1 | // Copyright 2006 The Android Open Source Project |
2 | // Copyright 2020 Yevhenii Reizner |
3 | // |
4 | // Use of this source code is governed by a BSD-style license that can be |
5 | // found in the LICENSE file. |
6 | |
7 | //! A [tiny-skia](https://github.com/RazrFalcon/tiny-skia) Bezier path implementation. |
8 | //! |
9 | //! Provides a memory-efficient Bezier path container, path builder, path stroker and path dasher. |
10 | //! |
11 | //! Also provides some basic geometry types, but they will be moved to an external crate eventually. |
12 | //! |
13 | //! Note that all types use single precision floats (`f32`), just like [Skia](https://skia.org/). |
14 | |
15 | #![no_std ] |
16 | #![warn (missing_docs)] |
17 | #![warn (missing_copy_implementations)] |
18 | #![warn (missing_debug_implementations)] |
19 | #![allow (clippy::approx_constant)] |
20 | #![allow (clippy::collapsible_if)] |
21 | #![allow (clippy::eq_op)] |
22 | #![allow (clippy::excessive_precision)] |
23 | #![allow (clippy::identity_op)] |
24 | #![allow (clippy::manual_range_contains)] |
25 | #![allow (clippy::neg_cmp_op_on_partial_ord)] |
26 | #![allow (clippy::too_many_arguments)] |
27 | #![allow (clippy::upper_case_acronyms)] |
28 | #![allow (clippy::wrong_self_convention)] |
29 | |
30 | #[cfg (not(any(feature = "std" , feature = "no-std-float" )))] |
31 | compile_error!("You have to activate either the `std` or the `no-std-float` feature." ); |
32 | |
33 | #[cfg (feature = "std" )] |
34 | extern crate std; |
35 | |
36 | extern crate alloc; |
37 | |
38 | mod dash; |
39 | mod f32x2_t; |
40 | mod f32x4_t; |
41 | mod floating_point; |
42 | mod path; |
43 | mod path_builder; |
44 | pub mod path_geometry; |
45 | mod rect; |
46 | mod scalar; |
47 | mod size; |
48 | mod stroker; |
49 | mod transform; |
50 | |
51 | pub use dash::StrokeDash; |
52 | pub use f32x2_t::f32x2; |
53 | pub use floating_point::*; |
54 | pub use path::*; |
55 | pub use path_builder::*; |
56 | pub use rect::*; |
57 | pub use scalar::*; |
58 | pub use size::*; |
59 | pub use stroker::*; |
60 | pub use transform::*; |
61 | |
62 | /// An integer length that is guarantee to be > 0 |
63 | type LengthU32 = core::num::NonZeroU32; |
64 | |
65 | /// A point. |
66 | /// |
67 | /// Doesn't guarantee to be finite. |
68 | #[allow (missing_docs)] |
69 | #[repr (C)] |
70 | #[derive (Copy, Clone, PartialEq, Default, Debug)] |
71 | pub struct Point { |
72 | pub x: f32, |
73 | pub y: f32, |
74 | } |
75 | |
76 | impl From<(f32, f32)> for Point { |
77 | #[inline ] |
78 | fn from(v: (f32, f32)) -> Self { |
79 | Point { x: v.0, y: v.1 } |
80 | } |
81 | } |
82 | |
83 | impl Point { |
84 | /// Creates a new `Point`. |
85 | pub fn from_xy(x: f32, y: f32) -> Self { |
86 | Point { x, y } |
87 | } |
88 | |
89 | /// Creates a new `Point` from `f32x2`. |
90 | pub fn from_f32x2(r: f32x2) -> Self { |
91 | Point::from_xy(r.x(), r.y()) |
92 | } |
93 | |
94 | /// Converts a `Point` into a `f32x2`. |
95 | pub fn to_f32x2(&self) -> f32x2 { |
96 | f32x2::new(self.x, self.y) |
97 | } |
98 | |
99 | /// Creates a point at 0x0 position. |
100 | pub fn zero() -> Self { |
101 | Point { x: 0.0, y: 0.0 } |
102 | } |
103 | |
104 | /// Returns true if x and y are both zero. |
105 | pub fn is_zero(&self) -> bool { |
106 | self.x == 0.0 && self.y == 0.0 |
107 | } |
108 | |
109 | /// Returns true if both x and y are measurable values. |
110 | /// |
111 | /// Both values are other than infinities and NaN. |
112 | pub fn is_finite(&self) -> bool { |
113 | (self.x * self.y).is_finite() |
114 | } |
115 | |
116 | /// Checks that two `Point`s are almost equal. |
117 | pub(crate) fn almost_equal(&self, other: Point) -> bool { |
118 | !(*self - other).can_normalize() |
119 | } |
120 | |
121 | /// Checks that two `Point`s are almost equal using the specified tolerance. |
122 | pub(crate) fn equals_within_tolerance(&self, other: Point, tolerance: f32) -> bool { |
123 | (self.x - other.x).is_nearly_zero_within_tolerance(tolerance) |
124 | && (self.y - other.y).is_nearly_zero_within_tolerance(tolerance) |
125 | } |
126 | |
127 | /// Scales (fX, fY) so that length() returns one, while preserving ratio of fX to fY, |
128 | /// if possible. |
129 | /// |
130 | /// If prior length is nearly zero, sets vector to (0, 0) and returns |
131 | /// false; otherwise returns true. |
132 | pub fn normalize(&mut self) -> bool { |
133 | self.set_length_from(self.x, self.y, 1.0) |
134 | } |
135 | |
136 | /// Sets vector to (x, y) scaled so length() returns one, and so that (x, y) |
137 | /// is proportional to (x, y). |
138 | /// |
139 | /// If (x, y) length is nearly zero, sets vector to (0, 0) and returns false; |
140 | /// otherwise returns true. |
141 | pub fn set_normalize(&mut self, x: f32, y: f32) -> bool { |
142 | self.set_length_from(x, y, 1.0) |
143 | } |
144 | |
145 | pub(crate) fn can_normalize(&self) -> bool { |
146 | self.x.is_finite() && self.y.is_finite() && (self.x != 0.0 || self.y != 0.0) |
147 | } |
148 | |
149 | /// Returns the Euclidean distance from origin. |
150 | pub fn length(&self) -> f32 { |
151 | let mag2 = self.x * self.x + self.y * self.y; |
152 | if mag2.is_finite() { |
153 | mag2.sqrt() |
154 | } else { |
155 | let xx = f64::from(self.x); |
156 | let yy = f64::from(self.y); |
157 | (xx * xx + yy * yy).sqrt() as f32 |
158 | } |
159 | } |
160 | |
161 | /// Scales vector so that distanceToOrigin() returns length, if possible. |
162 | /// |
163 | /// If former length is nearly zero, sets vector to (0, 0) and return false; |
164 | /// otherwise returns true. |
165 | pub fn set_length(&mut self, length: f32) -> bool { |
166 | self.set_length_from(self.x, self.y, length) |
167 | } |
168 | |
169 | /// Sets vector to (x, y) scaled to length, if possible. |
170 | /// |
171 | /// If former length is nearly zero, sets vector to (0, 0) and return false; |
172 | /// otherwise returns true. |
173 | pub fn set_length_from(&mut self, x: f32, y: f32, length: f32) -> bool { |
174 | set_point_length(self, x, y, length, &mut None) |
175 | } |
176 | |
177 | /// Returns the Euclidean distance from origin. |
178 | pub fn distance(&self, other: Point) -> f32 { |
179 | (*self - other).length() |
180 | } |
181 | |
182 | /// Returns the dot product of two points. |
183 | pub fn dot(&self, other: Point) -> f32 { |
184 | self.x * other.x + self.y * other.y |
185 | } |
186 | |
187 | /// Returns the cross product of vector and vec. |
188 | /// |
189 | /// Vector and vec form three-dimensional vectors with z-axis value equal to zero. |
190 | /// The cross product is a three-dimensional vector with x-axis and y-axis values |
191 | /// equal to zero. The cross product z-axis component is returned. |
192 | pub fn cross(&self, other: Point) -> f32 { |
193 | self.x * other.y - self.y * other.x |
194 | } |
195 | |
196 | pub(crate) fn distance_to_sqd(&self, pt: Point) -> f32 { |
197 | let dx = self.x - pt.x; |
198 | let dy = self.y - pt.y; |
199 | dx * dx + dy * dy |
200 | } |
201 | |
202 | pub(crate) fn length_sqd(&self) -> f32 { |
203 | self.dot(*self) |
204 | } |
205 | |
206 | /// Scales Point in-place by scale. |
207 | pub fn scale(&mut self, scale: f32) { |
208 | self.x *= scale; |
209 | self.y *= scale; |
210 | } |
211 | |
212 | pub(crate) fn scaled(&self, scale: f32) -> Self { |
213 | Point::from_xy(self.x * scale, self.y * scale) |
214 | } |
215 | |
216 | pub(crate) fn swap_coords(&mut self) { |
217 | core::mem::swap(&mut self.x, &mut self.y); |
218 | } |
219 | |
220 | pub(crate) fn rotate_cw(&mut self) { |
221 | self.swap_coords(); |
222 | self.x = -self.x; |
223 | } |
224 | |
225 | pub(crate) fn rotate_ccw(&mut self) { |
226 | self.swap_coords(); |
227 | self.y = -self.y; |
228 | } |
229 | } |
230 | |
231 | // We have to worry about 2 tricky conditions: |
232 | // 1. underflow of mag2 (compared against nearlyzero^2) |
233 | // 2. overflow of mag2 (compared w/ isfinite) |
234 | // |
235 | // If we underflow, we return false. If we overflow, we compute again using |
236 | // doubles, which is much slower (3x in a desktop test) but will not overflow. |
237 | fn set_point_length( |
238 | pt: &mut Point, |
239 | mut x: f32, |
240 | mut y: f32, |
241 | length: f32, |
242 | orig_length: &mut Option<f32>, |
243 | ) -> bool { |
244 | // our mag2 step overflowed to infinity, so use doubles instead. |
245 | // much slower, but needed when x or y are very large, other wise we |
246 | // divide by inf. and return (0,0) vector. |
247 | let xx = x as f64; |
248 | let yy = y as f64; |
249 | let dmag = (xx * xx + yy * yy).sqrt(); |
250 | let dscale = length as f64 / dmag; |
251 | x *= dscale as f32; |
252 | y *= dscale as f32; |
253 | |
254 | // check if we're not finite, or we're zero-length |
255 | if !x.is_finite() || !y.is_finite() || (x == 0.0 && y == 0.0) { |
256 | *pt = Point::zero(); |
257 | return false; |
258 | } |
259 | |
260 | let mut mag = 0.0; |
261 | if orig_length.is_some() { |
262 | mag = dmag as f32; |
263 | } |
264 | |
265 | *pt = Point::from_xy(x, y); |
266 | |
267 | if orig_length.is_some() { |
268 | *orig_length = Some(mag); |
269 | } |
270 | |
271 | true |
272 | } |
273 | |
274 | impl core::ops::Neg for Point { |
275 | type Output = Point; |
276 | |
277 | fn neg(self) -> Self::Output { |
278 | Point { |
279 | x: -self.x, |
280 | y: -self.y, |
281 | } |
282 | } |
283 | } |
284 | |
285 | impl core::ops::Add for Point { |
286 | type Output = Point; |
287 | |
288 | fn add(self, other: Point) -> Self::Output { |
289 | Point::from_xy(self.x + other.x, self.y + other.y) |
290 | } |
291 | } |
292 | |
293 | impl core::ops::AddAssign for Point { |
294 | fn add_assign(&mut self, other: Point) { |
295 | self.x += other.x; |
296 | self.y += other.y; |
297 | } |
298 | } |
299 | |
300 | impl core::ops::Sub for Point { |
301 | type Output = Point; |
302 | |
303 | fn sub(self, other: Point) -> Self::Output { |
304 | Point::from_xy(self.x - other.x, self.y - other.y) |
305 | } |
306 | } |
307 | |
308 | impl core::ops::SubAssign for Point { |
309 | fn sub_assign(&mut self, other: Point) { |
310 | self.x -= other.x; |
311 | self.y -= other.y; |
312 | } |
313 | } |
314 | |
315 | impl core::ops::Mul for Point { |
316 | type Output = Point; |
317 | |
318 | fn mul(self, other: Point) -> Self::Output { |
319 | Point::from_xy(self.x * other.x, self.y * other.y) |
320 | } |
321 | } |
322 | |
323 | impl core::ops::MulAssign for Point { |
324 | fn mul_assign(&mut self, other: Point) { |
325 | self.x *= other.x; |
326 | self.y *= other.y; |
327 | } |
328 | } |
329 | |