1 | //! Contains the secondary map implementation.
|
2 |
|
3 | #[cfg (all(nightly, any(doc, feature = "unstable" )))]
|
4 | use alloc::collections::TryReserveError;
|
5 | use alloc::vec::Vec;
|
6 | use core::hint::unreachable_unchecked;
|
7 | use core::iter::{Enumerate, Extend, FromIterator, FusedIterator};
|
8 | use core::marker::PhantomData;
|
9 | use core::mem::replace;
|
10 | #[allow (unused_imports)] // MaybeUninit is only used on nightly at the moment.
|
11 | use core::mem::MaybeUninit;
|
12 | use core::num::NonZeroU32;
|
13 | use core::ops::{Index, IndexMut};
|
14 |
|
15 | use super::{Key, KeyData};
|
16 | use crate::util::is_older_version;
|
17 |
|
18 | // This representation works because we don't have to store the versions
|
19 | // of removed elements.
|
20 | #[derive (Debug, Clone)]
|
21 | enum Slot<T> {
|
22 | Occupied { value: T, version: NonZeroU32 },
|
23 |
|
24 | Vacant,
|
25 | }
|
26 |
|
27 | use self::Slot::{Occupied, Vacant};
|
28 |
|
29 | impl<T> Slot<T> {
|
30 | pub fn new_occupied(version: u32, value: T) -> Self {
|
31 | Occupied {
|
32 | value,
|
33 | version: unsafe { NonZeroU32::new_unchecked(version | 1u32) },
|
34 | }
|
35 | }
|
36 |
|
37 | pub fn new_vacant() -> Self {
|
38 | Vacant
|
39 | }
|
40 |
|
41 | // Is this slot occupied?
|
42 | #[inline (always)]
|
43 | pub fn occupied(&self) -> bool {
|
44 | match self {
|
45 | Occupied { .. } => true,
|
46 | Vacant => false,
|
47 | }
|
48 | }
|
49 |
|
50 | #[inline (always)]
|
51 | pub fn version(&self) -> u32 {
|
52 | match self {
|
53 | Occupied { version, .. } => version.get(),
|
54 | Vacant => 0,
|
55 | }
|
56 | }
|
57 |
|
58 | pub unsafe fn get_unchecked(&self) -> &T {
|
59 | match self {
|
60 | Occupied { value, .. } => value,
|
61 | Vacant => unreachable_unchecked(),
|
62 | }
|
63 | }
|
64 |
|
65 | pub unsafe fn get_unchecked_mut(&mut self) -> &mut T {
|
66 | match self {
|
67 | Occupied { value, .. } => value,
|
68 | Vacant => unreachable_unchecked(),
|
69 | }
|
70 | }
|
71 |
|
72 | pub fn into_option(self) -> Option<T> {
|
73 | match self {
|
74 | Occupied { value, .. } => Some(value),
|
75 | Vacant => None,
|
76 | }
|
77 | }
|
78 | }
|
79 |
|
80 | /// Secondary map, associate data with previously stored elements in a slot map.
|
81 | ///
|
82 | /// A [`SecondaryMap`] allows you to efficiently store additional information
|
83 | /// for each element in a slot map. You can have multiple secondary maps per
|
84 | /// slot map, but not multiple slot maps per secondary map. It is safe but
|
85 | /// unspecified behavior if you use keys from multiple different slot maps in
|
86 | /// the same [`SecondaryMap`].
|
87 | ///
|
88 | /// A [`SecondaryMap`] does not leak memory even if you never remove elements.
|
89 | /// In return, when you remove a key from the primary slot map, after any insert
|
90 | /// the space associated with the removed element may be reclaimed. Don't expect
|
91 | /// the values associated with a removed key to stick around after an insertion
|
92 | /// has happened!
|
93 | ///
|
94 | /// Finally a note on memory complexity, the [`SecondaryMap`] can use memory for
|
95 | /// each slot in the primary slot map, and has to iterate over every slot during
|
96 | /// iteration, regardless of whether you have inserted an associative value at
|
97 | /// that key or not. If you have some property that you only expect to set for a
|
98 | /// minority of keys, use a [`SparseSecondaryMap`](crate::SparseSecondaryMap),
|
99 | /// which is backed by a [`HashMap`](std::collections::HashMap).
|
100 | ///
|
101 | /// Example usage:
|
102 | ///
|
103 | /// ```
|
104 | /// # use slotmap::*;
|
105 | /// let mut players = SlotMap::new();
|
106 | /// let mut health = SecondaryMap::new();
|
107 | /// let mut ammo = SecondaryMap::new();
|
108 | ///
|
109 | /// let alice = players.insert("alice" );
|
110 | /// let bob = players.insert("bob" );
|
111 | ///
|
112 | /// for p in players.keys() {
|
113 | /// health.insert(p, 100);
|
114 | /// ammo.insert(p, 30);
|
115 | /// }
|
116 | ///
|
117 | /// // Alice attacks Bob with all her ammo!
|
118 | /// health[bob] -= ammo[alice] * 3;
|
119 | /// ammo[alice] = 0;
|
120 | /// ```
|
121 | #[derive (Debug, Clone)]
|
122 | pub struct SecondaryMap<K: Key, V> {
|
123 | slots: Vec<Slot<V>>,
|
124 | num_elems: usize,
|
125 | _k: PhantomData<fn(K) -> K>,
|
126 | }
|
127 |
|
128 | impl<K: Key, V> SecondaryMap<K, V> {
|
129 | /// Constructs a new, empty [`SecondaryMap`].
|
130 | ///
|
131 | /// # Examples
|
132 | ///
|
133 | /// ```
|
134 | /// # use slotmap::*;
|
135 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::new();
|
136 | /// ```
|
137 | pub fn new() -> Self {
|
138 | Self::with_capacity(0)
|
139 | }
|
140 |
|
141 | /// Creates an empty [`SecondaryMap`] with the given capacity of slots.
|
142 | ///
|
143 | /// The secondary map will not reallocate until it holds at least `capacity`
|
144 | /// slots. Even inserting a single key-value pair might require as many
|
145 | /// slots as the slot map the key comes from, so it's recommended to match
|
146 | /// the capacity of a secondary map to its corresponding slot map.
|
147 | ///
|
148 | /// # Examples
|
149 | ///
|
150 | /// ```
|
151 | /// # use slotmap::*;
|
152 | /// let mut sm: SlotMap<_, i32> = SlotMap::with_capacity(10);
|
153 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::with_capacity(sm.capacity());
|
154 | /// ```
|
155 | pub fn with_capacity(capacity: usize) -> Self {
|
156 | let mut slots = Vec::with_capacity(capacity + 1); // Sentinel.
|
157 | slots.push(Slot::new_vacant());
|
158 | Self {
|
159 | slots,
|
160 | num_elems: 0,
|
161 | _k: PhantomData,
|
162 | }
|
163 | }
|
164 |
|
165 | /// Returns the number of elements in the secondary map.
|
166 | ///
|
167 | /// # Examples
|
168 | ///
|
169 | /// ```
|
170 | /// # use slotmap::*;
|
171 | /// let mut sm = SlotMap::new();
|
172 | /// let k = sm.insert(4);
|
173 | /// let mut squared = SecondaryMap::new();
|
174 | /// assert_eq!(squared.len(), 0);
|
175 | /// squared.insert(k, 16);
|
176 | /// assert_eq!(squared.len(), 1);
|
177 | /// ```
|
178 | pub fn len(&self) -> usize {
|
179 | self.num_elems
|
180 | }
|
181 |
|
182 | /// Returns if the secondary map is empty.
|
183 | ///
|
184 | /// # Examples
|
185 | ///
|
186 | /// ```
|
187 | /// # use slotmap::*;
|
188 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::new();
|
189 | /// assert!(sec.is_empty());
|
190 | /// ```
|
191 | pub fn is_empty(&self) -> bool {
|
192 | self.num_elems == 0
|
193 | }
|
194 |
|
195 | /// Returns the number of elements the [`SecondaryMap`] can hold without
|
196 | /// reallocating.
|
197 | ///
|
198 | /// # Examples
|
199 | ///
|
200 | /// ```
|
201 | /// # use slotmap::*;
|
202 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::with_capacity(10);
|
203 | /// assert!(sec.capacity() >= 10);
|
204 | /// ```
|
205 | pub fn capacity(&self) -> usize {
|
206 | self.slots.capacity() - 1 // Sentinel.
|
207 | }
|
208 |
|
209 | /// Sets the capacity of the [`SecondaryMap`] to `new_capacity`, if it is
|
210 | /// bigger than the current capacity.
|
211 | ///
|
212 | /// It is recommended to set the capacity of a [`SecondaryMap`] to the
|
213 | /// capacity of its corresponding slot map before inserting many new
|
214 | /// elements to prevent frequent reallocations. The collection may reserve
|
215 | /// more space than requested.
|
216 | ///
|
217 | /// # Panics
|
218 | ///
|
219 | /// Panics if the new allocation size overflows [`usize`].
|
220 | ///
|
221 | /// # Examples
|
222 | ///
|
223 | /// ```
|
224 | /// # use slotmap::*;
|
225 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::with_capacity(10);
|
226 | /// assert!(sec.capacity() >= 10);
|
227 | /// sec.set_capacity(1000);
|
228 | /// assert!(sec.capacity() >= 1000);
|
229 | /// ```
|
230 | pub fn set_capacity(&mut self, new_capacity: usize) {
|
231 | let new_capacity = new_capacity + 1; // Sentinel.
|
232 | if new_capacity > self.slots.capacity() {
|
233 | let needed = new_capacity - self.slots.len();
|
234 | self.slots.reserve(needed);
|
235 | }
|
236 | }
|
237 |
|
238 | /// Tries to set the capacity of the [`SecondaryMap`] to `new_capacity`, if it
|
239 | /// is bigger than the current capacity.
|
240 | ///
|
241 | /// It is recommended to set the capacity of a [`SecondaryMap`] to the
|
242 | /// capacity of its corresponding slot map before inserting many new
|
243 | /// elements to prevent frequent reallocations. The collection may reserve
|
244 | /// more space than requested.
|
245 | ///
|
246 | /// # Examples
|
247 | ///
|
248 | /// ```
|
249 | /// # use slotmap::*;
|
250 | /// let mut sec: SecondaryMap<DefaultKey, i32> = SecondaryMap::with_capacity(10);
|
251 | /// assert!(sec.capacity() >= 10);
|
252 | /// sec.try_set_capacity(1000).unwrap();
|
253 | /// assert!(sec.capacity() >= 1000);
|
254 | /// ```
|
255 | #[cfg (all(nightly, any(doc, feature = "unstable" )))]
|
256 | #[cfg_attr (all(nightly, doc), doc(cfg(feature = "unstable" )))]
|
257 | pub fn try_set_capacity(&mut self, new_capacity: usize) -> Result<(), TryReserveError> {
|
258 | let new_capacity = new_capacity + 1; // Sentinel.
|
259 | if new_capacity > self.slots.capacity() {
|
260 | let needed = new_capacity - self.slots.len();
|
261 | self.slots.try_reserve(needed)
|
262 | } else {
|
263 | Ok(())
|
264 | }
|
265 | }
|
266 |
|
267 | /// Returns [`true`] if the secondary map contains `key`.
|
268 | ///
|
269 | /// # Examples
|
270 | ///
|
271 | /// ```
|
272 | /// # use slotmap::*;
|
273 | /// let mut sm = SlotMap::new();
|
274 | /// let k = sm.insert(4);
|
275 | /// let mut squared = SecondaryMap::new();
|
276 | /// assert!(!squared.contains_key(k));
|
277 | /// squared.insert(k, 16);
|
278 | /// assert!(squared.contains_key(k));
|
279 | /// ```
|
280 | pub fn contains_key(&self, key: K) -> bool {
|
281 | let kd = key.data();
|
282 | self.slots
|
283 | .get(kd.idx as usize)
|
284 | .map_or(false, |slot| slot.version() == kd.version.get())
|
285 | }
|
286 |
|
287 | /// Inserts a value into the secondary map at the given `key`. Can silently
|
288 | /// fail and return `None` if `key` was removed from the originating slot
|
289 | /// map.
|
290 | ///
|
291 | /// Returns [`None`] if this key was not present in the map, the old value
|
292 | /// otherwise.
|
293 | ///
|
294 | /// # Examples
|
295 | ///
|
296 | /// ```
|
297 | /// # use slotmap::*;
|
298 | /// let mut sm = SlotMap::new();
|
299 | /// let k = sm.insert(4);
|
300 | /// let mut squared = SecondaryMap::new();
|
301 | /// assert_eq!(squared.insert(k, 0), None);
|
302 | /// assert_eq!(squared.insert(k, 4), Some(0));
|
303 | /// // You don't have to use insert if the key is already in the secondary map.
|
304 | /// squared[k] *= squared[k];
|
305 | /// assert_eq!(squared[k], 16);
|
306 | /// ```
|
307 | pub fn insert(&mut self, key: K, value: V) -> Option<V> {
|
308 | if key.is_null() {
|
309 | return None;
|
310 | }
|
311 |
|
312 | let kd = key.data();
|
313 | self.slots
|
314 | .extend((self.slots.len()..=kd.idx as usize).map(|_| Slot::new_vacant()));
|
315 |
|
316 | let slot = &mut self.slots[kd.idx as usize];
|
317 | if slot.version() == kd.version.get() {
|
318 | // Is always occupied.
|
319 | return Some(replace(unsafe { slot.get_unchecked_mut() }, value));
|
320 | }
|
321 |
|
322 | if slot.occupied() {
|
323 | // Don't replace existing newer values.
|
324 | if is_older_version(kd.version.get(), slot.version()) {
|
325 | return None;
|
326 | }
|
327 | } else {
|
328 | self.num_elems += 1;
|
329 | }
|
330 |
|
331 | *slot = Slot::new_occupied(kd.version.get(), value);
|
332 | None
|
333 | }
|
334 |
|
335 | /// Removes a key from the secondary map, returning the value at the key if
|
336 | /// the key was not previously removed. If `key` was removed from the
|
337 | /// originating slot map, its corresponding entry in the secondary map may
|
338 | /// or may not already be removed.
|
339 | ///
|
340 | /// # Examples
|
341 | ///
|
342 | /// ```
|
343 | /// # use slotmap::*;
|
344 | /// let mut sm = SlotMap::new();
|
345 | /// let mut squared = SecondaryMap::new();
|
346 | /// let k = sm.insert(4);
|
347 | /// squared.insert(k, 16);
|
348 | /// squared.remove(k);
|
349 | /// assert!(!squared.contains_key(k));
|
350 | ///
|
351 | /// // It's not necessary to remove keys deleted from the primary slot map, they
|
352 | /// // get deleted automatically when their slots are reused on a subsequent insert.
|
353 | /// squared.insert(k, 16);
|
354 | /// sm.remove(k); // Remove k from the slot map, making an empty slot.
|
355 | /// let new_k = sm.insert(2); // Since sm only has one empty slot, this reuses it.
|
356 | /// assert!(!squared.contains_key(new_k)); // Space reuse does not mean equal keys.
|
357 | /// assert!(squared.contains_key(k)); // Slot has not been reused in squared yet.
|
358 | /// squared.insert(new_k, 4);
|
359 | /// assert!(!squared.contains_key(k)); // Old key is no longer available.
|
360 | /// ```
|
361 | pub fn remove(&mut self, key: K) -> Option<V> {
|
362 | let kd = key.data();
|
363 | if let Some(slot) = self.slots.get_mut(kd.idx as usize) {
|
364 | if slot.version() == kd.version.get() {
|
365 | self.num_elems -= 1;
|
366 | return replace(slot, Slot::new_vacant()).into_option();
|
367 | }
|
368 | }
|
369 |
|
370 | None
|
371 | }
|
372 |
|
373 | /// Retains only the elements specified by the predicate.
|
374 | ///
|
375 | /// In other words, remove all key-value pairs `(k, v)` such that
|
376 | /// `f(k, &mut v)` returns false. This method invalidates any removed keys.
|
377 | ///
|
378 | /// This function must iterate over all slots, empty or not. In the face of
|
379 | /// many deleted elements it can be inefficient.
|
380 | ///
|
381 | /// # Examples
|
382 | ///
|
383 | /// ```
|
384 | /// # use slotmap::*;
|
385 | /// let mut sm = SlotMap::new();
|
386 | /// let mut sec = SecondaryMap::new();
|
387 | ///
|
388 | /// let k1 = sm.insert(0); sec.insert(k1, 10);
|
389 | /// let k2 = sm.insert(1); sec.insert(k2, 11);
|
390 | /// let k3 = sm.insert(2); sec.insert(k3, 12);
|
391 | ///
|
392 | /// sec.retain(|key, val| key == k1 || *val == 11);
|
393 | ///
|
394 | /// assert!(sec.contains_key(k1));
|
395 | /// assert!(sec.contains_key(k2));
|
396 | /// assert!(!sec.contains_key(k3));
|
397 | /// assert_eq!(sec.len(), 2);
|
398 | /// ```
|
399 | pub fn retain<F>(&mut self, mut f: F)
|
400 | where
|
401 | F: FnMut(K, &mut V) -> bool,
|
402 | {
|
403 | for (i, slot) in self.slots.iter_mut().enumerate() {
|
404 | if let Occupied { value, version } = slot {
|
405 | let key = KeyData::new(i as u32, version.get()).into();
|
406 | if !f(key, value) {
|
407 | self.num_elems -= 1;
|
408 | *slot = Slot::new_vacant();
|
409 | }
|
410 | }
|
411 | }
|
412 | }
|
413 |
|
414 | /// Clears the secondary map. Keeps the allocated memory for reuse.
|
415 | ///
|
416 | /// This function must iterate over all slots, empty or not. In the face of
|
417 | /// many deleted elements it can be inefficient.
|
418 | ///
|
419 | /// # Examples
|
420 | ///
|
421 | /// ```
|
422 | /// # use slotmap::*;
|
423 | /// let mut sm = SlotMap::new();
|
424 | /// let mut sec = SecondaryMap::new();
|
425 | /// for i in 0..10 {
|
426 | /// sec.insert(sm.insert(i), i);
|
427 | /// }
|
428 | /// assert_eq!(sec.len(), 10);
|
429 | /// sec.clear();
|
430 | /// assert_eq!(sec.len(), 0);
|
431 | /// ```
|
432 | pub fn clear(&mut self) {
|
433 | self.drain();
|
434 | }
|
435 |
|
436 | /// Clears the slot map, returning all key-value pairs in arbitrary order as
|
437 | /// an iterator. Keeps the allocated memory for reuse.
|
438 | ///
|
439 | /// When the iterator is dropped all elements in the slot map are removed,
|
440 | /// even if the iterator was not fully consumed. If the iterator is not
|
441 | /// dropped (using e.g. [`std::mem::forget`]), only the elements that were
|
442 | /// iterated over are removed.
|
443 | ///
|
444 | /// This function must iterate over all slots, empty or not. In the face of
|
445 | /// many deleted elements it can be inefficient.
|
446 | ///
|
447 | /// # Examples
|
448 | ///
|
449 | /// ```
|
450 | /// # use slotmap::*;
|
451 | /// # use std::iter::FromIterator;
|
452 | /// let mut sm = SlotMap::new();
|
453 | /// let k = sm.insert(0);
|
454 | /// let mut sec = SecondaryMap::new();
|
455 | /// sec.insert(k, 1);
|
456 | /// let v: Vec<_> = sec.drain().collect();
|
457 | /// assert_eq!(sec.len(), 0);
|
458 | /// assert_eq!(v, vec![(k, 1)]);
|
459 | /// ```
|
460 | pub fn drain(&mut self) -> Drain<K, V> {
|
461 | Drain { cur: 1, sm: self }
|
462 | }
|
463 |
|
464 | /// Returns a reference to the value corresponding to the key.
|
465 | ///
|
466 | /// # Examples
|
467 | ///
|
468 | /// ```
|
469 | /// # use slotmap::*;
|
470 | /// let mut sm = SlotMap::new();
|
471 | /// let key = sm.insert("foo" );
|
472 | /// let mut sec = SecondaryMap::new();
|
473 | /// sec.insert(key, "bar" );
|
474 | /// assert_eq!(sec.get(key), Some(&"bar" ));
|
475 | /// sec.remove(key);
|
476 | /// assert_eq!(sec.get(key), None);
|
477 | /// ```
|
478 | pub fn get(&self, key: K) -> Option<&V> {
|
479 | let kd = key.data();
|
480 | self.slots
|
481 | .get(kd.idx as usize)
|
482 | .filter(|slot| slot.version() == kd.version.get())
|
483 | .map(|slot| unsafe { slot.get_unchecked() })
|
484 | }
|
485 |
|
486 | /// Returns a reference to the value corresponding to the key without
|
487 | /// version or bounds checking.
|
488 | ///
|
489 | /// # Safety
|
490 | ///
|
491 | /// This should only be used if `contains_key(key)` is true. Otherwise it is
|
492 | /// potentially unsafe.
|
493 | ///
|
494 | /// # Examples
|
495 | ///
|
496 | /// ```
|
497 | /// # use slotmap::*;
|
498 | /// let mut sm = SlotMap::new();
|
499 | /// let key = sm.insert("foo" );
|
500 | /// let mut sec = SecondaryMap::new();
|
501 | /// sec.insert(key, "bar" );
|
502 | /// assert_eq!(unsafe { sec.get_unchecked(key) }, &"bar" );
|
503 | /// sec.remove(key);
|
504 | /// // sec.get_unchecked(key) is now dangerous!
|
505 | /// ```
|
506 | pub unsafe fn get_unchecked(&self, key: K) -> &V {
|
507 | debug_assert!(self.contains_key(key));
|
508 | let slot = self.slots.get_unchecked(key.data().idx as usize);
|
509 | slot.get_unchecked()
|
510 | }
|
511 |
|
512 | /// Returns a mutable reference to the value corresponding to the key.
|
513 | ///
|
514 | /// # Examples
|
515 | ///
|
516 | /// ```
|
517 | /// # use slotmap::*;
|
518 | /// let mut sm = SlotMap::new();
|
519 | /// let key = sm.insert("test" );
|
520 | /// let mut sec = SecondaryMap::new();
|
521 | /// sec.insert(key, 3.5);
|
522 | /// if let Some(x) = sec.get_mut(key) {
|
523 | /// *x += 3.0;
|
524 | /// }
|
525 | /// assert_eq!(sec[key], 6.5);
|
526 | /// ```
|
527 | pub fn get_mut(&mut self, key: K) -> Option<&mut V> {
|
528 | let kd = key.data();
|
529 | self.slots
|
530 | .get_mut(kd.idx as usize)
|
531 | .filter(|slot| slot.version() == kd.version.get())
|
532 | .map(|slot| unsafe { slot.get_unchecked_mut() })
|
533 | }
|
534 |
|
535 | /// Returns a mutable reference to the value corresponding to the key
|
536 | /// without version or bounds checking.
|
537 | ///
|
538 | /// # Safety
|
539 | ///
|
540 | /// This should only be used if `contains_key(key)` is true. Otherwise it is
|
541 | /// potentially unsafe.
|
542 | ///
|
543 | /// # Examples
|
544 | ///
|
545 | /// ```
|
546 | /// # use slotmap::*;
|
547 | /// let mut sm = SlotMap::new();
|
548 | /// let key = sm.insert("foo" );
|
549 | /// let mut sec = SecondaryMap::new();
|
550 | /// sec.insert(key, "bar" );
|
551 | /// unsafe { *sec.get_unchecked_mut(key) = "baz" };
|
552 | /// assert_eq!(sec[key], "baz" );
|
553 | /// sec.remove(key);
|
554 | /// // sec.get_unchecked_mut(key) is now dangerous!
|
555 | /// ```
|
556 | pub unsafe fn get_unchecked_mut(&mut self, key: K) -> &mut V {
|
557 | debug_assert!(self.contains_key(key));
|
558 | let slot = self.slots.get_unchecked_mut(key.data().idx as usize);
|
559 | slot.get_unchecked_mut()
|
560 | }
|
561 |
|
562 | /// Returns mutable references to the values corresponding to the given
|
563 | /// keys. All keys must be valid and disjoint, otherwise None is returned.
|
564 | ///
|
565 | /// Requires at least stable Rust version 1.51.
|
566 | ///
|
567 | /// # Examples
|
568 | ///
|
569 | /// ```
|
570 | /// # use slotmap::*;
|
571 | /// let mut sm = SlotMap::new();
|
572 | /// let mut sec = SecondaryMap::new();
|
573 | /// let ka = sm.insert(()); sec.insert(ka, "butter" );
|
574 | /// let kb = sm.insert(()); sec.insert(kb, "apples" );
|
575 | /// let kc = sm.insert(()); sec.insert(kc, "charlie" );
|
576 | /// sec.remove(kc); // Make key c invalid.
|
577 | /// assert_eq!(sec.get_disjoint_mut([ka, kb, kc]), None); // Has invalid key.
|
578 | /// assert_eq!(sec.get_disjoint_mut([ka, ka]), None); // Not disjoint.
|
579 | /// let [a, b] = sec.get_disjoint_mut([ka, kb]).unwrap();
|
580 | /// std::mem::swap(a, b);
|
581 | /// assert_eq!(sec[ka], "apples" );
|
582 | /// assert_eq!(sec[kb], "butter" );
|
583 | /// ```
|
584 | #[cfg (has_min_const_generics)]
|
585 | pub fn get_disjoint_mut<const N: usize>(&mut self, keys: [K; N]) -> Option<[&mut V; N]> {
|
586 | // Create an uninitialized array of `MaybeUninit`. The `assume_init` is
|
587 | // safe because the type we are claiming to have initialized here is a
|
588 | // bunch of `MaybeUninit`s, which do not require initialization.
|
589 | let mut ptrs: [MaybeUninit<*mut V>; N] = unsafe { MaybeUninit::uninit().assume_init() };
|
590 | let mut slot_versions: [MaybeUninit<u32>; N] =
|
591 | unsafe { MaybeUninit::uninit().assume_init() };
|
592 |
|
593 | let mut i = 0;
|
594 | while i < N {
|
595 | let kd = keys[i].data();
|
596 |
|
597 | match self.slots.get_mut(kd.idx as usize) {
|
598 | Some(Occupied { version, value }) if *version == kd.version => {
|
599 | // This key is valid, and the slot is occupied. Temporarily
|
600 | // set the version to 2 so duplicate keys would show up as
|
601 | // invalid, since keys always have an odd version. This
|
602 | // gives us a linear time disjointness check.
|
603 | ptrs[i] = MaybeUninit::new(&mut *value);
|
604 | slot_versions[i] = MaybeUninit::new(version.get());
|
605 | *version = NonZeroU32::new(2).unwrap();
|
606 | },
|
607 |
|
608 | _ => break,
|
609 | }
|
610 |
|
611 | i += 1;
|
612 | }
|
613 |
|
614 | // Undo temporary unoccupied markings.
|
615 | for j in 0..i {
|
616 | let idx = keys[j].data().idx as usize;
|
617 | unsafe {
|
618 | match self.slots.get_mut(idx) {
|
619 | Some(Occupied { version, .. }) => {
|
620 | *version = NonZeroU32::new_unchecked(slot_versions[j].assume_init());
|
621 | },
|
622 | _ => unreachable_unchecked(),
|
623 | }
|
624 | }
|
625 | }
|
626 |
|
627 | if i == N {
|
628 | // All were valid and disjoint.
|
629 | Some(unsafe { core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs) })
|
630 | } else {
|
631 | None
|
632 | }
|
633 | }
|
634 |
|
635 | /// Returns mutable references to the values corresponding to the given
|
636 | /// keys. All keys must be valid and disjoint.
|
637 | ///
|
638 | /// Requires at least stable Rust version 1.51.
|
639 | ///
|
640 | /// # Safety
|
641 | ///
|
642 | /// This should only be used if `contains_key(key)` is true for every given
|
643 | /// key and no two keys are equal. Otherwise it is potentially unsafe.
|
644 | ///
|
645 | /// # Examples
|
646 | ///
|
647 | /// ```
|
648 | /// # use slotmap::*;
|
649 | /// let mut sm = SlotMap::new();
|
650 | /// let mut sec = SecondaryMap::new();
|
651 | /// let ka = sm.insert(()); sec.insert(ka, "butter" );
|
652 | /// let kb = sm.insert(()); sec.insert(kb, "apples" );
|
653 | /// let [a, b] = unsafe { sec.get_disjoint_unchecked_mut([ka, kb]) };
|
654 | /// std::mem::swap(a, b);
|
655 | /// assert_eq!(sec[ka], "apples" );
|
656 | /// assert_eq!(sec[kb], "butter" );
|
657 | /// ```
|
658 | #[cfg (has_min_const_generics)]
|
659 | pub unsafe fn get_disjoint_unchecked_mut<const N: usize>(
|
660 | &mut self,
|
661 | keys: [K; N],
|
662 | ) -> [&mut V; N] {
|
663 | // Safe, see get_disjoint_mut.
|
664 | let mut ptrs: [MaybeUninit<*mut V>; N] = MaybeUninit::uninit().assume_init();
|
665 | for i in 0..N {
|
666 | ptrs[i] = MaybeUninit::new(self.get_unchecked_mut(keys[i]));
|
667 | }
|
668 | core::mem::transmute_copy::<_, [&mut V; N]>(&ptrs)
|
669 | }
|
670 |
|
671 | /// An iterator visiting all key-value pairs in arbitrary order. The
|
672 | /// iterator element type is `(K, &'a V)`.
|
673 | ///
|
674 | /// This function must iterate over all slots, empty or not. In the face of
|
675 | /// many deleted elements it can be inefficient.
|
676 | ///
|
677 | /// # Examples
|
678 | ///
|
679 | /// ```
|
680 | /// # use slotmap::*;
|
681 | /// let mut sm = SlotMap::new();
|
682 | /// let mut sec = SecondaryMap::new();
|
683 | /// let k0 = sm.insert(0); sec.insert(k0, 10);
|
684 | /// let k1 = sm.insert(1); sec.insert(k1, 11);
|
685 | /// let k2 = sm.insert(2); sec.insert(k2, 12);
|
686 | ///
|
687 | /// for (k, v) in sm.iter() {
|
688 | /// println!("key: {:?}, val: {}" , k, v);
|
689 | /// }
|
690 | /// ```
|
691 | pub fn iter(&self) -> Iter<K, V> {
|
692 | Iter {
|
693 | num_left: self.num_elems,
|
694 | slots: self.slots.iter().enumerate(),
|
695 | _k: PhantomData,
|
696 | }
|
697 | }
|
698 |
|
699 | /// An iterator visiting all key-value pairs in arbitrary order, with
|
700 | /// mutable references to the values. The iterator element type is
|
701 | /// `(K, &'a mut V)`.
|
702 | ///
|
703 | /// This function must iterate over all slots, empty or not. In the face of
|
704 | /// many deleted elements it can be inefficient.
|
705 | ///
|
706 | /// # Examples
|
707 | ///
|
708 | /// ```
|
709 | /// # use slotmap::*;
|
710 | /// let mut sm = SlotMap::new();
|
711 | /// let mut sec = SecondaryMap::new();
|
712 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
713 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
714 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
715 | ///
|
716 | /// for (k, v) in sec.iter_mut() {
|
717 | /// if k != k1 {
|
718 | /// *v *= -1;
|
719 | /// }
|
720 | /// }
|
721 | ///
|
722 | /// assert_eq!(sec[k0], -10);
|
723 | /// assert_eq!(sec[k1], 20);
|
724 | /// assert_eq!(sec[k2], -30);
|
725 | /// ```
|
726 | pub fn iter_mut(&mut self) -> IterMut<K, V> {
|
727 | IterMut {
|
728 | num_left: self.num_elems,
|
729 | slots: self.slots.iter_mut().enumerate(),
|
730 | _k: PhantomData,
|
731 | }
|
732 | }
|
733 |
|
734 | /// An iterator visiting all keys in arbitrary order. The iterator element
|
735 | /// type is `K`.
|
736 | ///
|
737 | /// This function must iterate over all slots, empty or not. In the face of
|
738 | /// many deleted elements it can be inefficient.
|
739 | ///
|
740 | /// # Examples
|
741 | ///
|
742 | /// ```
|
743 | /// # use slotmap::*;
|
744 | /// # use std::collections::HashSet;
|
745 | /// let mut sm = SlotMap::new();
|
746 | /// let mut sec = SecondaryMap::new();
|
747 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
748 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
749 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
750 | /// let keys: HashSet<_> = sec.keys().collect();
|
751 | /// let check: HashSet<_> = vec![k0, k1, k2].into_iter().collect();
|
752 | /// assert_eq!(keys, check);
|
753 | /// ```
|
754 | pub fn keys(&self) -> Keys<K, V> {
|
755 | Keys { inner: self.iter() }
|
756 | }
|
757 |
|
758 | /// An iterator visiting all values in arbitrary order. The iterator element
|
759 | /// type is `&'a V`.
|
760 | ///
|
761 | /// This function must iterate over all slots, empty or not. In the face of
|
762 | /// many deleted elements it can be inefficient.
|
763 | ///
|
764 | /// # Examples
|
765 | ///
|
766 | /// ```
|
767 | /// # use slotmap::*;
|
768 | /// # use std::collections::HashSet;
|
769 | /// let mut sm = SlotMap::new();
|
770 | /// let mut sec = SecondaryMap::new();
|
771 | /// let k0 = sm.insert(1); sec.insert(k0, 10);
|
772 | /// let k1 = sm.insert(2); sec.insert(k1, 20);
|
773 | /// let k2 = sm.insert(3); sec.insert(k2, 30);
|
774 | /// let values: HashSet<_> = sec.values().collect();
|
775 | /// let check: HashSet<_> = vec![&10, &20, &30].into_iter().collect();
|
776 | /// assert_eq!(values, check);
|
777 | /// ```
|
778 | pub fn values(&self) -> Values<K, V> {
|
779 | Values { inner: self.iter() }
|
780 | }
|
781 |
|
782 | /// An iterator visiting all values mutably in arbitrary order. The iterator
|
783 | /// element type is `&'a mut V`.
|
784 | ///
|
785 | /// This function must iterate over all slots, empty or not. In the face of
|
786 | /// many deleted elements it can be inefficient.
|
787 | ///
|
788 | /// # Examples
|
789 | ///
|
790 | /// ```
|
791 | /// # use slotmap::*;
|
792 | /// # use std::collections::HashSet;
|
793 | /// let mut sm = SlotMap::new();
|
794 | /// let mut sec = SecondaryMap::new();
|
795 | /// sec.insert(sm.insert(1), 10);
|
796 | /// sec.insert(sm.insert(2), 20);
|
797 | /// sec.insert(sm.insert(3), 30);
|
798 | /// sec.values_mut().for_each(|n| { *n *= 3 });
|
799 | /// let values: HashSet<_> = sec.into_iter().map(|(_k, v)| v).collect();
|
800 | /// let check: HashSet<_> = vec![30, 60, 90].into_iter().collect();
|
801 | /// assert_eq!(values, check);
|
802 | /// ```
|
803 | pub fn values_mut(&mut self) -> ValuesMut<K, V> {
|
804 | ValuesMut {
|
805 | inner: self.iter_mut(),
|
806 | }
|
807 | }
|
808 |
|
809 | /// Gets the given key's corresponding [`Entry`] in the map for in-place
|
810 | /// manipulation. May return [`None`] if the key was removed from the
|
811 | /// originating slot map.
|
812 | ///
|
813 | /// # Examples
|
814 | ///
|
815 | /// ```
|
816 | /// # use slotmap::*;
|
817 | /// let mut sm = SlotMap::new();
|
818 | /// let mut sec = SecondaryMap::new();
|
819 | /// let k = sm.insert(1);
|
820 | /// let v = sec.entry(k).unwrap().or_insert(10);
|
821 | /// assert_eq!(*v, 10);
|
822 | /// ```
|
823 | pub fn entry(&mut self, key: K) -> Option<Entry<K, V>> {
|
824 | if key.is_null() {
|
825 | return None;
|
826 | }
|
827 |
|
828 | let kd = key.data();
|
829 |
|
830 | // Ensure the slot exists so the Entry implementation can safely assume
|
831 | // the slot always exists without checking.
|
832 | self.slots
|
833 | .extend((self.slots.len()..=kd.idx as usize).map(|_| Slot::new_vacant()));
|
834 |
|
835 | let slot = unsafe { self.slots.get_unchecked(kd.idx as usize) };
|
836 | if kd.version.get() == slot.version() {
|
837 | Some(Entry::Occupied(OccupiedEntry {
|
838 | map: self,
|
839 | kd,
|
840 | _k: PhantomData,
|
841 | }))
|
842 | } else if is_older_version(kd.version.get(), slot.version()) {
|
843 | None
|
844 | } else {
|
845 | Some(Entry::Vacant(VacantEntry {
|
846 | map: self,
|
847 | kd,
|
848 | _k: PhantomData,
|
849 | }))
|
850 | }
|
851 | }
|
852 | }
|
853 |
|
854 | impl<K: Key, V> Default for SecondaryMap<K, V> {
|
855 | fn default() -> Self {
|
856 | Self::new()
|
857 | }
|
858 | }
|
859 |
|
860 | impl<K: Key, V> Index<K> for SecondaryMap<K, V> {
|
861 | type Output = V;
|
862 |
|
863 | fn index(&self, key: K) -> &V {
|
864 | match self.get(key) {
|
865 | Some(r: &V) => r,
|
866 | None => panic!("invalid SecondaryMap key used" ),
|
867 | }
|
868 | }
|
869 | }
|
870 |
|
871 | impl<K: Key, V> IndexMut<K> for SecondaryMap<K, V> {
|
872 | fn index_mut(&mut self, key: K) -> &mut V {
|
873 | match self.get_mut(key) {
|
874 | Some(r: &mut V) => r,
|
875 | None => panic!("invalid SecondaryMap key used" ),
|
876 | }
|
877 | }
|
878 | }
|
879 |
|
880 | impl<K: Key, V: PartialEq> PartialEq for SecondaryMap<K, V> {
|
881 | fn eq(&self, other: &Self) -> bool {
|
882 | if self.len() != other.len() {
|
883 | return false;
|
884 | }
|
885 |
|
886 | self.iter()
|
887 | .all(|(key: K, value: &V)| other.get(key).map_or(default:false, |other_value: &V| *value == *other_value))
|
888 | }
|
889 | }
|
890 |
|
891 | impl<K: Key, V: Eq> Eq for SecondaryMap<K, V> {}
|
892 |
|
893 | impl<K: Key, V> FromIterator<(K, V)> for SecondaryMap<K, V> {
|
894 | fn from_iter<I: IntoIterator<Item = (K, V)>>(iter: I) -> Self {
|
895 | let mut sec: SecondaryMap = Self::new();
|
896 | sec.extend(iter);
|
897 | sec
|
898 | }
|
899 | }
|
900 |
|
901 | impl<K: Key, V> Extend<(K, V)> for SecondaryMap<K, V> {
|
902 | fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iter: I) {
|
903 | let iter: ::IntoIter = iter.into_iter();
|
904 | for (k: K, v: V) in iter {
|
905 | self.insert(key:k, value:v);
|
906 | }
|
907 | }
|
908 | }
|
909 |
|
910 | impl<'a, K: Key, V: 'a + Copy> Extend<(K, &'a V)> for SecondaryMap<K, V> {
|
911 | fn extend<I: IntoIterator<Item = (K, &'a V)>>(&mut self, iter: I) {
|
912 | let iter: ::IntoIter = iter.into_iter();
|
913 | for (k: K, v: &V) in iter {
|
914 | self.insert(key:k, *v);
|
915 | }
|
916 | }
|
917 | }
|
918 |
|
919 | /// A view into a occupied entry in a [`SecondaryMap`]. It is part of the
|
920 | /// [`Entry`] enum.
|
921 | #[derive (Debug)]
|
922 | pub struct OccupiedEntry<'a, K: Key, V> {
|
923 | map: &'a mut SecondaryMap<K, V>,
|
924 | kd: KeyData,
|
925 | _k: PhantomData<fn(K) -> K>,
|
926 | }
|
927 |
|
928 | /// A view into a vacant entry in a [`SecondaryMap`]. It is part of the
|
929 | /// [`Entry`] enum.
|
930 | #[derive (Debug)]
|
931 | pub struct VacantEntry<'a, K: Key, V> {
|
932 | map: &'a mut SecondaryMap<K, V>,
|
933 | kd: KeyData,
|
934 | _k: PhantomData<fn(K) -> K>,
|
935 | }
|
936 |
|
937 | /// A view into a single entry in a [`SecondaryMap`], which may either be
|
938 | /// vacant or occupied.
|
939 | ///
|
940 | /// This `enum` is constructed using [`SecondaryMap::entry`].
|
941 | #[derive (Debug)]
|
942 | pub enum Entry<'a, K: Key, V> {
|
943 | /// An occupied entry.
|
944 | Occupied(OccupiedEntry<'a, K, V>),
|
945 |
|
946 | /// A vacant entry.
|
947 | Vacant(VacantEntry<'a, K, V>),
|
948 | }
|
949 |
|
950 | impl<'a, K: Key, V> Entry<'a, K, V> {
|
951 | /// Ensures a value is in the entry by inserting the default if empty, and
|
952 | /// returns a mutable reference to the value in the entry.
|
953 | ///
|
954 | /// # Examples
|
955 | ///
|
956 | /// ```
|
957 | /// # use slotmap::*;
|
958 | /// let mut sm = SlotMap::new();
|
959 | /// let mut sec = SecondaryMap::new();
|
960 | ///
|
961 | /// let k = sm.insert("poneyland" );
|
962 | /// let v = sec.entry(k).unwrap().or_insert(10);
|
963 | /// assert_eq!(*v, 10);
|
964 | /// *sec.entry(k).unwrap().or_insert(1) *= 2;
|
965 | /// assert_eq!(sec[k], 20);
|
966 | /// ```
|
967 | pub fn or_insert(self, default: V) -> &'a mut V {
|
968 | self.or_insert_with(|| default)
|
969 | }
|
970 |
|
971 | /// Ensures a value is in the entry by inserting the result of the default
|
972 | /// function if empty, and returns a mutable reference to the value in the
|
973 | /// entry.
|
974 | ///
|
975 | /// # Examples
|
976 | ///
|
977 | /// ```
|
978 | /// # use slotmap::*;
|
979 | /// let mut sm = SlotMap::new();
|
980 | /// let mut sec = SecondaryMap::new();
|
981 | ///
|
982 | /// let k = sm.insert(1);
|
983 | /// let v = sec.entry(k).unwrap().or_insert_with(|| "foobar" .to_string());
|
984 | /// assert_eq!(v, &"foobar" );
|
985 | /// ```
|
986 | pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V {
|
987 | match self {
|
988 | Entry::Occupied(x) => x.into_mut(),
|
989 | Entry::Vacant(x) => x.insert(default()),
|
990 | }
|
991 | }
|
992 |
|
993 | /// Returns this entry's key.
|
994 | ///
|
995 | /// # Examples
|
996 | ///
|
997 | /// ```
|
998 | /// # use slotmap::*;
|
999 | /// let mut sm = SlotMap::new();
|
1000 | /// let mut sec: SecondaryMap<_, ()> = SecondaryMap::new();
|
1001 | ///
|
1002 | /// let k = sm.insert(1);
|
1003 | /// let entry = sec.entry(k).unwrap();
|
1004 | /// assert_eq!(entry.key(), k);
|
1005 | /// ```
|
1006 | pub fn key(&self) -> K {
|
1007 | match self {
|
1008 | Entry::Occupied(entry) => entry.kd.into(),
|
1009 | Entry::Vacant(entry) => entry.kd.into(),
|
1010 | }
|
1011 | }
|
1012 |
|
1013 | /// Provides in-place mutable access to an occupied entry before any
|
1014 | /// potential inserts into the map.
|
1015 | ///
|
1016 | /// # Examples
|
1017 | ///
|
1018 | /// ```
|
1019 | /// # use slotmap::*;
|
1020 | /// let mut sm = SlotMap::new();
|
1021 | /// let mut sec = SecondaryMap::new();
|
1022 | ///
|
1023 | /// let k = sm.insert(1);
|
1024 | /// sec.insert(k, 0);
|
1025 | /// sec.entry(k).unwrap().and_modify(|x| *x = 1);
|
1026 | ///
|
1027 | /// assert_eq!(sec[k], 1)
|
1028 | /// ```
|
1029 | pub fn and_modify<F>(self, f: F) -> Self
|
1030 | where
|
1031 | F: FnOnce(&mut V),
|
1032 | {
|
1033 | match self {
|
1034 | Entry::Occupied(mut entry) => {
|
1035 | f(entry.get_mut());
|
1036 | Entry::Occupied(entry)
|
1037 | },
|
1038 | Entry::Vacant(entry) => Entry::Vacant(entry),
|
1039 | }
|
1040 | }
|
1041 | }
|
1042 |
|
1043 | impl<'a, K: Key, V: Default> Entry<'a, K, V> {
|
1044 | /// Ensures a value is in the entry by inserting the default value if empty,
|
1045 | /// and returns a mutable reference to the value in the entry.
|
1046 | ///
|
1047 | /// # Examples
|
1048 | ///
|
1049 | /// ```
|
1050 | /// # use slotmap::*;
|
1051 | /// let mut sm = SlotMap::new();
|
1052 | /// let mut sec: SecondaryMap<_, Option<i32>> = SecondaryMap::new();
|
1053 | ///
|
1054 | /// let k = sm.insert(1);
|
1055 | /// sec.entry(k).unwrap().or_default();
|
1056 | /// assert_eq!(sec[k], None)
|
1057 | /// ```
|
1058 | pub fn or_default(self) -> &'a mut V {
|
1059 | self.or_insert_with(Default::default)
|
1060 | }
|
1061 | }
|
1062 |
|
1063 | impl<'a, K: Key, V> OccupiedEntry<'a, K, V> {
|
1064 | /// Returns this entry's key.
|
1065 | ///
|
1066 | /// # Examples
|
1067 | ///
|
1068 | /// ```
|
1069 | /// # use slotmap::*;
|
1070 | /// let mut sm = SlotMap::new();
|
1071 | /// let mut sec = SecondaryMap::new();
|
1072 | ///
|
1073 | /// let k = sm.insert(1);
|
1074 | /// sec.insert(k, 10);
|
1075 | /// assert_eq!(sec.entry(k).unwrap().key(), k);
|
1076 | /// ```
|
1077 | pub fn key(&self) -> K {
|
1078 | self.kd.into()
|
1079 | }
|
1080 |
|
1081 | /// Removes the entry from the slot map and returns the key and value.
|
1082 | ///
|
1083 | /// # Examples
|
1084 | ///
|
1085 | /// ```
|
1086 | /// # use slotmap::*;
|
1087 | /// # use slotmap::secondary::Entry;
|
1088 | /// let mut sm = SlotMap::new();
|
1089 | /// let mut sec = SecondaryMap::new();
|
1090 | ///
|
1091 | /// let foo = sm.insert("foo" );
|
1092 | /// sec.entry(foo).unwrap().or_insert("bar" );
|
1093 | ///
|
1094 | /// if let Some(Entry::Occupied(o)) = sec.entry(foo) {
|
1095 | /// assert_eq!(o.remove_entry(), (foo, "bar" ));
|
1096 | /// }
|
1097 | /// assert_eq!(sec.contains_key(foo), false);
|
1098 | /// ```
|
1099 | pub fn remove_entry(self) -> (K, V) {
|
1100 | (self.kd.into(), self.remove())
|
1101 | }
|
1102 |
|
1103 | /// Gets a reference to the value in the entry.
|
1104 | ///
|
1105 | /// # Examples
|
1106 | ///
|
1107 | /// ```
|
1108 | /// # use slotmap::*;
|
1109 | /// # use slotmap::secondary::Entry;
|
1110 | /// let mut sm = SlotMap::new();
|
1111 | /// let mut sec = SecondaryMap::new();
|
1112 | ///
|
1113 | /// let k = sm.insert(1);
|
1114 | /// sec.insert(k, 10);
|
1115 | ///
|
1116 | /// if let Entry::Occupied(o) = sec.entry(k).unwrap() {
|
1117 | /// assert_eq!(*o.get(), 10);
|
1118 | /// }
|
1119 | /// ```
|
1120 | pub fn get(&self) -> &V {
|
1121 | unsafe { self.map.get_unchecked(self.kd.into()) }
|
1122 | }
|
1123 |
|
1124 | /// Gets a mutable reference to the value in the entry.
|
1125 | ///
|
1126 | /// If you need a reference to the [`OccupiedEntry`] which may outlive the
|
1127 | /// destruction of the [`Entry`] value, see [`into_mut`].
|
1128 | ///
|
1129 | /// # Examples
|
1130 | ///
|
1131 | /// ```
|
1132 | /// # use slotmap::*;
|
1133 | /// # use slotmap::secondary::Entry;
|
1134 | /// let mut sm = SlotMap::new();
|
1135 | /// let mut sec = SecondaryMap::new();
|
1136 | ///
|
1137 | /// let k = sm.insert(1);
|
1138 | /// sec.insert(k, 10);
|
1139 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1140 | /// *o.get_mut() = 20;
|
1141 | /// }
|
1142 | /// assert_eq!(sec[k], 20);
|
1143 | /// ```
|
1144 | ///
|
1145 | /// [`into_mut`]: Self::into_mut
|
1146 | pub fn get_mut(&mut self) -> &mut V {
|
1147 | unsafe { self.map.get_unchecked_mut(self.kd.into()) }
|
1148 | }
|
1149 |
|
1150 | /// Converts the [`OccupiedEntry`] into a mutable reference to the value in
|
1151 | /// the entry with a lifetime bound to the map itself.
|
1152 | ///
|
1153 | /// If you need multiple references to the [`OccupiedEntry`], see
|
1154 | /// [`get_mut`].
|
1155 | ///
|
1156 | /// # Examples
|
1157 | ///
|
1158 | /// ```
|
1159 | /// # use slotmap::*;
|
1160 | /// # use slotmap::secondary::Entry;
|
1161 | /// let mut sm = SlotMap::new();
|
1162 | /// let mut sec = SecondaryMap::new();
|
1163 | ///
|
1164 | /// let k = sm.insert(0);
|
1165 | /// sec.insert(k, 0);
|
1166 | ///
|
1167 | /// let r;
|
1168 | /// if let Entry::Occupied(o) = sec.entry(k).unwrap() {
|
1169 | /// r = o.into_mut(); // v outlives the entry.
|
1170 | /// } else {
|
1171 | /// r = sm.get_mut(k).unwrap();
|
1172 | /// }
|
1173 | /// *r = 1;
|
1174 | /// assert_eq!((sm[k], sec[k]), (0, 1));
|
1175 | /// ```
|
1176 | ///
|
1177 | /// [`get_mut`]: Self::get_mut
|
1178 | pub fn into_mut(self) -> &'a mut V {
|
1179 | unsafe { self.map.get_unchecked_mut(self.kd.into()) }
|
1180 | }
|
1181 |
|
1182 | /// Sets the value of the entry, and returns the entry's old value.
|
1183 | ///
|
1184 | /// # Examples
|
1185 | ///
|
1186 | /// ```
|
1187 | /// # use slotmap::*;
|
1188 | /// # use slotmap::secondary::Entry;
|
1189 | /// let mut sm = SlotMap::new();
|
1190 | /// let mut sec = SecondaryMap::new();
|
1191 | ///
|
1192 | /// let k = sm.insert(1);
|
1193 | /// sec.insert(k, 10);
|
1194 | ///
|
1195 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1196 | /// let v = o.insert(20);
|
1197 | /// assert_eq!(v, 10);
|
1198 | /// assert_eq!(*o.get(), 20);
|
1199 | /// }
|
1200 | /// ```
|
1201 | pub fn insert(&mut self, value: V) -> V {
|
1202 | replace(self.get_mut(), value)
|
1203 | }
|
1204 |
|
1205 | /// Takes the value out of the entry, and returns it.
|
1206 | ///
|
1207 | /// # Examples
|
1208 | ///
|
1209 | /// ```
|
1210 | /// # use slotmap::*;
|
1211 | /// # use slotmap::secondary::Entry;
|
1212 | ///
|
1213 | /// let mut sm = SlotMap::new();
|
1214 | /// let mut sec = SecondaryMap::new();
|
1215 | ///
|
1216 | /// let k = sm.insert(1);
|
1217 | /// sec.insert(k, 10);
|
1218 | ///
|
1219 | /// if let Entry::Occupied(mut o) = sec.entry(k).unwrap() {
|
1220 | /// assert_eq!(o.remove(), 10);
|
1221 | /// assert_eq!(sec.contains_key(k), false);
|
1222 | /// }
|
1223 | /// ```
|
1224 | pub fn remove(self) -> V {
|
1225 | let slot = unsafe { self.map.slots.get_unchecked_mut(self.kd.idx as usize) };
|
1226 | self.map.num_elems -= 1;
|
1227 | match replace(slot, Slot::new_vacant()) {
|
1228 | Occupied { value, .. } => value,
|
1229 | Vacant => unsafe { unreachable_unchecked() },
|
1230 | }
|
1231 | }
|
1232 | }
|
1233 |
|
1234 | impl<'a, K: Key, V> VacantEntry<'a, K, V> {
|
1235 | /// Gets the key that would be used when inserting a value through the
|
1236 | /// [`VacantEntry`].
|
1237 | ///
|
1238 | /// # Examples
|
1239 | ///
|
1240 | /// ```
|
1241 | /// # use slotmap::*;
|
1242 | /// # use slotmap::secondary::Entry;
|
1243 | ///
|
1244 | /// let mut sm = SlotMap::new();
|
1245 | /// let mut sec: SecondaryMap<_, ()> = SecondaryMap::new();
|
1246 | ///
|
1247 | /// let k = sm.insert(1);
|
1248 | ///
|
1249 | /// if let Entry::Vacant(v) = sec.entry(k).unwrap() {
|
1250 | /// assert_eq!(v.key(), k);
|
1251 | /// }
|
1252 | /// ```
|
1253 | pub fn key(&self) -> K {
|
1254 | self.kd.into()
|
1255 | }
|
1256 |
|
1257 | /// Sets the value of the entry with the [`VacantEntry`]'s key, and returns
|
1258 | /// a mutable reference to it.
|
1259 | ///
|
1260 | /// # Examples
|
1261 | ///
|
1262 | /// ```
|
1263 | /// # use slotmap::*;
|
1264 | /// # use slotmap::secondary::Entry;
|
1265 | ///
|
1266 | /// let mut sm = SlotMap::new();
|
1267 | /// let mut sec = SecondaryMap::new();
|
1268 | ///
|
1269 | /// let k = sm.insert(1);
|
1270 | ///
|
1271 | /// if let Entry::Vacant(v) = sec.entry(k).unwrap() {
|
1272 | /// let new_val = v.insert(3);
|
1273 | /// assert_eq!(new_val, &mut 3);
|
1274 | /// }
|
1275 | /// ```
|
1276 | pub fn insert(self, value: V) -> &'a mut V {
|
1277 | let slot = unsafe { self.map.slots.get_unchecked_mut(self.kd.idx as usize) };
|
1278 | // Despite the slot being considered Vacant for this entry, it might be occupied
|
1279 | // with an outdated element.
|
1280 | match replace(slot, Slot::new_occupied(self.kd.version.get(), value)) {
|
1281 | Occupied { .. } => {},
|
1282 | Vacant => self.map.num_elems += 1,
|
1283 | }
|
1284 | unsafe { slot.get_unchecked_mut() }
|
1285 | }
|
1286 | }
|
1287 |
|
1288 | // Iterators.
|
1289 | /// A draining iterator for [`SecondaryMap`].
|
1290 | ///
|
1291 | /// This iterator is created by [`SecondaryMap::drain`].
|
1292 | #[derive (Debug)]
|
1293 | pub struct Drain<'a, K: Key + 'a, V: 'a> {
|
1294 | sm: &'a mut SecondaryMap<K, V>,
|
1295 | cur: usize,
|
1296 | }
|
1297 |
|
1298 | /// An iterator that moves key-value pairs out of a [`SecondaryMap`].
|
1299 | ///
|
1300 | /// This iterator is created by calling the `into_iter` method on [`SecondaryMap`],
|
1301 | /// provided by the [`IntoIterator`] trait.
|
1302 | #[derive (Debug)]
|
1303 | pub struct IntoIter<K: Key, V> {
|
1304 | num_left: usize,
|
1305 | slots: Enumerate<alloc::vec::IntoIter<Slot<V>>>,
|
1306 | _k: PhantomData<fn(K) -> K>,
|
1307 | }
|
1308 |
|
1309 | /// An iterator over the key-value pairs in a [`SecondaryMap`].
|
1310 | ///
|
1311 | /// This iterator is created by [`SecondaryMap::iter`].
|
1312 | #[derive (Debug)]
|
1313 | pub struct Iter<'a, K: Key + 'a, V: 'a> {
|
1314 | num_left: usize,
|
1315 | slots: Enumerate<core::slice::Iter<'a, Slot<V>>>,
|
1316 | _k: PhantomData<fn(K) -> K>,
|
1317 | }
|
1318 |
|
1319 | impl<'a, K: 'a + Key, V: 'a> Clone for Iter<'a, K, V> {
|
1320 | fn clone(&self) -> Self {
|
1321 | Iter {
|
1322 | num_left: self.num_left,
|
1323 | slots: self.slots.clone(),
|
1324 | _k: self._k,
|
1325 | }
|
1326 | }
|
1327 | }
|
1328 |
|
1329 | /// A mutable iterator over the key-value pairs in a [`SecondaryMap`].
|
1330 | ///
|
1331 | /// This iterator is created by [`SecondaryMap::iter_mut`].
|
1332 | #[derive (Debug)]
|
1333 | pub struct IterMut<'a, K: Key + 'a, V: 'a> {
|
1334 | num_left: usize,
|
1335 | slots: Enumerate<core::slice::IterMut<'a, Slot<V>>>,
|
1336 | _k: PhantomData<fn(K) -> K>,
|
1337 | }
|
1338 |
|
1339 | /// An iterator over the keys in a [`SecondaryMap`].
|
1340 | ///
|
1341 | /// This iterator is created by [`SecondaryMap::keys`].
|
1342 | #[derive (Debug)]
|
1343 | pub struct Keys<'a, K: Key + 'a, V: 'a> {
|
1344 | inner: Iter<'a, K, V>,
|
1345 | }
|
1346 |
|
1347 | impl<'a, K: 'a + Key, V: 'a> Clone for Keys<'a, K, V> {
|
1348 | fn clone(&self) -> Self {
|
1349 | Keys {
|
1350 | inner: self.inner.clone(),
|
1351 | }
|
1352 | }
|
1353 | }
|
1354 |
|
1355 | /// An iterator over the values in a [`SecondaryMap`].
|
1356 | ///
|
1357 | /// This iterator is created by [`SecondaryMap::values`].
|
1358 | #[derive (Debug)]
|
1359 | pub struct Values<'a, K: Key + 'a, V: 'a> {
|
1360 | inner: Iter<'a, K, V>,
|
1361 | }
|
1362 |
|
1363 | impl<'a, K: 'a + Key, V: 'a> Clone for Values<'a, K, V> {
|
1364 | fn clone(&self) -> Self {
|
1365 | Values {
|
1366 | inner: self.inner.clone(),
|
1367 | }
|
1368 | }
|
1369 | }
|
1370 |
|
1371 | /// A mutable iterator over the values in a [`SecondaryMap`].
|
1372 | ///
|
1373 | /// This iterator is created by [`SecondaryMap::values_mut`].
|
1374 | #[derive (Debug)]
|
1375 | pub struct ValuesMut<'a, K: Key + 'a, V: 'a> {
|
1376 | inner: IterMut<'a, K, V>,
|
1377 | }
|
1378 |
|
1379 | impl<'a, K: Key, V> Iterator for Drain<'a, K, V> {
|
1380 | type Item = (K, V);
|
1381 |
|
1382 | fn next(&mut self) -> Option<(K, V)> {
|
1383 | while let Some(slot: &mut Slot) = self.sm.slots.get_mut(self.cur) {
|
1384 | let idx: usize = self.cur;
|
1385 | self.cur += 1;
|
1386 | if let Occupied { value: V, version: NonZero } = replace(dest:slot, src:Slot::new_vacant()) {
|
1387 | self.sm.num_elems -= 1;
|
1388 | let key: K = KeyData::new(idx as u32, version:version.get()).into();
|
1389 | return Some((key, value));
|
1390 | }
|
1391 | }
|
1392 |
|
1393 | None
|
1394 | }
|
1395 |
|
1396 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1397 | (self.sm.len(), Some(self.sm.len()))
|
1398 | }
|
1399 | }
|
1400 |
|
1401 | impl<'a, K: Key, V> Drop for Drain<'a, K, V> {
|
1402 | fn drop(&mut self) {
|
1403 | self.for_each(|_drop: (K, V)| {});
|
1404 | }
|
1405 | }
|
1406 |
|
1407 | impl<K: Key, V> Iterator for IntoIter<K, V> {
|
1408 | type Item = (K, V);
|
1409 |
|
1410 | fn next(&mut self) -> Option<(K, V)> {
|
1411 | while let Some((idx: usize, mut slot: Slot)) = self.slots.next() {
|
1412 | if let Occupied { value: V, version: NonZero } = replace(&mut slot, src:Slot::new_vacant()) {
|
1413 | self.num_left -= 1;
|
1414 | let key: K = KeyData::new(idx as u32, version:version.get()).into();
|
1415 | return Some((key, value));
|
1416 | }
|
1417 | }
|
1418 |
|
1419 | None
|
1420 | }
|
1421 |
|
1422 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1423 | (self.num_left, Some(self.num_left))
|
1424 | }
|
1425 | }
|
1426 |
|
1427 | impl<'a, K: Key, V> Iterator for Iter<'a, K, V> {
|
1428 | type Item = (K, &'a V);
|
1429 |
|
1430 | fn next(&mut self) -> Option<(K, &'a V)> {
|
1431 | while let Some((idx: usize, slot: &Slot)) = self.slots.next() {
|
1432 | if let Occupied { value: &V, version: &NonZero } = slot {
|
1433 | self.num_left -= 1;
|
1434 | let key: K = KeyData::new(idx as u32, version:version.get()).into();
|
1435 | return Some((key, value));
|
1436 | }
|
1437 | }
|
1438 |
|
1439 | None
|
1440 | }
|
1441 |
|
1442 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1443 | (self.num_left, Some(self.num_left))
|
1444 | }
|
1445 | }
|
1446 |
|
1447 | impl<'a, K: Key, V> Iterator for IterMut<'a, K, V> {
|
1448 | type Item = (K, &'a mut V);
|
1449 |
|
1450 | fn next(&mut self) -> Option<(K, &'a mut V)> {
|
1451 | while let Some((idx: usize, slot: &mut Slot)) = self.slots.next() {
|
1452 | if let Occupied { value: &mut V, version: &mut NonZero } = slot {
|
1453 | let key: K = KeyData::new(idx as u32, version:version.get()).into();
|
1454 | self.num_left -= 1;
|
1455 | return Some((key, value));
|
1456 | }
|
1457 | }
|
1458 |
|
1459 | None
|
1460 | }
|
1461 |
|
1462 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1463 | (self.num_left, Some(self.num_left))
|
1464 | }
|
1465 | }
|
1466 |
|
1467 | impl<'a, K: Key, V> Iterator for Keys<'a, K, V> {
|
1468 | type Item = K;
|
1469 |
|
1470 | fn next(&mut self) -> Option<K> {
|
1471 | self.inner.next().map(|(key: K, _)| key)
|
1472 | }
|
1473 |
|
1474 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1475 | self.inner.size_hint()
|
1476 | }
|
1477 | }
|
1478 |
|
1479 | impl<'a, K: Key, V> Iterator for Values<'a, K, V> {
|
1480 | type Item = &'a V;
|
1481 |
|
1482 | fn next(&mut self) -> Option<&'a V> {
|
1483 | self.inner.next().map(|(_, value: &V)| value)
|
1484 | }
|
1485 |
|
1486 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1487 | self.inner.size_hint()
|
1488 | }
|
1489 | }
|
1490 |
|
1491 | impl<'a, K: Key, V> Iterator for ValuesMut<'a, K, V> {
|
1492 | type Item = &'a mut V;
|
1493 |
|
1494 | fn next(&mut self) -> Option<&'a mut V> {
|
1495 | self.inner.next().map(|(_, value: &mut V)| value)
|
1496 | }
|
1497 |
|
1498 | fn size_hint(&self) -> (usize, Option<usize>) {
|
1499 | self.inner.size_hint()
|
1500 | }
|
1501 | }
|
1502 |
|
1503 | impl<'a, K: Key, V> IntoIterator for &'a SecondaryMap<K, V> {
|
1504 | type Item = (K, &'a V);
|
1505 | type IntoIter = Iter<'a, K, V>;
|
1506 |
|
1507 | fn into_iter(self) -> Self::IntoIter {
|
1508 | self.iter()
|
1509 | }
|
1510 | }
|
1511 |
|
1512 | impl<'a, K: Key, V> IntoIterator for &'a mut SecondaryMap<K, V> {
|
1513 | type Item = (K, &'a mut V);
|
1514 | type IntoIter = IterMut<'a, K, V>;
|
1515 |
|
1516 | fn into_iter(self) -> Self::IntoIter {
|
1517 | self.iter_mut()
|
1518 | }
|
1519 | }
|
1520 |
|
1521 | impl<K: Key, V> IntoIterator for SecondaryMap<K, V> {
|
1522 | type Item = (K, V);
|
1523 | type IntoIter = IntoIter<K, V>;
|
1524 |
|
1525 | fn into_iter(self) -> Self::IntoIter {
|
1526 | let len: usize = self.len();
|
1527 | let mut it: impl Iterator = self.slots.into_iter().enumerate();
|
1528 | it.next(); // Skip sentinel.
|
1529 | IntoIter {
|
1530 | num_left: len,
|
1531 | slots: it,
|
1532 | _k: PhantomData,
|
1533 | }
|
1534 | }
|
1535 | }
|
1536 |
|
1537 | impl<'a, K: Key, V> FusedIterator for Iter<'a, K, V> {}
|
1538 | impl<'a, K: Key, V> FusedIterator for IterMut<'a, K, V> {}
|
1539 | impl<'a, K: Key, V> FusedIterator for Keys<'a, K, V> {}
|
1540 | impl<'a, K: Key, V> FusedIterator for Values<'a, K, V> {}
|
1541 | impl<'a, K: Key, V> FusedIterator for ValuesMut<'a, K, V> {}
|
1542 | impl<'a, K: Key, V> FusedIterator for Drain<'a, K, V> {}
|
1543 | impl<K: Key, V> FusedIterator for IntoIter<K, V> {}
|
1544 |
|
1545 | impl<'a, K: Key, V> ExactSizeIterator for Iter<'a, K, V> {}
|
1546 | impl<'a, K: Key, V> ExactSizeIterator for IterMut<'a, K, V> {}
|
1547 | impl<'a, K: Key, V> ExactSizeIterator for Keys<'a, K, V> {}
|
1548 | impl<'a, K: Key, V> ExactSizeIterator for Values<'a, K, V> {}
|
1549 | impl<'a, K: Key, V> ExactSizeIterator for ValuesMut<'a, K, V> {}
|
1550 | impl<'a, K: Key, V> ExactSizeIterator for Drain<'a, K, V> {}
|
1551 | impl<K: Key, V> ExactSizeIterator for IntoIter<K, V> {}
|
1552 |
|
1553 | // Serialization with serde.
|
1554 | #[cfg (feature = "serde" )]
|
1555 | mod serialize {
|
1556 | use serde::{de, Deserialize, Deserializer, Serialize, Serializer};
|
1557 |
|
1558 | use super::*;
|
1559 |
|
1560 | #[derive (Serialize, Deserialize)]
|
1561 | struct SerdeSlot<T> {
|
1562 | value: Option<T>,
|
1563 | version: u32,
|
1564 | }
|
1565 |
|
1566 | impl<T: Serialize> Serialize for Slot<T> {
|
1567 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
1568 | where
|
1569 | S: Serializer,
|
1570 | {
|
1571 | let serde_slot = SerdeSlot {
|
1572 | version: self.version(),
|
1573 | value: match self {
|
1574 | Occupied { value, .. } => Some(value),
|
1575 | Vacant => None,
|
1576 | },
|
1577 | };
|
1578 | serde_slot.serialize(serializer)
|
1579 | }
|
1580 | }
|
1581 |
|
1582 | impl<'de, T> Deserialize<'de> for Slot<T>
|
1583 | where
|
1584 | T: Deserialize<'de>,
|
1585 | {
|
1586 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
1587 | where
|
1588 | D: Deserializer<'de>,
|
1589 | {
|
1590 | let serde_slot: SerdeSlot<T> = Deserialize::deserialize(deserializer)?;
|
1591 | let occupied = serde_slot.version % 2 == 1;
|
1592 | if occupied ^ serde_slot.value.is_some() {
|
1593 | return Err(de::Error::custom(&"inconsistent occupation in Slot" ));
|
1594 | }
|
1595 |
|
1596 | Ok(match serde_slot.value {
|
1597 | Some(value) => Self::new_occupied(serde_slot.version, value),
|
1598 | None => Self::new_vacant(),
|
1599 | })
|
1600 | }
|
1601 | }
|
1602 |
|
1603 | impl<K: Key, V: Serialize> Serialize for SecondaryMap<K, V> {
|
1604 | fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
|
1605 | where
|
1606 | S: Serializer,
|
1607 | {
|
1608 | self.slots.serialize(serializer)
|
1609 | }
|
1610 | }
|
1611 |
|
1612 | impl<'de, K: Key, V: Deserialize<'de>> Deserialize<'de> for SecondaryMap<K, V> {
|
1613 | fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
|
1614 | where
|
1615 | D: Deserializer<'de>,
|
1616 | {
|
1617 | let mut slots: Vec<Slot<V>> = Deserialize::deserialize(deserializer)?;
|
1618 | if slots.len() >= (u32::max_value() - 1) as usize {
|
1619 | return Err(de::Error::custom(&"too many slots" ));
|
1620 | }
|
1621 |
|
1622 | // Ensure the first slot exists and is empty for the sentinel.
|
1623 | if slots.get(0).map_or(true, |slot| slot.occupied()) {
|
1624 | return Err(de::Error::custom(&"first slot not empty" ));
|
1625 | }
|
1626 |
|
1627 | slots[0] = Slot::new_vacant();
|
1628 | let num_elems = slots.iter().map(|s| s.occupied() as usize).sum();
|
1629 |
|
1630 | Ok(Self {
|
1631 | num_elems,
|
1632 | slots,
|
1633 | _k: PhantomData,
|
1634 | })
|
1635 | }
|
1636 | }
|
1637 | }
|
1638 |
|
1639 | #[cfg (test)]
|
1640 | mod tests {
|
1641 | use std::collections::HashMap;
|
1642 |
|
1643 | use quickcheck::quickcheck;
|
1644 |
|
1645 | use crate::*;
|
1646 |
|
1647 | #[cfg (all(nightly, feature = "unstable" ))]
|
1648 | #[test ]
|
1649 | fn disjoint() {
|
1650 | // Intended to be run with miri to find any potential UB.
|
1651 | let mut sm = SlotMap::new();
|
1652 | let mut sec = SecondaryMap::new();
|
1653 |
|
1654 | // Some churn.
|
1655 | for i in 0..20usize {
|
1656 | sm.insert(i);
|
1657 | }
|
1658 | sm.retain(|_, i| *i % 2 == 0);
|
1659 |
|
1660 | for (i, k) in sm.keys().enumerate() {
|
1661 | sec.insert(k, i);
|
1662 | }
|
1663 |
|
1664 | let keys: Vec<_> = sm.keys().collect();
|
1665 | for i in 0..keys.len() {
|
1666 | for j in 0..keys.len() {
|
1667 | if let Some([r0, r1]) = sec.get_disjoint_mut([keys[i], keys[j]]) {
|
1668 | *r0 ^= *r1;
|
1669 | *r1 = r1.wrapping_add(*r0);
|
1670 | } else {
|
1671 | assert!(i == j);
|
1672 | }
|
1673 | }
|
1674 | }
|
1675 |
|
1676 | for i in 0..keys.len() {
|
1677 | for j in 0..keys.len() {
|
1678 | for k in 0..keys.len() {
|
1679 | if let Some([r0, r1, r2]) = sec.get_disjoint_mut([keys[i], keys[j], keys[k]]) {
|
1680 | *r0 ^= *r1;
|
1681 | *r0 = r0.wrapping_add(*r2);
|
1682 | *r1 ^= *r0;
|
1683 | *r1 = r1.wrapping_add(*r2);
|
1684 | *r2 ^= *r0;
|
1685 | *r2 = r2.wrapping_add(*r1);
|
1686 | } else {
|
1687 | assert!(i == j || j == k || i == k);
|
1688 | }
|
1689 | }
|
1690 | }
|
1691 | }
|
1692 | }
|
1693 |
|
1694 | quickcheck! {
|
1695 | fn qc_secmap_equiv_hashmap(operations: Vec<(u8, u32)>) -> bool {
|
1696 | let mut hm = HashMap::new();
|
1697 | let mut hm_keys = Vec::new();
|
1698 | let mut unique_key = 0u32;
|
1699 | let mut sm = SlotMap::new();
|
1700 | let mut sec = SecondaryMap::new();
|
1701 | let mut sm_keys = Vec::new();
|
1702 |
|
1703 | #[cfg(not(feature = "serde" ))]
|
1704 | let num_ops = 4;
|
1705 | #[cfg(feature = "serde" )]
|
1706 | let num_ops = 5;
|
1707 |
|
1708 | for (op, val) in operations {
|
1709 | match op % num_ops {
|
1710 | // Insert.
|
1711 | 0 => {
|
1712 | hm.insert(unique_key, val);
|
1713 | hm_keys.push(unique_key);
|
1714 | unique_key += 1;
|
1715 |
|
1716 | let k = sm.insert(val);
|
1717 | sec.insert(k, val);
|
1718 | sm_keys.push(k);
|
1719 | }
|
1720 |
|
1721 | // Delete.
|
1722 | 1 => {
|
1723 | if hm_keys.is_empty() { continue; }
|
1724 |
|
1725 | let idx = val as usize % hm_keys.len();
|
1726 | sm.remove(sm_keys[idx]);
|
1727 | if hm.remove(&hm_keys[idx]) != sec.remove(sm_keys[idx]) {
|
1728 | return false;
|
1729 | }
|
1730 | }
|
1731 |
|
1732 | // Access.
|
1733 | 2 => {
|
1734 | if hm_keys.is_empty() { continue; }
|
1735 | let idx = val as usize % hm_keys.len();
|
1736 | let (hm_key, sm_key) = (&hm_keys[idx], sm_keys[idx]);
|
1737 |
|
1738 | if hm.contains_key(hm_key) != sec.contains_key(sm_key) ||
|
1739 | hm.get(hm_key) != sec.get(sm_key) {
|
1740 | return false;
|
1741 | }
|
1742 | }
|
1743 |
|
1744 | // Clone.
|
1745 | 3 => {
|
1746 | sec = sec.clone();
|
1747 | }
|
1748 |
|
1749 | // Serde round-trip.
|
1750 | #[cfg(feature = "serde" )]
|
1751 | 4 => {
|
1752 | let ser = serde_json::to_string(&sec).unwrap();
|
1753 | sec = serde_json::from_str(&ser).unwrap();
|
1754 | }
|
1755 |
|
1756 | _ => unreachable!(),
|
1757 | }
|
1758 | }
|
1759 |
|
1760 | let mut secv: Vec<_> = sec.values().collect();
|
1761 | let mut hmv: Vec<_> = hm.values().collect();
|
1762 | secv.sort();
|
1763 | hmv.sort();
|
1764 | secv == hmv
|
1765 | }
|
1766 | }
|
1767 | }
|
1768 | |