1 | //! Contains the sparse secondary map implementation.
|
2 |
|
3 | #[cfg (all(nightly, any(doc, feature = "unstable" )))]
|
4 | use alloc::collections::TryReserveError;
|
5 | #[allow (unused_imports)] // MaybeUninit is only used on nightly at the moment.
|
6 | use core::mem::MaybeUninit;
|
7 | use std::collections::hash_map::{self, HashMap};
|
8 | use std::hash;
|
9 | use std::iter::{Extend, FromIterator, FusedIterator};
|
10 | use std::marker::PhantomData;
|
11 | use std::ops::{Index, IndexMut};
|
12 |
|
13 | use super::{Key, KeyData};
|
14 | use crate::util::{is_older_version, UnwrapUnchecked};
|
15 |
|
16 | #[derive (Debug, Clone)]
|
17 | struct Slot<T> {
|
18 | version: u32,
|
19 | value: T,
|
20 | }
|
21 |
|
22 | /// Sparse secondary map, associate data with previously stored elements in a
|
23 | /// slot map.
|
24 | ///
|
25 | /// A [`SparseSecondaryMap`] allows you to efficiently store additional
|
26 | /// information for each element in a slot map. You can have multiple secondary
|
27 | /// maps per slot map, but not multiple slot maps per secondary map. It is safe
|
28 | /// but unspecified behavior if you use keys from multiple different slot maps
|
29 | /// in the same [`SparseSecondaryMap`].
|
30 | ///
|
31 | /// A [`SparseSecondaryMap`] does not leak memory even if you never remove
|
32 | /// elements. In return, when you remove a key from the primary slot map, after
|
33 | /// any insert the space associated with the removed element may be reclaimed.
|
34 | /// Don't expect the values associated with a removed key to stick around after
|
35 | /// an insertion has happened!
|
36 | ///
|
37 | /// Unlike [`SecondaryMap`], the [`SparseSecondaryMap`] is backed by a
|
38 | /// [`HashMap`]. This means its access times are higher, but it uses less memory
|
39 | /// and iterates faster if there are only a few elements of the slot map in the
|
40 | /// secondary map. If most or all of the elements in a slot map are also found
|
41 | /// in the secondary map, use a [`SecondaryMap`] instead.
|
42 | ///
|
43 | /// The current implementation of [`SparseSecondaryMap`] requires [`std`] and is
|
44 | /// thus not available in `no_std` environments.
|
45 | ///
|
46 | /// [`SecondaryMap`]: crate::SecondaryMap
|
47 | /// [`HashMap`]: std::collections::HashMap
|
48 | ///
|
49 | /// Example usage:
|
50 | ///
|
51 | /// ```
|
52 | /// # use slotmap::*;
|
53 | /// let mut players = SlotMap::new();
|
54 | /// let mut health = SparseSecondaryMap::new();
|
55 | /// let mut ammo = SparseSecondaryMap::new();
|
56 | ///
|
57 | /// let alice = players.insert("alice" );
|
58 | /// let bob = players.insert("bob" );
|
59 | ///
|
60 | /// for p in players.keys() {
|
61 | /// health.insert(p, 100);
|
62 | /// ammo.insert(p, 30);
|
63 | /// }
|
64 | ///
|
65 | /// // Alice attacks Bob with all her ammo!
|
66 | /// health[bob] -= ammo[alice] * 3;
|
67 | /// ammo[alice] = 0;
|
68 | /// ```
|
69 |
|
70 | #[derive (Debug, Clone)]
|
71 | pub struct SparseSecondaryMap<K: Key, V, S: hash::BuildHasher = hash_map::RandomState> {
|
72 | slots: HashMap<u32, Slot<V>, S>,
|
73 | _k: PhantomData<fn(K) -> K>,
|
74 | }
|
75 |
|
76 | impl<K: Key, V> SparseSecondaryMap<K, V, hash_map::RandomState> {
|
77 | /// Constructs a new, empty [`SparseSecondaryMap`].
|
78 | ///
|
79 | /// # Examples
|
80 | ///
|
81 | /// ```
|
82 | /// # use slotmap::*;
|
83 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
|
84 | /// ```
|
85 | pub fn new() -> Self {
|
86 | Self::with_capacity(0)
|
87 | }
|
88 |
|
89 | /// Creates an empty [`SparseSecondaryMap`] with the given capacity of slots.
|
90 | ///
|
91 | /// The secondary map will not reallocate until it holds at least `capacity`
|
92 | /// slots.
|
93 | ///
|
94 | /// # Examples
|
95 | ///
|
96 | /// ```
|
97 | /// # use slotmap::*;
|
98 | /// let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
|
99 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> =
|
100 | /// SparseSecondaryMap::with_capacity(sm.capacity());
|
101 | /// ```
|
102 | pub fn with_capacity(capacity: usize) -> Self {
|
103 | Self {
|
104 | slots: HashMap::with_capacity(capacity),
|
105 | _k: PhantomData,
|
106 | }
|
107 | }
|
108 | }
|
109 |
|
110 | impl<K: Key, V, S: hash::BuildHasher> SparseSecondaryMap<K, V, S> {
|
111 | /// Creates an empty [`SparseSecondaryMap`] which will use the given hash
|
112 | /// builder to hash keys.
|
113 | ///
|
114 | /// The secondary map will not reallocate until it holds at least `capacity`
|
115 | /// slots.
|
116 | ///
|
117 | /// # Examples
|
118 | ///
|
119 | /// ```
|
120 | /// # use std::collections::hash_map::RandomState;
|
121 | /// # use slotmap::*;
|
122 | /// let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
|
123 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32, _> =
|
124 | /// SparseSecondaryMap::with_hasher(RandomState::new());
|
125 | /// ```
|
126 | pub fn with_hasher(hash_builder: S) -> Self {
|
127 | Self {
|
128 | slots: HashMap::with_hasher(hash_builder),
|
129 | _k: PhantomData,
|
130 | }
|
131 | }
|
132 |
|
133 | /// Creates an empty [`SparseSecondaryMap`] with the given capacity of slots,
|
134 | /// using `hash_builder` to hash the keys.
|
135 | ///
|
136 | /// The secondary map will not reallocate until it holds at least `capacity`
|
137 | /// slots.
|
138 | ///
|
139 | /// # Examples
|
140 | ///
|
141 | /// ```
|
142 | /// # use std::collections::hash_map::RandomState;
|
143 | /// # use slotmap::*;
|
144 | /// let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
|
145 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32, _> =
|
146 | /// SparseSecondaryMap::with_capacity_and_hasher(10, RandomState::new());
|
147 | /// ```
|
148 | pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self {
|
149 | Self {
|
150 | slots: HashMap::with_capacity_and_hasher(capacity, hash_builder),
|
151 | _k: PhantomData,
|
152 | }
|
153 | }
|
154 |
|
155 | /// Returns the number of elements in the secondary map.
|
156 | ///
|
157 | /// # Examples
|
158 | ///
|
159 | /// ```
|
160 | /// # use slotmap::*;
|
161 | /// let mut sm = SlotMap::new();
|
162 | /// let k = sm.insert(4);
|
163 | /// let mut squared = SparseSecondaryMap::new();
|
164 | /// assert_eq!(squared.len(), 0);
|
165 | /// squared.insert(k, 16);
|
166 | /// assert_eq!(squared.len(), 1);
|
167 | /// ```
|
168 | pub fn len(&self) -> usize {
|
169 | self.slots.len()
|
170 | }
|
171 |
|
172 | /// Returns if the secondary map is empty.
|
173 | ///
|
174 | /// # Examples
|
175 | ///
|
176 | /// ```
|
177 | /// # use slotmap::*;
|
178 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
|
179 | /// assert!(sec.is_empty());
|
180 | /// ```
|
181 | pub fn is_empty(&self) -> bool {
|
182 | self.slots.is_empty()
|
183 | }
|
184 |
|
185 | /// Returns the number of elements the [`SparseSecondaryMap`] can hold without
|
186 | /// reallocating.
|
187 | ///
|
188 | /// # Examples
|
189 | ///
|
190 | /// ```
|
191 | /// # use slotmap::*;
|
192 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::with_capacity(10);
|
193 | /// assert!(sec.capacity() >= 10);
|
194 | /// ```
|
195 | pub fn capacity(&self) -> usize {
|
196 | self.slots.capacity()
|
197 | }
|
198 |
|
199 | /// Reserves capacity for at least `additional` more slots in the
|
200 | /// [`SparseSecondaryMap`]. The collection may reserve more space to avoid
|
201 | /// frequent reallocations.
|
202 | ///
|
203 | /// # Panics
|
204 | ///
|
205 | /// Panics if the new allocation size overflows [`usize`].
|
206 | ///
|
207 | /// # Examples
|
208 | ///
|
209 | /// ```
|
210 | /// # use slotmap::*;
|
211 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
|
212 | /// sec.reserve(10);
|
213 | /// assert!(sec.capacity() >= 10);
|
214 | /// ```
|
215 | pub fn reserve(&mut self, additional: usize) {
|
216 | self.slots.reserve(additional);
|
217 | }
|
218 |
|
219 | /// Tries to reserve capacity for at least `additional` more slots in the
|
220 | /// [`SparseSecondaryMap`]. The collection may reserve more space to avoid
|
221 | /// frequent reallocations.
|
222 | ///
|
223 | /// # Examples
|
224 | ///
|
225 | /// ```
|
226 | /// # use slotmap::*;
|
227 | /// let mut sec: SparseSecondaryMap<DefaultKey, i32> = SparseSecondaryMap::new();
|
228 | /// sec.try_reserve(10).unwrap();
|
229 | /// assert!(sec.capacity() >= 10);
|
230 | /// ```
|
231 | #[cfg (all(nightly, any(doc, feature = "unstable" )))]
|
232 | #[cfg_attr (all(nightly, doc), doc(cfg(feature = "unstable" )))]
|
233 | pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
|
234 | self.slots.try_reserve(additional)
|
235 | }
|
236 |
|
237 | /// Returns [`true`] if the secondary map contains `key`.
|
238 | ///
|
239 | /// # Examples
|
240 | ///
|
241 | /// ```
|
242 | /// # use slotmap::*;
|
243 | /// let mut sm = SlotMap::new();
|
244 | /// let k = sm.insert(4);
|
245 | /// let mut squared = SparseSecondaryMap::new();
|
246 | /// assert!(!squared.contains_key(k));
|
247 | /// squared.insert(k, 16);
|
248 | /// assert!(squared.contains_key(k));
|
249 | /// ```
|
250 | pub fn contains_key(&self, key: K) -> bool {
|
251 | let kd = key.data();
|
252 | self.slots.get(&kd.idx).map_or(false, |slot| slot.version == kd.version.get())
|
253 | }
|
254 |
|
255 | /// Inserts a value into the secondary map at the given `key`. Can silently
|
256 | /// fail if `key` was removed from the originating slot map.
|
257 | ///
|
258 | /// Returns [`None`] if this key was not present in the map, the old value
|
259 | /// otherwise.
|
260 | ///
|
261 | /// # Examples
|
262 | ///
|
263 | /// ```
|
264 | /// # use slotmap::*;
|
265 | /// let mut sm = SlotMap::new();
|
266 | /// let k = sm.insert(4);
|
267 | /// let mut squared = SparseSecondaryMap::new();
|
268 | /// assert_eq!(squared.insert(k, 0), None);
|
269 | /// assert_eq!(squared.insert(k, 4), Some(0));
|
270 | /// // You don't have to use insert if the key is already in the secondary map.
|
271 | /// squared[k] *= squared[k];
|
272 | /// assert_eq!(squared[k], 16);
|
273 | /// ```
|
274 | pub fn insert(&mut self, key: K, value: V) -> Option<V> {
|
275 | if key.is_null() {
|
276 | return None;
|
277 | }
|
278 |
|
279 | let kd = key.data();
|
280 |
|
281 | if let Some(slot) = self.slots.get_mut(&kd.idx) {
|
282 | if slot.version == kd.version.get() {
|
283 | return Some(std::mem::replace(&mut slot.value, value));
|
284 | }
|
285 |
|
286 | // Don't replace existing newer values.
|
287 | if is_older_version(kd.version.get(), slot.version) {
|
288 | return None;
|
289 | }
|
290 |
|
291 | *slot = Slot {
|
292 | version: kd.version.get(),
|
293 | value,
|
294 | };
|
295 |
|
296 | return None;
|
297 | }
|
298 |
|
299 | self.slots.insert(kd.idx, Slot {
|
300 | version: kd.version.get(),
|
301 | value,
|
302 | });
|
303 |
|
304 | None
|
305 | }
|
306 |
|
307 | /// Removes a key from the secondary map, returning the value at the key if
|
308 | /// the key was not previously removed. If `key` was removed from the
|
309 | /// originating slot map, its corresponding entry in the secondary map may
|
310 | /// or may not already be removed.
|
311 | ///
|
312 | /// # Examples
|
313 | ///
|
314 | /// ```
|
315 | /// # use slotmap::*;
|
316 | /// let mut sm = SlotMap::new();
|
317 | /// let mut squared = SparseSecondaryMap::new();
|
318 | /// let k = sm.insert(4);
|
319 | /// squared.insert(k, 16);
|
320 | /// squared.remove(k);
|
321 | /// assert!(!squared.contains_key(k));
|
322 | ///
|
323 | /// // It's not necessary to remove keys deleted from the primary slot map, they
|
324 | /// // get deleted automatically when their slots are reused on a subsequent insert.
|
325 | /// squared.insert(k, 16);
|
326 | /// sm.remove(k); // Remove k from the slot map, making an empty slot.
|
327 | /// let new_k = sm.insert(2); // Since sm only has one empty slot, this reuses it.
|
328 | /// assert!(!squared.contains_key(new_k)); // Space reuse does not mean equal keys.
|
329 | /// assert!(squared.contains_key(k)); // Slot has not been reused in squared yet.
|
330 | /// squared.insert(new_k, 4);
|
331 | /// assert!(!squared.contains_key(k)); // Old key is no longer available.
|
332 | /// ```
|
333 | pub fn remove(&mut self, key: K) -> Option<V> {
|
334 | let kd = key.data();
|
335 |
|
336 | if let hash_map::Entry::Occupied(entry) = self.slots.entry(kd.idx) {
|
337 | if entry.get().version == kd.version.get() {
|
338 | return Some(entry.remove_entry().1.value);
|
339 | }
|
340 | }
|
341 |
|
342 | None
|
343 | }
|
344 |
|
345 | /// Retains only the elements specified by the predicate.
|
346 | ///
|
347 | /// In other words, remove all key-value pairs `(k, v)` such that
|
348 | /// `f(k, &mut v)` returns false. This method invalidates any removed keys.
|
349 | ///
|
350 | /// # Examples
|
351 | ///
|
352 | /// ```
|
353 | /// # use slotmap::*;
|
354 | /// let mut sm = SlotMap::new();
|
355 | /// let mut sec = SparseSecondaryMap::new();
|
356 | ///
|
357 | /// let k1 = sm.insert(0); sec.insert(k1, 10);
|
358 | /// let k2 = sm.insert(1); sec.insert(k2, 11);
|
359 | /// let k3 = sm.insert(2); sec.insert(k3, 12);
|
360 | ///
|
361 | /// sec.retain(|key, val| key == k1 || *val == 11);
|
362 | ///
|
363 | /// assert!(sec.contains_key(k1));
|
364 | /// assert!(sec.contains_key(k2));
|
365 | /// assert!(!sec.contains_key(k3));
|
366 | ///
|
367 | /// assert_eq!(2, sec.len());
|
368 | /// ```
|
369 | pub fn retain<F>(&mut self, mut f: F)
|
370 | where
|
371 | F: FnMut(K, &mut V) -> bool,
|
372 | {
|
373 | self.slots.retain(|&idx, slot| {
|
374 | let key = KeyData::new(idx, slot.version).into();
|
375 | f(key, &mut slot.value)
|
376 | })
|
377 | }
|
378 |
|
379 | /// Clears the secondary map. Keeps the allocated memory for reuse.
|
380 | ///
|
381 | /// # Examples
|
382 | ///
|
383 | /// ```
|
384 | /// # use slotmap::*;
|
385 | /// let mut sm = SlotMap::new();
|
386 | /// let mut sec = SparseSecondaryMap::new();
|
387 | /// for i in 0..10 {
|
388 | /// sec.insert(sm.insert(i), i);
|
389 | /// }
|
390 | /// assert_eq!(sec.len(), 10);
|
391 | /// sec.clear();
|
392 | /// assert_eq!(sec.len(), 0);
|
393 | /// ```
|
394 | pub fn clear(&mut self) {
|
395 | self.slots.clear();
|
396 | }
|
397 |
|
398 | /// Clears the slot map, returning all key-value pairs in arbitrary order as
|
399 | /// an iterator. Keeps the allocated memory for reuse.
|
400 | ///
|
401 | /// When the iterator is dropped all elements in the slot map are removed,
|
402 | /// even if the iterator was not fully consumed. If the iterator is not
|
403 | /// dropped (using e.g. [`std::mem::forget`]), only the elements that were
|
404 | /// iterated over are removed.
|
405 | ///
|
406 | /// # Examples
|
407 | ///
|
408 | /// ```
|
409 | /// # use slotmap::*;
|
410 | /// # use std::iter::FromIterator;
|
411 | /// let mut sm = SlotMap::new();
|
412 | /// let k = sm.insert(0);
|
413 | /// let mut sec = SparseSecondaryMap::new();
|
414 | /// sec.insert(k, 1);
|
415 | /// let v: Vec<_> = sec.drain().collect();
|
416 | /// assert_eq!(sec.len(), 0);
|
417 | /// assert_eq!(v, vec![(k, 1)]);
|
418 | /// ```
|
419 | pub fn drain(&mut self) -> Drain<K, V> {
|
420 | Drain {
|
421 | inner: self.slots.drain(),
|
422 | _k: PhantomData,
|
423 | }
|
424 | }
|
425 |
|
426 | /// Returns a reference to the value corresponding to the key.
|
427 | ///
|
428 | /// # Examples
|
429 | ///
|
430 | /// ```
|
431 | /// # use slotmap::*;
|
432 | /// let mut sm = SlotMap::new();
|
433 | /// let key = sm.insert("foo" );
|
434 | /// let mut sec = SparseSecondaryMap::new();
|
435 | /// sec.insert(key, "bar" );
|
436 | /// assert_eq!(sec.get(key), Some(&"bar" ));
|
437 | /// sec.remove(key);
|
438 | /// assert_eq!(sec.get(key), None);
|
439 | /// ```
|
440 | pub fn get(&self, key: K) -> Option<&V> {
|
441 | let kd = key.data();
|
442 | self.slots
|
443 | .get(&kd.idx)
|
444 | .filter(|slot| slot.version == kd.version.get())
|
445 | .map(|slot| &slot.value)
|
446 | }
|
447 |
|
448 | /// Returns a reference to the value corresponding to the key without
|
449 | /// version or bounds checking.
|
450 | ///
|
451 | /// # Safety
|
452 | ///
|
453 | /// This should only be used if `contains_key(key)` is true. Otherwise it is
|
454 | /// potentially unsafe.
|
455 | ///
|
456 | /// # Examples
|
457 | ///
|
458 | /// ```
|
459 | /// # use slotmap::*;
|
460 | /// let mut sm = SlotMap::new();
|
461 | /// let key = sm.insert("foo" );
|
462 | /// let mut sec = SparseSecondaryMap::new();
|
463 | /// sec.insert(key, "bar" );
|
464 | /// assert_eq!(unsafe { sec.get_unchecked(key) }, &"bar" );
|
465 | /// sec.remove(key);
|
466 | /// // sec.get_unchecked(key) is now dangerous!
|
467 | /// ```
|
468 | pub unsafe fn get_unchecked(&self, key: K) -> &V {
|
469 | debug_assert!(self.contains_key(key));
|
470 | self.get(key).unwrap_unchecked_()
|
471 | }
|
472 |
|
473 | /// Returns a mutable reference to the value corresponding to the key.
|
474 | ///
|
475 | /// # Examples
|
476 | ///
|
477 | /// ```
|
478 | /// # use slotmap::*;
|
479 | /// let mut sm = SlotMap::new();
|
480 | /// let key = sm.insert("test" );
|
481 | /// let mut sec = SparseSecondaryMap::new();
|
482 | /// sec.insert(key, 3.5);
|
483 | /// if let Some(x) = sec.get_mut(key) {
|
484 | /// *x += 3.0;
|
485 | /// }
|
486 | /// assert_eq!(sec[key], 6.5);
|
487 | /// ```
|
488 | pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
|
489 | let kd = key.data();
|
490 | self.slots
|
491 | .get_mut(&kd.idx)
|
492 | .filter(|slot| slot.version == kd.version.get())
|
493 | .map(|slot| &mut slot.value)
|
494 | }
|
495 |
|
496 | /// Returns a mutable reference to the value corresponding to the key
|
497 | /// without version or bounds checking.
|
498 | ///
|
499 | /// # Safety
|
500 | ///
|
501 | /// This should only be used if `contains_key(key)` is true. Otherwise it is
|
502 | /// potentially unsafe.
|
503 | ///
|
504 | /// # Examples
|
505 | ///
|
506 | /// ```
|
507 | /// # use slotmap::*;
|
508 | /// let mut sm = SlotMap::new();
|
509 | /// let key = sm.insert("foo" );
|
510 | /// let mut sec = SparseSecondaryMap::new();
|
511 | /// sec.insert(key, "bar" );
|
512 | /// unsafe { *sec.get_unchecked_mut(key) = "baz" };
|
513 | /// assert_eq!(sec[key], "baz" );
|
514 | /// sec.remove(key);
|
515 | /// // sec.get_unchecked_mut(key) is now dangerous!
|
516 | /// ```
|
517 | pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V {
|
518 | debug_assert!(self.contains_key(key));
|
519 | self.get_mut(key).unwrap_unchecked_()
|
520 | }
|
521 |
|
522 | /// Returns mutable references to the values corresponding to the given
|
523 | /// keys. All keys must be valid and disjoint, otherwise None is returned.
|
524 | ///
|
525 | /// Requires at least stable Rust version 1.51.
|
526 | ///
|
527 | /// # Examples
|
528 | ///
|
529 | /// ```
|
530 | /// # use slotmap::*;
|
531 | /// let mut sm = SlotMap::new();
|
532 | /// let mut sec = SparseSecondaryMap::new();
|
533 | /// let ka = sm.insert(()); sec.insert(ka, "butter" );
|
534 | /// let kb = sm.insert(()); sec.insert(kb, "apples" );
|
535 | /// let kc = sm.insert(()); sec.insert(kc, "charlie" );
|
536 | /// sec.remove(kc); // Make key c invalid.
|
537 | /// assert_eq!(sec.get_disjoint_mut([ka, kb, kc]), None); // Has invalid key.
|
538 | /// assert_eq!(sec.get_disjoint_mut([ka, ka]), None); // Not disjoint.
|
539 | /// let [a, b] = sec.get_disjoint_mut([ka, kb]).unwrap();
|
540 | /// std::mem::swap(a, b);
|
541 | /// assert_eq!(sec[ka], "apples" );
|
542 | /// assert_eq!(sec[kb], "butter" );
|
543 | /// ```
|
544 | #[cfg (has_min_const_generics)]
|
545 | pub fn get_disjoint_mut<const N: usize>(&mut self, keys: [K; N]) -> Option<[&mut V; N]> {
|
546 | // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
|
547 | // safe because the type we are claiming to have initialized here is a
|
548 | // bunch of `MaybeUninit`s, which do not require initialization.
|
549 | let mut ptrs: [MaybeUninit<*mut V>; N] = unsafe { MaybeUninit::uninit().assume_init() };
|
550 |
|
551 | let mut i = 0;
|
552 | while i < N {
|
553 | let kd = keys[i].data();
|
554 |
|
555 | match self.slots.get_mut(&kd.idx) {
|
556 | Some(Slot { version, value }) if *version == kd.version.get() => {
|
557 | // This key is valid, and the slot is occupied. Temporarily
|
558 | // make the version even so duplicate keys would show up as
|
559 | // invalid, since keys always have an odd version. This
|
560 | // gives us a linear time disjointness check.
|
561 | ptrs[i] = MaybeUninit::new(&mut *value);
|
562 | *version ^= 1;
|
563 | },
|
564 |
|
565 | _ => break,
|
566 | }
|
567 |
|
568 | i += 1;
|
569 | }
|
570 |
|
571 | // Undo temporary even versions.
|
572 | for k in &keys[0..i] {
|
573 | match self.slots.get_mut(&k.data().idx) {
|
574 | Some(Slot { version, .. }) => {
|
575 | *version ^= 1;
|
576 | },
|
577 | _ => unsafe { core::hint::unreachable_unchecked() },
|
578 | }
|
579 | }
|
580 |
|
581 | if i == N {
|
582 | // All were valid and disjoint.
|
583 | Some(unsafe { core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs) })
|
584 | } else {
|
585 | None
|
586 | }
|
587 | }
|
588 |
|
589 | /// Returns mutable references to the values corresponding to the given
|
590 | /// keys. All keys must be valid and disjoint.
|
591 | ///
|
592 | /// Requires at least stable Rust version 1.51.
|
593 | ///
|
594 | /// # Safety
|
595 | ///
|
596 | /// This should only be used if `contains_key(key)` is true for every given
|
597 | /// key and no two keys are equal. Otherwise it is potentially unsafe.
|
598 | ///
|
599 | /// # Examples
|
600 | ///
|
601 | /// ```
|
602 | /// # use slotmap::*;
|
603 | /// let mut sm = SlotMap::new();
|
604 | /// let mut sec = SparseSecondaryMap::new();
|
605 | /// let ka = sm.insert(()); sec.insert(ka, "butter" );
|
606 | /// let kb = sm.insert(()); sec.insert(kb, "apples" );
|
607 | /// let [a, b] = unsafe { sec.get_disjoint_unchecked_mut([ka, kb]) };
|
608 | /// std::mem::swap(a, b);
|
609 | /// assert_eq!(sec[ka], "apples" );
|
610 | /// assert_eq!(sec[kb], "butter" );
|
611 | /// ```
|
612 | #[cfg (has_min_const_generics)]
|
613 | pub unsafe fn get_disjoint_unchecked_mut<const N: usize>(
|
614 | &mut self,
|
615 | keys: [K; N],
|
616 | ) -> [&mut V; N] {
|
617 | // Safe, see get_disjoint_mut.
|
618 | let mut ptrs: [MaybeUninit<*mut V>; N] = MaybeUninit::uninit().assume_init();
|
619 | for i in 0..N {
|
620 | ptrs[i] = MaybeUninit::new(self.get_unchecked_mut(keys[i]));
|
621 | }
|
622 | core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs)
|
623 | }
|
624 |
|
625 | /// An iterator visiting all key-value pairs in arbitrary order. The
|
626 | /// iterator element type is `(K, &'a V)`.
|
627 | ///
|
628 | /// This function must iterate over all slots, empty or not. In the face of
|
629 | /// many deleted elements it can be inefficient.
|
630 | ///
|
631 | /// # Examples
|
632 | ///
|
633 | /// ```
|
634 | /// # use slotmap::*;
|
635 | /// let mut sm = SlotMap::new();
|
636 | /// let mut sec = SparseSecondaryMap::new();
|
637 | /// let k0 = sm.insert(0); sec.insert(k0, 10);
|
638 | /// let k1 = sm.insert(1); sec.insert(k1, 11);
|
639 | /// let k2 = sm.insert(2); sec.insert(k2, 12);
|
640 | ///
|
641 | /// for (k, v) in sec.iter() {
|
642 | /// println!("key: {:?}, val: {}" , k, v);
|
643 | /// }
|
644 | /// ```
|
645 | pub fn iter(&self) -> Iter<K, V> {
|
646 | Iter {
|
647 | inner: self.slots.iter(),
|
648 | _k: PhantomData,
|
649 | }
|
650 | }
|
651 |
|
652 | /// An iterator visiting all key-value pairs in arbitrary order, with
|
653 | /// mutable references to the values. The iterator element type is
|
654 | /// `(K, &'a mut V)`.
|
655 | ///
|
656 | /// This function must iterate over all slots, empty or not. In the face of
|
657 | /// many deleted elements it can be inefficient.
|
658 | ///
|
659 | /// # Examples
|
660 | ///
|
661 | /// ```
|
662 | /// # use slotmap::*;
|
663 | /// let mut sm = SlotMap::new();
|
664 | /// let mut sec = SparseSecondaryMap::new();
|
665 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
666 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
667 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
668 | ///
|
669 | /// for (k, v) in sec.iter_mut() {
|
670 | /// if k != k1 {
|
671 | /// *v *= -1;
|
672 | /// }
|
673 | /// }
|
674 | ///
|
675 | /// assert_eq!(sec[k0], -10);
|
676 | /// assert_eq!(sec[k1], 20);
|
677 | /// assert_eq!(sec[k2], -30);
|
678 | /// ```
|
679 | pub fn iter_mut(&mut self) -> IterMut<K, V> {
|
680 | IterMut {
|
681 | inner: self.slots.iter_mut(),
|
682 | _k: PhantomData,
|
683 | }
|
684 | }
|
685 |
|
686 | /// An iterator visiting all keys in arbitrary order. The iterator element
|
687 | /// type is `K`.
|
688 | ///
|
689 | /// This function must iterate over all slots, empty or not. In the face of
|
690 | /// many deleted elements it can be inefficient.
|
691 | ///
|
692 | /// # Examples
|
693 | ///
|
694 | /// ```
|
695 | /// # use slotmap::*;
|
696 | /// # use std::collections::HashSet;
|
697 | /// let mut sm = SlotMap::new();
|
698 | /// let mut sec = SparseSecondaryMap::new();
|
699 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
700 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
701 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
702 | /// let keys: HashSet<_> = sec.keys().collect();
|
703 | /// let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect();
|
704 | /// assert_eq!(keys, check);
|
705 | /// ```
|
706 | pub fn keys(&self) -> Keys<K, V> {
|
707 | Keys { inner: self.iter() }
|
708 | }
|
709 |
|
710 | /// An iterator visiting all values in arbitrary order. The iterator element
|
711 | /// type is `&'a V`.
|
712 | ///
|
713 | /// This function must iterate over all slots, empty or not. In the face of
|
714 | /// many deleted elements it can be inefficient.
|
715 | ///
|
716 | /// # Examples
|
717 | ///
|
718 | /// ```
|
719 | /// # use slotmap::*;
|
720 | /// # use std::collections::HashSet;
|
721 | /// let mut sm = SlotMap::new();
|
722 | /// let mut sec = SparseSecondaryMap::new();
|
723 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
724 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
725 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
726 | /// let values: HashSet<_> = sec.values().collect();
|
727 | /// let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect();
|
728 | /// assert_eq!(values, check);
|
729 | /// ```
|
730 | pub fn values(&self) -> Values<K, V> {
|
731 | Values { inner: self.iter() }
|
732 | }
|
733 |
|
734 | /// An iterator visiting all values mutably in arbitrary order. The iterator
|
735 | /// element type is `&'a mut V`.
|
736 | ///
|
737 | /// This function must iterate over all slots, empty or not. In the face of
|
738 | /// many deleted elements it can be inefficient.
|
739 | ///
|
740 | /// # Examples
|
741 | ///
|
742 | /// ```
|
743 | /// # use slotmap::*;
|
744 | /// # use std::collections::HashSet;
|
745 | /// let mut sm = SlotMap::new();
|
746 | /// let mut sec = SparseSecondaryMap::new();
|
747 | /// sec.insert(sm.insert(1), 10);
|
748 | /// sec.insert(sm.insert(2), 20);
|
749 | /// sec.insert(sm.insert(3), 30);
|
750 | /// sec.values_mut().for_each(|n| { *n *= 3 });
|
751 | /// let values: HashSet<_> = sec.into_iter().map(|(_k, v)| v).collect();
|
752 | /// let check: HashSet<_> = vec![30, 60, 90].into_iter().collect();
|
753 | /// assert_eq!(values, check);
|
754 | /// ```
|
755 | pub fn values_mut(&mut self) -> ValuesMut<K, V> {
|
756 | ValuesMut {
|
757 | inner: self.iter_mut(),
|
758 | }
|
759 | }
|
760 |
|
761 | /// Gets the given key's corresponding [`Entry`] in the map for in-place
|
762 | /// manipulation. May return [`None`] if the key was removed from the
|
763 | /// originating slot map.
|
764 | ///
|
765 | /// # Examples
|
766 | ///
|
767 | /// ```
|
768 | /// # use slotmap::*;
|
769 | /// let mut sm = SlotMap::new();
|
770 | /// let mut sec = SparseSecondaryMap::new();
|
771 | /// let k = sm.insert(1);
|
772 | /// let v = sec.entry(k).unwrap().or_insert(10);
|
773 | /// assert_eq!(*v, 10);
|
774 | /// ```
|
775 | pub fn entry(&mut self, key: K) -> Option<Entry<K, V>> {
|
776 | if key.is_null() {
|
777 | return None;
|
778 | }
|
779 |
|
780 | let kd = key.data();
|
781 |
|
782 | // Until we can map an OccupiedEntry to a VacantEntry I don't think
|
783 | // there is a way to avoid this extra lookup.
|
784 | if let hash_map::Entry::Occupied(o) = self.slots.entry(kd.idx) {
|
785 | if o.get().version != kd.version.get() {
|
786 | // Which is outdated, our key or the slot?
|
787 | if is_older_version(o.get().version, kd.version.get()) {
|
788 | o.remove();
|
789 | } else {
|
790 | return None;
|
791 | }
|
792 | }
|
793 | }
|
794 |
|
795 | Some(match self.slots.entry(kd.idx) {
|
796 | hash_map::Entry::Occupied(inner) => {
|
797 | // We know for certain that this entry's key matches ours due
|
798 | // to the previous if block.
|
799 | Entry::Occupied(OccupiedEntry {
|
800 | inner,
|
801 | kd,
|
802 | _k: PhantomData,
|
803 | })
|
804 | },
|
805 | hash_map::Entry::Vacant(inner) => Entry::Vacant(VacantEntry {
|
806 | inner,
|
807 | kd,
|
808 | _k: PhantomData,
|
809 | }),
|
810 | })
|
811 | }
|
812 | }
|
813 |
|
814 | impl<K, V, S> Default for SparseSecondaryMap<K, V, S>
|
815 | where
|
816 | K: Key,
|
817 | S: hash::BuildHasher + Default,
|
818 | {
|
819 | fn default() -> Self {
|
820 | Self::with_hasher(hash_builder:Default::default())
|
821 | }
|
822 | }
|
823 |
|
824 | impl<K, V, S> Index<K> for SparseSecondaryMap<K, V, S>
|
825 | where
|
826 | K: Key,
|
827 | S: hash::BuildHasher,
|
828 | {
|
829 | type Output = V;
|
830 |
|
831 | fn index(&self, key: K) -> &V {
|
832 | match self.get(key) {
|
833 | Some(r: &V) => r,
|
834 | None => panic!("invalid SparseSecondaryMap key used" ),
|
835 | }
|
836 | }
|
837 | }
|
838 |
|
839 | impl<K, V, S> IndexMut<K> for SparseSecondaryMap<K, V, S>
|
840 | where
|
841 | K: Key,
|
842 | S: hash::BuildHasher,
|
843 | {
|
844 | fn index_mut(&mut self, key: K) -> &mut V {
|
845 | match self.get_mut(key) {
|
846 | Some(r: &mut V) => r,
|
847 | None => panic!("invalid SparseSecondaryMap key used" ),
|
848 | }
|
849 | }
|
850 | }
|
851 |
|
852 | impl<K, V, S> PartialEq for SparseSecondaryMap<K, V, S>
|
853 | where
|
854 | K: Key,
|
855 | V: PartialEq,
|
856 | S: hash::BuildHasher,
|
857 | {
|
858 | fn eq(&self, other: &Self) -> bool {
|
859 | if self.len() != other.len() {
|
860 | return false;
|
861 | }
|
862 |
|
863 | self.iter()
|
864 | .all(|(key: K, value: &V)| other.get(key).map_or(default:false, |other_value: &V| *value == *other_value))
|
865 | }
|
866 | }
|
867 |
|
868 | impl<K, V, S> Eq for SparseSecondaryMap<K, V, S>
|
869 | where
|
870 | K: Key,
|
871 | V: Eq,
|
872 | S: hash::BuildHasher,
|
873 | {
|
874 | }
|
875 |
|
876 | impl<K, V, S> FromIterator<(K, V)> for SparseSecondaryMap<K, V, S>
|
877 | where
|
878 | K: Key,
|
879 | S: hash::BuildHasher + Default,
|
880 | {
|
881 | fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
|
882 | let mut sec: SparseSecondaryMap = Self::default();
|
883 | sec.extend(iter);
|
884 | sec
|
885 | }
|
886 | }
|
887 |
|
888 | impl<K, V, S> Extend<(K, V)> for SparseSecondaryMap<K, V, S>
|
889 | where
|
890 | K: Key,
|
891 | S: hash::BuildHasher,
|
892 | {
|
893 | fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
|
894 | let iter: ::IntoIter = iter.into_iter();
|
895 | for (k: K, v: V) in iter {
|
896 | self.insert(key:k, value:v);
|
897 | }
|
898 | }
|
899 | }
|
900 |
|
901 | impl<'a, K, V, S> Extend<(K, &'a V)> for SparseSecondaryMap<K, V, S>
|
902 | where
|
903 | K: Key,
|
904 | V: 'a + Copy,
|
905 | S: hash::BuildHasher,
|
906 | {
|
907 | fn extend<I: IntoIterator<Item = (K, &'a V)>>(&mut self, iter: I) {
|
908 | let iter: ::IntoIter = iter.into_iter();
|
909 | for (k: K, v: &V) in iter {
|
910 | self.insert(key:k, *v);
|
911 | }
|
912 | }
|
913 | }
|
914 |
|
915 | /// A view into a occupied entry in a [`SparseSecondaryMap`]. It is part of the
|
916 | /// [`Entry`] enum.
|
917 | #[derive (Debug)]
|
918 | pub struct OccupiedEntry<'a, K: Key, V> {
|
919 | inner: hash_map::OccupiedEntry<'a, u32, Slot<V>>,
|
920 | kd: KeyData,
|
921 | _k: PhantomData<fn(K) -> K>,
|
922 | }
|
923 |
|
924 | /// A view into a vacant entry in a [`SparseSecondaryMap`]. It is part of the
|
925 | /// [`Entry`] enum.
|
926 | #[derive (Debug)]
|
927 | pub struct VacantEntry<'a, K: Key, V> {
|
928 | inner: hash_map::VacantEntry<'a, u32, Slot<V>>,
|
929 | kd: KeyData,
|
930 | _k: PhantomData<fn(K) -> K>,
|
931 | }
|
932 |
|
933 | /// A view into a single entry in a [`SparseSecondaryMap`], which may either be
|
934 | /// vacant or occupied.
|
935 | ///
|
936 | /// This `enum` is constructed using [`SparseSecondaryMap::entry`].
|
937 | #[derive (Debug)]
|
938 | pub enum Entry<'a, K: Key, V> {
|
939 | /// An occupied entry.
|
940 | Occupied(OccupiedEntry<'a, K, V>),
|
941 |
|
942 | /// A vacant entry.
|
943 | Vacant(VacantEntry<'a, K, V>),
|
944 | }
|
945 |
|
946 | impl<'a, K: Key, V> Entry<'a, K, V> {
|
947 | /// Ensures a value is in the entry by inserting the default if empty, and
|
948 | /// returns a mutable reference to the value in the entry.
|
949 | ///
|
950 | /// # Examples
|
951 | ///
|
952 | /// ```
|
953 | /// # use slotmap::*;
|
954 | /// let mut sm = SlotMap::new();
|
955 | /// let mut sec = SparseSecondaryMap::new();
|
956 | ///
|
957 | /// let k = sm.insert("poneyland" );
|
958 | /// let v = sec.entry(k).unwrap().or_insert(10);
|
959 | /// assert_eq!(*v, 10);
|
960 | /// *sec.entry(k).unwrap().or_insert(1) *= 2;
|
961 | /// assert_eq!(sec[k], 20);
|
962 | /// ```
|
963 | pub fn or_insert(self, default: V) -> &'a mut V {
|
964 | self.or_insert_with(|| default)
|
965 | }
|
966 |
|
967 | /// Ensures a value is in the entry by inserting the result of the default
|
968 | /// function if empty, and returns a mutable reference to the value in the
|
969 | /// entry.
|
970 | ///
|
971 | /// # Examples
|
972 | ///
|
973 | /// ```
|
974 | /// # use slotmap::*;
|
975 | /// let mut sm = SlotMap::new();
|
976 | /// let mut sec = SparseSecondaryMap::new();
|
977 | ///
|
978 | /// let k = sm.insert(1);
|
979 | /// let v = sec.entry(k).unwrap().or_insert_with(|| "foobar" .to_string());
|
980 | /// assert_eq!(v, &"foobar" );
|
981 | /// ```
|
982 | pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
|
983 | match self {
|
984 | Entry::Occupied(x) => x.into_mut(),
|
985 | Entry::Vacant(x) => x.insert(default()),
|
986 | }
|
987 | }
|
988 |
|
989 | /// Returns this entry's key.
|
990 | ///
|
991 | /// # Examples
|
992 | ///
|
993 | /// ```
|
994 | /// # use slotmap::*;
|
995 | /// let mut sm = SlotMap::new();
|
996 | /// let mut sec: SparseSecondaryMap<_, ()> = SparseSecondaryMap::new();
|
997 | ///
|
998 | /// let k = sm.insert(1);
|
999 | /// let entry = sec.entry(k).unwrap();
|
1000 | /// assert_eq!(entry.key(), k);
|
1001 | /// ```
|
1002 | pub fn key(&self) -> K {
|
1003 | match self {
|
1004 | Entry::Occupied(entry) => entry.kd.into(),
|
1005 | Entry::Vacant(entry) => entry.kd.into(),
|
1006 | }
|
1007 | }
|
1008 |
|
1009 | /// Provides in-place mutable access to an occupied entry before any
|
1010 | /// potential inserts into the map.
|
1011 | ///
|
1012 | /// # Examples
|
1013 | ///
|
1014 | /// ```
|
1015 | /// # use slotmap::*;
|
1016 | /// let mut sm = SlotMap::new();
|
1017 | /// let mut sec = SparseSecondaryMap::new();
|
1018 | ///
|
1019 | /// let k = sm.insert(1);
|
1020 | /// sec.insert(k, 0);
|
1021 | /// sec.entry(k).unwrap().and_modify(|x| *x = 1);
|
1022 | ///
|
1023 | /// assert_eq!(sec[k], 1)
|
1024 | /// ```
|
1025 | pub fn and_modify<F>(self, f: F) -> Self
|
1026 | where
|
1027 | F: FnOnce(&mut V),
|
1028 | {
|
1029 | match self {
|
1030 | Entry::Occupied(mut entry) => {
|
1031 | f(entry.get_mut());
|
1032 | Entry::Occupied(entry)
|
1033 | },
|
1034 | Entry::Vacant(entry) => Entry::Vacant(entry),
|
1035 | }
|
1036 | }
|
1037 | }
|
1038 |
|
1039 | impl<'a, K: Key, V: Default> Entry<'a, K, V> {
|
1040 | /// Ensures a value is in the entry by inserting the default value if empty,
|
1041 | /// and returns a mutable reference to the value in the entry.
|
1042 | ///
|
1043 | /// # Examples
|
1044 | ///
|
1045 | /// ```
|
1046 | /// # use slotmap::*;
|
1047 | /// let mut sm = SlotMap::new();
|
1048 | /// let mut sec: SparseSecondaryMap<_, Option<i32>> = SparseSecondaryMap::new();
|
1049 | ///
|
1050 | /// let k = sm.insert(1);
|
1051 | /// sec.entry(k).unwrap().or_default();
|
1052 | /// assert_eq!(sec[k], None)
|
1053 | /// ```
|
1054 | pub fn or_default(self) -> &'a mut V {
|
1055 | self.or_insert_with(Default::default)
|
1056 | }
|
1057 | }
|
1058 |
|
1059 | impl<'a, K: Key, V> OccupiedEntry<'a, K, V> {
|
1060 | /// Returns this entry's key.
|
1061 | ///
|
1062 | /// # Examples
|
1063 | ///
|
1064 | /// ```
|
1065 | /// # use slotmap::*;
|
1066 | /// let mut sm = SlotMap::new();
|
1067 | /// let mut sec = SparseSecondaryMap::new();
|
1068 | ///
|
1069 | /// let k = sm.insert(1);
|
1070 | /// sec.insert(k, 10);
|
1071 | /// assert_eq!(sec.entry(k).unwrap().key(), k);
|
1072 | /// ```
|
1073 | pub fn key(&self) -> K {
|
1074 | self.kd.into()
|
1075 | }
|
1076 |
|
1077 | /// Removes the entry from the slot map and returns the key and value.
|
1078 | ///
|
1079 | /// # Examples
|
1080 | ///
|
1081 | /// ```
|
1082 | /// # use slotmap::*;
|
1083 | /// # use slotmap::sparse_secondary::Entry;
|
1084 | /// let mut sm = SlotMap::new();
|
1085 | /// let mut sec = SparseSecondaryMap::new();
|
1086 | ///
|
1087 | /// let foo = sm.insert("foo" );
|
1088 | /// sec.entry(foo).unwrap().or_insert("bar" );
|
1089 | ///
|
1090 | /// if let Some(Entry::Occupied(o)) = sec.entry(foo) {
|
1091 | /// assert_eq!(o.remove_entry(), (foo, "bar" ));
|
1092 | /// }
|
1093 | /// assert_eq!(sec.contains_key(foo), false);
|
1094 | /// ```
|
1095 | pub fn remove_entry(self) -> (K, V) {
|
1096 | (self.kd.into(), self.remove())
|
1097 | }
|
1098 |
|
1099 | /// Gets a reference to the value in the entry.
|
1100 | ///
|
1101 | /// # Examples
|
1102 | ///
|
1103 | /// ```
|
1104 | /// # use slotmap::*;
|
1105 | /// # use slotmap::sparse_secondary::Entry;
|
1106 | /// let mut sm = SlotMap::new();
|
1107 | /// let mut sec = SparseSecondaryMap::new();
|
1108 | ///
|
1109 | /// let k = sm.insert(1);
|
1110 | /// sec.insert(k, 10);
|
1111 | ///
|
1112 | /// if let Entry::Occupied(o) = sec.entry(k).unwrap() {
|
1113 | /// assert_eq!(*o.get(), 10);
|
1114 | /// }
|
1115 | /// ```
|
1116 | pub fn get(&self) -> &V {
|
1117 | &self.inner.get().value
|
1118 | }
|
1119 |
|
1120 | /// Gets a mutable reference to the value in the entry.
|
1121 | ///
|
1122 | /// If you need a reference to the [`OccupiedEntry`] which may outlive the
|
1123 | /// destruction of the [`Entry`] value, see [`into_mut`].
|
1124 | ///
|
1125 | /// # Examples
|
1126 | ///
|
1127 | /// ```
|
1128 | /// # use slotmap::*;
|
1129 | /// # use slotmap::sparse_secondary::Entry;
|
1130 | /// let mut sm = SlotMap::new();
|
1131 | /// let mut sec = SparseSecondaryMap::new();
|
1132 | ///
|
1133 | /// let k = sm.insert(1);
|
1134 | /// sec.insert(k, 10);
|
1135 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1136 | /// *o.get_mut() = 20;
|
1137 | /// }
|
1138 | /// assert_eq!(sec[k], 20);
|
1139 | /// ```
|
1140 | ///
|
1141 | /// [`into_mut`]: Self::into_mut
|
1142 | pub fn get_mut(&mut self) -> &mut V {
|
1143 | &mut self.inner.get_mut().value
|
1144 | }
|
1145 |
|
1146 | /// Converts the [`OccupiedEntry`] into a mutable reference to the value in
|
1147 | /// the entry with a lifetime bound to the map itself.
|
1148 | ///
|
1149 | /// If you need multiple references to the [`OccupiedEntry`], see
|
1150 | /// [`get_mut`].
|
1151 | ///
|
1152 | /// # Examples
|
1153 | ///
|
1154 | /// ```
|
1155 | /// # use slotmap::*;
|
1156 | /// # use slotmap::sparse_secondary::Entry;
|
1157 | /// let mut sm = SlotMap::new();
|
1158 | /// let mut sec = SparseSecondaryMap::new();
|
1159 | ///
|
1160 | /// let k = sm.insert(0);
|
1161 | /// sec.insert(k, 0);
|
1162 | ///
|
1163 | /// let r;
|
1164 | /// if let Entry::Occupied(o) = sec.entry(k).unwrap() {
|
1165 | /// r = o.into_mut(); // v outlives the entry.
|
1166 | /// } else {
|
1167 | /// r = sm.get_mut(k).unwrap();
|
1168 | /// }
|
1169 | /// *r = 1;
|
1170 | /// assert_eq!((sm[k], sec[k]), (0, 1));
|
1171 | /// ```
|
1172 | ///
|
1173 | /// [`get_mut`]: Self::get_mut
|
1174 | pub fn into_mut(self) -> &'a mut V {
|
1175 | &mut self.inner.into_mut().value
|
1176 | }
|
1177 |
|
1178 | /// Sets the value of the entry, and returns the entry's old value.
|
1179 | ///
|
1180 | /// # Examples
|
1181 | ///
|
1182 | /// ```
|
1183 | /// # use slotmap::*;
|
1184 | /// # use slotmap::sparse_secondary::Entry;
|
1185 | /// let mut sm = SlotMap::new();
|
1186 | /// let mut sec = SparseSecondaryMap::new();
|
1187 | ///
|
1188 | /// let k = sm.insert(1);
|
1189 | /// sec.insert(k, 10);
|
1190 | ///
|
1191 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1192 | /// let v = o.insert(20);
|
1193 | /// assert_eq!(v, 10);
|
1194 | /// assert_eq!(*o.get(), 20);
|
1195 | /// }
|
1196 | /// ```
|
1197 | pub fn insert(&mut self, value: V) -> V {
|
1198 | std::mem::replace(self.get_mut(), value)
|
1199 | }
|
1200 |
|
1201 | /// Takes the value out of the entry, and returns it.
|
1202 | ///
|
1203 | /// # Examples
|
1204 | ///
|
1205 | /// ```
|
1206 | /// # use slotmap::*;
|
1207 | /// # use slotmap::sparse_secondary::Entry;
|
1208 | ///
|
1209 | /// let mut sm = SlotMap::new();
|
1210 | /// let mut sec = SparseSecondaryMap::new();
|
1211 | ///
|
1212 | /// let k = sm.insert(1);
|
1213 | /// sec.insert(k, 10);
|
1214 | ///
|
1215 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1216 | /// assert_eq!(o.remove(), 10);
|
1217 | /// assert_eq!(sec.contains_key(k), false);
|
1218 | /// }
|
1219 | /// ```
|
1220 | pub fn remove(self) -> V {
|
1221 | self.inner.remove().value
|
1222 | }
|
1223 | }
|
1224 |
|
1225 | impl<'a, K: Key, V> VacantEntry<'a, K, V> {
|
1226 | /// Gets the key that would be used when inserting a value through the
|
1227 | /// [`VacantEntry`].
|
1228 | ///
|
1229 | /// # Examples
|
1230 | ///
|
1231 | /// ```
|
1232 | /// # use slotmap::*;
|
1233 | /// # use slotmap::sparse_secondary::Entry;
|
1234 | ///
|
1235 | /// let mut sm = SlotMap::new();
|
1236 | /// let mut sec: SparseSecondaryMap<_, ()> = SparseSecondaryMap::new();
|
1237 | ///
|
1238 | /// let k = sm.insert(1);
|
1239 | ///
|
1240 | /// if let Entry::Vacant(v) = sec.entry(k).unwrap() {
|
1241 | /// assert_eq!(v.key(), k);
|
1242 | /// }
|
1243 | /// ```
|
1244 | pub fn key(&self) -> K {
|
1245 | self.kd.into()
|
1246 | }
|
1247 |
|
1248 | /// Sets the value of the entry with the [`VacantEntry`]'s key, and returns
|
1249 | /// a mutable reference to it.
|
1250 | ///
|
1251 | /// # Examples
|
1252 | ///
|
1253 | /// ```
|
1254 | /// # use slotmap::*;
|
1255 | /// # use slotmap::sparse_secondary::Entry;
|
1256 | ///
|
1257 | /// let mut sm = SlotMap::new();
|
1258 | /// let mut sec = SparseSecondaryMap::new();
|
1259 | ///
|
1260 | /// let k = sm.insert(1);
|
1261 | ///
|
1262 | /// if let Entry::Vacant(v) = sec.entry(k).unwrap() {
|
1263 | /// let new_val = v.insert(3);
|
1264 | /// assert_eq!(new_val, &mut 3);
|
1265 | /// }
|
1266 | /// ```
|
1267 | pub fn insert(self, value: V) -> &'a mut V {
|
1268 | &mut self
|
1269 | .inner
|
1270 | .insert(Slot {
|
1271 | version: self.kd.version.get(),
|
1272 | value,
|
1273 | })
|
1274 | .value
|
1275 | }
|
1276 | }
|
1277 |
|
1278 | // Iterators.
|
1279 | /// A draining iterator for [`SparseSecondaryMap`].
|
1280 | ///
|
1281 | /// This iterator is created by [`SparseSecondaryMap::drain`].
|
1282 | #[derive (Debug)]
|
1283 | pub struct Drain<'a, K: Key + 'a, V: 'a> {
|
1284 | inner: hash_map::Drain<'a, u32, Slot<V>>,
|
1285 | _k: PhantomData<fn(K) -> K>,
|
1286 | }
|
1287 |
|
1288 | /// An iterator that moves key-value pairs out of a [`SparseSecondaryMap`].
|
1289 | ///
|
1290 | /// This iterator is created by calling the `into_iter` method on [`SparseSecondaryMap`],
|
1291 | /// provided by the [`IntoIterator`] trait.
|
1292 | #[derive (Debug)]
|
1293 | pub struct IntoIter<K: Key, V> {
|
1294 | inner: hash_map::IntoIter<u32, Slot<V>>,
|
1295 | _k: PhantomData<fn(K) -> K>,
|
1296 | }
|
1297 |
|
1298 | /// An iterator over the key-value pairs in a [`SparseSecondaryMap`].
|
1299 | ///
|
1300 | /// This iterator is created by [`SparseSecondaryMap::iter`].
|
1301 | #[derive (Debug)]
|
1302 | pub struct Iter<'a, K: Key + 'a, V: 'a> {
|
1303 | inner: hash_map::Iter<'a, u32, Slot<V>>,
|
1304 | _k: PhantomData<fn(K) -> K>,
|
1305 | }
|
1306 |
|
1307 | impl<'a, K: 'a + Key, V: 'a> Clone for Iter<'a, K, V> {
|
1308 | fn clone(&self) -> Self {
|
1309 | Iter {
|
1310 | inner: self.inner.clone(),
|
1311 | _k: self._k,
|
1312 | }
|
1313 | }
|
1314 | }
|
1315 |
|
1316 | /// A mutable iterator over the key-value pairs in a [`SparseSecondaryMap`].
|
1317 | ///
|
1318 | /// This iterator is created by [`SparseSecondaryMap::iter_mut`].
|
1319 | #[derive (Debug)]
|
1320 | pub struct IterMut<'a, K: Key + 'a, V: 'a> {
|
1321 | inner: hash_map::IterMut<'a, u32, Slot<V>>,
|
1322 | _k: PhantomData<fn(K) -> K>,
|
1323 | }
|
1324 |
|
1325 | /// An iterator over the keys in a [`SparseSecondaryMap`].
|
1326 | ///
|
1327 | /// This iterator is created by [`SparseSecondaryMap::keys`].
|
1328 | #[derive (Debug)]
|
1329 | pub struct Keys<'a, K: Key + 'a, V: 'a> {
|
1330 | inner: Iter<'a, K, V>,
|
1331 | }
|
1332 |
|
1333 | impl<'a, K: 'a + Key, V: 'a> Clone for Keys<'a, K, V> {
|
1334 | fn clone(&self) -> Self {
|
1335 | Keys {
|
1336 | inner: self.inner.clone(),
|
1337 | }
|
1338 | }
|
1339 | }
|
1340 |
|
1341 | /// An iterator over the values in a [`SparseSecondaryMap`].
|
1342 | ///
|
1343 | /// This iterator is created by [`SparseSecondaryMap::values`].
|
1344 | #[derive (Debug)]
|
1345 | pub struct Values<'a, K: Key + 'a, V: 'a> {
|
1346 | inner: Iter<'a, K, V>,
|
1347 | }
|
1348 |
|
1349 | impl<'a, K: 'a + Key, V: 'a> Clone for Values<'a, K, V> {
|
1350 | fn clone(&self) -> Self {
|
1351 | Values {
|
1352 | inner: self.inner.clone(),
|
1353 | }
|
1354 | }
|
1355 | }
|
1356 |
|
1357 | /// A mutable iterator over the values in a [`SparseSecondaryMap`].
|
1358 | ///
|
1359 | /// This iterator is created by [`SparseSecondaryMap::values_mut`].
|
1360 | #[derive (Debug)]
|
1361 | pub struct ValuesMut<'a, K: Key + 'a, V: 'a> {
|
1362 | inner: IterMut<'a, K, V>,
|
1363 | }
|
1364 |
|
1365 | impl<'a, K: Key, V> Iterator for Drain<'a, K, V> {
|
1366 | type Item = (K, V);
|
1367 |
|
1368 | fn next(&mut self) -> Option<(K, V)> {
|
1369 | self.inner.next().map(|(idx: u32, slot: Slot)| {
|
1370 | let key: K = KeyData::new(idx, slot.version).into();
|
1371 | (key, slot.value)
|
1372 | })
|
1373 | }
|
1374 |
|
1375 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1376 | self.inner.size_hint()
|
1377 | }
|
1378 | }
|
1379 |
|
1380 | impl<'a, K: Key, V> Drop for Drain<'a, K, V> {
|
1381 | fn drop(&mut self) {
|
1382 | self.for_each(|_drop: (K, V)| {});
|
1383 | }
|
1384 | }
|
1385 |
|
1386 | impl<K: Key, V> Iterator for IntoIter<K, V> {
|
1387 | type Item = (K, V);
|
1388 |
|
1389 | fn next(&mut self) -> Option<(K, V)> {
|
1390 | self.inner.next().map(|(idx: u32, slot: Slot)| {
|
1391 | let key: K = KeyData::new(idx, slot.version).into();
|
1392 | (key, slot.value)
|
1393 | })
|
1394 | }
|
1395 |
|
1396 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1397 | self.inner.size_hint()
|
1398 | }
|
1399 | }
|
1400 |
|
1401 | impl<'a, K: Key, V> Iterator for Iter<'a, K, V> {
|
1402 | type Item = (K, &'a V);
|
1403 |
|
1404 | fn next(&mut self) -> Option<(K, &'a V)> {
|
1405 | self.inner.next().map(|(&idx: u32, slot: &Slot)| {
|
1406 | let key: K = KeyData::new(idx, slot.version).into();
|
1407 | (key, &slot.value)
|
1408 | })
|
1409 | }
|
1410 |
|
1411 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1412 | self.inner.size_hint()
|
1413 | }
|
1414 | }
|
1415 |
|
1416 | impl<'a, K: Key, V> Iterator for IterMut<'a, K, V> {
|
1417 | type Item = (K, &'a mut V);
|
1418 |
|
1419 | fn next(&mut self) -> Option<(K, &'a mut V)> {
|
1420 | self.inner.next().map(|(&idx: u32, slot: &mut Slot)| {
|
1421 | let key: K = KeyData::new(idx, slot.version).into();
|
1422 | (key, &mut slot.value)
|
1423 | })
|
1424 | }
|
1425 |
|
1426 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1427 | self.inner.size_hint()
|
1428 | }
|
1429 | }
|
1430 |
|
1431 | impl<'a, K: Key, V> Iterator for Keys<'a, K, V> {
|
1432 | type Item = K;
|
1433 |
|
1434 | fn next(&mut self) -> Option<K> {
|
1435 | self.inner.next().map(|(key: K, _)| key)
|
1436 | }
|
1437 |
|
1438 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1439 | self.inner.size_hint()
|
1440 | }
|
1441 | }
|
1442 |
|
1443 | impl<'a, K: Key, V> Iterator for Values<'a, K, V> {
|
1444 | type Item = &'a V;
|
1445 |
|
1446 | fn next(&mut self) -> Option<&'a V> {
|
1447 | self.inner.next().map(|(_, value: &V)| value)
|
1448 | }
|
1449 |
|
1450 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1451 | self.inner.size_hint()
|
1452 | }
|
1453 | }
|
1454 |
|
1455 | impl<'a, K: Key, V> Iterator for ValuesMut<'a, K, V> {
|
1456 | type Item = &'a mut V;
|
1457 |
|
1458 | fn next(&mut self) -> Option<&'a mut V> {
|
1459 | self.inner.next().map(|(_, value: &mut V)| value)
|
1460 | }
|
1461 |
|
1462 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1463 | self.inner.size_hint()
|
1464 | }
|
1465 | }
|
1466 |
|
1467 | impl<'a, K, V, S> IntoIterator for &'a SparseSecondaryMap<K, V, S>
|
1468 | where
|
1469 | K: Key,
|
1470 | S: hash::BuildHasher,
|
1471 | {
|
1472 | type Item = (K, &'a V);
|
1473 | type IntoIter = Iter<'a, K, V>;
|
1474 |
|
1475 | fn into_iter(self) -> Self::IntoIter {
|
1476 | self.iter()
|
1477 | }
|
1478 | }
|
1479 |
|
1480 | impl<'a, K, V, S> IntoIterator for &'a mut SparseSecondaryMap<K, V, S>
|
1481 | where
|
1482 | K: Key,
|
1483 | S: hash::BuildHasher,
|
1484 | {
|
1485 | type Item = (K, &'a mut V);
|
1486 | type IntoIter = IterMut<'a, K, V>;
|
1487 |
|
1488 | fn into_iter(self) -> Self::IntoIter {
|
1489 | self.iter_mut()
|
1490 | }
|
1491 | }
|
1492 |
|
1493 | impl<K, V, S> IntoIterator for SparseSecondaryMap<K, V, S>
|
1494 | where
|
1495 | K: Key,
|
1496 | S: hash::BuildHasher,
|
1497 | {
|
1498 | type Item = (K, V);
|
1499 | type IntoIter = IntoIter<K, V>;
|
1500 |
|
1501 | fn into_iter(self) -> Self::IntoIter {
|
1502 | IntoIter {
|
1503 | inner: self.slots.into_iter(),
|
1504 | _k: PhantomData,
|
1505 | }
|
1506 | }
|
1507 | }
|
1508 |
|
1509 | impl<'a, K: Key, V> FusedIterator for Iter<'a, K, V> {}
|
1510 | impl<'a, K: Key, V> FusedIterator for IterMut<'a, K, V> {}
|
1511 | impl<'a, K: Key, V> FusedIterator for Keys<'a, K, V> {}
|
1512 | impl<'a, K: Key, V> FusedIterator for Values<'a, K, V> {}
|
1513 | impl<'a, K: Key, V> FusedIterator for ValuesMut<'a, K, V> {}
|
1514 | impl<'a, K: Key, V> FusedIterator for Drain<'a, K, V> {}
|
1515 | impl<K: Key, V> FusedIterator for IntoIter<K, V> {}
|
1516 |
|
1517 | impl<'a, K: Key, V> ExactSizeIterator for Iter<'a, K, V> {}
|
1518 | impl<'a, K: Key, V> ExactSizeIterator for IterMut<'a, K, V> {}
|
1519 | impl<'a, K: Key, V> ExactSizeIterator for Keys<'a, K, V> {}
|
1520 | impl<'a, K: Key, V> ExactSizeIterator for Values<'a, K, V> {}
|
1521 | impl<'a, K: Key, V> ExactSizeIterator for ValuesMut<'a, K, V> {}
|
1522 | impl<'a, K: Key, V> ExactSizeIterator for Drain<'a, K, V> {}
|
1523 | impl<K: Key, V> ExactSizeIterator for IntoIter<K, V> {}
|
1524 |
|
1525 | // Serialization with serde.
|
1526 | #[cfg (feature = "serde" )]
|
1527 | mod serialize {
|
1528 | use serde::{Deserialize, Deserializer, Serialize, Serializer};
|
1529 |
|
1530 | use super::*;
|
1531 | use crate::SecondaryMap;
|
1532 |
|
1533 | impl<K, V, H> Serialize for SparseSecondaryMap<K, V, H>
|
1534 | where
|
1535 | K: Key,
|
1536 | V: Serialize,
|
1537 | H: hash::BuildHasher,
|
1538 | {
|
1539 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
1540 | where
|
1541 | S: Serializer,
|
1542 | {
|
1543 | let mut serde_sec = SecondaryMap::new();
|
1544 | for (k, v) in self {
|
1545 | serde_sec.insert(k, v);
|
1546 | }
|
1547 |
|
1548 | serde_sec.serialize(serializer)
|
1549 | }
|
1550 | }
|
1551 |
|
1552 | impl<'de, K, V, S> Deserialize<'de> for SparseSecondaryMap<K, V, S>
|
1553 | where
|
1554 | K: Key,
|
1555 | V: Deserialize<'de>,
|
1556 | S: hash::BuildHasher + Default,
|
1557 | {
|
1558 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
1559 | where
|
1560 | D: Deserializer<'de>,
|
1561 | {
|
1562 | let serde_sec: SecondaryMap<K, V> = Deserialize::deserialize(deserializer)?;
|
1563 | let mut sec = Self::default();
|
1564 |
|
1565 | for (k, v) in serde_sec {
|
1566 | sec.insert(k, v);
|
1567 | }
|
1568 |
|
1569 | Ok(sec)
|
1570 | }
|
1571 | }
|
1572 | }
|
1573 |
|
1574 | #[cfg (test)]
|
1575 | mod tests {
|
1576 | use std::collections::HashMap;
|
1577 |
|
1578 | use quickcheck::quickcheck;
|
1579 |
|
1580 | use crate::*;
|
1581 |
|
1582 | #[test ]
|
1583 | fn custom_hasher() {
|
1584 | type FastSparseSecondaryMap<K, V> = SparseSecondaryMap<K, V, fxhash::FxBuildHasher>;
|
1585 | let mut sm = SlotMap::new();
|
1586 | let mut sec = FastSparseSecondaryMap::default();
|
1587 | let key1 = sm.insert(42);
|
1588 | sec.insert(key1, 1234);
|
1589 | assert_eq!(sec[key1], 1234);
|
1590 | assert_eq!(sec.len(), 1);
|
1591 | let sec2 = sec.iter().map(|(k, &v)| (k, v)).collect::<FastSparseSecondaryMap<_, _>>();
|
1592 | assert_eq!(sec, sec2);
|
1593 | }
|
1594 |
|
1595 | #[cfg (all(nightly, feature = "unstable" ))]
|
1596 | #[test ]
|
1597 | fn disjoint() {
|
1598 | // Intended to be run with miri to find any potential UB.
|
1599 | let mut sm = SlotMap::new();
|
1600 | let mut sec = SparseSecondaryMap::new();
|
1601 |
|
1602 | // Some churn.
|
1603 | for i in 0..20usize {
|
1604 | sm.insert(i);
|
1605 | }
|
1606 | sm.retain(|_, i| *i % 2 == 0);
|
1607 |
|
1608 | for (i, k) in sm.keys().enumerate() {
|
1609 | sec.insert(k, i);
|
1610 | }
|
1611 |
|
1612 | let keys: Vec<_> = sm.keys().collect();
|
1613 | for i in 0..keys.len() {
|
1614 | for j in 0..keys.len() {
|
1615 | if let Some([r0, r1]) = sec.get_disjoint_mut([keys[i], keys[j]]) {
|
1616 | *r0 ^= *r1;
|
1617 | *r1 = r1.wrapping_add(*r0);
|
1618 | } else {
|
1619 | assert!(i == j);
|
1620 | }
|
1621 | }
|
1622 | }
|
1623 |
|
1624 | for i in 0..keys.len() {
|
1625 | for j in 0..keys.len() {
|
1626 | for k in 0..keys.len() {
|
1627 | if let Some([r0, r1, r2]) = sec.get_disjoint_mut([keys[i], keys[j], keys[k]]) {
|
1628 | *r0 ^= *r1;
|
1629 | *r0 = r0.wrapping_add(*r2);
|
1630 | *r1 ^= *r0;
|
1631 | *r1 = r1.wrapping_add(*r2);
|
1632 | *r2 ^= *r0;
|
1633 | *r2 = r2.wrapping_add(*r1);
|
1634 | } else {
|
1635 | assert!(i == j || j == k || i == k);
|
1636 | }
|
1637 | }
|
1638 | }
|
1639 | }
|
1640 | }
|
1641 |
|
1642 | quickcheck! {
|
1643 | fn qc_secmap_equiv_hashmap(operations: Vec<(u8, u32)>) -> bool {
|
1644 | let mut hm = HashMap::new();
|
1645 | let mut hm_keys = Vec::new();
|
1646 | let mut unique_key = 0u32;
|
1647 | let mut sm = SlotMap::new();
|
1648 | let mut sec = SparseSecondaryMap::new();
|
1649 | let mut sm_keys = Vec::new();
|
1650 |
|
1651 | #[cfg(not(feature = "serde" ))]
|
1652 | let num_ops = 4;
|
1653 | #[cfg(feature = "serde" )]
|
1654 | let num_ops = 5;
|
1655 |
|
1656 | for (op, val) in operations {
|
1657 | match op % num_ops {
|
1658 | // Insert.
|
1659 | 0 => {
|
1660 | hm.insert(unique_key, val);
|
1661 | hm_keys.push(unique_key);
|
1662 | unique_key += 1;
|
1663 |
|
1664 | let k = sm.insert(val);
|
1665 | sec.insert(k, val);
|
1666 | sm_keys.push(k);
|
1667 | }
|
1668 |
|
1669 | // Delete.
|
1670 | 1 => {
|
1671 | if hm_keys.is_empty() { continue; }
|
1672 |
|
1673 | let idx = val as usize % hm_keys.len();
|
1674 | sm.remove(sm_keys[idx]);
|
1675 | if hm.remove(&hm_keys[idx]) != sec.remove(sm_keys[idx]) {
|
1676 | return false;
|
1677 | }
|
1678 | }
|
1679 |
|
1680 | // Access.
|
1681 | 2 => {
|
1682 | if hm_keys.is_empty() { continue; }
|
1683 | let idx = val as usize % hm_keys.len();
|
1684 | let (hm_key, sm_key) = (&hm_keys[idx], sm_keys[idx]);
|
1685 |
|
1686 | if hm.contains_key(hm_key) != sec.contains_key(sm_key) ||
|
1687 | hm.get(hm_key) != sec.get(sm_key) {
|
1688 | return false;
|
1689 | }
|
1690 | }
|
1691 |
|
1692 | // Clone.
|
1693 | 3 => {
|
1694 | sec = sec.clone();
|
1695 | }
|
1696 |
|
1697 | // Serde round-trip.
|
1698 | #[cfg(feature = "serde" )]
|
1699 | 4 => {
|
1700 | let ser = serde_json::to_string(&sec).unwrap();
|
1701 | sec = serde_json::from_str(&ser).unwrap();
|
1702 | }
|
1703 |
|
1704 | _ => unreachable!(),
|
1705 | }
|
1706 | }
|
1707 |
|
1708 | let mut secv: Vec<_> = sec.values().collect();
|
1709 | let mut hmv: Vec<_> = hm.values().collect();
|
1710 | secv.sort();
|
1711 | hmv.sort();
|
1712 | secv == hmv
|
1713 | }
|
1714 | }
|
1715 | }
|
1716 | |