| 1 | /* |
| 2 | * Copyright (c) 2023. |
| 3 | * |
| 4 | * This software is free software; |
| 5 | * |
| 6 | * You can redistribute it or modify it under terms of the MIT, Apache License or Zlib license |
| 7 | */ |
| 8 | |
| 9 | //! AVX color conversion routines |
| 10 | //! |
| 11 | //! Okay these codes are cool |
| 12 | //! |
| 13 | //! Herein lies super optimized codes to do color conversions. |
| 14 | //! |
| 15 | //! |
| 16 | //! 1. The YCbCr to RGB use integer approximations and not the floating point equivalent. |
| 17 | //! That means we may be +- 2 of pixels generated by libjpeg-turbo jpeg decoding |
| 18 | //! (also libjpeg uses routines like `Y = 0.29900 * R + 0.33700 * G + 0.11400 * B + 0.25000 * G`) |
| 19 | //! |
| 20 | //! Firstly, we use integers (fun fact:there is no part of this code base where were dealing with |
| 21 | //! floating points.., fun fact: the first fun fact wasn't even fun.) |
| 22 | //! |
| 23 | //! Secondly ,we have cool clamping code, especially for rgba , where we don't need clamping and we |
| 24 | //! spend our time cursing that Intel decided permute instructions to work like 2 128 bit vectors(the compiler opitmizes |
| 25 | //! it out to something cool). |
| 26 | //! |
| 27 | //! There isn't a lot here (not as fun as bitstream ) but I hope you find what you're looking for. |
| 28 | //! |
| 29 | //! O and ~~subscribe to my youtube channel~~ |
| 30 | |
| 31 | #![cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 32 | #![cfg (feature = "x86" )] |
| 33 | #![allow ( |
| 34 | clippy::wildcard_imports, |
| 35 | clippy::cast_possible_truncation, |
| 36 | clippy::too_many_arguments, |
| 37 | clippy::inline_always, |
| 38 | clippy::doc_markdown, |
| 39 | dead_code |
| 40 | )] |
| 41 | |
| 42 | #[cfg (target_arch = "x86" )] |
| 43 | use core::arch::x86::*; |
| 44 | #[cfg (target_arch = "x86_64" )] |
| 45 | use core::arch::x86_64::*; |
| 46 | |
| 47 | pub union YmmRegister { |
| 48 | // both are 32 when using std::mem::size_of |
| 49 | mm256: __m256i, |
| 50 | // for avx color conversion |
| 51 | array: [i16; 16] |
| 52 | } |
| 53 | |
| 54 | //-------------------------------------------------------------------------------------------------- |
| 55 | // AVX conversion routines |
| 56 | //-------------------------------------------------------------------------------------------------- |
| 57 | |
| 58 | /// |
| 59 | /// Convert YCBCR to RGB using AVX instructions |
| 60 | /// |
| 61 | /// # Note |
| 62 | ///**IT IS THE RESPONSIBILITY OF THE CALLER TO CALL THIS IN CPUS SUPPORTING |
| 63 | /// AVX2 OTHERWISE THIS IS UB** |
| 64 | /// |
| 65 | /// *Peace* |
| 66 | /// |
| 67 | /// This library itself will ensure that it's never called in CPU's not |
| 68 | /// supporting AVX2 |
| 69 | /// |
| 70 | /// # Arguments |
| 71 | /// - `y`,`cb`,`cr`: A reference of 8 i32's |
| 72 | /// - `out`: The output array where we store our converted items |
| 73 | /// - `offset`: The position from 0 where we write these RGB values |
| 74 | #[inline (always)] |
| 75 | pub fn ycbcr_to_rgb_avx2( |
| 76 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize |
| 77 | ) { |
| 78 | // call this in another function to tell RUST to vectorize this |
| 79 | // storing |
| 80 | unsafe { |
| 81 | ycbcr_to_rgb_avx2_1(y, cb, cr, out, offset); |
| 82 | } |
| 83 | } |
| 84 | |
| 85 | #[inline ] |
| 86 | #[target_feature (enable = "avx2" )] |
| 87 | #[target_feature (enable = "avx" )] |
| 88 | unsafe fn ycbcr_to_rgb_avx2_1( |
| 89 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize |
| 90 | ) { |
| 91 | // Load output buffer |
| 92 | let tmp: &mut [u8; 48] = outResult<&mut [u8; 48], TryFromSliceError> |
| 93 | .get_mut(*offset..*offset + 48) |
| 94 | .expect(msg:"Slice to small cannot write" ) |
| 95 | .try_into() |
| 96 | .unwrap(); |
| 97 | |
| 98 | let (r: YmmRegister, g: YmmRegister, b: YmmRegister) = ycbcr_to_rgb_baseline(y, cb, cr); |
| 99 | |
| 100 | let mut j: usize = 0; |
| 101 | let mut i: usize = 0; |
| 102 | while i < 48 { |
| 103 | tmp[i] = r.array[j] as u8; |
| 104 | |
| 105 | tmp[i + 1] = g.array[j] as u8; |
| 106 | tmp[i + 2] = b.array[j] as u8; |
| 107 | i += 3; |
| 108 | j += 1; |
| 109 | } |
| 110 | |
| 111 | *offset += 48; |
| 112 | } |
| 113 | |
| 114 | /// Baseline implementation of YCBCR to RGB for avx, |
| 115 | /// |
| 116 | /// It uses integer operations as opposed to floats, the approximation is |
| 117 | /// difficult for the eye to see, but this means that it may produce different |
| 118 | /// values with libjpeg_turbo. if accuracy is of utmost importance, use that. |
| 119 | /// |
| 120 | /// this function should be called for most implementations, including |
| 121 | /// - ycbcr->rgb |
| 122 | /// - ycbcr->rgba |
| 123 | /// - ycbcr->brga |
| 124 | /// - ycbcr->rgbx |
| 125 | #[inline ] |
| 126 | #[target_feature (enable = "avx2" )] |
| 127 | #[target_feature (enable = "avx" )] |
| 128 | unsafe fn ycbcr_to_rgb_baseline( |
| 129 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16] |
| 130 | ) -> (YmmRegister, YmmRegister, YmmRegister) { |
| 131 | // Load values into a register |
| 132 | // |
| 133 | // dst[127:0] := MEM[loaddr+127:loaddr] |
| 134 | // dst[255:128] := MEM[hiaddr+127:hiaddr] |
| 135 | let y_c = _mm256_loadu_si256(y.as_ptr().cast()); |
| 136 | |
| 137 | let cb_c = _mm256_loadu_si256(cb.as_ptr().cast()); |
| 138 | |
| 139 | let cr_c = _mm256_loadu_si256(cr.as_ptr().cast()); |
| 140 | |
| 141 | // AVX version of integer version in https://stackoverflow.com/questions/4041840/function-to-convert-ycbcr-to-rgb |
| 142 | |
| 143 | // Cb = Cb-128; |
| 144 | let cb_r = _mm256_sub_epi16(cb_c, _mm256_set1_epi16(128)); |
| 145 | |
| 146 | // cr = Cb -128; |
| 147 | let cr_r = _mm256_sub_epi16(cr_c, _mm256_set1_epi16(128)); |
| 148 | |
| 149 | // Calculate Y->R |
| 150 | // r = Y + 45 * Cr / 32 |
| 151 | // 45*cr |
| 152 | let r1 = _mm256_mullo_epi16(_mm256_set1_epi16(45), cr_r); |
| 153 | |
| 154 | // r1>>5 |
| 155 | let r2 = _mm256_srai_epi16::<5>(r1); |
| 156 | |
| 157 | //y+r2 |
| 158 | |
| 159 | let r = YmmRegister { |
| 160 | mm256: clamp_avx(_mm256_add_epi16(y_c, r2)) |
| 161 | }; |
| 162 | |
| 163 | // g = Y - (11 * Cb + 23 * Cr) / 32 ; |
| 164 | |
| 165 | // 11*cb |
| 166 | let g1 = _mm256_mullo_epi16(_mm256_set1_epi16(11), cb_r); |
| 167 | |
| 168 | // 23*cr |
| 169 | let g2 = _mm256_mullo_epi16(_mm256_set1_epi16(23), cr_r); |
| 170 | |
| 171 | //(11 |
| 172 | //(11 * Cb + 23 * Cr) |
| 173 | let g3 = _mm256_add_epi16(g1, g2); |
| 174 | |
| 175 | // (11 * Cb + 23 * Cr) / 32 |
| 176 | let g4 = _mm256_srai_epi16::<5>(g3); |
| 177 | |
| 178 | // Y - (11 * Cb + 23 * Cr) / 32 ; |
| 179 | let g = YmmRegister { |
| 180 | mm256: clamp_avx(_mm256_sub_epi16(y_c, g4)) |
| 181 | }; |
| 182 | |
| 183 | // b = Y + 113 * Cb / 64 |
| 184 | // 113 * cb |
| 185 | let b1 = _mm256_mullo_epi16(_mm256_set1_epi16(113), cb_r); |
| 186 | |
| 187 | //113 * Cb / 64 |
| 188 | let b2 = _mm256_srai_epi16::<6>(b1); |
| 189 | |
| 190 | // b = Y + 113 * Cb / 64 ; |
| 191 | let b = YmmRegister { |
| 192 | mm256: clamp_avx(_mm256_add_epi16(b2, y_c)) |
| 193 | }; |
| 194 | |
| 195 | return (r, g, b); |
| 196 | } |
| 197 | |
| 198 | #[inline ] |
| 199 | #[target_feature (enable = "avx2" )] |
| 200 | /// A baseline implementation of YCbCr to RGB conversion which does not carry |
| 201 | /// out clamping |
| 202 | /// |
| 203 | /// This is used by the `ycbcr_to_rgba_avx` and `ycbcr_to_rgbx` conversion |
| 204 | /// routines |
| 205 | unsafe fn ycbcr_to_rgb_baseline_no_clamp( |
| 206 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16] |
| 207 | ) -> (__m256i, __m256i, __m256i) { |
| 208 | // Load values into a register |
| 209 | // |
| 210 | let y_c = _mm256_loadu_si256(y.as_ptr().cast()); |
| 211 | |
| 212 | let cb_c = _mm256_loadu_si256(cb.as_ptr().cast()); |
| 213 | |
| 214 | let cr_c = _mm256_loadu_si256(cr.as_ptr().cast()); |
| 215 | |
| 216 | // AVX version of integer version in https://stackoverflow.com/questions/4041840/function-to-convert-ycbcr-to-rgb |
| 217 | |
| 218 | // Cb = Cb-128; |
| 219 | let cb_r = _mm256_sub_epi16(cb_c, _mm256_set1_epi16(128)); |
| 220 | |
| 221 | // cr = Cb -128; |
| 222 | let cr_r = _mm256_sub_epi16(cr_c, _mm256_set1_epi16(128)); |
| 223 | |
| 224 | // Calculate Y->R |
| 225 | // r = Y + 45 * Cr / 32 |
| 226 | // 45*cr |
| 227 | let r1 = _mm256_mullo_epi16(_mm256_set1_epi16(45), cr_r); |
| 228 | |
| 229 | // r1>>5 |
| 230 | let r2 = _mm256_srai_epi16::<5>(r1); |
| 231 | |
| 232 | //y+r2 |
| 233 | |
| 234 | let r = _mm256_add_epi16(y_c, r2); |
| 235 | |
| 236 | // g = Y - (11 * Cb + 23 * Cr) / 32 ; |
| 237 | |
| 238 | // 11*cb |
| 239 | let g1 = _mm256_mullo_epi16(_mm256_set1_epi16(11), cb_r); |
| 240 | |
| 241 | // 23*cr |
| 242 | let g2 = _mm256_mullo_epi16(_mm256_set1_epi16(23), cr_r); |
| 243 | |
| 244 | //(11 |
| 245 | //(11 * Cb + 23 * Cr) |
| 246 | let g3 = _mm256_add_epi16(g1, g2); |
| 247 | |
| 248 | // (11 * Cb + 23 * Cr) / 32 |
| 249 | let g4 = _mm256_srai_epi16::<5>(g3); |
| 250 | |
| 251 | // Y - (11 * Cb + 23 * Cr) / 32 ; |
| 252 | let g = _mm256_sub_epi16(y_c, g4); |
| 253 | |
| 254 | // b = Y + 113 * Cb / 64 |
| 255 | // 113 * cb |
| 256 | let b1 = _mm256_mullo_epi16(_mm256_set1_epi16(113), cb_r); |
| 257 | |
| 258 | //113 * Cb / 64 |
| 259 | let b2 = _mm256_srai_epi16::<6>(b1); |
| 260 | |
| 261 | // b = Y + 113 * Cb / 64 ; |
| 262 | let b = _mm256_add_epi16(b2, y_c); |
| 263 | |
| 264 | return (r, g, b); |
| 265 | } |
| 266 | |
| 267 | #[inline (always)] |
| 268 | pub fn ycbcr_to_rgba_avx2( |
| 269 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], out: &mut [u8], offset: &mut usize |
| 270 | ) { |
| 271 | unsafe { |
| 272 | ycbcr_to_rgba_unsafe(y, cb, cr, out, offset); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | #[inline ] |
| 277 | #[target_feature (enable = "avx2" )] |
| 278 | #[rustfmt::skip] |
| 279 | unsafe fn ycbcr_to_rgba_unsafe( |
| 280 | y: &[i16; 16], cb: &[i16; 16], cr: &[i16; 16], |
| 281 | out: &mut [u8], |
| 282 | offset: &mut usize, |
| 283 | ) |
| 284 | { |
| 285 | // check if we have enough space to write. |
| 286 | let tmp:& mut [u8; 64] = out.get_mut(*offset..*offset + 64).expect("Slice to small cannot write" ).try_into().unwrap(); |
| 287 | |
| 288 | let (r, g, b) = ycbcr_to_rgb_baseline_no_clamp(y, cb, cr); |
| 289 | |
| 290 | // set alpha channel to 255 for opaque |
| 291 | |
| 292 | // And no these comments were not from me pressing the keyboard |
| 293 | |
| 294 | // Pack the integers into u8's using signed saturation. |
| 295 | let c = _mm256_packus_epi16(r, g); //aaaaa_bbbbb_aaaaa_bbbbbb |
| 296 | let d = _mm256_packus_epi16(b, _mm256_set1_epi16(255)); // cccccc_dddddd_ccccccc_ddddd |
| 297 | // transpose_u16 and interleave channels |
| 298 | let e = _mm256_unpacklo_epi8(c, d); //ab_ab_ab_ab_ab_ab_ab_ab |
| 299 | let f = _mm256_unpackhi_epi8(c, d); //cd_cd_cd_cd_cd_cd_cd_cd |
| 300 | // final transpose_u16 |
| 301 | let g = _mm256_unpacklo_epi8(e, f); //abcd_abcd_abcd_abcd_abcd |
| 302 | let h = _mm256_unpackhi_epi8(e, f); |
| 303 | |
| 304 | |
| 305 | // undo packus shuffling... |
| 306 | let i = _mm256_permute2x128_si256::<{ shuffle(3, 2, 1, 0) }>(g, h); |
| 307 | |
| 308 | let j = _mm256_permute2x128_si256::<{ shuffle(1, 2, 3, 0) }>(g, h); |
| 309 | |
| 310 | let k = _mm256_permute2x128_si256::<{ shuffle(3, 2, 0, 1) }>(g, h); |
| 311 | |
| 312 | let l = _mm256_permute2x128_si256::<{ shuffle(0, 3, 2, 1) }>(g, h); |
| 313 | |
| 314 | let m = _mm256_blend_epi32::<0b1111_0000>(i, j); |
| 315 | |
| 316 | let n = _mm256_blend_epi32::<0b1111_0000>(k, l); |
| 317 | |
| 318 | |
| 319 | // Store |
| 320 | // Use streaming instructions to prevent polluting the cache? |
| 321 | _mm256_storeu_si256(tmp.as_mut_ptr().cast(), m); |
| 322 | |
| 323 | _mm256_storeu_si256(tmp[32..].as_mut_ptr().cast(), n); |
| 324 | |
| 325 | *offset += 64; |
| 326 | } |
| 327 | |
| 328 | /// Clamp values between 0 and 255 |
| 329 | /// |
| 330 | /// This function clamps all values in `reg` to be between 0 and 255 |
| 331 | ///( the accepted values for RGB) |
| 332 | #[inline ] |
| 333 | #[target_feature (enable = "avx2" )] |
| 334 | #[cfg (any(target_arch = "x86" , target_arch = "x86_64" ))] |
| 335 | unsafe fn clamp_avx(reg: __m256i) -> __m256i { |
| 336 | // the lowest value |
| 337 | let min_s: __m256i = _mm256_set1_epi16(0); |
| 338 | |
| 339 | // Highest value |
| 340 | let max_s: __m256i = _mm256_set1_epi16(255); |
| 341 | |
| 342 | let max_v: __m256i = _mm256_max_epi16(a:reg, b:min_s); //max(a,0) |
| 343 | let min_v: __m256i = _mm256_min_epi16(a:max_v, b:max_s); //min(max(a,0),255) |
| 344 | return min_v; |
| 345 | } |
| 346 | |
| 347 | #[inline ] |
| 348 | const fn shuffle(z: i32, y: i32, x: i32, w: i32) -> i32 { |
| 349 | (z << 6) | (y << 4) | (x << 2) | w |
| 350 | } |
| 351 | |