| 1 | use std::sync::atomic::{AtomicUsize, Ordering}; |
| 2 | |
| 3 | use super::*; |
| 4 | use crate::prelude::*; |
| 5 | use rayon_core::*; |
| 6 | |
| 7 | use rand::distributions::Standard; |
| 8 | use rand::{Rng, SeedableRng}; |
| 9 | use rand_xorshift::XorShiftRng; |
| 10 | use std::collections::LinkedList; |
| 11 | use std::collections::{BTreeMap, BTreeSet, HashMap, HashSet}; |
| 12 | use std::collections::{BinaryHeap, VecDeque}; |
| 13 | use std::f64; |
| 14 | use std::fmt::Debug; |
| 15 | use std::sync::mpsc; |
| 16 | use std::usize; |
| 17 | |
| 18 | fn is_indexed<T: IndexedParallelIterator>(_: T) {} |
| 19 | |
| 20 | fn seeded_rng() -> XorShiftRng { |
| 21 | let mut seed = <XorShiftRng as SeedableRng>::Seed::default(); |
| 22 | (0..).zip(seed.as_mut()).for_each(|(i, x)| *x = i); |
| 23 | XorShiftRng::from_seed(seed) |
| 24 | } |
| 25 | |
| 26 | #[test] |
| 27 | fn execute() { |
| 28 | let a: Vec<i32> = (0..1024).collect(); |
| 29 | let mut b = vec![]; |
| 30 | a.par_iter().map(|&i| i + 1).collect_into_vec(&mut b); |
| 31 | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| 32 | assert_eq!(b, c); |
| 33 | } |
| 34 | |
| 35 | #[test] |
| 36 | fn execute_cloned() { |
| 37 | let a: Vec<i32> = (0..1024).collect(); |
| 38 | let mut b: Vec<i32> = vec![]; |
| 39 | a.par_iter().cloned().collect_into_vec(&mut b); |
| 40 | let c: Vec<i32> = (0..1024).collect(); |
| 41 | assert_eq!(b, c); |
| 42 | } |
| 43 | |
| 44 | #[test] |
| 45 | fn execute_range() { |
| 46 | let a = 0i32..1024; |
| 47 | let mut b = vec![]; |
| 48 | a.into_par_iter().map(|i| i + 1).collect_into_vec(&mut b); |
| 49 | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| 50 | assert_eq!(b, c); |
| 51 | } |
| 52 | |
| 53 | #[test] |
| 54 | fn execute_unindexed_range() { |
| 55 | let a = 0i64..1024; |
| 56 | let b: LinkedList<i64> = a.into_par_iter().map(|i| i + 1).collect(); |
| 57 | let c: LinkedList<i64> = (0..1024).map(|i| i + 1).collect(); |
| 58 | assert_eq!(b, c); |
| 59 | } |
| 60 | |
| 61 | #[test] |
| 62 | fn execute_pseudo_indexed_range() { |
| 63 | use std::i128::MAX; |
| 64 | let range = MAX - 1024..MAX; |
| 65 | |
| 66 | // Given `Some` length, collecting `Vec` will try to act indexed. |
| 67 | let a = range.clone().into_par_iter(); |
| 68 | assert_eq!(a.opt_len(), Some(1024)); |
| 69 | |
| 70 | let b: Vec<i128> = a.map(|i| i + 1).collect(); |
| 71 | let c: Vec<i128> = range.map(|i| i + 1).collect(); |
| 72 | assert_eq!(b, c); |
| 73 | } |
| 74 | |
| 75 | #[test] |
| 76 | fn check_map_indexed() { |
| 77 | let a = [1, 2, 3]; |
| 78 | is_indexed(a.par_iter().map(|x| x)); |
| 79 | } |
| 80 | |
| 81 | #[test] |
| 82 | fn map_sum() { |
| 83 | let a: Vec<i32> = (0..1024).collect(); |
| 84 | let r1: i32 = a.par_iter().map(|&i| i + 1).sum(); |
| 85 | let r2 = a.iter().map(|&i| i + 1).sum(); |
| 86 | assert_eq!(r1, r2); |
| 87 | } |
| 88 | |
| 89 | #[test] |
| 90 | fn map_reduce() { |
| 91 | let a: Vec<i32> = (0..1024).collect(); |
| 92 | let r1 = a.par_iter().map(|&i| i + 1).reduce(|| 0, |i, j| i + j); |
| 93 | let r2 = a.iter().map(|&i| i + 1).sum(); |
| 94 | assert_eq!(r1, r2); |
| 95 | } |
| 96 | |
| 97 | #[test] |
| 98 | fn map_reduce_with() { |
| 99 | let a: Vec<i32> = (0..1024).collect(); |
| 100 | let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); |
| 101 | let r2 = a.iter().map(|&i| i + 1).sum(); |
| 102 | assert_eq!(r1, Some(r2)); |
| 103 | } |
| 104 | |
| 105 | #[test] |
| 106 | fn fold_map_reduce() { |
| 107 | // Kind of a weird test, but it demonstrates various |
| 108 | // transformations that are taking place. Relies on |
| 109 | // `with_max_len(1).fold()` being equivalent to `map()`. |
| 110 | // |
| 111 | // Take each number from 0 to 32 and fold them by appending to a |
| 112 | // vector. Because of `with_max_len(1)`, this will produce 32 vectors, |
| 113 | // each with one item. We then collect all of these into an |
| 114 | // individual vector by mapping each into their own vector (so we |
| 115 | // have Vec<Vec<i32>>) and then reducing those into a single |
| 116 | // vector. |
| 117 | let r1 = (0_i32..32) |
| 118 | .into_par_iter() |
| 119 | .with_max_len(1) |
| 120 | .fold(Vec::new, |mut v, e| { |
| 121 | v.push(e); |
| 122 | v |
| 123 | }) |
| 124 | .map(|v| vec![v]) |
| 125 | .reduce_with(|mut v_a, v_b| { |
| 126 | v_a.extend(v_b); |
| 127 | v_a |
| 128 | }); |
| 129 | assert_eq!( |
| 130 | r1, |
| 131 | Some(vec![ |
| 132 | vec![0], |
| 133 | vec![1], |
| 134 | vec![2], |
| 135 | vec![3], |
| 136 | vec![4], |
| 137 | vec![5], |
| 138 | vec![6], |
| 139 | vec![7], |
| 140 | vec![8], |
| 141 | vec![9], |
| 142 | vec![10], |
| 143 | vec![11], |
| 144 | vec![12], |
| 145 | vec![13], |
| 146 | vec![14], |
| 147 | vec![15], |
| 148 | vec![16], |
| 149 | vec![17], |
| 150 | vec![18], |
| 151 | vec![19], |
| 152 | vec![20], |
| 153 | vec![21], |
| 154 | vec![22], |
| 155 | vec![23], |
| 156 | vec![24], |
| 157 | vec![25], |
| 158 | vec![26], |
| 159 | vec![27], |
| 160 | vec![28], |
| 161 | vec![29], |
| 162 | vec![30], |
| 163 | vec![31] |
| 164 | ]) |
| 165 | ); |
| 166 | } |
| 167 | |
| 168 | #[test] |
| 169 | fn fold_is_full() { |
| 170 | let counter = AtomicUsize::new(0); |
| 171 | let a = (0_i32..2048) |
| 172 | .into_par_iter() |
| 173 | .inspect(|_| { |
| 174 | counter.fetch_add(1, Ordering::SeqCst); |
| 175 | }) |
| 176 | .fold(|| 0, |a, b| a + b) |
| 177 | .find_any(|_| true); |
| 178 | assert!(a.is_some()); |
| 179 | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| 180 | } |
| 181 | |
| 182 | #[test] |
| 183 | fn check_step_by() { |
| 184 | let a: Vec<i32> = (0..1024).step_by(2).collect(); |
| 185 | let b: Vec<i32> = (0..1024).into_par_iter().step_by(2).collect(); |
| 186 | |
| 187 | assert_eq!(a, b); |
| 188 | } |
| 189 | |
| 190 | #[test] |
| 191 | fn check_step_by_unaligned() { |
| 192 | let a: Vec<i32> = (0..1029).step_by(10).collect(); |
| 193 | let b: Vec<i32> = (0..1029).into_par_iter().step_by(10).collect(); |
| 194 | |
| 195 | assert_eq!(a, b) |
| 196 | } |
| 197 | |
| 198 | #[test] |
| 199 | fn check_step_by_rev() { |
| 200 | let a: Vec<i32> = (0..1024).step_by(2).rev().collect(); |
| 201 | let b: Vec<i32> = (0..1024).into_par_iter().step_by(2).rev().collect(); |
| 202 | |
| 203 | assert_eq!(a, b); |
| 204 | } |
| 205 | |
| 206 | #[test] |
| 207 | fn check_enumerate() { |
| 208 | let a: Vec<usize> = (0..1024).rev().collect(); |
| 209 | |
| 210 | let mut b = vec![]; |
| 211 | a.par_iter() |
| 212 | .enumerate() |
| 213 | .map(|(i, &x)| i + x) |
| 214 | .collect_into_vec(&mut b); |
| 215 | assert!(b.iter().all(|&x| x == a.len() - 1)); |
| 216 | } |
| 217 | |
| 218 | #[test] |
| 219 | fn check_enumerate_rev() { |
| 220 | let a: Vec<usize> = (0..1024).rev().collect(); |
| 221 | |
| 222 | let mut b = vec![]; |
| 223 | a.par_iter() |
| 224 | .enumerate() |
| 225 | .rev() |
| 226 | .map(|(i, &x)| i + x) |
| 227 | .collect_into_vec(&mut b); |
| 228 | assert!(b.iter().all(|&x| x == a.len() - 1)); |
| 229 | } |
| 230 | |
| 231 | #[test] |
| 232 | fn check_indices_after_enumerate_split() { |
| 233 | let a: Vec<i32> = (0..1024).collect(); |
| 234 | a.par_iter().enumerate().with_producer(WithProducer); |
| 235 | |
| 236 | struct WithProducer; |
| 237 | impl<'a> ProducerCallback<(usize, &'a i32)> for WithProducer { |
| 238 | type Output = (); |
| 239 | fn callback<P>(self, producer: P) |
| 240 | where |
| 241 | P: Producer<Item = (usize, &'a i32)>, |
| 242 | { |
| 243 | let (a, b) = producer.split_at(512); |
| 244 | for ((index, value), trusted_index) in a.into_iter().zip(0..) { |
| 245 | assert_eq!(index, trusted_index); |
| 246 | assert_eq!(index, *value as usize); |
| 247 | } |
| 248 | for ((index, value), trusted_index) in b.into_iter().zip(512..) { |
| 249 | assert_eq!(index, trusted_index); |
| 250 | assert_eq!(index, *value as usize); |
| 251 | } |
| 252 | } |
| 253 | } |
| 254 | } |
| 255 | |
| 256 | #[test] |
| 257 | fn check_increment() { |
| 258 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 259 | |
| 260 | a.par_iter_mut().enumerate().for_each(|(i, v)| *v += i); |
| 261 | |
| 262 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 263 | } |
| 264 | |
| 265 | #[test] |
| 266 | fn check_skip() { |
| 267 | let a: Vec<usize> = (0..1024).collect(); |
| 268 | |
| 269 | let mut v1 = Vec::new(); |
| 270 | a.par_iter().skip(16).collect_into_vec(&mut v1); |
| 271 | let v2 = a.iter().skip(16).collect::<Vec<_>>(); |
| 272 | assert_eq!(v1, v2); |
| 273 | |
| 274 | let mut v1 = Vec::new(); |
| 275 | a.par_iter().skip(2048).collect_into_vec(&mut v1); |
| 276 | let v2 = a.iter().skip(2048).collect::<Vec<_>>(); |
| 277 | assert_eq!(v1, v2); |
| 278 | |
| 279 | let mut v1 = Vec::new(); |
| 280 | a.par_iter().skip(0).collect_into_vec(&mut v1); |
| 281 | let v2 = a.iter().skip(0).collect::<Vec<_>>(); |
| 282 | assert_eq!(v1, v2); |
| 283 | |
| 284 | // Check that the skipped elements side effects are executed |
| 285 | use std::sync::atomic::{AtomicUsize, Ordering}; |
| 286 | let num = AtomicUsize::new(0); |
| 287 | a.par_iter() |
| 288 | .map(|&n| num.fetch_add(n, Ordering::Relaxed)) |
| 289 | .skip(512) |
| 290 | .count(); |
| 291 | assert_eq!(num.load(Ordering::Relaxed), a.iter().sum::<usize>()); |
| 292 | } |
| 293 | |
| 294 | #[test] |
| 295 | fn check_take() { |
| 296 | let a: Vec<usize> = (0..1024).collect(); |
| 297 | |
| 298 | let mut v1 = Vec::new(); |
| 299 | a.par_iter().take(16).collect_into_vec(&mut v1); |
| 300 | let v2 = a.iter().take(16).collect::<Vec<_>>(); |
| 301 | assert_eq!(v1, v2); |
| 302 | |
| 303 | let mut v1 = Vec::new(); |
| 304 | a.par_iter().take(2048).collect_into_vec(&mut v1); |
| 305 | let v2 = a.iter().take(2048).collect::<Vec<_>>(); |
| 306 | assert_eq!(v1, v2); |
| 307 | |
| 308 | let mut v1 = Vec::new(); |
| 309 | a.par_iter().take(0).collect_into_vec(&mut v1); |
| 310 | let v2 = a.iter().take(0).collect::<Vec<_>>(); |
| 311 | assert_eq!(v1, v2); |
| 312 | } |
| 313 | |
| 314 | #[test] |
| 315 | fn check_inspect() { |
| 316 | use std::sync::atomic::{AtomicUsize, Ordering}; |
| 317 | |
| 318 | let a = AtomicUsize::new(0); |
| 319 | let b: usize = (0_usize..1024) |
| 320 | .into_par_iter() |
| 321 | .inspect(|&i| { |
| 322 | a.fetch_add(i, Ordering::Relaxed); |
| 323 | }) |
| 324 | .sum(); |
| 325 | |
| 326 | assert_eq!(a.load(Ordering::Relaxed), b); |
| 327 | } |
| 328 | |
| 329 | #[test] |
| 330 | fn check_move() { |
| 331 | let a = vec![vec![1, 2, 3]]; |
| 332 | let ptr = a[0].as_ptr(); |
| 333 | |
| 334 | let mut b = vec![]; |
| 335 | a.into_par_iter().collect_into_vec(&mut b); |
| 336 | |
| 337 | // a simple move means the inner vec will be completely unchanged |
| 338 | assert_eq!(ptr, b[0].as_ptr()); |
| 339 | } |
| 340 | |
| 341 | #[test] |
| 342 | fn check_drops() { |
| 343 | use std::sync::atomic::{AtomicUsize, Ordering}; |
| 344 | |
| 345 | let c = AtomicUsize::new(0); |
| 346 | let a = vec![DropCounter(&c); 10]; |
| 347 | |
| 348 | let mut b = vec![]; |
| 349 | a.clone().into_par_iter().collect_into_vec(&mut b); |
| 350 | assert_eq!(c.load(Ordering::Relaxed), 0); |
| 351 | |
| 352 | b.into_par_iter(); |
| 353 | assert_eq!(c.load(Ordering::Relaxed), 10); |
| 354 | |
| 355 | a.into_par_iter().with_producer(Partial); |
| 356 | assert_eq!(c.load(Ordering::Relaxed), 20); |
| 357 | |
| 358 | #[derive(Clone)] |
| 359 | struct DropCounter<'a>(&'a AtomicUsize); |
| 360 | impl<'a> Drop for DropCounter<'a> { |
| 361 | fn drop(&mut self) { |
| 362 | self.0.fetch_add(1, Ordering::Relaxed); |
| 363 | } |
| 364 | } |
| 365 | |
| 366 | struct Partial; |
| 367 | impl<'a> ProducerCallback<DropCounter<'a>> for Partial { |
| 368 | type Output = (); |
| 369 | fn callback<P>(self, producer: P) |
| 370 | where |
| 371 | P: Producer<Item = DropCounter<'a>>, |
| 372 | { |
| 373 | let (a, _) = producer.split_at(5); |
| 374 | a.into_iter().next(); |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
| 379 | #[test] |
| 380 | fn check_slice_indexed() { |
| 381 | let a = vec![1, 2, 3]; |
| 382 | is_indexed(a.par_iter()); |
| 383 | } |
| 384 | |
| 385 | #[test] |
| 386 | fn check_slice_mut_indexed() { |
| 387 | let mut a = vec![1, 2, 3]; |
| 388 | is_indexed(a.par_iter_mut()); |
| 389 | } |
| 390 | |
| 391 | #[test] |
| 392 | fn check_vec_indexed() { |
| 393 | let a = vec![1, 2, 3]; |
| 394 | is_indexed(a.into_par_iter()); |
| 395 | } |
| 396 | |
| 397 | #[test] |
| 398 | fn check_range_indexed() { |
| 399 | is_indexed((1..5).into_par_iter()); |
| 400 | } |
| 401 | |
| 402 | #[test] |
| 403 | fn check_cmp_direct() { |
| 404 | let a = (0..1024).into_par_iter(); |
| 405 | let b = (0..1024).into_par_iter(); |
| 406 | |
| 407 | let result = a.cmp(b); |
| 408 | |
| 409 | assert!(result == ::std::cmp::Ordering::Equal); |
| 410 | } |
| 411 | |
| 412 | #[test] |
| 413 | fn check_cmp_to_seq() { |
| 414 | assert_eq!( |
| 415 | (0..1024).into_par_iter().cmp(0..1024), |
| 416 | (0..1024).cmp(0..1024) |
| 417 | ); |
| 418 | } |
| 419 | |
| 420 | #[test] |
| 421 | fn check_cmp_rng_to_seq() { |
| 422 | let mut rng = seeded_rng(); |
| 423 | let rng = &mut rng; |
| 424 | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| 425 | let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| 426 | for i in 0..a.len() { |
| 427 | let par_result = a[i..].par_iter().cmp(b[i..].par_iter()); |
| 428 | let seq_result = a[i..].iter().cmp(b[i..].iter()); |
| 429 | |
| 430 | assert_eq!(par_result, seq_result); |
| 431 | } |
| 432 | } |
| 433 | |
| 434 | #[test] |
| 435 | fn check_cmp_lt_direct() { |
| 436 | let a = (0..1024).into_par_iter(); |
| 437 | let b = (1..1024).into_par_iter(); |
| 438 | |
| 439 | let result = a.cmp(b); |
| 440 | |
| 441 | assert!(result == ::std::cmp::Ordering::Less); |
| 442 | } |
| 443 | |
| 444 | #[test] |
| 445 | fn check_cmp_lt_to_seq() { |
| 446 | assert_eq!( |
| 447 | (0..1024).into_par_iter().cmp(1..1024), |
| 448 | (0..1024).cmp(1..1024) |
| 449 | ) |
| 450 | } |
| 451 | |
| 452 | #[test] |
| 453 | fn check_cmp_gt_direct() { |
| 454 | let a = (1..1024).into_par_iter(); |
| 455 | let b = (0..1024).into_par_iter(); |
| 456 | |
| 457 | let result = a.cmp(b); |
| 458 | |
| 459 | assert!(result == ::std::cmp::Ordering::Greater); |
| 460 | } |
| 461 | |
| 462 | #[test] |
| 463 | fn check_cmp_gt_to_seq() { |
| 464 | assert_eq!( |
| 465 | (1..1024).into_par_iter().cmp(0..1024), |
| 466 | (1..1024).cmp(0..1024) |
| 467 | ) |
| 468 | } |
| 469 | |
| 470 | #[test] |
| 471 | #[cfg_attr (any(target_os = "emscripten" , target_family = "wasm" ), ignore)] |
| 472 | fn check_cmp_short_circuit() { |
| 473 | // We only use a single thread in order to make the short-circuit behavior deterministic. |
| 474 | let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); |
| 475 | |
| 476 | let a = vec![0; 1024]; |
| 477 | let mut b = a.clone(); |
| 478 | b[42] = 1; |
| 479 | |
| 480 | pool.install(|| { |
| 481 | let expected = ::std::cmp::Ordering::Less; |
| 482 | assert_eq!(a.par_iter().cmp(&b), expected); |
| 483 | |
| 484 | for len in 1..10 { |
| 485 | let counter = AtomicUsize::new(0); |
| 486 | let result = a |
| 487 | .par_iter() |
| 488 | .with_max_len(len) |
| 489 | .inspect(|_| { |
| 490 | counter.fetch_add(1, Ordering::SeqCst); |
| 491 | }) |
| 492 | .cmp(&b); |
| 493 | assert_eq!(result, expected); |
| 494 | // should not have visited every single one |
| 495 | assert!(counter.into_inner() < a.len()); |
| 496 | } |
| 497 | }); |
| 498 | } |
| 499 | |
| 500 | #[test] |
| 501 | #[cfg_attr (any(target_os = "emscripten" , target_family = "wasm" ), ignore)] |
| 502 | fn check_partial_cmp_short_circuit() { |
| 503 | // We only use a single thread to make the short-circuit behavior deterministic. |
| 504 | let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); |
| 505 | |
| 506 | let a = vec![0; 1024]; |
| 507 | let mut b = a.clone(); |
| 508 | b[42] = 1; |
| 509 | |
| 510 | pool.install(|| { |
| 511 | let expected = Some(::std::cmp::Ordering::Less); |
| 512 | assert_eq!(a.par_iter().partial_cmp(&b), expected); |
| 513 | |
| 514 | for len in 1..10 { |
| 515 | let counter = AtomicUsize::new(0); |
| 516 | let result = a |
| 517 | .par_iter() |
| 518 | .with_max_len(len) |
| 519 | .inspect(|_| { |
| 520 | counter.fetch_add(1, Ordering::SeqCst); |
| 521 | }) |
| 522 | .partial_cmp(&b); |
| 523 | assert_eq!(result, expected); |
| 524 | // should not have visited every single one |
| 525 | assert!(counter.into_inner() < a.len()); |
| 526 | } |
| 527 | }); |
| 528 | } |
| 529 | |
| 530 | #[test] |
| 531 | #[cfg_attr (any(target_os = "emscripten" , target_family = "wasm" ), ignore)] |
| 532 | fn check_partial_cmp_nan_short_circuit() { |
| 533 | // We only use a single thread to make the short-circuit behavior deterministic. |
| 534 | let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); |
| 535 | |
| 536 | let a = vec![0.0; 1024]; |
| 537 | let mut b = a.clone(); |
| 538 | b[42] = f64::NAN; |
| 539 | |
| 540 | pool.install(|| { |
| 541 | let expected = None; |
| 542 | assert_eq!(a.par_iter().partial_cmp(&b), expected); |
| 543 | |
| 544 | for len in 1..10 { |
| 545 | let counter = AtomicUsize::new(0); |
| 546 | let result = a |
| 547 | .par_iter() |
| 548 | .with_max_len(len) |
| 549 | .inspect(|_| { |
| 550 | counter.fetch_add(1, Ordering::SeqCst); |
| 551 | }) |
| 552 | .partial_cmp(&b); |
| 553 | assert_eq!(result, expected); |
| 554 | // should not have visited every single one |
| 555 | assert!(counter.into_inner() < a.len()); |
| 556 | } |
| 557 | }); |
| 558 | } |
| 559 | |
| 560 | #[test] |
| 561 | fn check_partial_cmp_direct() { |
| 562 | let a = (0..1024).into_par_iter(); |
| 563 | let b = (0..1024).into_par_iter(); |
| 564 | |
| 565 | let result = a.partial_cmp(b); |
| 566 | |
| 567 | assert!(result == Some(::std::cmp::Ordering::Equal)); |
| 568 | } |
| 569 | |
| 570 | #[test] |
| 571 | fn check_partial_cmp_to_seq() { |
| 572 | let par_result = (0..1024).into_par_iter().partial_cmp(0..1024); |
| 573 | let seq_result = (0..1024).partial_cmp(0..1024); |
| 574 | assert_eq!(par_result, seq_result); |
| 575 | } |
| 576 | |
| 577 | #[test] |
| 578 | fn check_partial_cmp_rng_to_seq() { |
| 579 | let mut rng = seeded_rng(); |
| 580 | let rng = &mut rng; |
| 581 | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| 582 | let b: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| 583 | for i in 0..a.len() { |
| 584 | let par_result = a[i..].par_iter().partial_cmp(b[i..].par_iter()); |
| 585 | let seq_result = a[i..].iter().partial_cmp(b[i..].iter()); |
| 586 | |
| 587 | assert_eq!(par_result, seq_result); |
| 588 | } |
| 589 | } |
| 590 | |
| 591 | #[test] |
| 592 | fn check_partial_cmp_lt_direct() { |
| 593 | let a = (0..1024).into_par_iter(); |
| 594 | let b = (1..1024).into_par_iter(); |
| 595 | |
| 596 | let result = a.partial_cmp(b); |
| 597 | |
| 598 | assert!(result == Some(::std::cmp::Ordering::Less)); |
| 599 | } |
| 600 | |
| 601 | #[test] |
| 602 | fn check_partial_cmp_lt_to_seq() { |
| 603 | let par_result = (0..1024).into_par_iter().partial_cmp(1..1024); |
| 604 | let seq_result = (0..1024).partial_cmp(1..1024); |
| 605 | assert_eq!(par_result, seq_result); |
| 606 | } |
| 607 | |
| 608 | #[test] |
| 609 | fn check_partial_cmp_gt_direct() { |
| 610 | let a = (1..1024).into_par_iter(); |
| 611 | let b = (0..1024).into_par_iter(); |
| 612 | |
| 613 | let result = a.partial_cmp(b); |
| 614 | |
| 615 | assert!(result == Some(::std::cmp::Ordering::Greater)); |
| 616 | } |
| 617 | |
| 618 | #[test] |
| 619 | fn check_partial_cmp_gt_to_seq() { |
| 620 | let par_result = (1..1024).into_par_iter().partial_cmp(0..1024); |
| 621 | let seq_result = (1..1024).partial_cmp(0..1024); |
| 622 | assert_eq!(par_result, seq_result); |
| 623 | } |
| 624 | |
| 625 | #[test] |
| 626 | fn check_partial_cmp_none_direct() { |
| 627 | let a = vec![f64::NAN, 0.0]; |
| 628 | let b = vec![0.0, 1.0]; |
| 629 | |
| 630 | let result = a.par_iter().partial_cmp(b.par_iter()); |
| 631 | |
| 632 | assert!(result == None); |
| 633 | } |
| 634 | |
| 635 | #[test] |
| 636 | fn check_partial_cmp_none_to_seq() { |
| 637 | let a = vec![f64::NAN, 0.0]; |
| 638 | let b = vec![0.0, 1.0]; |
| 639 | |
| 640 | let par_result = a.par_iter().partial_cmp(b.par_iter()); |
| 641 | let seq_result = a.iter().partial_cmp(b.iter()); |
| 642 | |
| 643 | assert_eq!(par_result, seq_result); |
| 644 | } |
| 645 | |
| 646 | #[test] |
| 647 | fn check_partial_cmp_late_nan_direct() { |
| 648 | let a = vec![0.0, f64::NAN]; |
| 649 | let b = vec![1.0, 1.0]; |
| 650 | |
| 651 | let result = a.par_iter().partial_cmp(b.par_iter()); |
| 652 | |
| 653 | assert!(result == Some(::std::cmp::Ordering::Less)); |
| 654 | } |
| 655 | |
| 656 | #[test] |
| 657 | fn check_partial_cmp_late_nane_to_seq() { |
| 658 | let a = vec![0.0, f64::NAN]; |
| 659 | let b = vec![1.0, 1.0]; |
| 660 | |
| 661 | let par_result = a.par_iter().partial_cmp(b.par_iter()); |
| 662 | let seq_result = a.iter().partial_cmp(b.iter()); |
| 663 | |
| 664 | assert_eq!(par_result, seq_result); |
| 665 | } |
| 666 | |
| 667 | #[test] |
| 668 | fn check_cmp_lengths() { |
| 669 | // comparisons should consider length if they are otherwise equal |
| 670 | let a = vec![0; 1024]; |
| 671 | let b = vec![0; 1025]; |
| 672 | |
| 673 | assert_eq!(a.par_iter().cmp(&b), a.iter().cmp(&b)); |
| 674 | assert_eq!(a.par_iter().partial_cmp(&b), a.iter().partial_cmp(&b)); |
| 675 | } |
| 676 | |
| 677 | #[test] |
| 678 | fn check_eq_direct() { |
| 679 | let a = (0..1024).into_par_iter(); |
| 680 | let b = (0..1024).into_par_iter(); |
| 681 | |
| 682 | let result = a.eq(b); |
| 683 | |
| 684 | assert!(result); |
| 685 | } |
| 686 | |
| 687 | #[test] |
| 688 | fn check_eq_to_seq() { |
| 689 | let par_result = (0..1024).into_par_iter().eq((0..1024).into_par_iter()); |
| 690 | let seq_result = (0..1024).eq(0..1024); |
| 691 | |
| 692 | assert_eq!(par_result, seq_result); |
| 693 | } |
| 694 | |
| 695 | #[test] |
| 696 | fn check_ne_direct() { |
| 697 | let a = (0..1024).into_par_iter(); |
| 698 | let b = (1..1024).into_par_iter(); |
| 699 | |
| 700 | let result = a.ne(b); |
| 701 | |
| 702 | assert!(result); |
| 703 | } |
| 704 | |
| 705 | #[test] |
| 706 | fn check_ne_to_seq() { |
| 707 | let par_result = (0..1024).into_par_iter().ne((1..1025).into_par_iter()); |
| 708 | let seq_result = (0..1024).ne(1..1025); |
| 709 | |
| 710 | assert_eq!(par_result, seq_result); |
| 711 | } |
| 712 | |
| 713 | #[test] |
| 714 | fn check_ne_lengths() { |
| 715 | // equality should consider length too |
| 716 | let a = vec![0; 1024]; |
| 717 | let b = vec![0; 1025]; |
| 718 | |
| 719 | assert_eq!(a.par_iter().eq(&b), a.iter().eq(&b)); |
| 720 | assert_eq!(a.par_iter().ne(&b), a.iter().ne(&b)); |
| 721 | } |
| 722 | |
| 723 | #[test] |
| 724 | fn check_lt_direct() { |
| 725 | assert!((0..1024).into_par_iter().lt(1..1024)); |
| 726 | assert!(!(1..1024).into_par_iter().lt(0..1024)); |
| 727 | } |
| 728 | |
| 729 | #[test] |
| 730 | fn check_lt_to_seq() { |
| 731 | let par_result = (0..1024).into_par_iter().lt((1..1024).into_par_iter()); |
| 732 | let seq_result = (0..1024).lt(1..1024); |
| 733 | |
| 734 | assert_eq!(par_result, seq_result); |
| 735 | } |
| 736 | |
| 737 | #[test] |
| 738 | fn check_le_equal_direct() { |
| 739 | assert!((0..1024).into_par_iter().le((0..1024).into_par_iter())); |
| 740 | } |
| 741 | |
| 742 | #[test] |
| 743 | fn check_le_equal_to_seq() { |
| 744 | let par_result = (0..1024).into_par_iter().le((0..1024).into_par_iter()); |
| 745 | let seq_result = (0..1024).le(0..1024); |
| 746 | |
| 747 | assert_eq!(par_result, seq_result); |
| 748 | } |
| 749 | |
| 750 | #[test] |
| 751 | fn check_le_less_direct() { |
| 752 | assert!((0..1024).into_par_iter().le((1..1024).into_par_iter())); |
| 753 | } |
| 754 | |
| 755 | #[test] |
| 756 | fn check_le_less_to_seq() { |
| 757 | let par_result = (0..1024).into_par_iter().le((1..1024).into_par_iter()); |
| 758 | let seq_result = (0..1024).le(1..1024); |
| 759 | |
| 760 | assert_eq!(par_result, seq_result); |
| 761 | } |
| 762 | |
| 763 | #[test] |
| 764 | fn check_gt_direct() { |
| 765 | assert!((1..1024).into_par_iter().gt((0..1024).into_par_iter())); |
| 766 | } |
| 767 | |
| 768 | #[test] |
| 769 | fn check_gt_to_seq() { |
| 770 | let par_result = (1..1024).into_par_iter().gt((0..1024).into_par_iter()); |
| 771 | let seq_result = (1..1024).gt(0..1024); |
| 772 | |
| 773 | assert_eq!(par_result, seq_result); |
| 774 | } |
| 775 | |
| 776 | #[test] |
| 777 | fn check_ge_equal_direct() { |
| 778 | assert!((0..1024).into_par_iter().ge((0..1024).into_par_iter())); |
| 779 | } |
| 780 | |
| 781 | #[test] |
| 782 | fn check_ge_equal_to_seq() { |
| 783 | let par_result = (0..1024).into_par_iter().ge((0..1024).into_par_iter()); |
| 784 | let seq_result = (0..1024).ge(0..1024); |
| 785 | |
| 786 | assert_eq!(par_result, seq_result); |
| 787 | } |
| 788 | |
| 789 | #[test] |
| 790 | fn check_ge_greater_direct() { |
| 791 | assert!((1..1024).into_par_iter().ge((0..1024).into_par_iter())); |
| 792 | } |
| 793 | |
| 794 | #[test] |
| 795 | fn check_ge_greater_to_seq() { |
| 796 | let par_result = (1..1024).into_par_iter().ge((0..1024).into_par_iter()); |
| 797 | let seq_result = (1..1024).ge(0..1024); |
| 798 | |
| 799 | assert_eq!(par_result, seq_result); |
| 800 | } |
| 801 | |
| 802 | #[test] |
| 803 | fn check_zip() { |
| 804 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 805 | let b: Vec<usize> = (0..1024).collect(); |
| 806 | |
| 807 | a.par_iter_mut().zip(&b[..]).for_each(|(a, &b)| *a += b); |
| 808 | |
| 809 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 810 | } |
| 811 | |
| 812 | #[test] |
| 813 | fn check_zip_into_par_iter() { |
| 814 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 815 | let b: Vec<usize> = (0..1024).collect(); |
| 816 | |
| 817 | a.par_iter_mut() |
| 818 | .zip(&b) // here we rely on &b iterating over &usize |
| 819 | .for_each(|(a, &b)| *a += b); |
| 820 | |
| 821 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 822 | } |
| 823 | |
| 824 | #[test] |
| 825 | fn check_zip_into_mut_par_iter() { |
| 826 | let a: Vec<usize> = (0..1024).rev().collect(); |
| 827 | let mut b: Vec<usize> = (0..1024).collect(); |
| 828 | |
| 829 | a.par_iter().zip(&mut b).for_each(|(&a, b)| *b += a); |
| 830 | |
| 831 | assert!(b.iter().all(|&x| x == b.len() - 1)); |
| 832 | } |
| 833 | |
| 834 | #[test] |
| 835 | fn check_zip_range() { |
| 836 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 837 | |
| 838 | a.par_iter_mut() |
| 839 | .zip(0usize..1024) |
| 840 | .for_each(|(a, b)| *a += b); |
| 841 | |
| 842 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 843 | } |
| 844 | |
| 845 | #[test] |
| 846 | fn check_zip_eq() { |
| 847 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 848 | let b: Vec<usize> = (0..1024).collect(); |
| 849 | |
| 850 | a.par_iter_mut().zip_eq(&b[..]).for_each(|(a, &b)| *a += b); |
| 851 | |
| 852 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 853 | } |
| 854 | |
| 855 | #[test] |
| 856 | fn check_zip_eq_into_par_iter() { |
| 857 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 858 | let b: Vec<usize> = (0..1024).collect(); |
| 859 | |
| 860 | a.par_iter_mut() |
| 861 | .zip_eq(&b) // here we rely on &b iterating over &usize |
| 862 | .for_each(|(a, &b)| *a += b); |
| 863 | |
| 864 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 865 | } |
| 866 | |
| 867 | #[test] |
| 868 | fn check_zip_eq_into_mut_par_iter() { |
| 869 | let a: Vec<usize> = (0..1024).rev().collect(); |
| 870 | let mut b: Vec<usize> = (0..1024).collect(); |
| 871 | |
| 872 | a.par_iter().zip_eq(&mut b).for_each(|(&a, b)| *b += a); |
| 873 | |
| 874 | assert!(b.iter().all(|&x| x == b.len() - 1)); |
| 875 | } |
| 876 | |
| 877 | #[test] |
| 878 | fn check_zip_eq_range() { |
| 879 | let mut a: Vec<usize> = (0..1024).rev().collect(); |
| 880 | |
| 881 | a.par_iter_mut() |
| 882 | .zip_eq(0usize..1024) |
| 883 | .for_each(|(a, b)| *a += b); |
| 884 | |
| 885 | assert!(a.iter().all(|&x| x == a.len() - 1)); |
| 886 | } |
| 887 | |
| 888 | #[test] |
| 889 | fn check_sum_filtered_ints() { |
| 890 | let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| 891 | let par_sum_evens: i32 = a.par_iter().filter(|&x| (x & 1) == 0).sum(); |
| 892 | let seq_sum_evens = a.iter().filter(|&x| (x & 1) == 0).sum(); |
| 893 | assert_eq!(par_sum_evens, seq_sum_evens); |
| 894 | } |
| 895 | |
| 896 | #[test] |
| 897 | fn check_sum_filtermap_ints() { |
| 898 | let a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| 899 | let par_sum_evens: u32 = a |
| 900 | .par_iter() |
| 901 | .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None }) |
| 902 | .sum(); |
| 903 | let seq_sum_evens = a |
| 904 | .iter() |
| 905 | .filter_map(|&x| if (x & 1) == 0 { Some(x as u32) } else { None }) |
| 906 | .sum(); |
| 907 | assert_eq!(par_sum_evens, seq_sum_evens); |
| 908 | } |
| 909 | |
| 910 | #[test] |
| 911 | fn check_flat_map_nested_ranges() { |
| 912 | // FIXME -- why are precise type hints required on the integers here? |
| 913 | |
| 914 | let v: i32 = (0_i32..10) |
| 915 | .into_par_iter() |
| 916 | .flat_map(|i| (0_i32..10).into_par_iter().map(move |j| (i, j))) |
| 917 | .map(|(i, j)| i * j) |
| 918 | .sum(); |
| 919 | |
| 920 | let w = (0_i32..10) |
| 921 | .flat_map(|i| (0_i32..10).map(move |j| (i, j))) |
| 922 | .map(|(i, j)| i * j) |
| 923 | .sum(); |
| 924 | |
| 925 | assert_eq!(v, w); |
| 926 | } |
| 927 | |
| 928 | #[test] |
| 929 | fn check_empty_flat_map_sum() { |
| 930 | let a: Vec<i32> = (0..1024).collect(); |
| 931 | let empty = &a[..0]; |
| 932 | |
| 933 | // empty on the inside |
| 934 | let b: i32 = a.par_iter().flat_map(|_| empty).sum(); |
| 935 | assert_eq!(b, 0); |
| 936 | |
| 937 | // empty on the outside |
| 938 | let c: i32 = empty.par_iter().flat_map(|_| a.par_iter()).sum(); |
| 939 | assert_eq!(c, 0); |
| 940 | } |
| 941 | |
| 942 | #[test] |
| 943 | fn check_flatten_vec() { |
| 944 | let a: Vec<i32> = (0..1024).collect(); |
| 945 | let b: Vec<Vec<i32>> = vec![a.clone(), a.clone(), a.clone(), a.clone()]; |
| 946 | let c: Vec<i32> = b.par_iter().flatten().cloned().collect(); |
| 947 | let mut d = a.clone(); |
| 948 | d.extend(&a); |
| 949 | d.extend(&a); |
| 950 | d.extend(&a); |
| 951 | |
| 952 | assert_eq!(d, c); |
| 953 | } |
| 954 | |
| 955 | #[test] |
| 956 | fn check_flatten_vec_empty() { |
| 957 | let a: Vec<Vec<i32>> = vec![vec![]]; |
| 958 | let b: Vec<i32> = a.par_iter().flatten().cloned().collect(); |
| 959 | |
| 960 | assert_eq!(vec![] as Vec<i32>, b); |
| 961 | } |
| 962 | |
| 963 | #[test] |
| 964 | fn check_slice_split() { |
| 965 | let v: Vec<_> = (0..1000).collect(); |
| 966 | for m in 1..100 { |
| 967 | let a: Vec<_> = v.split(|x| x % m == 0).collect(); |
| 968 | let b: Vec<_> = v.par_split(|x| x % m == 0).collect(); |
| 969 | assert_eq!(a, b); |
| 970 | } |
| 971 | |
| 972 | // same as std::slice::split() examples |
| 973 | let slice = [10, 40, 33, 20]; |
| 974 | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| 975 | assert_eq!(v, &[&slice[..2], &slice[3..]]); |
| 976 | |
| 977 | let slice = [10, 40, 33]; |
| 978 | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| 979 | assert_eq!(v, &[&slice[..2], &slice[..0]]); |
| 980 | |
| 981 | let slice = [10, 6, 33, 20]; |
| 982 | let v: Vec<_> = slice.par_split(|num| num % 3 == 0).collect(); |
| 983 | assert_eq!(v, &[&slice[..1], &slice[..0], &slice[3..]]); |
| 984 | } |
| 985 | |
| 986 | #[test] |
| 987 | fn check_slice_split_mut() { |
| 988 | let mut v1: Vec<_> = (0..1000).collect(); |
| 989 | let mut v2 = v1.clone(); |
| 990 | for m in 1..100 { |
| 991 | let a: Vec<_> = v1.split_mut(|x| x % m == 0).collect(); |
| 992 | let b: Vec<_> = v2.par_split_mut(|x| x % m == 0).collect(); |
| 993 | assert_eq!(a, b); |
| 994 | } |
| 995 | |
| 996 | // same as std::slice::split_mut() example |
| 997 | let mut v = [10, 40, 30, 20, 60, 50]; |
| 998 | v.par_split_mut(|num| num % 3 == 0).for_each(|group| { |
| 999 | group[0] = 1; |
| 1000 | }); |
| 1001 | assert_eq!(v, [1, 40, 30, 1, 60, 1]); |
| 1002 | } |
| 1003 | |
| 1004 | #[test] |
| 1005 | fn check_chunks() { |
| 1006 | let a: Vec<i32> = vec![1, 5, 10, 4, 100, 3, 1000, 2, 10000, 1]; |
| 1007 | let par_sum_product_pairs: i32 = a.par_chunks(2).map(|c| c.iter().product::<i32>()).sum(); |
| 1008 | let seq_sum_product_pairs = a.chunks(2).map(|c| c.iter().product::<i32>()).sum(); |
| 1009 | assert_eq!(par_sum_product_pairs, 12345); |
| 1010 | assert_eq!(par_sum_product_pairs, seq_sum_product_pairs); |
| 1011 | |
| 1012 | let par_sum_product_triples: i32 = a.par_chunks(3).map(|c| c.iter().product::<i32>()).sum(); |
| 1013 | let seq_sum_product_triples = a.chunks(3).map(|c| c.iter().product::<i32>()).sum(); |
| 1014 | assert_eq!(par_sum_product_triples, 5_0 + 12_00 + 20_000_000 + 1); |
| 1015 | assert_eq!(par_sum_product_triples, seq_sum_product_triples); |
| 1016 | } |
| 1017 | |
| 1018 | #[test] |
| 1019 | fn check_chunks_mut() { |
| 1020 | let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| 1021 | let mut b: Vec<i32> = a.clone(); |
| 1022 | a.par_chunks_mut(2).for_each(|c| c[0] = c.iter().sum()); |
| 1023 | b.chunks_mut(2).for_each(|c| c[0] = c.iter().sum()); |
| 1024 | assert_eq!(a, &[3, 2, 7, 4, 11, 6, 15, 8, 19, 10]); |
| 1025 | assert_eq!(a, b); |
| 1026 | |
| 1027 | let mut a: Vec<i32> = vec![1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; |
| 1028 | let mut b: Vec<i32> = a.clone(); |
| 1029 | a.par_chunks_mut(3).for_each(|c| c[0] = c.iter().sum()); |
| 1030 | b.chunks_mut(3).for_each(|c| c[0] = c.iter().sum()); |
| 1031 | assert_eq!(a, &[6, 2, 3, 15, 5, 6, 24, 8, 9, 10]); |
| 1032 | assert_eq!(a, b); |
| 1033 | } |
| 1034 | |
| 1035 | #[test] |
| 1036 | fn check_windows() { |
| 1037 | let a: Vec<i32> = (0..1024).collect(); |
| 1038 | let par: Vec<_> = a.par_windows(2).collect(); |
| 1039 | let seq: Vec<_> = a.windows(2).collect(); |
| 1040 | assert_eq!(par, seq); |
| 1041 | |
| 1042 | let par: Vec<_> = a.par_windows(100).collect(); |
| 1043 | let seq: Vec<_> = a.windows(100).collect(); |
| 1044 | assert_eq!(par, seq); |
| 1045 | |
| 1046 | let par: Vec<_> = a.par_windows(1_000_000).collect(); |
| 1047 | let seq: Vec<_> = a.windows(1_000_000).collect(); |
| 1048 | assert_eq!(par, seq); |
| 1049 | |
| 1050 | let par: Vec<_> = a |
| 1051 | .par_windows(2) |
| 1052 | .chain(a.par_windows(1_000_000)) |
| 1053 | .zip(a.par_windows(2)) |
| 1054 | .collect(); |
| 1055 | let seq: Vec<_> = a |
| 1056 | .windows(2) |
| 1057 | .chain(a.windows(1_000_000)) |
| 1058 | .zip(a.windows(2)) |
| 1059 | .collect(); |
| 1060 | assert_eq!(par, seq); |
| 1061 | } |
| 1062 | |
| 1063 | #[test] |
| 1064 | fn check_options() { |
| 1065 | let mut a = vec![None, Some(1), None, None, Some(2), Some(4)]; |
| 1066 | |
| 1067 | assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); |
| 1068 | assert_eq!(7, a.par_iter().flat_map(|opt| opt).sum::<i32>()); |
| 1069 | |
| 1070 | a.par_iter_mut() |
| 1071 | .flat_map(|opt| opt) |
| 1072 | .for_each(|x| *x = *x * *x); |
| 1073 | |
| 1074 | assert_eq!(21, a.into_par_iter().flat_map(|opt| opt).sum::<i32>()); |
| 1075 | } |
| 1076 | |
| 1077 | #[test] |
| 1078 | fn check_results() { |
| 1079 | let mut a = vec![Err(()), Ok(1i32), Err(()), Err(()), Ok(2), Ok(4)]; |
| 1080 | |
| 1081 | assert_eq!(7, a.par_iter().flat_map(|res| res).sum::<i32>()); |
| 1082 | |
| 1083 | assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().sum()); |
| 1084 | assert_eq!(Ok(7), a.par_iter().cloned().filter(Result::is_ok).sum()); |
| 1085 | |
| 1086 | assert_eq!(Err::<i32, ()>(()), a.par_iter().cloned().product()); |
| 1087 | assert_eq!(Ok(8), a.par_iter().cloned().filter(Result::is_ok).product()); |
| 1088 | |
| 1089 | a.par_iter_mut() |
| 1090 | .flat_map(|res| res) |
| 1091 | .for_each(|x| *x = *x * *x); |
| 1092 | |
| 1093 | assert_eq!(21, a.into_par_iter().flat_map(|res| res).sum::<i32>()); |
| 1094 | } |
| 1095 | |
| 1096 | #[test] |
| 1097 | fn check_binary_heap() { |
| 1098 | use std::collections::BinaryHeap; |
| 1099 | |
| 1100 | let a: BinaryHeap<i32> = (0..10).collect(); |
| 1101 | |
| 1102 | assert_eq!(45, a.par_iter().sum::<i32>()); |
| 1103 | assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| 1104 | } |
| 1105 | |
| 1106 | #[test] |
| 1107 | fn check_btree_map() { |
| 1108 | use std::collections::BTreeMap; |
| 1109 | |
| 1110 | let mut a: BTreeMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); |
| 1111 | |
| 1112 | assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); |
| 1113 | assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); |
| 1114 | |
| 1115 | a.par_iter_mut().for_each(|(k, v)| *v += *k); |
| 1116 | |
| 1117 | assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); |
| 1118 | } |
| 1119 | |
| 1120 | #[test] |
| 1121 | fn check_btree_set() { |
| 1122 | use std::collections::BTreeSet; |
| 1123 | |
| 1124 | let a: BTreeSet<i32> = (0..10).collect(); |
| 1125 | |
| 1126 | assert_eq!(45, a.par_iter().sum::<i32>()); |
| 1127 | assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| 1128 | } |
| 1129 | |
| 1130 | #[test] |
| 1131 | fn check_hash_map() { |
| 1132 | use std::collections::HashMap; |
| 1133 | |
| 1134 | let mut a: HashMap<i32, i32> = (0..10).map(|i| (i, -i)).collect(); |
| 1135 | |
| 1136 | assert_eq!(45, a.par_iter().map(|(&k, _)| k).sum::<i32>()); |
| 1137 | assert_eq!(-45, a.par_iter().map(|(_, &v)| v).sum::<i32>()); |
| 1138 | |
| 1139 | a.par_iter_mut().for_each(|(k, v)| *v += *k); |
| 1140 | |
| 1141 | assert_eq!(0, a.into_par_iter().map(|(_, v)| v).sum::<i32>()); |
| 1142 | } |
| 1143 | |
| 1144 | #[test] |
| 1145 | fn check_hash_set() { |
| 1146 | use std::collections::HashSet; |
| 1147 | |
| 1148 | let a: HashSet<i32> = (0..10).collect(); |
| 1149 | |
| 1150 | assert_eq!(45, a.par_iter().sum::<i32>()); |
| 1151 | assert_eq!(45, a.into_par_iter().sum::<i32>()); |
| 1152 | } |
| 1153 | |
| 1154 | #[test] |
| 1155 | fn check_linked_list() { |
| 1156 | use std::collections::LinkedList; |
| 1157 | |
| 1158 | let mut a: LinkedList<i32> = (0..10).collect(); |
| 1159 | |
| 1160 | assert_eq!(45, a.par_iter().sum::<i32>()); |
| 1161 | |
| 1162 | a.par_iter_mut().for_each(|x| *x = -*x); |
| 1163 | |
| 1164 | assert_eq!(-45, a.into_par_iter().sum::<i32>()); |
| 1165 | } |
| 1166 | |
| 1167 | #[test] |
| 1168 | fn check_vec_deque() { |
| 1169 | use std::collections::VecDeque; |
| 1170 | |
| 1171 | let mut a: VecDeque<i32> = (0..10).collect(); |
| 1172 | |
| 1173 | // try to get it to wrap around |
| 1174 | a.drain(..5); |
| 1175 | a.extend(0..5); |
| 1176 | |
| 1177 | assert_eq!(45, a.par_iter().sum::<i32>()); |
| 1178 | |
| 1179 | a.par_iter_mut().for_each(|x| *x = -*x); |
| 1180 | |
| 1181 | assert_eq!(-45, a.into_par_iter().sum::<i32>()); |
| 1182 | } |
| 1183 | |
| 1184 | #[test] |
| 1185 | fn check_chain() { |
| 1186 | let mut res = vec![]; |
| 1187 | |
| 1188 | // stays indexed in the face of madness |
| 1189 | Some(0) |
| 1190 | .into_par_iter() |
| 1191 | .chain(Ok::<_, ()>(1)) |
| 1192 | .chain(1..4) |
| 1193 | .chain(Err("huh?" )) |
| 1194 | .chain(None) |
| 1195 | .chain(vec![5, 8, 13]) |
| 1196 | .map(|x| (x as u8 + b'a' ) as char) |
| 1197 | .chain(vec!['x' , 'y' , 'z' ]) |
| 1198 | .zip((0i32..1000).into_par_iter().map(|x| -x)) |
| 1199 | .enumerate() |
| 1200 | .map(|(a, (b, c))| (a, b, c)) |
| 1201 | .chain(None) |
| 1202 | .collect_into_vec(&mut res); |
| 1203 | |
| 1204 | assert_eq!( |
| 1205 | res, |
| 1206 | vec![ |
| 1207 | (0, 'a' , 0), |
| 1208 | (1, 'b' , -1), |
| 1209 | (2, 'b' , -2), |
| 1210 | (3, 'c' , -3), |
| 1211 | (4, 'd' , -4), |
| 1212 | (5, 'f' , -5), |
| 1213 | (6, 'i' , -6), |
| 1214 | (7, 'n' , -7), |
| 1215 | (8, 'x' , -8), |
| 1216 | (9, 'y' , -9), |
| 1217 | (10, 'z' , -10) |
| 1218 | ] |
| 1219 | ); |
| 1220 | |
| 1221 | // unindexed is ok too |
| 1222 | let res: Vec<i32> = Some(1i32) |
| 1223 | .into_par_iter() |
| 1224 | .chain( |
| 1225 | (2i32..4) |
| 1226 | .into_par_iter() |
| 1227 | .chain(vec![5, 6, 7, 8, 9]) |
| 1228 | .chain(Some((10, 100)).into_par_iter().flat_map(|(a, b)| a..b)) |
| 1229 | .filter(|x| x & 1 == 1), |
| 1230 | ) |
| 1231 | .collect(); |
| 1232 | let other: Vec<i32> = (0..100).filter(|x| x & 1 == 1).collect(); |
| 1233 | assert_eq!(res, other); |
| 1234 | |
| 1235 | // chain collect is ok with the "fake" specialization |
| 1236 | let res: Vec<i32> = Some(1i32).into_par_iter().chain(None).collect(); |
| 1237 | assert_eq!(res, &[1]); |
| 1238 | } |
| 1239 | |
| 1240 | #[test] |
| 1241 | fn check_count() { |
| 1242 | let c0 = (0_u32..24 * 1024).filter(|i| i % 2 == 0).count(); |
| 1243 | let c1 = (0_u32..24 * 1024) |
| 1244 | .into_par_iter() |
| 1245 | .filter(|i| i % 2 == 0) |
| 1246 | .count(); |
| 1247 | assert_eq!(c0, c1); |
| 1248 | } |
| 1249 | |
| 1250 | #[test] |
| 1251 | fn find_any() { |
| 1252 | let a: Vec<i32> = (0..1024).collect(); |
| 1253 | |
| 1254 | assert!(a.par_iter().find_any(|&&x| x % 42 == 41).is_some()); |
| 1255 | assert_eq!( |
| 1256 | a.par_iter().find_any(|&&x| x % 19 == 1 && x % 53 == 0), |
| 1257 | Some(&742_i32) |
| 1258 | ); |
| 1259 | assert_eq!(a.par_iter().find_any(|&&x| x < 0), None); |
| 1260 | |
| 1261 | assert!(a.par_iter().position_any(|&x| x % 42 == 41).is_some()); |
| 1262 | assert_eq!( |
| 1263 | a.par_iter().position_any(|&x| x % 19 == 1 && x % 53 == 0), |
| 1264 | Some(742_usize) |
| 1265 | ); |
| 1266 | assert_eq!(a.par_iter().position_any(|&x| x < 0), None); |
| 1267 | |
| 1268 | assert!(a.par_iter().any(|&x| x > 1000)); |
| 1269 | assert!(!a.par_iter().any(|&x| x < 0)); |
| 1270 | |
| 1271 | assert!(!a.par_iter().all(|&x| x > 1000)); |
| 1272 | assert!(a.par_iter().all(|&x| x >= 0)); |
| 1273 | } |
| 1274 | |
| 1275 | #[test] |
| 1276 | fn find_first_or_last() { |
| 1277 | let a: Vec<i32> = (0..1024).collect(); |
| 1278 | |
| 1279 | assert_eq!(a.par_iter().find_first(|&&x| x % 42 == 41), Some(&41_i32)); |
| 1280 | assert_eq!( |
| 1281 | a.par_iter().find_first(|&&x| x % 19 == 1 && x % 53 == 0), |
| 1282 | Some(&742_i32) |
| 1283 | ); |
| 1284 | assert_eq!(a.par_iter().find_first(|&&x| x < 0), None); |
| 1285 | |
| 1286 | assert_eq!( |
| 1287 | a.par_iter().position_first(|&x| x % 42 == 41), |
| 1288 | Some(41_usize) |
| 1289 | ); |
| 1290 | assert_eq!( |
| 1291 | a.par_iter().position_first(|&x| x % 19 == 1 && x % 53 == 0), |
| 1292 | Some(742_usize) |
| 1293 | ); |
| 1294 | assert_eq!(a.par_iter().position_first(|&x| x < 0), None); |
| 1295 | |
| 1296 | assert_eq!(a.par_iter().find_last(|&&x| x % 42 == 41), Some(&1007_i32)); |
| 1297 | assert_eq!( |
| 1298 | a.par_iter().find_last(|&&x| x % 19 == 1 && x % 53 == 0), |
| 1299 | Some(&742_i32) |
| 1300 | ); |
| 1301 | assert_eq!(a.par_iter().find_last(|&&x| x < 0), None); |
| 1302 | |
| 1303 | assert_eq!( |
| 1304 | a.par_iter().position_last(|&x| x % 42 == 41), |
| 1305 | Some(1007_usize) |
| 1306 | ); |
| 1307 | assert_eq!( |
| 1308 | a.par_iter().position_last(|&x| x % 19 == 1 && x % 53 == 0), |
| 1309 | Some(742_usize) |
| 1310 | ); |
| 1311 | assert_eq!(a.par_iter().position_last(|&x| x < 0), None); |
| 1312 | } |
| 1313 | |
| 1314 | #[test] |
| 1315 | fn find_map_first_or_last_or_any() { |
| 1316 | let mut a: Vec<i32> = vec![]; |
| 1317 | |
| 1318 | assert!(a.par_iter().find_map_any(half_if_positive).is_none()); |
| 1319 | assert!(a.par_iter().find_map_first(half_if_positive).is_none()); |
| 1320 | assert!(a.par_iter().find_map_last(half_if_positive).is_none()); |
| 1321 | |
| 1322 | a = (-1024..-3).collect(); |
| 1323 | |
| 1324 | assert!(a.par_iter().find_map_any(half_if_positive).is_none()); |
| 1325 | assert!(a.par_iter().find_map_first(half_if_positive).is_none()); |
| 1326 | assert!(a.par_iter().find_map_last(half_if_positive).is_none()); |
| 1327 | |
| 1328 | assert!(a.par_iter().find_map_any(half_if_negative).is_some()); |
| 1329 | assert_eq!( |
| 1330 | a.par_iter().find_map_first(half_if_negative), |
| 1331 | Some(-512_i32) |
| 1332 | ); |
| 1333 | assert_eq!(a.par_iter().find_map_last(half_if_negative), Some(-2_i32)); |
| 1334 | |
| 1335 | a.append(&mut (2..1025).collect()); |
| 1336 | |
| 1337 | assert!(a.par_iter().find_map_any(half_if_positive).is_some()); |
| 1338 | assert_eq!(a.par_iter().find_map_first(half_if_positive), Some(1_i32)); |
| 1339 | assert_eq!(a.par_iter().find_map_last(half_if_positive), Some(512_i32)); |
| 1340 | |
| 1341 | fn half_if_positive(x: &i32) -> Option<i32> { |
| 1342 | if *x > 0 { |
| 1343 | Some(x / 2) |
| 1344 | } else { |
| 1345 | None |
| 1346 | } |
| 1347 | } |
| 1348 | |
| 1349 | fn half_if_negative(x: &i32) -> Option<i32> { |
| 1350 | if *x < 0 { |
| 1351 | Some(x / 2) |
| 1352 | } else { |
| 1353 | None |
| 1354 | } |
| 1355 | } |
| 1356 | } |
| 1357 | |
| 1358 | #[test] |
| 1359 | fn check_find_not_present() { |
| 1360 | let counter = AtomicUsize::new(0); |
| 1361 | let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { |
| 1362 | counter.fetch_add(1, Ordering::SeqCst); |
| 1363 | p >= 2048 |
| 1364 | }); |
| 1365 | assert!(value.is_none()); |
| 1366 | assert!(counter.load(Ordering::SeqCst) == 2048); // should have visited every single one |
| 1367 | } |
| 1368 | |
| 1369 | #[test] |
| 1370 | fn check_find_is_present() { |
| 1371 | let counter = AtomicUsize::new(0); |
| 1372 | let value: Option<i32> = (0_i32..2048).into_par_iter().find_any(|&p| { |
| 1373 | counter.fetch_add(1, Ordering::SeqCst); |
| 1374 | (1024..1096).contains(&p) |
| 1375 | }); |
| 1376 | let q = value.unwrap(); |
| 1377 | assert!((1024..1096).contains(&q)); |
| 1378 | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| 1379 | } |
| 1380 | |
| 1381 | #[test] |
| 1382 | fn check_while_some() { |
| 1383 | let value = (0_i32..2048).into_par_iter().map(Some).while_some().max(); |
| 1384 | assert_eq!(value, Some(2047)); |
| 1385 | |
| 1386 | let counter = AtomicUsize::new(0); |
| 1387 | let value = (0_i32..2048) |
| 1388 | .into_par_iter() |
| 1389 | .map(|x| { |
| 1390 | counter.fetch_add(1, Ordering::SeqCst); |
| 1391 | if x < 1024 { |
| 1392 | Some(x) |
| 1393 | } else { |
| 1394 | None |
| 1395 | } |
| 1396 | }) |
| 1397 | .while_some() |
| 1398 | .max(); |
| 1399 | assert!(value < Some(1024)); |
| 1400 | assert!(counter.load(Ordering::SeqCst) < 2048); // should not have visited every single one |
| 1401 | } |
| 1402 | |
| 1403 | #[test] |
| 1404 | fn par_iter_collect_option() { |
| 1405 | let a: Option<Vec<_>> = (0_i32..2048).map(Some).collect(); |
| 1406 | let b: Option<Vec<_>> = (0_i32..2048).into_par_iter().map(Some).collect(); |
| 1407 | assert_eq!(a, b); |
| 1408 | |
| 1409 | let c: Option<Vec<_>> = (0_i32..2048) |
| 1410 | .into_par_iter() |
| 1411 | .map(|x| if x == 1234 { None } else { Some(x) }) |
| 1412 | .collect(); |
| 1413 | assert_eq!(c, None); |
| 1414 | } |
| 1415 | |
| 1416 | #[test] |
| 1417 | fn par_iter_collect_result() { |
| 1418 | let a: Result<Vec<_>, ()> = (0_i32..2048).map(Ok).collect(); |
| 1419 | let b: Result<Vec<_>, ()> = (0_i32..2048).into_par_iter().map(Ok).collect(); |
| 1420 | assert_eq!(a, b); |
| 1421 | |
| 1422 | let c: Result<Vec<_>, _> = (0_i32..2048) |
| 1423 | .into_par_iter() |
| 1424 | .map(|x| if x == 1234 { Err(x) } else { Ok(x) }) |
| 1425 | .collect(); |
| 1426 | assert_eq!(c, Err(1234)); |
| 1427 | |
| 1428 | let d: Result<Vec<_>, _> = (0_i32..2048) |
| 1429 | .into_par_iter() |
| 1430 | .map(|x| if x % 100 == 99 { Err(x) } else { Ok(x) }) |
| 1431 | .collect(); |
| 1432 | assert_eq!(d.map_err(|x| x % 100), Err(99)); |
| 1433 | } |
| 1434 | |
| 1435 | #[test] |
| 1436 | fn par_iter_collect() { |
| 1437 | let a: Vec<i32> = (0..1024).collect(); |
| 1438 | let b: Vec<i32> = a.par_iter().map(|&i| i + 1).collect(); |
| 1439 | let c: Vec<i32> = (0..1024).map(|i| i + 1).collect(); |
| 1440 | assert_eq!(b, c); |
| 1441 | } |
| 1442 | |
| 1443 | #[test] |
| 1444 | fn par_iter_collect_vecdeque() { |
| 1445 | let a: Vec<i32> = (0..1024).collect(); |
| 1446 | let b: VecDeque<i32> = a.par_iter().cloned().collect(); |
| 1447 | let c: VecDeque<i32> = a.iter().cloned().collect(); |
| 1448 | assert_eq!(b, c); |
| 1449 | } |
| 1450 | |
| 1451 | #[test] |
| 1452 | fn par_iter_collect_binaryheap() { |
| 1453 | let a: Vec<i32> = (0..1024).collect(); |
| 1454 | let mut b: BinaryHeap<i32> = a.par_iter().cloned().collect(); |
| 1455 | assert_eq!(b.peek(), Some(&1023)); |
| 1456 | assert_eq!(b.len(), 1024); |
| 1457 | for n in (0..1024).rev() { |
| 1458 | assert_eq!(b.pop(), Some(n)); |
| 1459 | assert_eq!(b.len() as i32, n); |
| 1460 | } |
| 1461 | } |
| 1462 | |
| 1463 | #[test] |
| 1464 | fn par_iter_collect_hashmap() { |
| 1465 | let a: Vec<i32> = (0..1024).collect(); |
| 1466 | let b: HashMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}" , i))).collect(); |
| 1467 | assert_eq!(&b[&3], "3" ); |
| 1468 | assert_eq!(b.len(), 1024); |
| 1469 | } |
| 1470 | |
| 1471 | #[test] |
| 1472 | fn par_iter_collect_hashset() { |
| 1473 | let a: Vec<i32> = (0..1024).collect(); |
| 1474 | let b: HashSet<i32> = a.par_iter().cloned().collect(); |
| 1475 | assert_eq!(b.len(), 1024); |
| 1476 | } |
| 1477 | |
| 1478 | #[test] |
| 1479 | fn par_iter_collect_btreemap() { |
| 1480 | let a: Vec<i32> = (0..1024).collect(); |
| 1481 | let b: BTreeMap<i32, String> = a.par_iter().map(|&i| (i, format!("{}" , i))).collect(); |
| 1482 | assert_eq!(&b[&3], "3" ); |
| 1483 | assert_eq!(b.len(), 1024); |
| 1484 | } |
| 1485 | |
| 1486 | #[test] |
| 1487 | fn par_iter_collect_btreeset() { |
| 1488 | let a: Vec<i32> = (0..1024).collect(); |
| 1489 | let b: BTreeSet<i32> = a.par_iter().cloned().collect(); |
| 1490 | assert_eq!(b.len(), 1024); |
| 1491 | } |
| 1492 | |
| 1493 | #[test] |
| 1494 | fn par_iter_collect_linked_list() { |
| 1495 | let a: Vec<i32> = (0..1024).collect(); |
| 1496 | let b: LinkedList<_> = a.par_iter().map(|&i| (i, format!("{}" , i))).collect(); |
| 1497 | let c: LinkedList<_> = a.iter().map(|&i| (i, format!("{}" , i))).collect(); |
| 1498 | assert_eq!(b, c); |
| 1499 | } |
| 1500 | |
| 1501 | #[test] |
| 1502 | fn par_iter_collect_linked_list_flat_map_filter() { |
| 1503 | let b: LinkedList<i32> = (0_i32..1024) |
| 1504 | .into_par_iter() |
| 1505 | .flat_map(|i| (0..i)) |
| 1506 | .filter(|&i| i % 2 == 0) |
| 1507 | .collect(); |
| 1508 | let c: LinkedList<i32> = (0_i32..1024) |
| 1509 | .flat_map(|i| (0..i)) |
| 1510 | .filter(|&i| i % 2 == 0) |
| 1511 | .collect(); |
| 1512 | assert_eq!(b, c); |
| 1513 | } |
| 1514 | |
| 1515 | #[test] |
| 1516 | fn par_iter_collect_cows() { |
| 1517 | use std::borrow::Cow; |
| 1518 | |
| 1519 | let s = "Fearless Concurrency with Rust" ; |
| 1520 | |
| 1521 | // Collects `i32` into a `Vec` |
| 1522 | let a: Cow<'_, [i32]> = (0..1024).collect(); |
| 1523 | let b: Cow<'_, [i32]> = a.par_iter().cloned().collect(); |
| 1524 | assert_eq!(a, b); |
| 1525 | |
| 1526 | // Collects `char` into a `String` |
| 1527 | let a: Cow<'_, str> = s.chars().collect(); |
| 1528 | let b: Cow<'_, str> = s.par_chars().collect(); |
| 1529 | assert_eq!(a, b); |
| 1530 | |
| 1531 | // Collects `str` into a `String` |
| 1532 | let a: Cow<'_, str> = s.split_whitespace().collect(); |
| 1533 | let b: Cow<'_, str> = s.par_split_whitespace().collect(); |
| 1534 | assert_eq!(a, b); |
| 1535 | |
| 1536 | // Collects `String` into a `String` |
| 1537 | let a: Cow<'_, str> = s.split_whitespace().map(str::to_owned).collect(); |
| 1538 | let b: Cow<'_, str> = s.par_split_whitespace().map(str::to_owned).collect(); |
| 1539 | assert_eq!(a, b); |
| 1540 | } |
| 1541 | |
| 1542 | #[test] |
| 1543 | fn par_iter_unindexed_flat_map() { |
| 1544 | let b: Vec<i64> = (0_i64..1024).into_par_iter().flat_map(Some).collect(); |
| 1545 | let c: Vec<i64> = (0_i64..1024).flat_map(Some).collect(); |
| 1546 | assert_eq!(b, c); |
| 1547 | } |
| 1548 | |
| 1549 | #[test] |
| 1550 | fn min_max() { |
| 1551 | let rng = seeded_rng(); |
| 1552 | let a: Vec<i32> = rng.sample_iter(&Standard).take(1024).collect(); |
| 1553 | for i in 0..=a.len() { |
| 1554 | let slice = &a[..i]; |
| 1555 | assert_eq!(slice.par_iter().min(), slice.iter().min()); |
| 1556 | assert_eq!(slice.par_iter().max(), slice.iter().max()); |
| 1557 | } |
| 1558 | } |
| 1559 | |
| 1560 | #[test] |
| 1561 | fn min_max_by() { |
| 1562 | let rng = seeded_rng(); |
| 1563 | // Make sure there are duplicate keys, for testing sort stability |
| 1564 | let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); |
| 1565 | let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); |
| 1566 | for i in 0..=a.len() { |
| 1567 | let slice = &a[..i]; |
| 1568 | assert_eq!( |
| 1569 | slice.par_iter().min_by(|x, y| x.0.cmp(&y.0)), |
| 1570 | slice.iter().min_by(|x, y| x.0.cmp(&y.0)) |
| 1571 | ); |
| 1572 | assert_eq!( |
| 1573 | slice.par_iter().max_by(|x, y| x.0.cmp(&y.0)), |
| 1574 | slice.iter().max_by(|x, y| x.0.cmp(&y.0)) |
| 1575 | ); |
| 1576 | } |
| 1577 | } |
| 1578 | |
| 1579 | #[test] |
| 1580 | fn min_max_by_key() { |
| 1581 | let rng = seeded_rng(); |
| 1582 | // Make sure there are duplicate keys, for testing sort stability |
| 1583 | let r: Vec<i32> = rng.sample_iter(&Standard).take(512).collect(); |
| 1584 | let a: Vec<(i32, u16)> = r.iter().chain(&r).cloned().zip(0..).collect(); |
| 1585 | for i in 0..=a.len() { |
| 1586 | let slice = &a[..i]; |
| 1587 | assert_eq!( |
| 1588 | slice.par_iter().min_by_key(|x| x.0), |
| 1589 | slice.iter().min_by_key(|x| x.0) |
| 1590 | ); |
| 1591 | assert_eq!( |
| 1592 | slice.par_iter().max_by_key(|x| x.0), |
| 1593 | slice.iter().max_by_key(|x| x.0) |
| 1594 | ); |
| 1595 | } |
| 1596 | } |
| 1597 | |
| 1598 | #[test] |
| 1599 | fn check_rev() { |
| 1600 | let a: Vec<usize> = (0..1024).rev().collect(); |
| 1601 | let b: Vec<usize> = (0..1024).collect(); |
| 1602 | |
| 1603 | assert!(a.par_iter().rev().zip(b).all(|(&a, b)| a == b)); |
| 1604 | } |
| 1605 | |
| 1606 | #[test] |
| 1607 | fn scope_mix() { |
| 1608 | let counter_p = &AtomicUsize::new(0); |
| 1609 | scope(|s| { |
| 1610 | s.spawn(move |s| { |
| 1611 | divide_and_conquer(s, counter_p, 1024); |
| 1612 | }); |
| 1613 | s.spawn(move |_| { |
| 1614 | let a: Vec<i32> = (0..1024).collect(); |
| 1615 | let r1 = a.par_iter().map(|&i| i + 1).reduce_with(|i, j| i + j); |
| 1616 | let r2 = a.iter().map(|&i| i + 1).sum(); |
| 1617 | assert_eq!(r1.unwrap(), r2); |
| 1618 | }); |
| 1619 | }); |
| 1620 | } |
| 1621 | |
| 1622 | fn divide_and_conquer<'scope>(scope: &Scope<'scope>, counter: &'scope AtomicUsize, size: usize) { |
| 1623 | if size > 1 { |
| 1624 | scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); |
| 1625 | scope.spawn(move |scope| divide_and_conquer(scope, counter, size / 2)); |
| 1626 | } else { |
| 1627 | // count the leaves |
| 1628 | counter.fetch_add(1, Ordering::SeqCst); |
| 1629 | } |
| 1630 | } |
| 1631 | |
| 1632 | #[test] |
| 1633 | fn check_split() { |
| 1634 | use std::ops::Range; |
| 1635 | |
| 1636 | let a = (0..1024).into_par_iter(); |
| 1637 | |
| 1638 | let b = split(0..1024, |Range { start, end }| { |
| 1639 | let mid = (end - start) / 2; |
| 1640 | if mid > start { |
| 1641 | (start..mid, Some(mid..end)) |
| 1642 | } else { |
| 1643 | (start..end, None) |
| 1644 | } |
| 1645 | }) |
| 1646 | .flat_map(|range| range); |
| 1647 | |
| 1648 | assert_eq!(a.collect::<Vec<_>>(), b.collect::<Vec<_>>()); |
| 1649 | } |
| 1650 | |
| 1651 | #[test] |
| 1652 | fn check_lengths() { |
| 1653 | fn check(min: usize, max: usize) { |
| 1654 | let range = 0..1024 * 1024; |
| 1655 | |
| 1656 | // Check against normalized values. |
| 1657 | let min_check = cmp::min(cmp::max(min, 1), range.len()); |
| 1658 | let max_check = cmp::max(max, min_check.saturating_add(min_check - 1)); |
| 1659 | |
| 1660 | assert!( |
| 1661 | range |
| 1662 | .into_par_iter() |
| 1663 | .with_min_len(min) |
| 1664 | .with_max_len(max) |
| 1665 | .fold(|| 0, |count, _| count + 1) |
| 1666 | .all(|c| c >= min_check && c <= max_check), |
| 1667 | "check_lengths failed {:?} -> {:?} " , |
| 1668 | (min, max), |
| 1669 | (min_check, max_check) |
| 1670 | ); |
| 1671 | } |
| 1672 | |
| 1673 | let lengths = [0, 1, 10, 100, 1_000, 10_000, 100_000, 1_000_000, usize::MAX]; |
| 1674 | for &min in &lengths { |
| 1675 | for &max in &lengths { |
| 1676 | check(min, max); |
| 1677 | } |
| 1678 | } |
| 1679 | } |
| 1680 | |
| 1681 | #[test] |
| 1682 | fn check_map_with() { |
| 1683 | let (sender, receiver) = mpsc::channel(); |
| 1684 | let a: HashSet<_> = (0..1024).collect(); |
| 1685 | |
| 1686 | a.par_iter() |
| 1687 | .cloned() |
| 1688 | .map_with(sender, |s, i| s.send(i).unwrap()) |
| 1689 | .count(); |
| 1690 | |
| 1691 | let b: HashSet<_> = receiver.iter().collect(); |
| 1692 | assert_eq!(a, b); |
| 1693 | } |
| 1694 | |
| 1695 | #[test] |
| 1696 | fn check_fold_with() { |
| 1697 | let (sender, receiver) = mpsc::channel(); |
| 1698 | let a: HashSet<_> = (0..1024).collect(); |
| 1699 | |
| 1700 | a.par_iter() |
| 1701 | .cloned() |
| 1702 | .fold_with(sender, |s, i| { |
| 1703 | s.send(i).unwrap(); |
| 1704 | s |
| 1705 | }) |
| 1706 | .count(); |
| 1707 | |
| 1708 | let b: HashSet<_> = receiver.iter().collect(); |
| 1709 | assert_eq!(a, b); |
| 1710 | } |
| 1711 | |
| 1712 | #[test] |
| 1713 | fn check_for_each_with() { |
| 1714 | let (sender, receiver) = mpsc::channel(); |
| 1715 | let a: HashSet<_> = (0..1024).collect(); |
| 1716 | |
| 1717 | a.par_iter() |
| 1718 | .cloned() |
| 1719 | .for_each_with(sender, |s, i| s.send(i).unwrap()); |
| 1720 | |
| 1721 | let b: HashSet<_> = receiver.iter().collect(); |
| 1722 | assert_eq!(a, b); |
| 1723 | } |
| 1724 | |
| 1725 | #[test] |
| 1726 | fn check_extend_items() { |
| 1727 | fn check<C>() |
| 1728 | where |
| 1729 | C: Default |
| 1730 | + Eq |
| 1731 | + Debug |
| 1732 | + Extend<i32> |
| 1733 | + for<'a> Extend<&'a i32> |
| 1734 | + ParallelExtend<i32> |
| 1735 | + for<'a> ParallelExtend<&'a i32>, |
| 1736 | { |
| 1737 | let mut serial = C::default(); |
| 1738 | let mut parallel = C::default(); |
| 1739 | |
| 1740 | // extend with references |
| 1741 | let v: Vec<_> = (0..128).collect(); |
| 1742 | serial.extend(&v); |
| 1743 | parallel.par_extend(&v); |
| 1744 | assert_eq!(serial, parallel); |
| 1745 | |
| 1746 | // extend with values |
| 1747 | serial.extend(-128..0); |
| 1748 | parallel.par_extend(-128..0); |
| 1749 | assert_eq!(serial, parallel); |
| 1750 | } |
| 1751 | |
| 1752 | check::<BTreeSet<_>>(); |
| 1753 | check::<HashSet<_>>(); |
| 1754 | check::<LinkedList<_>>(); |
| 1755 | check::<Vec<_>>(); |
| 1756 | check::<VecDeque<_>>(); |
| 1757 | } |
| 1758 | |
| 1759 | #[test] |
| 1760 | fn check_extend_heap() { |
| 1761 | let mut serial: BinaryHeap<_> = Default::default(); |
| 1762 | let mut parallel: BinaryHeap<_> = Default::default(); |
| 1763 | |
| 1764 | // extend with references |
| 1765 | let v: Vec<_> = (0..128).collect(); |
| 1766 | serial.extend(&v); |
| 1767 | parallel.par_extend(&v); |
| 1768 | assert_eq!( |
| 1769 | serial.clone().into_sorted_vec(), |
| 1770 | parallel.clone().into_sorted_vec() |
| 1771 | ); |
| 1772 | |
| 1773 | // extend with values |
| 1774 | serial.extend(-128..0); |
| 1775 | parallel.par_extend(-128..0); |
| 1776 | assert_eq!(serial.into_sorted_vec(), parallel.into_sorted_vec()); |
| 1777 | } |
| 1778 | |
| 1779 | #[test] |
| 1780 | fn check_extend_pairs() { |
| 1781 | fn check<C>() |
| 1782 | where |
| 1783 | C: Default |
| 1784 | + Eq |
| 1785 | + Debug |
| 1786 | + Extend<(usize, i32)> |
| 1787 | + for<'a> Extend<(&'a usize, &'a i32)> |
| 1788 | + ParallelExtend<(usize, i32)> |
| 1789 | + for<'a> ParallelExtend<(&'a usize, &'a i32)>, |
| 1790 | { |
| 1791 | let mut serial = C::default(); |
| 1792 | let mut parallel = C::default(); |
| 1793 | |
| 1794 | // extend with references |
| 1795 | let m: HashMap<_, _> = (0..128).enumerate().collect(); |
| 1796 | serial.extend(&m); |
| 1797 | parallel.par_extend(&m); |
| 1798 | assert_eq!(serial, parallel); |
| 1799 | |
| 1800 | // extend with values |
| 1801 | let v: Vec<(_, _)> = (-128..0).enumerate().collect(); |
| 1802 | serial.extend(v.clone()); |
| 1803 | parallel.par_extend(v); |
| 1804 | assert_eq!(serial, parallel); |
| 1805 | } |
| 1806 | |
| 1807 | check::<BTreeMap<usize, i32>>(); |
| 1808 | check::<HashMap<usize, i32>>(); |
| 1809 | } |
| 1810 | |
| 1811 | #[test] |
| 1812 | fn check_unzip_into_vecs() { |
| 1813 | let mut a = vec![]; |
| 1814 | let mut b = vec![]; |
| 1815 | (0..1024) |
| 1816 | .into_par_iter() |
| 1817 | .map(|i| i * i) |
| 1818 | .enumerate() |
| 1819 | .unzip_into_vecs(&mut a, &mut b); |
| 1820 | |
| 1821 | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| 1822 | assert_eq!(a, c); |
| 1823 | assert_eq!(b, d); |
| 1824 | } |
| 1825 | |
| 1826 | #[test] |
| 1827 | fn check_unzip() { |
| 1828 | // indexed, unindexed |
| 1829 | let (a, b): (Vec<_>, HashSet<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| 1830 | let (c, d): (Vec<_>, HashSet<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| 1831 | assert_eq!(a, c); |
| 1832 | assert_eq!(b, d); |
| 1833 | |
| 1834 | // unindexed, indexed |
| 1835 | let (a, b): (HashSet<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| 1836 | let (c, d): (HashSet<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| 1837 | assert_eq!(a, c); |
| 1838 | assert_eq!(b, d); |
| 1839 | |
| 1840 | // indexed, indexed |
| 1841 | let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().map(|i| i * i).enumerate().unzip(); |
| 1842 | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| i * i).enumerate().unzip(); |
| 1843 | assert_eq!(a, c); |
| 1844 | assert_eq!(b, d); |
| 1845 | |
| 1846 | // unindexed producer |
| 1847 | let (a, b): (Vec<_>, Vec<_>) = (0..1024) |
| 1848 | .into_par_iter() |
| 1849 | .filter_map(|i| Some((i, i * i))) |
| 1850 | .unzip(); |
| 1851 | let (c, d): (Vec<_>, Vec<_>) = (0..1024).map(|i| (i, i * i)).unzip(); |
| 1852 | assert_eq!(a, c); |
| 1853 | assert_eq!(b, d); |
| 1854 | } |
| 1855 | |
| 1856 | #[test] |
| 1857 | fn check_partition() { |
| 1858 | let (a, b): (Vec<_>, Vec<_>) = (0..1024).into_par_iter().partition(|&i| i % 3 == 0); |
| 1859 | let (c, d): (Vec<_>, Vec<_>) = (0..1024).partition(|&i| i % 3 == 0); |
| 1860 | assert_eq!(a, c); |
| 1861 | assert_eq!(b, d); |
| 1862 | } |
| 1863 | |
| 1864 | #[test] |
| 1865 | fn check_partition_map() { |
| 1866 | let input = "a b c 1 2 3 x y z" ; |
| 1867 | let (a, b): (Vec<_>, String) = |
| 1868 | input |
| 1869 | .par_split_whitespace() |
| 1870 | .partition_map(|s| match s.parse::<i32>() { |
| 1871 | Ok(n) => Either::Left(n), |
| 1872 | Err(_) => Either::Right(s), |
| 1873 | }); |
| 1874 | assert_eq!(a, vec![1, 2, 3]); |
| 1875 | assert_eq!(b, "abcxyz" ); |
| 1876 | } |
| 1877 | |
| 1878 | #[test] |
| 1879 | fn check_either() { |
| 1880 | type I = crate::vec::IntoIter<i32>; |
| 1881 | type E = Either<I, I>; |
| 1882 | |
| 1883 | let v: Vec<i32> = (0..1024).collect(); |
| 1884 | |
| 1885 | // try iterating the left side |
| 1886 | let left: E = Either::Left(v.clone().into_par_iter()); |
| 1887 | assert!(left.eq(v.clone())); |
| 1888 | |
| 1889 | // try iterating the right side |
| 1890 | let right: E = Either::Right(v.clone().into_par_iter()); |
| 1891 | assert!(right.eq(v.clone())); |
| 1892 | |
| 1893 | // try an indexed iterator |
| 1894 | let left: E = Either::Left(v.clone().into_par_iter()); |
| 1895 | assert!(left.enumerate().eq(v.into_par_iter().enumerate())); |
| 1896 | } |
| 1897 | |
| 1898 | #[test] |
| 1899 | fn check_either_extend() { |
| 1900 | type E = Either<Vec<i32>, HashSet<i32>>; |
| 1901 | |
| 1902 | let v: Vec<i32> = (0..1024).collect(); |
| 1903 | |
| 1904 | // try extending the left side |
| 1905 | let mut left: E = Either::Left(vec![]); |
| 1906 | left.par_extend(v.clone()); |
| 1907 | assert_eq!(left.as_ref(), Either::Left(&v)); |
| 1908 | |
| 1909 | // try extending the right side |
| 1910 | let mut right: E = Either::Right(HashSet::default()); |
| 1911 | right.par_extend(v.clone()); |
| 1912 | assert_eq!(right, Either::Right(v.iter().cloned().collect())); |
| 1913 | } |
| 1914 | |
| 1915 | #[test] |
| 1916 | fn check_interleave_eq() { |
| 1917 | let xs: Vec<usize> = (0..10).collect(); |
| 1918 | let ys: Vec<usize> = (10..20).collect(); |
| 1919 | |
| 1920 | let mut actual = vec![]; |
| 1921 | xs.par_iter() |
| 1922 | .interleave(&ys) |
| 1923 | .map(|&i| i) |
| 1924 | .collect_into_vec(&mut actual); |
| 1925 | |
| 1926 | let expected: Vec<usize> = (0..10) |
| 1927 | .zip(10..20) |
| 1928 | .flat_map(|(i, j)| vec![i, j].into_iter()) |
| 1929 | .collect(); |
| 1930 | assert_eq!(expected, actual); |
| 1931 | } |
| 1932 | |
| 1933 | #[test] |
| 1934 | fn check_interleave_uneven() { |
| 1935 | let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ |
| 1936 | ( |
| 1937 | (0..9).collect(), |
| 1938 | vec![10], |
| 1939 | vec![0, 10, 1, 2, 3, 4, 5, 6, 7, 8], |
| 1940 | ), |
| 1941 | ( |
| 1942 | vec![10], |
| 1943 | (0..9).collect(), |
| 1944 | vec![10, 0, 1, 2, 3, 4, 5, 6, 7, 8], |
| 1945 | ), |
| 1946 | ( |
| 1947 | (0..5).collect(), |
| 1948 | (5..10).collect(), |
| 1949 | (0..5) |
| 1950 | .zip(5..10) |
| 1951 | .flat_map(|(i, j)| vec![i, j].into_iter()) |
| 1952 | .collect(), |
| 1953 | ), |
| 1954 | (vec![], (0..9).collect(), (0..9).collect()), |
| 1955 | ((0..9).collect(), vec![], (0..9).collect()), |
| 1956 | ( |
| 1957 | (0..50).collect(), |
| 1958 | (50..100).collect(), |
| 1959 | (0..50) |
| 1960 | .zip(50..100) |
| 1961 | .flat_map(|(i, j)| vec![i, j].into_iter()) |
| 1962 | .collect(), |
| 1963 | ), |
| 1964 | ]; |
| 1965 | |
| 1966 | for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { |
| 1967 | let mut res = vec![]; |
| 1968 | xs.par_iter() |
| 1969 | .interleave(&ys) |
| 1970 | .map(|&i| i) |
| 1971 | .collect_into_vec(&mut res); |
| 1972 | assert_eq!(expected, res, "Case {} failed" , i); |
| 1973 | |
| 1974 | res.truncate(0); |
| 1975 | xs.par_iter() |
| 1976 | .interleave(&ys) |
| 1977 | .rev() |
| 1978 | .map(|&i| i) |
| 1979 | .collect_into_vec(&mut res); |
| 1980 | assert_eq!( |
| 1981 | expected.into_iter().rev().collect::<Vec<usize>>(), |
| 1982 | res, |
| 1983 | "Case {} reversed failed" , |
| 1984 | i |
| 1985 | ); |
| 1986 | } |
| 1987 | } |
| 1988 | |
| 1989 | #[test] |
| 1990 | fn check_interleave_shortest() { |
| 1991 | let cases: Vec<(Vec<usize>, Vec<usize>, Vec<usize>)> = vec![ |
| 1992 | ((0..9).collect(), vec![10], vec![0, 10, 1]), |
| 1993 | (vec![10], (0..9).collect(), vec![10, 0]), |
| 1994 | ( |
| 1995 | (0..5).collect(), |
| 1996 | (5..10).collect(), |
| 1997 | (0..5) |
| 1998 | .zip(5..10) |
| 1999 | .flat_map(|(i, j)| vec![i, j].into_iter()) |
| 2000 | .collect(), |
| 2001 | ), |
| 2002 | (vec![], (0..9).collect(), vec![]), |
| 2003 | ((0..9).collect(), vec![], vec![0]), |
| 2004 | ( |
| 2005 | (0..50).collect(), |
| 2006 | (50..100).collect(), |
| 2007 | (0..50) |
| 2008 | .zip(50..100) |
| 2009 | .flat_map(|(i, j)| vec![i, j].into_iter()) |
| 2010 | .collect(), |
| 2011 | ), |
| 2012 | ]; |
| 2013 | |
| 2014 | for (i, (xs, ys, expected)) in cases.into_iter().enumerate() { |
| 2015 | let mut res = vec![]; |
| 2016 | xs.par_iter() |
| 2017 | .interleave_shortest(&ys) |
| 2018 | .map(|&i| i) |
| 2019 | .collect_into_vec(&mut res); |
| 2020 | assert_eq!(expected, res, "Case {} failed" , i); |
| 2021 | |
| 2022 | res.truncate(0); |
| 2023 | xs.par_iter() |
| 2024 | .interleave_shortest(&ys) |
| 2025 | .rev() |
| 2026 | .map(|&i| i) |
| 2027 | .collect_into_vec(&mut res); |
| 2028 | assert_eq!( |
| 2029 | expected.into_iter().rev().collect::<Vec<usize>>(), |
| 2030 | res, |
| 2031 | "Case {} reversed failed" , |
| 2032 | i |
| 2033 | ); |
| 2034 | } |
| 2035 | } |
| 2036 | |
| 2037 | #[test] |
| 2038 | #[should_panic (expected = "chunk_size must not be zero" )] |
| 2039 | fn check_chunks_zero_size() { |
| 2040 | let _: Vec<Vec<i32>> = vec![1, 2, 3].into_par_iter().chunks(0).collect(); |
| 2041 | } |
| 2042 | |
| 2043 | #[test] |
| 2044 | fn check_chunks_even_size() { |
| 2045 | assert_eq!( |
| 2046 | vec![vec![1, 2, 3], vec![4, 5, 6], vec![7, 8, 9]], |
| 2047 | (1..10).into_par_iter().chunks(3).collect::<Vec<Vec<i32>>>() |
| 2048 | ); |
| 2049 | } |
| 2050 | |
| 2051 | #[test] |
| 2052 | fn check_chunks_empty() { |
| 2053 | let v: Vec<i32> = vec![]; |
| 2054 | let expected: Vec<Vec<i32>> = vec![]; |
| 2055 | assert_eq!( |
| 2056 | expected, |
| 2057 | v.into_par_iter().chunks(2).collect::<Vec<Vec<i32>>>() |
| 2058 | ); |
| 2059 | } |
| 2060 | |
| 2061 | #[test] |
| 2062 | fn check_chunks_len() { |
| 2063 | assert_eq!(4, (0..8).into_par_iter().chunks(2).len()); |
| 2064 | assert_eq!(3, (0..9).into_par_iter().chunks(3).len()); |
| 2065 | assert_eq!(3, (0..8).into_par_iter().chunks(3).len()); |
| 2066 | assert_eq!(1, [1].par_iter().chunks(3).len()); |
| 2067 | assert_eq!(0, (0..0).into_par_iter().chunks(3).len()); |
| 2068 | } |
| 2069 | |
| 2070 | #[test] |
| 2071 | fn check_chunks_uneven() { |
| 2072 | let cases: Vec<(Vec<u32>, usize, Vec<Vec<u32>>)> = vec![ |
| 2073 | ((0..5).collect(), 3, vec![vec![0, 1, 2], vec![3, 4]]), |
| 2074 | (vec![1], 5, vec![vec![1]]), |
| 2075 | ((0..4).collect(), 3, vec![vec![0, 1, 2], vec![3]]), |
| 2076 | ]; |
| 2077 | |
| 2078 | for (i, (v, n, expected)) in cases.into_iter().enumerate() { |
| 2079 | let mut res: Vec<Vec<u32>> = vec![]; |
| 2080 | v.par_iter() |
| 2081 | .chunks(n) |
| 2082 | .map(|v| v.into_iter().cloned().collect()) |
| 2083 | .collect_into_vec(&mut res); |
| 2084 | assert_eq!(expected, res, "Case {} failed" , i); |
| 2085 | |
| 2086 | res.truncate(0); |
| 2087 | v.into_par_iter().chunks(n).rev().collect_into_vec(&mut res); |
| 2088 | assert_eq!( |
| 2089 | expected.into_iter().rev().collect::<Vec<Vec<u32>>>(), |
| 2090 | res, |
| 2091 | "Case {} reversed failed" , |
| 2092 | i |
| 2093 | ); |
| 2094 | } |
| 2095 | } |
| 2096 | |
| 2097 | #[test] |
| 2098 | #[ignore ] // it's quick enough on optimized 32-bit platforms, but otherwise... ... ... |
| 2099 | #[should_panic (expected = "overflow" )] |
| 2100 | #[cfg (debug_assertions)] |
| 2101 | fn check_repeat_unbounded() { |
| 2102 | // use just one thread, so we don't get infinite adaptive splitting |
| 2103 | // (forever stealing and re-splitting jobs that will panic on overflow) |
| 2104 | let pool = ThreadPoolBuilder::new().num_threads(1).build().unwrap(); |
| 2105 | pool.install(|| { |
| 2106 | println!("counted {} repeats" , repeat(()).count()); |
| 2107 | }); |
| 2108 | } |
| 2109 | |
| 2110 | #[test] |
| 2111 | fn check_repeat_find_any() { |
| 2112 | let even = repeat(4).find_any(|&x| x % 2 == 0); |
| 2113 | assert_eq!(even, Some(4)); |
| 2114 | } |
| 2115 | |
| 2116 | #[test] |
| 2117 | fn check_repeat_take() { |
| 2118 | let v: Vec<_> = repeat(4).take(4).collect(); |
| 2119 | assert_eq!(v, [4, 4, 4, 4]); |
| 2120 | } |
| 2121 | |
| 2122 | #[test] |
| 2123 | fn check_repeat_zip() { |
| 2124 | let v = vec![4, 4, 4, 4]; |
| 2125 | let mut fours: Vec<_> = repeat(4).zip(v).collect(); |
| 2126 | assert_eq!(fours.len(), 4); |
| 2127 | while let Some(item) = fours.pop() { |
| 2128 | assert_eq!(item, (4, 4)); |
| 2129 | } |
| 2130 | } |
| 2131 | |
| 2132 | #[test] |
| 2133 | fn check_repeatn_zip_left() { |
| 2134 | let v = vec![4, 4, 4, 4]; |
| 2135 | let mut fours: Vec<_> = repeatn(4, usize::MAX).zip(v).collect(); |
| 2136 | assert_eq!(fours.len(), 4); |
| 2137 | while let Some(item) = fours.pop() { |
| 2138 | assert_eq!(item, (4, 4)); |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | #[test] |
| 2143 | fn check_repeatn_zip_right() { |
| 2144 | let v = vec![4, 4, 4, 4]; |
| 2145 | let mut fours: Vec<_> = v.into_par_iter().zip(repeatn(4, usize::MAX)).collect(); |
| 2146 | assert_eq!(fours.len(), 4); |
| 2147 | while let Some(item) = fours.pop() { |
| 2148 | assert_eq!(item, (4, 4)); |
| 2149 | } |
| 2150 | } |
| 2151 | |
| 2152 | #[test] |
| 2153 | fn check_empty() { |
| 2154 | // drive_unindexed |
| 2155 | let mut v: Vec<i32> = empty().filter(|_| unreachable!()).collect(); |
| 2156 | assert!(v.is_empty()); |
| 2157 | |
| 2158 | // drive (indexed) |
| 2159 | empty().collect_into_vec(&mut v); |
| 2160 | assert!(v.is_empty()); |
| 2161 | |
| 2162 | // with_producer |
| 2163 | let v: Vec<(i32, i32)> = empty().zip(1..10).collect(); |
| 2164 | assert!(v.is_empty()); |
| 2165 | } |
| 2166 | |
| 2167 | #[test] |
| 2168 | fn check_once() { |
| 2169 | // drive_unindexed |
| 2170 | let mut v: Vec<i32> = once(42).filter(|_| true).collect(); |
| 2171 | assert_eq!(v, &[42]); |
| 2172 | |
| 2173 | // drive (indexed) |
| 2174 | once(42).collect_into_vec(&mut v); |
| 2175 | assert_eq!(v, &[42]); |
| 2176 | |
| 2177 | // with_producer |
| 2178 | let v: Vec<(i32, i32)> = once(42).zip(1..10).collect(); |
| 2179 | assert_eq!(v, &[(42, 1)]); |
| 2180 | } |
| 2181 | |
| 2182 | #[test] |
| 2183 | fn check_update() { |
| 2184 | let mut v: Vec<Vec<_>> = vec![vec![1], vec![3, 2, 1]]; |
| 2185 | v.par_iter_mut().update(|v| v.push(0)).for_each(|_| ()); |
| 2186 | |
| 2187 | assert_eq!(v, vec![vec![1, 0], vec![3, 2, 1, 0]]); |
| 2188 | } |
| 2189 | |