * LIMB_BITS; |
| 150 | |
| 151 | // out = 2**r - m where m = self. |
| 152 | limb::limbs_negative_odd(out, self.limbs); |
| 153 | |
| 154 | let lg_m = self.len_bits().as_bits(); |
| 155 | let leading_zero_bits_in_m = r - lg_m; |
| 156 | |
| 157 | // When m's length is a multiple of LIMB_BITS, which is the case we |
| 158 | // most want to optimize for, then we already have |
| 159 | // out == 2**r - m == 2**r (mod m). |
| 160 | if leading_zero_bits_in_m != 0 { |
| 161 | debug_assert!(leading_zero_bits_in_m < LIMB_BITS); |
| 162 | // Correct out to 2**(lg m) (mod m). `limbs_negative_odd` flipped |
| 163 | // all the leading zero bits to ones. Flip them back. |
| 164 | *out.last_mut().unwrap() &= (!0) >> leading_zero_bits_in_m; |
| 165 | |
| 166 | // Now we have out == 2**(lg m) (mod m). Keep doubling until we get |
| 167 | // to 2**r (mod m). |
| 168 | for _ in 0..leading_zero_bits_in_m { |
| 169 | limb::limbs_double_mod(out, self.limbs) |
| 170 | .unwrap_or_else(unwrap_impossible_len_mismatch_error); |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // Now out == 2**r (mod m) == 1*R. |
| 175 | } |
| 176 | |
| 177 | // TODO: XXX Avoid duplication with `Modulus`. |
| 178 | pub fn alloc_zero(&self) -> Storage<M> { |
| 179 | Storage { |
| 180 | limbs: BoxedLimbs::zero(self.limbs.len()), |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | #[inline ] |
| 185 | pub(super) fn limbs(&self) -> &[Limb] { |
| 186 | self.limbs |
| 187 | } |
| 188 | |
| 189 | #[inline ] |
| 190 | pub(super) fn n0(&self) -> &N0 { |
| 191 | &self.n0 |
| 192 | } |
| 193 | |
| 194 | pub fn len_bits(&self) -> BitLength { |
| 195 | self.len_bits |
| 196 | } |
| 197 | |
| 198 | #[inline ] |
| 199 | pub(crate) fn cpu_features(&self) -> cpu::Features { |
| 200 | self.cpu_features |
| 201 | } |
| 202 | } |
| 203 | |