1 | // Copyright 2015-2016 Brian Smith. |
2 | // |
3 | // Permission to use, copy, modify, and/or distribute this software for any |
4 | // purpose with or without fee is hereby granted, provided that the above |
5 | // copyright notice and this permission notice appear in all copies. |
6 | // |
7 | // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
8 | // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
9 | // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
10 | // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
11 | // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
12 | // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
13 | // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
14 | |
15 | //! ECDSA Signatures using the P-256 and P-384 curves. |
16 | |
17 | use super::digest_scalar::digest_scalar; |
18 | use crate::{ |
19 | arithmetic::montgomery::*, |
20 | cpu, digest, |
21 | ec::{ |
22 | self, |
23 | suite_b::{ops::*, private_key}, |
24 | }, |
25 | error, |
26 | io::der, |
27 | limb, pkcs8, rand, sealed, signature, |
28 | }; |
29 | /// An ECDSA signing algorithm. |
30 | pub struct EcdsaSigningAlgorithm { |
31 | curve: &'static ec::Curve, |
32 | private_scalar_ops: &'static PrivateScalarOps, |
33 | private_key_ops: &'static PrivateKeyOps, |
34 | digest_alg: &'static digest::Algorithm, |
35 | pkcs8_template: &'static pkcs8::Template, |
36 | format_rs: fn(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize, |
37 | id: AlgorithmID, |
38 | } |
39 | |
40 | #[derive (Debug, Eq, PartialEq)] |
41 | enum AlgorithmID { |
42 | ECDSA_P256_SHA256_FIXED_SIGNING, |
43 | ECDSA_P384_SHA384_FIXED_SIGNING, |
44 | ECDSA_P256_SHA256_ASN1_SIGNING, |
45 | ECDSA_P384_SHA384_ASN1_SIGNING, |
46 | } |
47 | |
48 | derive_debug_via_id!(EcdsaSigningAlgorithm); |
49 | |
50 | impl PartialEq for EcdsaSigningAlgorithm { |
51 | fn eq(&self, other: &Self) -> bool { |
52 | self.id == other.id |
53 | } |
54 | } |
55 | |
56 | impl Eq for EcdsaSigningAlgorithm {} |
57 | |
58 | impl sealed::Sealed for EcdsaSigningAlgorithm {} |
59 | |
60 | /// An ECDSA key pair, used for signing. |
61 | pub struct EcdsaKeyPair { |
62 | d: Scalar<R>, |
63 | nonce_key: NonceRandomKey, |
64 | alg: &'static EcdsaSigningAlgorithm, |
65 | public_key: PublicKey, |
66 | } |
67 | |
68 | derive_debug_via_field!(EcdsaKeyPair, stringify!(EcdsaKeyPair), public_key); |
69 | |
70 | impl EcdsaKeyPair { |
71 | /// Generates a new key pair and returns the key pair serialized as a |
72 | /// PKCS#8 document. |
73 | /// |
74 | /// The PKCS#8 document will be a v1 `OneAsymmetricKey` with the public key |
75 | /// included in the `ECPrivateKey` structure, as described in |
76 | /// [RFC 5958 Section 2] and [RFC 5915]. The `ECPrivateKey` structure will |
77 | /// not have a `parameters` field so the generated key is compatible with |
78 | /// PKCS#11. |
79 | /// |
80 | /// [RFC 5915]: https://tools.ietf.org/html/rfc5915 |
81 | /// [RFC 5958 Section 2]: https://tools.ietf.org/html/rfc5958#section-2 |
82 | pub fn generate_pkcs8( |
83 | alg: &'static EcdsaSigningAlgorithm, |
84 | rng: &dyn rand::SecureRandom, |
85 | ) -> Result<pkcs8::Document, error::Unspecified> { |
86 | let cpu = cpu::features(); |
87 | let private_key = ec::Seed::generate(alg.curve, rng, cpu)?; |
88 | let public_key = private_key.compute_public_key(cpu)?; |
89 | Ok(pkcs8::wrap_key( |
90 | alg.pkcs8_template, |
91 | private_key.bytes_less_safe(), |
92 | public_key.as_ref(), |
93 | )) |
94 | } |
95 | |
96 | /// Constructs an ECDSA key pair by parsing an unencrypted PKCS#8 v1 |
97 | /// id-ecPublicKey `ECPrivateKey` key. |
98 | /// |
99 | /// The input must be in PKCS#8 v1 format. It must contain the public key in |
100 | /// the `ECPrivateKey` structure; `from_pkcs8()` will verify that the public |
101 | /// key and the private key are consistent with each other. The algorithm |
102 | /// identifier must identify the curve by name; it must not use an |
103 | /// "explicit" encoding of the curve. The `parameters` field of the |
104 | /// `ECPrivateKey`, if present, must be the same named curve that is in the |
105 | /// algorithm identifier in the PKCS#8 header. |
106 | pub fn from_pkcs8( |
107 | alg: &'static EcdsaSigningAlgorithm, |
108 | pkcs8: &[u8], |
109 | rng: &dyn rand::SecureRandom, |
110 | ) -> Result<Self, error::KeyRejected> { |
111 | let key_pair = ec::suite_b::key_pair_from_pkcs8( |
112 | alg.curve, |
113 | alg.pkcs8_template, |
114 | untrusted::Input::from(pkcs8), |
115 | cpu::features(), |
116 | )?; |
117 | Self::new(alg, key_pair, rng) |
118 | } |
119 | |
120 | /// Constructs an ECDSA key pair from the private key and public key bytes |
121 | /// |
122 | /// The private key must encoded as a big-endian fixed-length integer. For |
123 | /// example, a P-256 private key must be 32 bytes prefixed with leading |
124 | /// zeros as needed. |
125 | /// |
126 | /// The public key is encoding in uncompressed form using the |
127 | /// Octet-String-to-Elliptic-Curve-Point algorithm in |
128 | /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]. |
129 | /// |
130 | /// This is intended for use by code that deserializes key pairs. It is |
131 | /// recommended to use `EcdsaKeyPair::from_pkcs8()` (with a PKCS#8-encoded |
132 | /// key) instead. |
133 | /// |
134 | /// [SEC 1: Elliptic Curve Cryptography, Version 2.0]: |
135 | /// http://www.secg.org/sec1-v2.pdf |
136 | pub fn from_private_key_and_public_key( |
137 | alg: &'static EcdsaSigningAlgorithm, |
138 | private_key: &[u8], |
139 | public_key: &[u8], |
140 | rng: &dyn rand::SecureRandom, |
141 | ) -> Result<Self, error::KeyRejected> { |
142 | let key_pair = ec::suite_b::key_pair_from_bytes( |
143 | alg.curve, |
144 | untrusted::Input::from(private_key), |
145 | untrusted::Input::from(public_key), |
146 | cpu::features(), |
147 | )?; |
148 | Self::new(alg, key_pair, rng) |
149 | } |
150 | |
151 | fn new( |
152 | alg: &'static EcdsaSigningAlgorithm, |
153 | key_pair: ec::KeyPair, |
154 | rng: &dyn rand::SecureRandom, |
155 | ) -> Result<Self, error::KeyRejected> { |
156 | let cpu = cpu::features(); |
157 | |
158 | let (seed, public_key) = key_pair.split(); |
159 | let n = &alg.private_scalar_ops.scalar_ops.scalar_modulus(cpu); |
160 | let d = private_key::private_key_as_scalar(n, &seed); |
161 | let d = alg.private_scalar_ops.to_mont(&d, cpu); |
162 | |
163 | let nonce_key = NonceRandomKey::new(alg, &seed, rng)?; |
164 | Ok(Self { |
165 | d, |
166 | nonce_key, |
167 | alg, |
168 | public_key: PublicKey(public_key), |
169 | }) |
170 | } |
171 | |
172 | /// Returns the signature of the `message` using a random nonce generated by `rng`. |
173 | pub fn sign( |
174 | &self, |
175 | rng: &dyn rand::SecureRandom, |
176 | message: &[u8], |
177 | ) -> Result<signature::Signature, error::Unspecified> { |
178 | let cpu = cpu::features(); |
179 | |
180 | // Step 4 (out of order). |
181 | let h = digest::digest(self.alg.digest_alg, message); |
182 | |
183 | // Incorporate `h` into the nonce to hedge against faulty RNGs. (This |
184 | // is not an approved random number generator that is mandated in |
185 | // the spec.) |
186 | let nonce_rng = NonceRandom { |
187 | key: &self.nonce_key, |
188 | message_digest: &h, |
189 | rng, |
190 | }; |
191 | |
192 | self.sign_digest(h, &nonce_rng, cpu) |
193 | } |
194 | |
195 | #[cfg (test)] |
196 | fn sign_with_fixed_nonce_during_test( |
197 | &self, |
198 | rng: &dyn rand::SecureRandom, |
199 | message: &[u8], |
200 | ) -> Result<signature::Signature, error::Unspecified> { |
201 | // Step 4 (out of order). |
202 | let h = digest::digest(self.alg.digest_alg, message); |
203 | |
204 | self.sign_digest(h, rng, cpu::features()) |
205 | } |
206 | |
207 | /// Returns the signature of message digest `h` using a "random" nonce |
208 | /// generated by `rng`. |
209 | fn sign_digest( |
210 | &self, |
211 | h: digest::Digest, |
212 | rng: &dyn rand::SecureRandom, |
213 | cpu: cpu::Features, |
214 | ) -> Result<signature::Signature, error::Unspecified> { |
215 | // NSA Suite B Implementer's Guide to ECDSA Section 3.4.1: ECDSA |
216 | // Signature Generation. |
217 | |
218 | // NSA Guide Prerequisites: |
219 | // |
220 | // Prior to generating an ECDSA signature, the signatory shall |
221 | // obtain: |
222 | // |
223 | // 1. an authentic copy of the domain parameters, |
224 | // 2. a digital signature key pair (d,Q), either generated by a |
225 | // method from Appendix A.1, or obtained from a trusted third |
226 | // party, |
227 | // 3. assurance of the validity of the public key Q (see Appendix |
228 | // A.3), and |
229 | // 4. assurance that he/she/it actually possesses the associated |
230 | // private key d (see [SP800-89] Section 6). |
231 | // |
232 | // The domain parameters are hard-coded into the source code. |
233 | // `EcdsaKeyPair::generate_pkcs8()` can be used to meet the second |
234 | // requirement; otherwise, it is up to the user to ensure the key pair |
235 | // was obtained from a trusted private key. The constructors for |
236 | // `EcdsaKeyPair` ensure that #3 and #4 are met subject to the caveats |
237 | // in SP800-89 Section 6. |
238 | |
239 | let ops = self.alg.private_scalar_ops; |
240 | let scalar_ops = ops.scalar_ops; |
241 | let cops = scalar_ops.common; |
242 | let private_key_ops = self.alg.private_key_ops; |
243 | let q = &cops.elem_modulus(cpu); |
244 | let n = &scalar_ops.scalar_modulus(cpu); |
245 | |
246 | for _ in 0..100 { |
247 | // XXX: iteration conut? |
248 | // Step 1. |
249 | let k = private_key::random_scalar(self.alg.private_key_ops, n, rng)?; |
250 | let k_inv = ops.scalar_inv_to_mont(&k, cpu); |
251 | |
252 | // Step 2. |
253 | let r = private_key_ops.point_mul_base(&k, cpu); |
254 | |
255 | // Step 3. |
256 | let r = { |
257 | let (x, _) = private_key::affine_from_jacobian(private_key_ops, q, &r)?; |
258 | let x = q.elem_unencoded(&x); |
259 | n.elem_reduced_to_scalar(&x) |
260 | }; |
261 | if n.is_zero(&r) { |
262 | continue; |
263 | } |
264 | |
265 | // Step 4 is done by the caller. |
266 | |
267 | // Step 5. |
268 | let e = digest_scalar(n, h); |
269 | |
270 | // Step 6. |
271 | let s = { |
272 | let mut e_plus_dr = scalar_ops.scalar_product(&self.d, &r, cpu); |
273 | n.add_assign(&mut e_plus_dr, &e); |
274 | scalar_ops.scalar_product(&k_inv, &e_plus_dr, cpu) |
275 | }; |
276 | if n.is_zero(&s) { |
277 | continue; |
278 | } |
279 | |
280 | // Step 7 with encoding. |
281 | return Ok(signature::Signature::new(|sig_bytes| { |
282 | (self.alg.format_rs)(scalar_ops, &r, &s, sig_bytes) |
283 | })); |
284 | } |
285 | |
286 | Err(error::Unspecified) |
287 | } |
288 | } |
289 | |
290 | /// Generates an ECDSA nonce in a way that attempts to protect against a faulty |
291 | /// `SecureRandom`. |
292 | struct NonceRandom<'a> { |
293 | key: &'a NonceRandomKey, |
294 | message_digest: &'a digest::Digest, |
295 | rng: &'a dyn rand::SecureRandom, |
296 | } |
297 | |
298 | impl core::fmt::Debug for NonceRandom<'_> { |
299 | fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { |
300 | f.debug_struct(name:"NonceRandom" ).finish() |
301 | } |
302 | } |
303 | |
304 | impl rand::sealed::SecureRandom for NonceRandom<'_> { |
305 | fn fill_impl(&self, dest: &mut [u8]) -> Result<(), error::Unspecified> { |
306 | // Use the same digest algorithm that will be used to digest the |
307 | // message. The digest algorithm's output is exactly the right size; |
308 | // this is checked below. |
309 | // |
310 | // XXX(perf): The single iteration will require two digest block |
311 | // operations because the amount of data digested is larger than one |
312 | // block. |
313 | let digest_alg = self.key.0.algorithm(); |
314 | let mut ctx = digest::Context::new(digest_alg); |
315 | |
316 | // Digest the randomized digest of the private key. |
317 | let key = self.key.0.as_ref(); |
318 | ctx.update(key); |
319 | |
320 | // The random value is digested between the key and the message so that |
321 | // the key and the message are not directly digested in the same digest |
322 | // block. |
323 | assert!(key.len() <= digest_alg.block_len() / 2); |
324 | { |
325 | let mut rand = [0u8; digest::MAX_BLOCK_LEN]; |
326 | let rand = &mut rand[..digest_alg.block_len() - key.len()]; |
327 | assert!(rand.len() >= dest.len()); |
328 | self.rng.fill(rand)?; |
329 | ctx.update(rand); |
330 | } |
331 | |
332 | ctx.update(self.message_digest.as_ref()); |
333 | |
334 | let nonce = ctx.finish(); |
335 | |
336 | // `copy_from_slice()` panics if the lengths differ, so we don't have |
337 | // to separately assert that the lengths are the same. |
338 | dest.copy_from_slice(nonce.as_ref()); |
339 | |
340 | Ok(()) |
341 | } |
342 | } |
343 | |
344 | impl sealed::Sealed for NonceRandom<'_> {} |
345 | |
346 | struct NonceRandomKey(digest::Digest); |
347 | |
348 | impl NonceRandomKey { |
349 | fn new( |
350 | alg: &EcdsaSigningAlgorithm, |
351 | seed: &ec::Seed, |
352 | rng: &dyn rand::SecureRandom, |
353 | ) -> Result<Self, error::KeyRejected> { |
354 | let mut rand: [u8; 64] = [0; digest::MAX_OUTPUT_LEN]; |
355 | let rand: &mut [u8] = &mut rand[0..alg.curve.elem_scalar_seed_len]; |
356 | |
357 | // XXX: `KeyRejected` isn't the right way to model failure of the RNG, |
358 | // but to fix that we'd need to break the API by changing the result type. |
359 | // TODO: Fix the API in the next breaking release. |
360 | rng.fill(rand) |
361 | .map_err(|error::Unspecified| error::KeyRejected::rng_failed())?; |
362 | |
363 | let mut ctx: Context = digest::Context::new(algorithm:alg.digest_alg); |
364 | ctx.update(data:rand); |
365 | ctx.update(data:seed.bytes_less_safe()); |
366 | Ok(Self(ctx.finish())) |
367 | } |
368 | } |
369 | |
370 | impl signature::KeyPair for EcdsaKeyPair { |
371 | type PublicKey = PublicKey; |
372 | |
373 | fn public_key(&self) -> &Self::PublicKey { |
374 | &self.public_key |
375 | } |
376 | } |
377 | |
378 | #[derive (Clone, Copy)] |
379 | pub struct PublicKey(ec::PublicKey); |
380 | |
381 | derive_debug_self_as_ref_hex_bytes!(PublicKey); |
382 | |
383 | impl AsRef<[u8]> for PublicKey { |
384 | fn as_ref(&self) -> &[u8] { |
385 | self.0.as_ref() |
386 | } |
387 | } |
388 | |
389 | fn format_rs_fixed(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize { |
390 | let scalar_len: usize = ops.scalar_bytes_len(); |
391 | |
392 | let (r_out: &mut [u8], rest: &mut [u8]) = out.split_at_mut(mid:scalar_len); |
393 | limb::big_endian_from_limbs(ops.leak_limbs(r), r_out); |
394 | |
395 | let (s_out: &mut [u8], _) = rest.split_at_mut(mid:scalar_len); |
396 | limb::big_endian_from_limbs(ops.leak_limbs(s), s_out); |
397 | |
398 | 2 * scalar_len |
399 | } |
400 | |
401 | fn format_rs_asn1(ops: &'static ScalarOps, r: &Scalar, s: &Scalar, out: &mut [u8]) -> usize { |
402 | // This assumes `a` is not zero since neither `r` or `s` is allowed to be |
403 | // zero. |
404 | fn format_integer_tlv(ops: &ScalarOps, a: &Scalar, out: &mut [u8]) -> usize { |
405 | let mut fixed = [0u8; ec::SCALAR_MAX_BYTES + 1]; |
406 | let fixed = &mut fixed[..(ops.scalar_bytes_len() + 1)]; |
407 | limb::big_endian_from_limbs(ops.leak_limbs(a), &mut fixed[1..]); |
408 | |
409 | // Since `a_fixed_out` is an extra byte long, it is guaranteed to start |
410 | // with a zero. |
411 | debug_assert_eq!(fixed[0], 0); |
412 | |
413 | // There must be at least one non-zero byte since `a` isn't zero. |
414 | let first_index = fixed.iter().position(|b| *b != 0).unwrap(); |
415 | |
416 | // If the first byte has its high bit set, it needs to be prefixed with 0x00. |
417 | let first_index = if fixed[first_index] & 0x80 != 0 { |
418 | first_index - 1 |
419 | } else { |
420 | first_index |
421 | }; |
422 | let value = &fixed[first_index..]; |
423 | |
424 | out[0] = der::Tag::Integer.into(); |
425 | |
426 | // Lengths less than 128 are encoded in one byte. |
427 | assert!(value.len() < 128); |
428 | #[allow (clippy::cast_possible_truncation)] |
429 | { |
430 | out[1] = value.len() as u8; |
431 | } |
432 | |
433 | out[2..][..value.len()].copy_from_slice(value); |
434 | |
435 | 2 + value.len() |
436 | } |
437 | |
438 | out[0] = der::Tag::Sequence.into(); |
439 | let r_tlv_len = format_integer_tlv(ops, r, &mut out[2..]); |
440 | let s_tlv_len = format_integer_tlv(ops, s, &mut out[2..][r_tlv_len..]); |
441 | |
442 | // Lengths less than 128 are encoded in one byte. |
443 | let value_len = r_tlv_len + s_tlv_len; |
444 | assert!(value_len < 128); |
445 | #[allow (clippy::cast_possible_truncation)] |
446 | { |
447 | out[1] = value_len as u8; |
448 | } |
449 | |
450 | 2 + value_len |
451 | } |
452 | |
453 | /// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the |
454 | /// P-256 curve and SHA-256. |
455 | /// |
456 | /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level |
457 | /// documentation for more details. |
458 | pub static ECDSA_P256_SHA256_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { |
459 | curve: &ec::suite_b::curve::P256, |
460 | private_scalar_ops: &p256::PRIVATE_SCALAR_OPS, |
461 | private_key_ops: &p256::PRIVATE_KEY_OPS, |
462 | digest_alg: &digest::SHA256, |
463 | pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE, |
464 | format_rs: format_rs_fixed, |
465 | id: AlgorithmID::ECDSA_P256_SHA256_FIXED_SIGNING, |
466 | }; |
467 | |
468 | /// Signing of fixed-length (PKCS#11 style) ECDSA signatures using the |
469 | /// P-384 curve and SHA-384. |
470 | /// |
471 | /// See "`ECDSA_*_FIXED` Details" in `ring::signature`'s module-level |
472 | /// documentation for more details. |
473 | pub static ECDSA_P384_SHA384_FIXED_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { |
474 | curve: &ec::suite_b::curve::P384, |
475 | private_scalar_ops: &p384::PRIVATE_SCALAR_OPS, |
476 | private_key_ops: &p384::PRIVATE_KEY_OPS, |
477 | digest_alg: &digest::SHA384, |
478 | pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE, |
479 | format_rs: format_rs_fixed, |
480 | id: AlgorithmID::ECDSA_P384_SHA384_FIXED_SIGNING, |
481 | }; |
482 | |
483 | /// Signing of ASN.1 DER-encoded ECDSA signatures using the P-256 curve and |
484 | /// SHA-256. |
485 | /// |
486 | /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level |
487 | /// documentation for more details. |
488 | pub static ECDSA_P256_SHA256_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { |
489 | curve: &ec::suite_b::curve::P256, |
490 | private_scalar_ops: &p256::PRIVATE_SCALAR_OPS, |
491 | private_key_ops: &p256::PRIVATE_KEY_OPS, |
492 | digest_alg: &digest::SHA256, |
493 | pkcs8_template: &EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE, |
494 | format_rs: format_rs_asn1, |
495 | id: AlgorithmID::ECDSA_P256_SHA256_ASN1_SIGNING, |
496 | }; |
497 | |
498 | /// Signing of ASN.1 DER-encoded ECDSA signatures using the P-384 curve and |
499 | /// SHA-384. |
500 | /// |
501 | /// See "`ECDSA_*_ASN1` Details" in `ring::signature`'s module-level |
502 | /// documentation for more details. |
503 | pub static ECDSA_P384_SHA384_ASN1_SIGNING: EcdsaSigningAlgorithm = EcdsaSigningAlgorithm { |
504 | curve: &ec::suite_b::curve::P384, |
505 | private_scalar_ops: &p384::PRIVATE_SCALAR_OPS, |
506 | private_key_ops: &p384::PRIVATE_KEY_OPS, |
507 | digest_alg: &digest::SHA384, |
508 | pkcs8_template: &EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE, |
509 | format_rs: format_rs_asn1, |
510 | id: AlgorithmID::ECDSA_P384_SHA384_ASN1_SIGNING, |
511 | }; |
512 | |
513 | static EC_PUBLIC_KEY_P256_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template { |
514 | bytes: include_bytes!("ecPublicKey_p256_pkcs8_v1_template.der" ), |
515 | alg_id_range: core::ops::Range { start: 8, end: 27 }, |
516 | curve_id_index: 9, |
517 | private_key_index: 0x24, |
518 | }; |
519 | |
520 | static EC_PUBLIC_KEY_P384_PKCS8_V1_TEMPLATE: pkcs8::Template = pkcs8::Template { |
521 | bytes: include_bytes!("ecPublicKey_p384_pkcs8_v1_template.der" ), |
522 | alg_id_range: core::ops::Range { start: 8, end: 24 }, |
523 | curve_id_index: 9, |
524 | private_key_index: 0x23, |
525 | }; |
526 | |
527 | #[cfg (test)] |
528 | mod tests { |
529 | use crate::{rand, signature, test}; |
530 | |
531 | #[test ] |
532 | fn signature_ecdsa_sign_fixed_test() { |
533 | let rng = rand::SystemRandom::new(); |
534 | |
535 | test::run( |
536 | test_file!("ecdsa_sign_fixed_tests.txt" ), |
537 | |section, test_case| { |
538 | assert_eq!(section, "" ); |
539 | |
540 | let curve_name = test_case .consume_string("Curve" ); |
541 | let digest_name = test_case .consume_string("Digest" ); |
542 | let msg = test_case .consume_bytes("Msg" ); |
543 | let d = test_case .consume_bytes("d" ); |
544 | let q = test_case .consume_bytes("Q" ); |
545 | let k = test_case .consume_bytes("k" ); |
546 | |
547 | let expected_result = test_case .consume_bytes("Sig" ); |
548 | |
549 | let alg = match (curve_name.as_str(), digest_name.as_str()) { |
550 | ("P-256" , "SHA256" ) => &signature::ECDSA_P256_SHA256_FIXED_SIGNING, |
551 | ("P-384" , "SHA384" ) => &signature::ECDSA_P384_SHA384_FIXED_SIGNING, |
552 | _ => { |
553 | panic!("Unsupported curve+digest: {}+{}" , curve_name, digest_name); |
554 | } |
555 | }; |
556 | |
557 | let private_key = |
558 | signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q, &rng) |
559 | .unwrap(); |
560 | let rng = test::rand::FixedSliceRandom { bytes: &k }; |
561 | |
562 | let actual_result = private_key |
563 | .sign_with_fixed_nonce_during_test(&rng, &msg) |
564 | .unwrap(); |
565 | |
566 | assert_eq!(actual_result.as_ref(), &expected_result[..]); |
567 | |
568 | Ok(()) |
569 | }, |
570 | ); |
571 | } |
572 | |
573 | #[test ] |
574 | fn signature_ecdsa_sign_asn1_test() { |
575 | let rng = rand::SystemRandom::new(); |
576 | |
577 | test::run( |
578 | test_file!("ecdsa_sign_asn1_tests.txt" ), |
579 | |section, test_case| { |
580 | assert_eq!(section, "" ); |
581 | |
582 | let curve_name = test_case .consume_string("Curve" ); |
583 | let digest_name = test_case .consume_string("Digest" ); |
584 | let msg = test_case .consume_bytes("Msg" ); |
585 | let d = test_case .consume_bytes("d" ); |
586 | let q = test_case .consume_bytes("Q" ); |
587 | let k = test_case .consume_bytes("k" ); |
588 | |
589 | let expected_result = test_case .consume_bytes("Sig" ); |
590 | |
591 | let alg = match (curve_name.as_str(), digest_name.as_str()) { |
592 | ("P-256" , "SHA256" ) => &signature::ECDSA_P256_SHA256_ASN1_SIGNING, |
593 | ("P-384" , "SHA384" ) => &signature::ECDSA_P384_SHA384_ASN1_SIGNING, |
594 | _ => { |
595 | panic!("Unsupported curve+digest: {}+{}" , curve_name, digest_name); |
596 | } |
597 | }; |
598 | |
599 | let private_key = |
600 | signature::EcdsaKeyPair::from_private_key_and_public_key(alg, &d, &q, &rng) |
601 | .unwrap(); |
602 | let rng = test::rand::FixedSliceRandom { bytes: &k }; |
603 | |
604 | let actual_result = private_key |
605 | .sign_with_fixed_nonce_during_test(&rng, &msg) |
606 | .unwrap(); |
607 | |
608 | assert_eq!(actual_result.as_ref(), &expected_result[..]); |
609 | |
610 | Ok(()) |
611 | }, |
612 | ); |
613 | } |
614 | } |
615 | |