1 | use crate::runtime::time::{TimerHandle, TimerShared}; |
2 | use crate::time::error::InsertError; |
3 | |
4 | mod level; |
5 | pub(crate) use self::level::Expiration; |
6 | use self::level::Level; |
7 | |
8 | use std::{array, ptr::NonNull}; |
9 | |
10 | use super::EntryList; |
11 | |
12 | /// Timing wheel implementation. |
13 | /// |
14 | /// This type provides the hashed timing wheel implementation that backs `Timer` |
15 | /// and `DelayQueue`. |
16 | /// |
17 | /// The structure is generic over `T: Stack`. This allows handling timeout data |
18 | /// being stored on the heap or in a slab. In order to support the latter case, |
19 | /// the slab must be passed into each function allowing the implementation to |
20 | /// lookup timer entries. |
21 | /// |
22 | /// See `Timer` documentation for some implementation notes. |
23 | #[derive (Debug)] |
24 | pub(crate) struct Wheel { |
25 | /// The number of milliseconds elapsed since the wheel started. |
26 | elapsed: u64, |
27 | |
28 | /// Timer wheel. |
29 | /// |
30 | /// Levels: |
31 | /// |
32 | /// * 1 ms slots / 64 ms range |
33 | /// * 64 ms slots / ~ 4 sec range |
34 | /// * ~ 4 sec slots / ~ 4 min range |
35 | /// * ~ 4 min slots / ~ 4 hr range |
36 | /// * ~ 4 hr slots / ~ 12 day range |
37 | /// * ~ 12 day slots / ~ 2 yr range |
38 | levels: Box<[Level; NUM_LEVELS]>, |
39 | |
40 | /// Entries queued for firing |
41 | pending: EntryList, |
42 | } |
43 | |
44 | /// Number of levels. Each level has 64 slots. By using 6 levels with 64 slots |
45 | /// each, the timer is able to track time up to 2 years into the future with a |
46 | /// precision of 1 millisecond. |
47 | const NUM_LEVELS: usize = 6; |
48 | |
49 | /// The maximum duration of a `Sleep`. |
50 | pub(super) const MAX_DURATION: u64 = (1 << (6 * NUM_LEVELS)) - 1; |
51 | |
52 | impl Wheel { |
53 | /// Creates a new timing wheel. |
54 | pub(crate) fn new() -> Wheel { |
55 | Wheel { |
56 | elapsed: 0, |
57 | levels: Box::new(array::from_fn(Level::new)), |
58 | pending: EntryList::new(), |
59 | } |
60 | } |
61 | |
62 | /// Returns the number of milliseconds that have elapsed since the timing |
63 | /// wheel's creation. |
64 | pub(crate) fn elapsed(&self) -> u64 { |
65 | self.elapsed |
66 | } |
67 | |
68 | /// Inserts an entry into the timing wheel. |
69 | /// |
70 | /// # Arguments |
71 | /// |
72 | /// * `item`: The item to insert into the wheel. |
73 | /// |
74 | /// # Return |
75 | /// |
76 | /// Returns `Ok` when the item is successfully inserted, `Err` otherwise. |
77 | /// |
78 | /// `Err(Elapsed)` indicates that `when` represents an instant that has |
79 | /// already passed. In this case, the caller should fire the timeout |
80 | /// immediately. |
81 | /// |
82 | /// `Err(Invalid)` indicates an invalid `when` argument as been supplied. |
83 | /// |
84 | /// # Safety |
85 | /// |
86 | /// This function registers item into an intrusive linked list. The caller |
87 | /// must ensure that `item` is pinned and will not be dropped without first |
88 | /// being deregistered. |
89 | pub(crate) unsafe fn insert( |
90 | &mut self, |
91 | item: TimerHandle, |
92 | ) -> Result<u64, (TimerHandle, InsertError)> { |
93 | let when = item.sync_when(); |
94 | |
95 | if when <= self.elapsed { |
96 | return Err((item, InsertError::Elapsed)); |
97 | } |
98 | |
99 | // Get the level at which the entry should be stored |
100 | let level = self.level_for(when); |
101 | |
102 | unsafe { |
103 | self.levels[level].add_entry(item); |
104 | } |
105 | |
106 | debug_assert!({ |
107 | self.levels[level] |
108 | .next_expiration(self.elapsed) |
109 | .map(|e| e.deadline >= self.elapsed) |
110 | .unwrap_or(true) |
111 | }); |
112 | |
113 | Ok(when) |
114 | } |
115 | |
116 | /// Removes `item` from the timing wheel. |
117 | pub(crate) unsafe fn remove(&mut self, item: NonNull<TimerShared>) { |
118 | unsafe { |
119 | let when = item.as_ref().cached_when(); |
120 | if when == u64::MAX { |
121 | self.pending.remove(item); |
122 | } else { |
123 | debug_assert!( |
124 | self.elapsed <= when, |
125 | "elapsed= {}; when= {}" , |
126 | self.elapsed, |
127 | when |
128 | ); |
129 | |
130 | let level = self.level_for(when); |
131 | self.levels[level].remove_entry(item); |
132 | } |
133 | } |
134 | } |
135 | |
136 | /// Instant at which to poll. |
137 | pub(crate) fn poll_at(&self) -> Option<u64> { |
138 | self.next_expiration().map(|expiration| expiration.deadline) |
139 | } |
140 | |
141 | /// Advances the timer up to the instant represented by `now`. |
142 | pub(crate) fn poll(&mut self, now: u64) -> Option<TimerHandle> { |
143 | loop { |
144 | if let Some(handle) = self.pending.pop_back() { |
145 | return Some(handle); |
146 | } |
147 | |
148 | match self.next_expiration() { |
149 | Some(ref expiration) if expiration.deadline <= now => { |
150 | self.process_expiration(expiration); |
151 | |
152 | self.set_elapsed(expiration.deadline); |
153 | } |
154 | _ => { |
155 | // in this case the poll did not indicate an expiration |
156 | // _and_ we were not able to find a next expiration in |
157 | // the current list of timers. advance to the poll's |
158 | // current time and do nothing else. |
159 | self.set_elapsed(now); |
160 | break; |
161 | } |
162 | } |
163 | } |
164 | |
165 | self.pending.pop_back() |
166 | } |
167 | |
168 | /// Returns the instant at which the next timeout expires. |
169 | fn next_expiration(&self) -> Option<Expiration> { |
170 | if !self.pending.is_empty() { |
171 | // Expire immediately as we have things pending firing |
172 | return Some(Expiration { |
173 | level: 0, |
174 | slot: 0, |
175 | deadline: self.elapsed, |
176 | }); |
177 | } |
178 | |
179 | // Check all levels |
180 | for (level_num, level) in self.levels.iter().enumerate() { |
181 | if let Some(expiration) = level.next_expiration(self.elapsed) { |
182 | // There cannot be any expirations at a higher level that happen |
183 | // before this one. |
184 | debug_assert!(self.no_expirations_before(level_num + 1, expiration.deadline)); |
185 | |
186 | return Some(expiration); |
187 | } |
188 | } |
189 | |
190 | None |
191 | } |
192 | |
193 | /// Returns the tick at which this timer wheel next needs to perform some |
194 | /// processing, or None if there are no timers registered. |
195 | pub(super) fn next_expiration_time(&self) -> Option<u64> { |
196 | self.next_expiration().map(|ex| ex.deadline) |
197 | } |
198 | |
199 | /// Used for debug assertions |
200 | fn no_expirations_before(&self, start_level: usize, before: u64) -> bool { |
201 | let mut res = true; |
202 | |
203 | for level in &self.levels[start_level..] { |
204 | if let Some(e2) = level.next_expiration(self.elapsed) { |
205 | if e2.deadline < before { |
206 | res = false; |
207 | } |
208 | } |
209 | } |
210 | |
211 | res |
212 | } |
213 | |
214 | /// iteratively find entries that are between the wheel's current |
215 | /// time and the expiration time. for each in that population either |
216 | /// queue it for notification (in the case of the last level) or tier |
217 | /// it down to the next level (in all other cases). |
218 | pub(crate) fn process_expiration(&mut self, expiration: &Expiration) { |
219 | // Note that we need to take _all_ of the entries off the list before |
220 | // processing any of them. This is important because it's possible that |
221 | // those entries might need to be reinserted into the same slot. |
222 | // |
223 | // This happens only on the highest level, when an entry is inserted |
224 | // more than MAX_DURATION into the future. When this happens, we wrap |
225 | // around, and process some entries a multiple of MAX_DURATION before |
226 | // they actually need to be dropped down a level. We then reinsert them |
227 | // back into the same position; we must make sure we don't then process |
228 | // those entries again or we'll end up in an infinite loop. |
229 | let mut entries = self.take_entries(expiration); |
230 | |
231 | while let Some(item) = entries.pop_back() { |
232 | if expiration.level == 0 { |
233 | debug_assert_eq!(unsafe { item.cached_when() }, expiration.deadline); |
234 | } |
235 | |
236 | // Try to expire the entry; this is cheap (doesn't synchronize) if |
237 | // the timer is not expired, and updates cached_when. |
238 | match unsafe { item.mark_pending(expiration.deadline) } { |
239 | Ok(()) => { |
240 | // Item was expired |
241 | self.pending.push_front(item); |
242 | } |
243 | Err(expiration_tick) => { |
244 | let level = level_for(expiration.deadline, expiration_tick); |
245 | unsafe { |
246 | self.levels[level].add_entry(item); |
247 | } |
248 | } |
249 | } |
250 | } |
251 | } |
252 | |
253 | fn set_elapsed(&mut self, when: u64) { |
254 | assert!( |
255 | self.elapsed <= when, |
256 | "elapsed= {:?}; when= {:?}" , |
257 | self.elapsed, |
258 | when |
259 | ); |
260 | |
261 | if when > self.elapsed { |
262 | self.elapsed = when; |
263 | } |
264 | } |
265 | |
266 | /// Obtains the list of entries that need processing for the given expiration. |
267 | fn take_entries(&mut self, expiration: &Expiration) -> EntryList { |
268 | self.levels[expiration.level].take_slot(expiration.slot) |
269 | } |
270 | |
271 | fn level_for(&self, when: u64) -> usize { |
272 | level_for(self.elapsed, when) |
273 | } |
274 | } |
275 | |
276 | fn level_for(elapsed: u64, when: u64) -> usize { |
277 | const SLOT_MASK: u64 = (1 << 6) - 1; |
278 | |
279 | // Mask in the trailing bits ignored by the level calculation in order to cap |
280 | // the possible leading zeros |
281 | let mut masked: u64 = elapsed ^ when | SLOT_MASK; |
282 | |
283 | if masked >= MAX_DURATION { |
284 | // Fudge the timer into the top level |
285 | masked = MAX_DURATION - 1; |
286 | } |
287 | |
288 | let leading_zeros: usize = masked.leading_zeros() as usize; |
289 | let significant: usize = 63 - leading_zeros; |
290 | |
291 | significant / NUM_LEVELS |
292 | } |
293 | |
294 | #[cfg (all(test, not(loom)))] |
295 | mod test { |
296 | use super::*; |
297 | |
298 | #[test ] |
299 | fn test_level_for() { |
300 | for pos in 0..64 { |
301 | assert_eq!(0, level_for(0, pos), "level_for({pos}) -- binary = {pos:b}" ); |
302 | } |
303 | |
304 | for level in 1..5 { |
305 | for pos in level..64 { |
306 | let a = pos * 64_usize.pow(level as u32); |
307 | assert_eq!( |
308 | level, |
309 | level_for(0, a as u64), |
310 | "level_for({a}) -- binary = {a:b}" |
311 | ); |
312 | |
313 | if pos > level { |
314 | let a = a - 1; |
315 | assert_eq!( |
316 | level, |
317 | level_for(0, a as u64), |
318 | "level_for({a}) -- binary = {a:b}" |
319 | ); |
320 | } |
321 | |
322 | if pos < 64 { |
323 | let a = a + 1; |
324 | assert_eq!( |
325 | level, |
326 | level_for(0, a as u64), |
327 | "level_for({a}) -- binary = {a:b}" |
328 | ); |
329 | } |
330 | } |
331 | } |
332 | } |
333 | } |
334 | |