| 1 | #![allow (missing_docs)] |
| 2 | |
| 3 | use std::mem; |
| 4 | |
| 5 | #[cfg (test)] |
| 6 | mod tests; |
| 7 | |
| 8 | fn local_sort(v: &mut [f64]) { |
| 9 | v.sort_by(|x: &f64, y: &f64| x.total_cmp(y)); |
| 10 | } |
| 11 | |
| 12 | /// Trait that provides simple descriptive statistics on a univariate set of numeric samples. |
| 13 | pub trait Stats { |
| 14 | /// Sum of the samples. |
| 15 | /// |
| 16 | /// Note: this method sacrifices performance at the altar of accuracy |
| 17 | /// Depends on IEEE 754 arithmetic guarantees. See proof of correctness at: |
| 18 | /// ["Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric |
| 19 | /// Predicates"][paper] |
| 20 | /// |
| 21 | /// [paper]: https://www.cs.cmu.edu/~quake-papers/robust-arithmetic.ps |
| 22 | fn sum(&self) -> f64; |
| 23 | |
| 24 | /// Minimum value of the samples. |
| 25 | fn min(&self) -> f64; |
| 26 | |
| 27 | /// Maximum value of the samples. |
| 28 | fn max(&self) -> f64; |
| 29 | |
| 30 | /// Arithmetic mean (average) of the samples: sum divided by sample-count. |
| 31 | /// |
| 32 | /// See: <https://en.wikipedia.org/wiki/Arithmetic_mean> |
| 33 | fn mean(&self) -> f64; |
| 34 | |
| 35 | /// Median of the samples: value separating the lower half of the samples from the higher half. |
| 36 | /// Equal to `self.percentile(50.0)`. |
| 37 | /// |
| 38 | /// See: <https://en.wikipedia.org/wiki/Median> |
| 39 | fn median(&self) -> f64; |
| 40 | |
| 41 | /// Variance of the samples: bias-corrected mean of the squares of the differences of each |
| 42 | /// sample from the sample mean. Note that this calculates the _sample variance_ rather than the |
| 43 | /// population variance, which is assumed to be unknown. It therefore corrects the `(n-1)/n` |
| 44 | /// bias that would appear if we calculated a population variance, by dividing by `(n-1)` rather |
| 45 | /// than `n`. |
| 46 | /// |
| 47 | /// See: <https://en.wikipedia.org/wiki/Variance> |
| 48 | fn var(&self) -> f64; |
| 49 | |
| 50 | /// Standard deviation: the square root of the sample variance. |
| 51 | /// |
| 52 | /// Note: this is not a robust statistic for non-normal distributions. Prefer the |
| 53 | /// `median_abs_dev` for unknown distributions. |
| 54 | /// |
| 55 | /// See: <https://en.wikipedia.org/wiki/Standard_deviation> |
| 56 | fn std_dev(&self) -> f64; |
| 57 | |
| 58 | /// Standard deviation as a percent of the mean value. See `std_dev` and `mean`. |
| 59 | /// |
| 60 | /// Note: this is not a robust statistic for non-normal distributions. Prefer the |
| 61 | /// `median_abs_dev_pct` for unknown distributions. |
| 62 | fn std_dev_pct(&self) -> f64; |
| 63 | |
| 64 | /// Scaled median of the absolute deviations of each sample from the sample median. This is a |
| 65 | /// robust (distribution-agnostic) estimator of sample variability. Use this in preference to |
| 66 | /// `std_dev` if you cannot assume your sample is normally distributed. Note that this is scaled |
| 67 | /// by the constant `1.4826` to allow its use as a consistent estimator for the standard |
| 68 | /// deviation. |
| 69 | /// |
| 70 | /// See: <https://en.wikipedia.org/wiki/Median_absolute_deviation> |
| 71 | fn median_abs_dev(&self) -> f64; |
| 72 | |
| 73 | /// Median absolute deviation as a percent of the median. See `median_abs_dev` and `median`. |
| 74 | fn median_abs_dev_pct(&self) -> f64; |
| 75 | |
| 76 | /// Percentile: the value below which `pct` percent of the values in `self` fall. For example, |
| 77 | /// percentile(95.0) will return the value `v` such that 95% of the samples `s` in `self` |
| 78 | /// satisfy `s <= v`. |
| 79 | /// |
| 80 | /// Calculated by linear interpolation between closest ranks. |
| 81 | /// |
| 82 | /// See: <https://en.wikipedia.org/wiki/Percentile> |
| 83 | fn percentile(&self, pct: f64) -> f64; |
| 84 | |
| 85 | /// Quartiles of the sample: three values that divide the sample into four equal groups, each |
| 86 | /// with 1/4 of the data. The middle value is the median. See `median` and `percentile`. This |
| 87 | /// function may calculate the 3 quartiles more efficiently than 3 calls to `percentile`, but |
| 88 | /// is otherwise equivalent. |
| 89 | /// |
| 90 | /// See also: <https://en.wikipedia.org/wiki/Quartile> |
| 91 | fn quartiles(&self) -> (f64, f64, f64); |
| 92 | |
| 93 | /// Inter-quartile range: the difference between the 25th percentile (1st quartile) and the 75th |
| 94 | /// percentile (3rd quartile). See `quartiles`. |
| 95 | /// |
| 96 | /// See also: <https://en.wikipedia.org/wiki/Interquartile_range> |
| 97 | fn iqr(&self) -> f64; |
| 98 | } |
| 99 | |
| 100 | /// Extracted collection of all the summary statistics of a sample set. |
| 101 | #[derive (Debug, Clone, PartialEq, Copy)] |
| 102 | #[allow (missing_docs)] |
| 103 | pub struct Summary { |
| 104 | pub sum: f64, |
| 105 | pub min: f64, |
| 106 | pub max: f64, |
| 107 | pub mean: f64, |
| 108 | pub median: f64, |
| 109 | pub var: f64, |
| 110 | pub std_dev: f64, |
| 111 | pub std_dev_pct: f64, |
| 112 | pub median_abs_dev: f64, |
| 113 | pub median_abs_dev_pct: f64, |
| 114 | pub quartiles: (f64, f64, f64), |
| 115 | pub iqr: f64, |
| 116 | } |
| 117 | |
| 118 | impl Summary { |
| 119 | /// Constructs a new summary of a sample set. |
| 120 | pub fn new(samples: &[f64]) -> Summary { |
| 121 | Summary { |
| 122 | sum: samples.sum(), |
| 123 | min: samples.min(), |
| 124 | max: samples.max(), |
| 125 | mean: samples.mean(), |
| 126 | median: samples.median(), |
| 127 | var: samples.var(), |
| 128 | std_dev: samples.std_dev(), |
| 129 | std_dev_pct: samples.std_dev_pct(), |
| 130 | median_abs_dev: samples.median_abs_dev(), |
| 131 | median_abs_dev_pct: samples.median_abs_dev_pct(), |
| 132 | quartiles: samples.quartiles(), |
| 133 | iqr: samples.iqr(), |
| 134 | } |
| 135 | } |
| 136 | } |
| 137 | |
| 138 | impl Stats for [f64] { |
| 139 | // FIXME #11059 handle NaN, inf and overflow |
| 140 | fn sum(&self) -> f64 { |
| 141 | let mut partials = vec![]; |
| 142 | |
| 143 | for &x in self { |
| 144 | let mut x = x; |
| 145 | let mut j = 0; |
| 146 | // This inner loop applies `hi`/`lo` summation to each |
| 147 | // partial so that the list of partial sums remains exact. |
| 148 | for i in 0..partials.len() { |
| 149 | let mut y: f64 = partials[i]; |
| 150 | if x.abs() < y.abs() { |
| 151 | mem::swap(&mut x, &mut y); |
| 152 | } |
| 153 | // Rounded `x+y` is stored in `hi` with round-off stored in |
| 154 | // `lo`. Together `hi+lo` are exactly equal to `x+y`. |
| 155 | let hi = x + y; |
| 156 | let lo = y - (hi - x); |
| 157 | if lo != 0.0 { |
| 158 | partials[j] = lo; |
| 159 | j += 1; |
| 160 | } |
| 161 | x = hi; |
| 162 | } |
| 163 | if j >= partials.len() { |
| 164 | partials.push(x); |
| 165 | } else { |
| 166 | partials[j] = x; |
| 167 | partials.truncate(j + 1); |
| 168 | } |
| 169 | } |
| 170 | let zero: f64 = 0.0; |
| 171 | partials.iter().fold(zero, |p, q| p + *q) |
| 172 | } |
| 173 | |
| 174 | fn min(&self) -> f64 { |
| 175 | assert!(!self.is_empty()); |
| 176 | self.iter().fold(self[0], |p, q| p.min(*q)) |
| 177 | } |
| 178 | |
| 179 | fn max(&self) -> f64 { |
| 180 | assert!(!self.is_empty()); |
| 181 | self.iter().fold(self[0], |p, q| p.max(*q)) |
| 182 | } |
| 183 | |
| 184 | fn mean(&self) -> f64 { |
| 185 | assert!(!self.is_empty()); |
| 186 | self.sum() / (self.len() as f64) |
| 187 | } |
| 188 | |
| 189 | fn median(&self) -> f64 { |
| 190 | self.percentile(50_f64) |
| 191 | } |
| 192 | |
| 193 | fn var(&self) -> f64 { |
| 194 | if self.len() < 2 { |
| 195 | 0.0 |
| 196 | } else { |
| 197 | let mean = self.mean(); |
| 198 | let mut v: f64 = 0.0; |
| 199 | for s in self { |
| 200 | let x = *s - mean; |
| 201 | v += x * x; |
| 202 | } |
| 203 | // N.B., this is _supposed to be_ len-1, not len. If you |
| 204 | // change it back to len, you will be calculating a |
| 205 | // population variance, not a sample variance. |
| 206 | let denom = (self.len() - 1) as f64; |
| 207 | v / denom |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | fn std_dev(&self) -> f64 { |
| 212 | self.var().sqrt() |
| 213 | } |
| 214 | |
| 215 | fn std_dev_pct(&self) -> f64 { |
| 216 | let hundred = 100_f64; |
| 217 | (self.std_dev() / self.mean()) * hundred |
| 218 | } |
| 219 | |
| 220 | fn median_abs_dev(&self) -> f64 { |
| 221 | let med = self.median(); |
| 222 | let abs_devs: Vec<f64> = self.iter().map(|&v| (med - v).abs()).collect(); |
| 223 | // This constant is derived by smarter statistics brains than me, but it is |
| 224 | // consistent with how R and other packages treat the MAD. |
| 225 | let number = 1.4826; |
| 226 | abs_devs.median() * number |
| 227 | } |
| 228 | |
| 229 | fn median_abs_dev_pct(&self) -> f64 { |
| 230 | let hundred = 100_f64; |
| 231 | (self.median_abs_dev() / self.median()) * hundred |
| 232 | } |
| 233 | |
| 234 | fn percentile(&self, pct: f64) -> f64 { |
| 235 | let mut tmp = self.to_vec(); |
| 236 | local_sort(&mut tmp); |
| 237 | percentile_of_sorted(&tmp, pct) |
| 238 | } |
| 239 | |
| 240 | fn quartiles(&self) -> (f64, f64, f64) { |
| 241 | let mut tmp = self.to_vec(); |
| 242 | local_sort(&mut tmp); |
| 243 | let first = 25_f64; |
| 244 | let a = percentile_of_sorted(&tmp, first); |
| 245 | let second = 50_f64; |
| 246 | let b = percentile_of_sorted(&tmp, second); |
| 247 | let third = 75_f64; |
| 248 | let c = percentile_of_sorted(&tmp, third); |
| 249 | (a, b, c) |
| 250 | } |
| 251 | |
| 252 | fn iqr(&self) -> f64 { |
| 253 | let (a, _, c) = self.quartiles(); |
| 254 | c - a |
| 255 | } |
| 256 | } |
| 257 | |
| 258 | // Helper function: extract a value representing the `pct` percentile of a sorted sample-set, using |
| 259 | // linear interpolation. If samples are not sorted, return nonsensical value. |
| 260 | fn percentile_of_sorted(sorted_samples: &[f64], pct: f64) -> f64 { |
| 261 | assert!(!sorted_samples.is_empty()); |
| 262 | if sorted_samples.len() == 1 { |
| 263 | return sorted_samples[0]; |
| 264 | } |
| 265 | let zero: f64 = 0.0; |
| 266 | assert!(zero <= pct); |
| 267 | let hundred: f64 = 100_f64; |
| 268 | assert!(pct <= hundred); |
| 269 | if pct == hundred { |
| 270 | return sorted_samples[sorted_samples.len() - 1]; |
| 271 | } |
| 272 | let length: f64 = (sorted_samples.len() - 1) as f64; |
| 273 | let rank: f64 = (pct / hundred) * length; |
| 274 | let lrank: f64 = rank.floor(); |
| 275 | let d: f64 = rank - lrank; |
| 276 | let n: usize = lrank as usize; |
| 277 | let lo: f64 = sorted_samples[n]; |
| 278 | let hi: f64 = sorted_samples[n + 1]; |
| 279 | lo + (hi - lo) * d |
| 280 | } |
| 281 | |
| 282 | /// Winsorize a set of samples, replacing values above the `100-pct` percentile |
| 283 | /// and below the `pct` percentile with those percentiles themselves. This is a |
| 284 | /// way of minimizing the effect of outliers, at the cost of biasing the sample. |
| 285 | /// It differs from trimming in that it does not change the number of samples, |
| 286 | /// just changes the values of those that are outliers. |
| 287 | /// |
| 288 | /// See: <https://en.wikipedia.org/wiki/Winsorising> |
| 289 | pub fn winsorize(samples: &mut [f64], pct: f64) { |
| 290 | let mut tmp: Vec = samples.to_vec(); |
| 291 | local_sort(&mut tmp); |
| 292 | let lo: f64 = percentile_of_sorted(&tmp, pct); |
| 293 | let hundred: f64 = 100_f64; |
| 294 | let hi: f64 = percentile_of_sorted(&tmp, pct:hundred - pct); |
| 295 | for samp: &mut f64 in samples { |
| 296 | if *samp > hi { |
| 297 | *samp = hi |
| 298 | } else if *samp < lo { |
| 299 | *samp = lo |
| 300 | } |
| 301 | } |
| 302 | } |
| 303 | |