1 | #![doc (html_root_url = "https://docs.rs/slotmap/1.0.7" )]
|
2 | #![crate_name = "slotmap" ]
|
3 | #![cfg_attr (all(nightly, feature = "unstable" ), feature(try_reserve))]
|
4 | #![cfg_attr (all(not(test), not(feature = "std" )), no_std)]
|
5 | #![cfg_attr (all(nightly, doc), feature(doc_cfg))]
|
6 | #![warn (
|
7 | missing_debug_implementations,
|
8 | trivial_casts,
|
9 | trivial_numeric_casts,
|
10 | unused_lifetimes,
|
11 | unused_import_braces
|
12 | )]
|
13 | #![deny (missing_docs, unaligned_references)]
|
14 | #![cfg_attr (feature = "cargo-clippy" , allow(renamed_and_removed_lints))]
|
15 | #![cfg_attr (feature = "cargo-clippy" , deny(clippy, clippy_pedantic))]
|
16 | #![cfg_attr (
|
17 | feature = "cargo-clippy" ,
|
18 | allow(
|
19 | // Style differences.
|
20 | module_name_repetitions,
|
21 | redundant_closure_for_method_calls,
|
22 | unseparated_literal_suffix,
|
23 |
|
24 | // I know what I'm doing and want these.
|
25 | wildcard_imports,
|
26 | inline_always,
|
27 | cast_possible_truncation,
|
28 | needless_pass_by_value,
|
29 |
|
30 | // Very noisy.
|
31 | missing_errors_doc,
|
32 | must_use_candidate
|
33 | ))]
|
34 |
|
35 | //! # slotmap
|
36 | //!
|
37 | //! This library provides a container with persistent unique keys to access
|
38 | //! stored values, [`SlotMap`]. Upon insertion a key is returned that can be
|
39 | //! used to later access or remove the values. Insertion, removal and access all
|
40 | //! take O(1) time with low overhead. Great for storing collections of objects
|
41 | //! that need stable, safe references but have no clear ownership otherwise,
|
42 | //! such as game entities or graph nodes.
|
43 | //!
|
44 | //! The difference between a [`BTreeMap`] or [`HashMap`] and a slot map is
|
45 | //! that the slot map generates and returns the key when inserting a value. A
|
46 | //! key is always unique and will only refer to the value that was inserted.
|
47 | //! A slot map's main purpose is to simply own things in a safe and efficient
|
48 | //! manner.
|
49 | //!
|
50 | //! You can also create (multiple) secondary maps that can map the keys returned
|
51 | //! by [`SlotMap`] to other values, to associate arbitrary data with objects
|
52 | //! stored in slot maps, without hashing required - it's direct indexing under
|
53 | //! the hood.
|
54 | //!
|
55 | //! The minimum required stable Rust version for this crate is 1.49.
|
56 | //!
|
57 | //! # Examples
|
58 | //!
|
59 | //! ```
|
60 | //! # use slotmap::*;
|
61 | //! let mut sm = SlotMap::new();
|
62 | //! let foo = sm.insert("foo" ); // Key generated on insert.
|
63 | //! let bar = sm.insert("bar" );
|
64 | //! assert_eq!(sm[foo], "foo" );
|
65 | //! assert_eq!(sm[bar], "bar" );
|
66 | //!
|
67 | //! sm.remove(bar);
|
68 | //! let reuse = sm.insert("reuse" ); // Space from bar reused.
|
69 | //! assert_eq!(sm.contains_key(bar), false); // After deletion a key stays invalid.
|
70 | //!
|
71 | //! let mut sec = SecondaryMap::new();
|
72 | //! sec.insert(foo, "noun" ); // We provide the key for secondary maps.
|
73 | //! sec.insert(reuse, "verb" );
|
74 | //!
|
75 | //! for (key, val) in sm {
|
76 | //! println!("{} is a {}" , val, sec[key]);
|
77 | //! }
|
78 | //! ```
|
79 | //!
|
80 | //! # Serialization through [`serde`], [`no_std`] support and unstable features
|
81 | //!
|
82 | //! Both keys and the slot maps have full (de)seralization support through
|
83 | //! the [`serde`] library. A key remains valid for a slot map even after one or
|
84 | //! both have been serialized and deserialized! This makes storing or
|
85 | //! transferring complicated referential structures and graphs a breeze. Care has
|
86 | //! been taken such that deserializing keys and slot maps from untrusted sources
|
87 | //! is safe. If you wish to use these features you must enable the `serde`
|
88 | //! feature flag for `slotmap` in your `Cargo.toml`.
|
89 | //!
|
90 | //! ```text
|
91 | //! slotmap = { version = "1.0", features = ["serde"] }
|
92 | //! ```
|
93 | //!
|
94 | //! This crate also supports [`no_std`] environments, but does require the
|
95 | //! [`alloc`] crate to be available. To enable this you have to disable the
|
96 | //! `std` feature that is enabled by default:
|
97 | //!
|
98 | //! ```text
|
99 | //! slotmap = { version = "1.0", default-features = false }
|
100 | //! ```
|
101 | //!
|
102 | //! Unfortunately [`SparseSecondaryMap`] is not available in [`no_std`], because
|
103 | //! it relies on [`HashMap`]. Finally the `unstable` feature can be defined to
|
104 | //! enable the parts of `slotmap` that only work on nightly Rust.
|
105 | //!
|
106 | //! # Why not index a [`Vec`], or use [`slab`], [`stable-vec`], etc?
|
107 | //!
|
108 | //! Those solutions either can not reclaim memory from deleted elements or
|
109 | //! suffer from the ABA problem. The keys returned by `slotmap` are versioned.
|
110 | //! This means that once a key is removed, it stays removed, even if the
|
111 | //! physical storage inside the slotmap is reused for new elements. The key is a
|
112 | //! permanently unique<sup>*</sup> reference to the inserted value. Despite
|
113 | //! supporting versioning, a [`SlotMap`] is often not (much) slower than the
|
114 | //! alternative, by internally using carefully checked unsafe code. Finally,
|
115 | //! `slotmap` simply has a lot of features that make your life easy.
|
116 | //!
|
117 | //! # Performance characteristics and implementation details
|
118 | //!
|
119 | //! Insertion, access and deletion is all O(1) with low overhead by storing the
|
120 | //! elements inside a [`Vec`]. Unlike references or indices into a vector,
|
121 | //! unless you remove a key it is never invalidated. Behind the scenes each
|
122 | //! slot in the vector is a `(value, version)` tuple. After insertion the
|
123 | //! returned key also contains a version. Only when the stored version and
|
124 | //! version in a key match is a key valid. This allows us to reuse space in the
|
125 | //! vector after deletion without letting removed keys point to spurious new
|
126 | //! elements. <sup>*</sup>After 2<sup>31</sup> deletions and insertions to the
|
127 | //! same underlying slot the version wraps around and such a spurious reference
|
128 | //! could potentially occur. It is incredibly unlikely however, and in all
|
129 | //! circumstances is the behavior safe. A slot map can hold up to
|
130 | //! 2<sup>32</sup> - 2 elements at a time.
|
131 | //!
|
132 | //! The memory usage for each slot in [`SlotMap`] is `4 + max(sizeof(T), 4)`
|
133 | //! rounded up to the alignment of `T`. Similarly it is `4 + max(sizeof(T), 12)`
|
134 | //! for [`HopSlotMap`]. [`DenseSlotMap`] has an overhead of 8 bytes per element
|
135 | //! and 8 bytes per slot.
|
136 | //!
|
137 | //! # Choosing [`SlotMap`], [`HopSlotMap`] or [`DenseSlotMap`]
|
138 | //!
|
139 | //! A [`SlotMap`] is the fastest for most operations, except iteration. It can
|
140 | //! never shrink the size of its underlying storage, because it must remember
|
141 | //! for each storage slot what the latest stored version was, even if the slot
|
142 | //! is empty now. This means that iteration can be slow as it must iterate over
|
143 | //! potentially a lot of empty slots.
|
144 | //!
|
145 | //! [`HopSlotMap`] solves this by maintaining more information on
|
146 | //! insertion/removal, allowing it to iterate only over filled slots by 'hopping
|
147 | //! over' contiguous blocks of vacant slots. This can give it significantly
|
148 | //! better iteration speed. If you expect to iterate over all elements in a
|
149 | //! [`SlotMap`] a lot, and potentially have a lot of deleted elements, choose
|
150 | //! [`HopSlotMap`]. The downside is that insertion and removal is roughly twice
|
151 | //! as slow. Random access is the same speed for both.
|
152 | //!
|
153 | //! [`DenseSlotMap`] goes even further and stores all elements on a contiguous
|
154 | //! block of memory. It uses two indirections per random access; the slots
|
155 | //! contain indices used to access the contiguous memory. This means random
|
156 | //! access is slower than both [`SlotMap`] and [`HopSlotMap`], but iteration is
|
157 | //! significantly faster, as fast as a normal [`Vec`].
|
158 | //!
|
159 | //! # Choosing [`SecondaryMap`] or [`SparseSecondaryMap`]
|
160 | //!
|
161 | //! You want to associate extra data with objects stored in a slot map, so you
|
162 | //! use (multiple) secondary maps to map keys to that data.
|
163 | //!
|
164 | //! A [`SecondaryMap`] is simply a [`Vec`] of slots like slot map is, and
|
165 | //! essentially provides all the same guarantees as [`SlotMap`] does for its
|
166 | //! operations (with the exception that you provide the keys as produced by the
|
167 | //! primary slot map). This does mean that even if you associate data to only
|
168 | //! a single element from the primary slot map, you could need and have to
|
169 | //! initialize as much memory as the original.
|
170 | //!
|
171 | //! A [`SparseSecondaryMap`] is like a [`HashMap`] from keys to objects, however
|
172 | //! it automatically removes outdated keys for slots that had their space
|
173 | //! reused. You should use this variant if you expect to store some associated
|
174 | //! data for only a small portion of the primary slot map.
|
175 | //!
|
176 | //! # Custom key types
|
177 | //!
|
178 | //! If you have multiple slot maps it's an error to use the key of one slot map
|
179 | //! on another slot map. The result is safe, but unspecified, and can not be
|
180 | //! detected at runtime, so it can lead to a hard to find bug.
|
181 | //!
|
182 | //! To prevent this, slot maps allow you to specify what the type is of the key
|
183 | //! they return. You can construct new key types using the [`new_key_type!`]
|
184 | //! macro. The resulting type behaves exactly like [`DefaultKey`], but is a
|
185 | //! distinct type. So instead of simply using `SlotMap<DefaultKey, Player>` you
|
186 | //! would use:
|
187 | //!
|
188 | //! ```
|
189 | //! # use slotmap::*;
|
190 | //! # #[derive(Copy, Clone)]
|
191 | //! # struct Player;
|
192 | //! new_key_type! { struct PlayerKey; }
|
193 | //! let sm: SlotMap<PlayerKey, Player> = SlotMap::with_key();
|
194 | //! ```
|
195 | //!
|
196 | //! You can write code generic over any key type using the [`Key`] trait.
|
197 | //!
|
198 | //! [`Vec`]: std::vec::Vec
|
199 | //! [`BTreeMap`]: std::collections::BTreeMap
|
200 | //! [`HashMap`]: std::collections::HashMap
|
201 | //! [`serde`]: https://github.com/serde-rs/serde
|
202 | //! [`slab`]: https://crates.io/crates/slab
|
203 | //! [`stable-vec`]: https://crates.io/crates/stable-vec
|
204 | //! [`no_std`]: https://doc.rust-lang.org/1.7.0/book/no-stdlib.html
|
205 |
|
206 | extern crate alloc;
|
207 |
|
208 | // So our macros can refer to these.
|
209 | #[doc (hidden)]
|
210 | pub mod __impl {
|
211 | #[cfg (feature = "serde" )]
|
212 | pub use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
213 | pub use core::convert::From;
|
214 | pub use core::result::Result;
|
215 | }
|
216 |
|
217 | pub mod basic;
|
218 | pub mod dense;
|
219 | pub mod hop;
|
220 | pub mod secondary;
|
221 | #[cfg (feature = "std" )]
|
222 | pub mod sparse_secondary;
|
223 | pub(crate) mod util;
|
224 |
|
225 | use core::fmt::{self, Debug, Formatter};
|
226 | use core::hash::{Hash, Hasher};
|
227 | use core::num::NonZeroU32;
|
228 |
|
229 | #[doc (inline)]
|
230 | pub use crate::basic::SlotMap;
|
231 | #[doc (inline)]
|
232 | pub use crate::dense::DenseSlotMap;
|
233 | #[doc (inline)]
|
234 | pub use crate::hop::HopSlotMap;
|
235 | #[doc (inline)]
|
236 | pub use crate::secondary::SecondaryMap;
|
237 | #[cfg (feature = "std" )]
|
238 | #[doc (inline)]
|
239 | pub use crate::sparse_secondary::SparseSecondaryMap;
|
240 |
|
241 | // Keep Slottable for backwards compatibility, but warn about deprecation
|
242 | // and hide from documentation.
|
243 | #[doc (hidden)]
|
244 | #[deprecated (
|
245 | since = "1.0.0" ,
|
246 | note = "Slottable is not necessary anymore, slotmap now supports all types on stable."
|
247 | )]
|
248 | pub trait Slottable {}
|
249 |
|
250 | #[doc (hidden)]
|
251 | #[allow (deprecated)]
|
252 | impl<T> Slottable for T {}
|
253 |
|
254 | /// The actual data stored in a [`Key`].
|
255 | ///
|
256 | /// This implements [`Ord`](std::cmp::Ord) so keys can be stored in e.g.
|
257 | /// [`BTreeMap`](std::collections::BTreeMap), but the order of keys is
|
258 | /// unspecified.
|
259 | #[derive (Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
|
260 | pub struct KeyData {
|
261 | idx: u32,
|
262 | version: NonZeroU32,
|
263 | }
|
264 |
|
265 | impl KeyData {
|
266 | fn new(idx: u32, version: u32) -> Self {
|
267 | debug_assert!(version > 0);
|
268 |
|
269 | Self {
|
270 | idx,
|
271 | version: unsafe { NonZeroU32::new_unchecked(version | 1) },
|
272 | }
|
273 | }
|
274 |
|
275 | fn null() -> Self {
|
276 | Self::new(core::u32::MAX, 1)
|
277 | }
|
278 |
|
279 | fn is_null(self) -> bool {
|
280 | self.idx == core::u32::MAX
|
281 | }
|
282 |
|
283 | /// Returns the key data as a 64-bit integer. No guarantees about its value
|
284 | /// are made other than that passing it to [`from_ffi`](Self::from_ffi)
|
285 | /// will return a key equal to the original.
|
286 | ///
|
287 | /// With this you can easily pass slot map keys as opaque handles to foreign
|
288 | /// code. After you get them back you can confidently use them in your slot
|
289 | /// map without worrying about unsafe behavior as you would with passing and
|
290 | /// receiving back references or pointers.
|
291 | ///
|
292 | /// This is not a substitute for proper serialization, use [`serde`] for
|
293 | /// that. If you are not doing FFI, you almost surely do not need this
|
294 | /// function.
|
295 | ///
|
296 | /// [`serde`]: crate#serialization-through-serde-no_std-support-and-unstable-features
|
297 | pub fn as_ffi(self) -> u64 {
|
298 | (u64::from(self.version.get()) << 32) | u64::from(self.idx)
|
299 | }
|
300 |
|
301 | /// Iff `value` is a value received from `k.as_ffi()`, returns a key equal
|
302 | /// to `k`. Otherwise the behavior is safe but unspecified.
|
303 | pub fn from_ffi(value: u64) -> Self {
|
304 | let idx = value & 0xffff_ffff;
|
305 | let version = (value >> 32) | 1; // Ensure version is odd.
|
306 | Self::new(idx as u32, version as u32)
|
307 | }
|
308 | }
|
309 |
|
310 | impl Debug for KeyData {
|
311 | fn fmt(&self, f: &mut Formatter) -> fmt::Result {
|
312 | write!(f, " {}v {}" , self.idx, self.version.get())
|
313 | }
|
314 | }
|
315 |
|
316 | impl Default for KeyData {
|
317 | fn default() -> Self {
|
318 | Self::null()
|
319 | }
|
320 | }
|
321 |
|
322 | impl Hash for KeyData
|
323 | {
|
324 | fn hash<H: Hasher>(&self, state: &mut H) {
|
325 | // A derived Hash impl would call write_u32 twice. We call write_u64
|
326 | // once, which is beneficial if the hasher implements write_u64
|
327 | // explicitly.
|
328 | state.write_u64(self.as_ffi())
|
329 | }
|
330 | }
|
331 |
|
332 | /// Key used to access stored values in a slot map.
|
333 | ///
|
334 | /// Do not use a key from one slot map in another. The behavior is safe but
|
335 | /// non-sensical (and might panic in case of out-of-bounds).
|
336 | ///
|
337 | /// To prevent this, it is suggested to have a unique key type for each slot
|
338 | /// map. You can create new key types using [`new_key_type!`], which makes a
|
339 | /// new type identical to [`DefaultKey`], just with a different name.
|
340 | ///
|
341 | /// This trait is intended to be a thin wrapper around [`KeyData`], and all
|
342 | /// methods must behave exactly as if we're operating on a [`KeyData`] directly.
|
343 | /// The internal unsafe code relies on this, therefore this trait is `unsafe` to
|
344 | /// implement. It is strongly suggested to simply use [`new_key_type!`] instead
|
345 | /// of implementing this trait yourself.
|
346 | pub unsafe trait Key:
|
347 | From<KeyData>
|
348 | + Copy
|
349 | + Clone
|
350 | + Default
|
351 | + Eq
|
352 | + PartialEq
|
353 | + Ord
|
354 | + PartialOrd
|
355 | + core::hash::Hash
|
356 | + core::fmt::Debug
|
357 | {
|
358 | /// Creates a new key that is always invalid and distinct from any non-null
|
359 | /// key. A null key can only be created through this method (or default
|
360 | /// initialization of keys made with [`new_key_type!`], which calls this
|
361 | /// method).
|
362 | ///
|
363 | /// A null key is always invalid, but an invalid key (that is, a key that
|
364 | /// has been removed from the slot map) does not become a null key. A null
|
365 | /// is safe to use with any safe method of any slot map instance.
|
366 | ///
|
367 | /// # Examples
|
368 | ///
|
369 | /// ```
|
370 | /// # use slotmap::*;
|
371 | /// let mut sm = SlotMap::new();
|
372 | /// let k = sm.insert(42);
|
373 | /// let nk = DefaultKey::null();
|
374 | /// assert!(nk.is_null());
|
375 | /// assert!(k != nk);
|
376 | /// assert_eq!(sm.get(nk), None);
|
377 | /// ```
|
378 | fn null() -> Self {
|
379 | KeyData::null().into()
|
380 | }
|
381 |
|
382 | /// Checks if a key is null. There is only a single null key, that is
|
383 | /// `a.is_null() && b.is_null()` implies `a == b`.
|
384 | ///
|
385 | /// # Examples
|
386 | ///
|
387 | /// ```
|
388 | /// # use slotmap::*;
|
389 | /// new_key_type! { struct MyKey; }
|
390 | /// let a = MyKey::null();
|
391 | /// let b = MyKey::default();
|
392 | /// assert_eq!(a, b);
|
393 | /// assert!(a.is_null());
|
394 | /// ```
|
395 | fn is_null(&self) -> bool {
|
396 | self.data().is_null()
|
397 | }
|
398 |
|
399 | /// Gets the [`KeyData`] stored in this key.
|
400 | ///
|
401 | /// # Examples
|
402 | ///
|
403 | /// ```
|
404 | /// # use slotmap::*;
|
405 | /// new_key_type! { struct MyKey; }
|
406 | /// let dk = DefaultKey::null();
|
407 | /// let mk = MyKey::null();
|
408 | /// assert_eq!(dk.data(), mk.data());
|
409 | /// ```
|
410 | fn data(&self) -> KeyData;
|
411 | }
|
412 |
|
413 | /// A helper macro to create new key types. If you use a new key type for each
|
414 | /// slot map you create you can entirely prevent using the wrong key on the
|
415 | /// wrong slot map.
|
416 | ///
|
417 | /// The type constructed by this macro is defined exactly as [`DefaultKey`],
|
418 | /// but is a distinct type for the type checker and does not implicitly convert.
|
419 | ///
|
420 | /// # Examples
|
421 | ///
|
422 | /// ```
|
423 | /// # extern crate slotmap;
|
424 | /// # use slotmap::*;
|
425 | /// new_key_type! {
|
426 | /// // A private key type.
|
427 | /// struct RocketKey;
|
428 | ///
|
429 | /// // A public key type with a doc comment.
|
430 | /// /// Key for the user slot map.
|
431 | /// pub struct UserKey;
|
432 | /// }
|
433 | ///
|
434 | /// fn main() {
|
435 | /// let mut users = SlotMap::with_key();
|
436 | /// let mut rockets = SlotMap::with_key();
|
437 | /// let bob: UserKey = users.insert("bobby" );
|
438 | /// let apollo: RocketKey = rockets.insert("apollo" );
|
439 | /// // Now this is a type error because rockets.get expects an RocketKey:
|
440 | /// // rockets.get(bob);
|
441 | ///
|
442 | /// // If for some reason you do end up needing to convert (e.g. storing
|
443 | /// // keys of multiple slot maps in the same data structure without
|
444 | /// // boxing), you can use KeyData as an intermediate representation. This
|
445 | /// // does mean that once again you are responsible for not using the wrong
|
446 | /// // key on the wrong slot map.
|
447 | /// let keys = vec![bob.data(), apollo.data()];
|
448 | /// println!("{} likes rocket {}" ,
|
449 | /// users[keys[0].into()], rockets[keys[1].into()]);
|
450 | /// }
|
451 | /// ```
|
452 | #[macro_export (local_inner_macros)]
|
453 | macro_rules! new_key_type {
|
454 | ( $(#[$outer:meta])* $vis:vis struct $name:ident; $($rest:tt)* ) => {
|
455 | $(#[$outer])*
|
456 | #[derive(Copy, Clone, Default,
|
457 | Eq, PartialEq, Ord, PartialOrd,
|
458 | Hash, Debug)]
|
459 | #[repr(transparent)]
|
460 | $vis struct $name($crate::KeyData);
|
461 |
|
462 | impl $crate::__impl::From<$crate::KeyData> for $name {
|
463 | fn from(k: $crate::KeyData) -> Self {
|
464 | $name(k)
|
465 | }
|
466 | }
|
467 |
|
468 | unsafe impl $crate::Key for $name {
|
469 | fn data(&self) -> $crate::KeyData {
|
470 | self.0
|
471 | }
|
472 | }
|
473 |
|
474 | $crate::__serialize_key!($name);
|
475 |
|
476 | $crate::new_key_type!($($rest)*);
|
477 | };
|
478 |
|
479 | () => {}
|
480 | }
|
481 |
|
482 | #[cfg (feature = "serde" )]
|
483 | #[doc (hidden)]
|
484 | #[macro_export ]
|
485 | macro_rules! __serialize_key {
|
486 | ( $name:ty ) => {
|
487 | impl $crate::__impl::Serialize for $name {
|
488 | fn serialize<S>(&self, serializer: S) -> $crate::__impl::Result<S::Ok, S::Error>
|
489 | where
|
490 | S: $crate::__impl::Serializer,
|
491 | {
|
492 | $crate::Key::data(self).serialize(serializer)
|
493 | }
|
494 | }
|
495 |
|
496 | impl<'de> $crate::__impl::Deserialize<'de> for $name {
|
497 | fn deserialize<D>(deserializer: D) -> $crate::__impl::Result<Self, D::Error>
|
498 | where
|
499 | D: $crate::__impl::Deserializer<'de>,
|
500 | {
|
501 | let key_data: $crate::KeyData =
|
502 | $crate::__impl::Deserialize::deserialize(deserializer)?;
|
503 | Ok(key_data.into())
|
504 | }
|
505 | }
|
506 | };
|
507 | }
|
508 |
|
509 | #[cfg (not(feature = "serde" ))]
|
510 | #[doc (hidden)]
|
511 | #[macro_export ]
|
512 | macro_rules! __serialize_key {
|
513 | ( $name:ty ) => {};
|
514 | }
|
515 |
|
516 | new_key_type! {
|
517 | /// The default slot map key type.
|
518 | pub struct DefaultKey;
|
519 | }
|
520 |
|
521 | // Serialization with serde.
|
522 | #[cfg (feature = "serde" )]
|
523 | mod serialize {
|
524 | use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
525 |
|
526 | use super::*;
|
527 |
|
528 | #[derive (Serialize, Deserialize)]
|
529 | pub struct SerKey {
|
530 | idx: u32,
|
531 | version: u32,
|
532 | }
|
533 |
|
534 | impl Serialize for KeyData {
|
535 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
536 | where
|
537 | S: Serializer,
|
538 | {
|
539 | let ser_key = SerKey {
|
540 | idx: self.idx,
|
541 | version: self.version.get(),
|
542 | };
|
543 | ser_key.serialize(serializer)
|
544 | }
|
545 | }
|
546 |
|
547 | impl<'de> Deserialize<'de> for KeyData {
|
548 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
549 | where
|
550 | D: Deserializer<'de>,
|
551 | {
|
552 | let mut ser_key: SerKey = Deserialize::deserialize(deserializer)?;
|
553 |
|
554 | // Ensure a.is_null() && b.is_null() implies a == b.
|
555 | if ser_key.idx == core::u32::MAX {
|
556 | ser_key.version = 1;
|
557 | }
|
558 |
|
559 | ser_key.version |= 1; // Ensure version is odd.
|
560 | Ok(Self::new(ser_key.idx, ser_key.version))
|
561 | }
|
562 | }
|
563 | }
|
564 |
|
565 | #[cfg (test)]
|
566 | mod tests {
|
567 | // Intentionally no `use super::*;` because we want to test macro expansion
|
568 | // in the *users* scope, which might not have that.
|
569 | #[test ]
|
570 | fn macro_expansion() {
|
571 | #![allow (dead_code)]
|
572 | use super::new_key_type;
|
573 |
|
574 | // Clobber namespace with clashing names - should still work.
|
575 | trait Serialize { }
|
576 | trait Deserialize { }
|
577 | trait Serializer { }
|
578 | trait Deserializer { }
|
579 | trait Key { }
|
580 | trait From { }
|
581 | struct Result;
|
582 | struct KeyData;
|
583 |
|
584 | new_key_type! {
|
585 | struct A;
|
586 | pub(crate) struct B;
|
587 | pub struct C;
|
588 | }
|
589 | }
|
590 |
|
591 | #[test ]
|
592 | fn check_is_older_version() {
|
593 | use super::util::is_older_version;
|
594 |
|
595 | let is_older = |a, b| is_older_version(a, b);
|
596 | assert!(!is_older(42, 42));
|
597 | assert!(is_older(0, 1));
|
598 | assert!(is_older(0, 1 << 31));
|
599 | assert!(!is_older(0, (1 << 31) + 1));
|
600 | assert!(is_older(u32::MAX, 0));
|
601 | }
|
602 |
|
603 | #[test ]
|
604 | fn iters_cloneable() {
|
605 | use super::*;
|
606 |
|
607 | struct NoClone;
|
608 |
|
609 | let mut sm = SlotMap::new();
|
610 | let mut hsm = HopSlotMap::new();
|
611 | let mut dsm = DenseSlotMap::new();
|
612 | let mut scm = SecondaryMap::new();
|
613 | let mut sscm = SparseSecondaryMap::new();
|
614 | scm.insert(sm.insert(NoClone), NoClone);
|
615 | sscm.insert(hsm.insert(NoClone), NoClone);
|
616 | dsm.insert(NoClone);
|
617 |
|
618 | let _ = sm.keys().clone();
|
619 | let _ = sm.values().clone();
|
620 | let _ = sm.iter().clone();
|
621 | let _ = hsm.keys().clone();
|
622 | let _ = hsm.values().clone();
|
623 | let _ = hsm.iter().clone();
|
624 | let _ = dsm.keys().clone();
|
625 | let _ = dsm.values().clone();
|
626 | let _ = dsm.iter().clone();
|
627 | let _ = scm.keys().clone();
|
628 | let _ = scm.values().clone();
|
629 | let _ = scm.iter().clone();
|
630 | let _ = sscm.keys().clone();
|
631 | let _ = sscm.values().clone();
|
632 | let _ = sscm.iter().clone();
|
633 | }
|
634 |
|
635 | #[cfg (feature = "serde" )]
|
636 | #[test ]
|
637 | fn key_serde() {
|
638 | use super::*;
|
639 |
|
640 | // Check round-trip through serde.
|
641 | let mut sm = SlotMap::new();
|
642 | let k = sm.insert(42);
|
643 | let ser = serde_json::to_string(&k).unwrap();
|
644 | let de: DefaultKey = serde_json::from_str(&ser).unwrap();
|
645 | assert_eq!(k, de);
|
646 |
|
647 | // Even if a malicious entity sends up even (unoccupied) versions in the
|
648 | // key, we make the version point to the occupied version.
|
649 | let malicious: KeyData = serde_json::from_str(&r#"{"idx":0,"version":4}"# ).unwrap();
|
650 | assert_eq!(malicious.version.get(), 5);
|
651 | }
|
652 | }
|
653 | |