| 1 | //===- llvm/ADT/BitVector.h - Bit vectors -----------------------*- C++ -*-===// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | /// |
| 9 | /// \file |
| 10 | /// This file implements the BitVector class. |
| 11 | /// |
| 12 | //===----------------------------------------------------------------------===// |
| 13 | |
| 14 | #ifndef LLVM_ADT_BITVECTOR_H |
| 15 | #define LLVM_ADT_BITVECTOR_H |
| 16 | |
| 17 | #include "llvm/ADT/ArrayRef.h" |
| 18 | #include "llvm/ADT/DenseMapInfo.h" |
| 19 | #include "llvm/ADT/iterator_range.h" |
| 20 | #include "llvm/Support/MathExtras.h" |
| 21 | #include <algorithm> |
| 22 | #include <cassert> |
| 23 | #include <climits> |
| 24 | #include <cstdint> |
| 25 | #include <cstdlib> |
| 26 | #include <cstring> |
| 27 | #include <iterator> |
| 28 | #include <utility> |
| 29 | |
| 30 | namespace llvm { |
| 31 | |
| 32 | /// ForwardIterator for the bits that are set. |
| 33 | /// Iterators get invalidated when resize / reserve is called. |
| 34 | template <typename BitVectorT> class const_set_bits_iterator_impl { |
| 35 | const BitVectorT &Parent; |
| 36 | int Current = 0; |
| 37 | |
| 38 | void advance() { |
| 39 | assert(Current != -1 && "Trying to advance past end." ); |
| 40 | Current = Parent.find_next(Current); |
| 41 | } |
| 42 | |
| 43 | public: |
| 44 | using iterator_category = std::forward_iterator_tag; |
| 45 | using difference_type = void; |
| 46 | using value_type = int; |
| 47 | using pointer = value_type*; |
| 48 | using reference = value_type&; |
| 49 | |
| 50 | const_set_bits_iterator_impl(const BitVectorT &Parent, int Current) |
| 51 | : Parent(Parent), Current(Current) {} |
| 52 | explicit const_set_bits_iterator_impl(const BitVectorT &Parent) |
| 53 | : const_set_bits_iterator_impl(Parent, Parent.find_first()) {} |
| 54 | const_set_bits_iterator_impl(const const_set_bits_iterator_impl &) = default; |
| 55 | |
| 56 | const_set_bits_iterator_impl operator++(int) { |
| 57 | auto Prev = *this; |
| 58 | advance(); |
| 59 | return Prev; |
| 60 | } |
| 61 | |
| 62 | const_set_bits_iterator_impl &operator++() { |
| 63 | advance(); |
| 64 | return *this; |
| 65 | } |
| 66 | |
| 67 | unsigned operator*() const { return Current; } |
| 68 | |
| 69 | bool operator==(const const_set_bits_iterator_impl &Other) const { |
| 70 | assert(&Parent == &Other.Parent && |
| 71 | "Comparing iterators from different BitVectors" ); |
| 72 | return Current == Other.Current; |
| 73 | } |
| 74 | |
| 75 | bool operator!=(const const_set_bits_iterator_impl &Other) const { |
| 76 | assert(&Parent == &Other.Parent && |
| 77 | "Comparing iterators from different BitVectors" ); |
| 78 | return Current != Other.Current; |
| 79 | } |
| 80 | }; |
| 81 | |
| 82 | class BitVector { |
| 83 | typedef uintptr_t BitWord; |
| 84 | |
| 85 | enum { BITWORD_SIZE = (unsigned)sizeof(BitWord) * CHAR_BIT }; |
| 86 | |
| 87 | static_assert(BITWORD_SIZE == 64 || BITWORD_SIZE == 32, |
| 88 | "Unsupported word size" ); |
| 89 | |
| 90 | using Storage = SmallVector<BitWord>; |
| 91 | |
| 92 | Storage Bits; // Actual bits. |
| 93 | unsigned Size = 0; // Size of bitvector in bits. |
| 94 | |
| 95 | public: |
| 96 | using size_type = unsigned; |
| 97 | |
| 98 | // Encapsulation of a single bit. |
| 99 | class reference { |
| 100 | |
| 101 | BitWord *WordRef; |
| 102 | unsigned BitPos; |
| 103 | |
| 104 | public: |
| 105 | reference(BitVector &b, unsigned Idx) { |
| 106 | WordRef = &b.Bits[Idx / BITWORD_SIZE]; |
| 107 | BitPos = Idx % BITWORD_SIZE; |
| 108 | } |
| 109 | |
| 110 | reference() = delete; |
| 111 | reference(const reference&) = default; |
| 112 | |
| 113 | reference &operator=(reference t) { |
| 114 | *this = bool(t); |
| 115 | return *this; |
| 116 | } |
| 117 | |
| 118 | reference& operator=(bool t) { |
| 119 | if (t) |
| 120 | *WordRef |= BitWord(1) << BitPos; |
| 121 | else |
| 122 | *WordRef &= ~(BitWord(1) << BitPos); |
| 123 | return *this; |
| 124 | } |
| 125 | |
| 126 | operator bool() const { |
| 127 | return ((*WordRef) & (BitWord(1) << BitPos)) != 0; |
| 128 | } |
| 129 | }; |
| 130 | |
| 131 | typedef const_set_bits_iterator_impl<BitVector> const_set_bits_iterator; |
| 132 | typedef const_set_bits_iterator set_iterator; |
| 133 | |
| 134 | const_set_bits_iterator set_bits_begin() const { |
| 135 | return const_set_bits_iterator(*this); |
| 136 | } |
| 137 | const_set_bits_iterator set_bits_end() const { |
| 138 | return const_set_bits_iterator(*this, -1); |
| 139 | } |
| 140 | iterator_range<const_set_bits_iterator> set_bits() const { |
| 141 | return make_range(x: set_bits_begin(), y: set_bits_end()); |
| 142 | } |
| 143 | |
| 144 | /// BitVector default ctor - Creates an empty bitvector. |
| 145 | BitVector() = default; |
| 146 | |
| 147 | /// BitVector ctor - Creates a bitvector of specified number of bits. All |
| 148 | /// bits are initialized to the specified value. |
| 149 | explicit BitVector(unsigned s, bool t = false) |
| 150 | : Bits(NumBitWords(S: s), 0 - (BitWord)t), Size(s) { |
| 151 | if (t) |
| 152 | clear_unused_bits(); |
| 153 | } |
| 154 | |
| 155 | /// empty - Tests whether there are no bits in this bitvector. |
| 156 | bool empty() const { return Size == 0; } |
| 157 | |
| 158 | /// size - Returns the number of bits in this bitvector. |
| 159 | size_type size() const { return Size; } |
| 160 | |
| 161 | /// count - Returns the number of bits which are set. |
| 162 | size_type count() const { |
| 163 | unsigned NumBits = 0; |
| 164 | for (auto Bit : Bits) |
| 165 | NumBits += llvm::popcount(Value: Bit); |
| 166 | return NumBits; |
| 167 | } |
| 168 | |
| 169 | /// any - Returns true if any bit is set. |
| 170 | bool any() const { |
| 171 | return any_of(Range: Bits, P: [](BitWord Bit) { return Bit != 0; }); |
| 172 | } |
| 173 | |
| 174 | /// all - Returns true if all bits are set. |
| 175 | bool all() const { |
| 176 | for (unsigned i = 0; i < Size / BITWORD_SIZE; ++i) |
| 177 | if (Bits[i] != ~BitWord(0)) |
| 178 | return false; |
| 179 | |
| 180 | // If bits remain check that they are ones. The unused bits are always zero. |
| 181 | if (unsigned Remainder = Size % BITWORD_SIZE) |
| 182 | return Bits[Size / BITWORD_SIZE] == (BitWord(1) << Remainder) - 1; |
| 183 | |
| 184 | return true; |
| 185 | } |
| 186 | |
| 187 | /// none - Returns true if none of the bits are set. |
| 188 | bool none() const { |
| 189 | return !any(); |
| 190 | } |
| 191 | |
| 192 | /// find_first_in - Returns the index of the first set / unset bit, |
| 193 | /// depending on \p Set, in the range [Begin, End). |
| 194 | /// Returns -1 if all bits in the range are unset / set. |
| 195 | int find_first_in(unsigned Begin, unsigned End, bool Set = true) const { |
| 196 | assert(Begin <= End && End <= Size); |
| 197 | if (Begin == End) |
| 198 | return -1; |
| 199 | |
| 200 | unsigned FirstWord = Begin / BITWORD_SIZE; |
| 201 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| 202 | |
| 203 | // Check subsequent words. |
| 204 | // The code below is based on search for the first _set_ bit. If |
| 205 | // we're searching for the first _unset_, we just take the |
| 206 | // complement of each word before we use it and apply |
| 207 | // the same method. |
| 208 | for (unsigned i = FirstWord; i <= LastWord; ++i) { |
| 209 | BitWord Copy = Bits[i]; |
| 210 | if (!Set) |
| 211 | Copy = ~Copy; |
| 212 | |
| 213 | if (i == FirstWord) { |
| 214 | unsigned FirstBit = Begin % BITWORD_SIZE; |
| 215 | Copy &= maskTrailingZeros<BitWord>(N: FirstBit); |
| 216 | } |
| 217 | |
| 218 | if (i == LastWord) { |
| 219 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| 220 | Copy &= maskTrailingOnes<BitWord>(N: LastBit + 1); |
| 221 | } |
| 222 | if (Copy != 0) |
| 223 | return i * BITWORD_SIZE + llvm::countr_zero(Val: Copy); |
| 224 | } |
| 225 | return -1; |
| 226 | } |
| 227 | |
| 228 | /// find_last_in - Returns the index of the last set bit in the range |
| 229 | /// [Begin, End). Returns -1 if all bits in the range are unset. |
| 230 | int find_last_in(unsigned Begin, unsigned End) const { |
| 231 | assert(Begin <= End && End <= Size); |
| 232 | if (Begin == End) |
| 233 | return -1; |
| 234 | |
| 235 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| 236 | unsigned FirstWord = Begin / BITWORD_SIZE; |
| 237 | |
| 238 | for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
| 239 | unsigned CurrentWord = i - 1; |
| 240 | |
| 241 | BitWord Copy = Bits[CurrentWord]; |
| 242 | if (CurrentWord == LastWord) { |
| 243 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| 244 | Copy &= maskTrailingOnes<BitWord>(N: LastBit + 1); |
| 245 | } |
| 246 | |
| 247 | if (CurrentWord == FirstWord) { |
| 248 | unsigned FirstBit = Begin % BITWORD_SIZE; |
| 249 | Copy &= maskTrailingZeros<BitWord>(N: FirstBit); |
| 250 | } |
| 251 | |
| 252 | if (Copy != 0) |
| 253 | return (CurrentWord + 1) * BITWORD_SIZE - llvm::countl_zero(Val: Copy) - 1; |
| 254 | } |
| 255 | |
| 256 | return -1; |
| 257 | } |
| 258 | |
| 259 | /// find_first_unset_in - Returns the index of the first unset bit in the |
| 260 | /// range [Begin, End). Returns -1 if all bits in the range are set. |
| 261 | int find_first_unset_in(unsigned Begin, unsigned End) const { |
| 262 | return find_first_in(Begin, End, /* Set = */ Set: false); |
| 263 | } |
| 264 | |
| 265 | /// find_last_unset_in - Returns the index of the last unset bit in the |
| 266 | /// range [Begin, End). Returns -1 if all bits in the range are set. |
| 267 | int find_last_unset_in(unsigned Begin, unsigned End) const { |
| 268 | assert(Begin <= End && End <= Size); |
| 269 | if (Begin == End) |
| 270 | return -1; |
| 271 | |
| 272 | unsigned LastWord = (End - 1) / BITWORD_SIZE; |
| 273 | unsigned FirstWord = Begin / BITWORD_SIZE; |
| 274 | |
| 275 | for (unsigned i = LastWord + 1; i >= FirstWord + 1; --i) { |
| 276 | unsigned CurrentWord = i - 1; |
| 277 | |
| 278 | BitWord Copy = Bits[CurrentWord]; |
| 279 | if (CurrentWord == LastWord) { |
| 280 | unsigned LastBit = (End - 1) % BITWORD_SIZE; |
| 281 | Copy |= maskTrailingZeros<BitWord>(N: LastBit + 1); |
| 282 | } |
| 283 | |
| 284 | if (CurrentWord == FirstWord) { |
| 285 | unsigned FirstBit = Begin % BITWORD_SIZE; |
| 286 | Copy |= maskTrailingOnes<BitWord>(N: FirstBit); |
| 287 | } |
| 288 | |
| 289 | if (Copy != ~BitWord(0)) { |
| 290 | unsigned Result = |
| 291 | (CurrentWord + 1) * BITWORD_SIZE - llvm::countl_one(Value: Copy) - 1; |
| 292 | return Result < Size ? Result : -1; |
| 293 | } |
| 294 | } |
| 295 | return -1; |
| 296 | } |
| 297 | |
| 298 | /// find_first - Returns the index of the first set bit, -1 if none |
| 299 | /// of the bits are set. |
| 300 | int find_first() const { return find_first_in(Begin: 0, End: Size); } |
| 301 | |
| 302 | /// find_last - Returns the index of the last set bit, -1 if none of the bits |
| 303 | /// are set. |
| 304 | int find_last() const { return find_last_in(Begin: 0, End: Size); } |
| 305 | |
| 306 | /// find_next - Returns the index of the next set bit following the |
| 307 | /// "Prev" bit. Returns -1 if the next set bit is not found. |
| 308 | int find_next(unsigned Prev) const { return find_first_in(Begin: Prev + 1, End: Size); } |
| 309 | |
| 310 | /// find_prev - Returns the index of the first set bit that precedes the |
| 311 | /// the bit at \p PriorTo. Returns -1 if all previous bits are unset. |
| 312 | int find_prev(unsigned PriorTo) const { return find_last_in(Begin: 0, End: PriorTo); } |
| 313 | |
| 314 | /// find_first_unset - Returns the index of the first unset bit, -1 if all |
| 315 | /// of the bits are set. |
| 316 | int find_first_unset() const { return find_first_unset_in(Begin: 0, End: Size); } |
| 317 | |
| 318 | /// find_next_unset - Returns the index of the next unset bit following the |
| 319 | /// "Prev" bit. Returns -1 if all remaining bits are set. |
| 320 | int find_next_unset(unsigned Prev) const { |
| 321 | return find_first_unset_in(Begin: Prev + 1, End: Size); |
| 322 | } |
| 323 | |
| 324 | /// find_last_unset - Returns the index of the last unset bit, -1 if all of |
| 325 | /// the bits are set. |
| 326 | int find_last_unset() const { return find_last_unset_in(Begin: 0, End: Size); } |
| 327 | |
| 328 | /// find_prev_unset - Returns the index of the first unset bit that precedes |
| 329 | /// the bit at \p PriorTo. Returns -1 if all previous bits are set. |
| 330 | int find_prev_unset(unsigned PriorTo) { |
| 331 | return find_last_unset_in(Begin: 0, End: PriorTo); |
| 332 | } |
| 333 | |
| 334 | /// clear - Removes all bits from the bitvector. |
| 335 | void clear() { |
| 336 | Size = 0; |
| 337 | Bits.clear(); |
| 338 | } |
| 339 | |
| 340 | /// resize - Grow or shrink the bitvector. |
| 341 | void resize(unsigned N, bool t = false) { |
| 342 | set_unused_bits(t); |
| 343 | Size = N; |
| 344 | Bits.resize(N: NumBitWords(S: N), NV: 0 - BitWord(t)); |
| 345 | clear_unused_bits(); |
| 346 | } |
| 347 | |
| 348 | void reserve(unsigned N) { Bits.reserve(N: NumBitWords(S: N)); } |
| 349 | |
| 350 | // Set, reset, flip |
| 351 | BitVector &set() { |
| 352 | init_words(t: true); |
| 353 | clear_unused_bits(); |
| 354 | return *this; |
| 355 | } |
| 356 | |
| 357 | BitVector &set(unsigned Idx) { |
| 358 | assert(Idx < Size && "access in bound" ); |
| 359 | Bits[Idx / BITWORD_SIZE] |= BitWord(1) << (Idx % BITWORD_SIZE); |
| 360 | return *this; |
| 361 | } |
| 362 | |
| 363 | /// set - Efficiently set a range of bits in [I, E) |
| 364 | BitVector &set(unsigned I, unsigned E) { |
| 365 | assert(I <= E && "Attempted to set backwards range!" ); |
| 366 | assert(E <= size() && "Attempted to set out-of-bounds range!" ); |
| 367 | |
| 368 | if (I == E) return *this; |
| 369 | |
| 370 | if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| 371 | BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
| 372 | BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
| 373 | BitWord Mask = EMask - IMask; |
| 374 | Bits[I / BITWORD_SIZE] |= Mask; |
| 375 | return *this; |
| 376 | } |
| 377 | |
| 378 | BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
| 379 | Bits[I / BITWORD_SIZE] |= PrefixMask; |
| 380 | I = alignTo(Value: I, Align: BITWORD_SIZE); |
| 381 | |
| 382 | for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| 383 | Bits[I / BITWORD_SIZE] = ~BitWord(0); |
| 384 | |
| 385 | BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
| 386 | if (I < E) |
| 387 | Bits[I / BITWORD_SIZE] |= PostfixMask; |
| 388 | |
| 389 | return *this; |
| 390 | } |
| 391 | |
| 392 | BitVector &reset() { |
| 393 | init_words(t: false); |
| 394 | return *this; |
| 395 | } |
| 396 | |
| 397 | BitVector &reset(unsigned Idx) { |
| 398 | Bits[Idx / BITWORD_SIZE] &= ~(BitWord(1) << (Idx % BITWORD_SIZE)); |
| 399 | return *this; |
| 400 | } |
| 401 | |
| 402 | /// reset - Efficiently reset a range of bits in [I, E) |
| 403 | BitVector &reset(unsigned I, unsigned E) { |
| 404 | assert(I <= E && "Attempted to reset backwards range!" ); |
| 405 | assert(E <= size() && "Attempted to reset out-of-bounds range!" ); |
| 406 | |
| 407 | if (I == E) return *this; |
| 408 | |
| 409 | if (I / BITWORD_SIZE == E / BITWORD_SIZE) { |
| 410 | BitWord EMask = BitWord(1) << (E % BITWORD_SIZE); |
| 411 | BitWord IMask = BitWord(1) << (I % BITWORD_SIZE); |
| 412 | BitWord Mask = EMask - IMask; |
| 413 | Bits[I / BITWORD_SIZE] &= ~Mask; |
| 414 | return *this; |
| 415 | } |
| 416 | |
| 417 | BitWord PrefixMask = ~BitWord(0) << (I % BITWORD_SIZE); |
| 418 | Bits[I / BITWORD_SIZE] &= ~PrefixMask; |
| 419 | I = alignTo(Value: I, Align: BITWORD_SIZE); |
| 420 | |
| 421 | for (; I + BITWORD_SIZE <= E; I += BITWORD_SIZE) |
| 422 | Bits[I / BITWORD_SIZE] = BitWord(0); |
| 423 | |
| 424 | BitWord PostfixMask = (BitWord(1) << (E % BITWORD_SIZE)) - 1; |
| 425 | if (I < E) |
| 426 | Bits[I / BITWORD_SIZE] &= ~PostfixMask; |
| 427 | |
| 428 | return *this; |
| 429 | } |
| 430 | |
| 431 | BitVector &flip() { |
| 432 | for (auto &Bit : Bits) |
| 433 | Bit = ~Bit; |
| 434 | clear_unused_bits(); |
| 435 | return *this; |
| 436 | } |
| 437 | |
| 438 | BitVector &flip(unsigned Idx) { |
| 439 | Bits[Idx / BITWORD_SIZE] ^= BitWord(1) << (Idx % BITWORD_SIZE); |
| 440 | return *this; |
| 441 | } |
| 442 | |
| 443 | // Indexing. |
| 444 | reference operator[](unsigned Idx) { |
| 445 | assert (Idx < Size && "Out-of-bounds Bit access." ); |
| 446 | return reference(*this, Idx); |
| 447 | } |
| 448 | |
| 449 | bool operator[](unsigned Idx) const { |
| 450 | assert (Idx < Size && "Out-of-bounds Bit access." ); |
| 451 | BitWord Mask = BitWord(1) << (Idx % BITWORD_SIZE); |
| 452 | return (Bits[Idx / BITWORD_SIZE] & Mask) != 0; |
| 453 | } |
| 454 | |
| 455 | /// Return the last element in the vector. |
| 456 | bool back() const { |
| 457 | assert(!empty() && "Getting last element of empty vector." ); |
| 458 | return (*this)[size() - 1]; |
| 459 | } |
| 460 | |
| 461 | bool test(unsigned Idx) const { |
| 462 | return (*this)[Idx]; |
| 463 | } |
| 464 | |
| 465 | // Push single bit to end of vector. |
| 466 | void push_back(bool Val) { |
| 467 | unsigned OldSize = Size; |
| 468 | unsigned NewSize = Size + 1; |
| 469 | |
| 470 | // Resize, which will insert zeros. |
| 471 | // If we already fit then the unused bits will be already zero. |
| 472 | if (NewSize > getBitCapacity()) |
| 473 | resize(N: NewSize, t: false); |
| 474 | else |
| 475 | Size = NewSize; |
| 476 | |
| 477 | // If true, set single bit. |
| 478 | if (Val) |
| 479 | set(OldSize); |
| 480 | } |
| 481 | |
| 482 | /// Pop one bit from the end of the vector. |
| 483 | void pop_back() { |
| 484 | assert(!empty() && "Empty vector has no element to pop." ); |
| 485 | resize(N: size() - 1); |
| 486 | } |
| 487 | |
| 488 | /// Test if any common bits are set. |
| 489 | bool anyCommon(const BitVector &RHS) const { |
| 490 | unsigned ThisWords = Bits.size(); |
| 491 | unsigned RHSWords = RHS.Bits.size(); |
| 492 | for (unsigned i = 0, e = std::min(a: ThisWords, b: RHSWords); i != e; ++i) |
| 493 | if (Bits[i] & RHS.Bits[i]) |
| 494 | return true; |
| 495 | return false; |
| 496 | } |
| 497 | |
| 498 | // Comparison operators. |
| 499 | bool operator==(const BitVector &RHS) const { |
| 500 | if (size() != RHS.size()) |
| 501 | return false; |
| 502 | unsigned NumWords = Bits.size(); |
| 503 | return std::equal(first1: Bits.begin(), last1: Bits.begin() + NumWords, first2: RHS.Bits.begin()); |
| 504 | } |
| 505 | |
| 506 | bool operator!=(const BitVector &RHS) const { return !(*this == RHS); } |
| 507 | |
| 508 | /// Intersection, union, disjoint union. |
| 509 | BitVector &operator&=(const BitVector &RHS) { |
| 510 | unsigned ThisWords = Bits.size(); |
| 511 | unsigned RHSWords = RHS.Bits.size(); |
| 512 | unsigned i; |
| 513 | for (i = 0; i != std::min(a: ThisWords, b: RHSWords); ++i) |
| 514 | Bits[i] &= RHS.Bits[i]; |
| 515 | |
| 516 | // Any bits that are just in this bitvector become zero, because they aren't |
| 517 | // in the RHS bit vector. Any words only in RHS are ignored because they |
| 518 | // are already zero in the LHS. |
| 519 | for (; i != ThisWords; ++i) |
| 520 | Bits[i] = 0; |
| 521 | |
| 522 | return *this; |
| 523 | } |
| 524 | |
| 525 | /// reset - Reset bits that are set in RHS. Same as *this &= ~RHS. |
| 526 | BitVector &reset(const BitVector &RHS) { |
| 527 | unsigned ThisWords = Bits.size(); |
| 528 | unsigned RHSWords = RHS.Bits.size(); |
| 529 | for (unsigned i = 0; i != std::min(a: ThisWords, b: RHSWords); ++i) |
| 530 | Bits[i] &= ~RHS.Bits[i]; |
| 531 | return *this; |
| 532 | } |
| 533 | |
| 534 | /// test - Check if (This - RHS) is zero. |
| 535 | /// This is the same as reset(RHS) and any(). |
| 536 | bool test(const BitVector &RHS) const { |
| 537 | unsigned ThisWords = Bits.size(); |
| 538 | unsigned RHSWords = RHS.Bits.size(); |
| 539 | unsigned i; |
| 540 | for (i = 0; i != std::min(a: ThisWords, b: RHSWords); ++i) |
| 541 | if ((Bits[i] & ~RHS.Bits[i]) != 0) |
| 542 | return true; |
| 543 | |
| 544 | for (; i != ThisWords ; ++i) |
| 545 | if (Bits[i] != 0) |
| 546 | return true; |
| 547 | |
| 548 | return false; |
| 549 | } |
| 550 | |
| 551 | template <class F, class... ArgTys> |
| 552 | static BitVector &apply(F &&f, BitVector &Out, BitVector const &Arg, |
| 553 | ArgTys const &...Args) { |
| 554 | assert(llvm::all_of( |
| 555 | std::initializer_list<unsigned>{Args.size()...}, |
| 556 | [&Arg](auto const &BV) { return Arg.size() == BV; }) && |
| 557 | "consistent sizes" ); |
| 558 | Out.resize(N: Arg.size()); |
| 559 | for (size_type I = 0, E = Arg.Bits.size(); I != E; ++I) |
| 560 | Out.Bits[I] = f(Arg.Bits[I], Args.Bits[I]...); |
| 561 | Out.clear_unused_bits(); |
| 562 | return Out; |
| 563 | } |
| 564 | |
| 565 | BitVector &operator|=(const BitVector &RHS) { |
| 566 | if (size() < RHS.size()) |
| 567 | resize(N: RHS.size()); |
| 568 | for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) |
| 569 | Bits[I] |= RHS.Bits[I]; |
| 570 | return *this; |
| 571 | } |
| 572 | |
| 573 | BitVector &operator^=(const BitVector &RHS) { |
| 574 | if (size() < RHS.size()) |
| 575 | resize(N: RHS.size()); |
| 576 | for (size_type I = 0, E = RHS.Bits.size(); I != E; ++I) |
| 577 | Bits[I] ^= RHS.Bits[I]; |
| 578 | return *this; |
| 579 | } |
| 580 | |
| 581 | BitVector &operator>>=(unsigned N) { |
| 582 | assert(N <= Size); |
| 583 | if (LLVM_UNLIKELY(empty() || N == 0)) |
| 584 | return *this; |
| 585 | |
| 586 | unsigned NumWords = Bits.size(); |
| 587 | assert(NumWords >= 1); |
| 588 | |
| 589 | wordShr(Count: N / BITWORD_SIZE); |
| 590 | |
| 591 | unsigned BitDistance = N % BITWORD_SIZE; |
| 592 | if (BitDistance == 0) |
| 593 | return *this; |
| 594 | |
| 595 | // When the shift size is not a multiple of the word size, then we have |
| 596 | // a tricky situation where each word in succession needs to extract some |
| 597 | // of the bits from the next word and or them into this word while |
| 598 | // shifting this word to make room for the new bits. This has to be done |
| 599 | // for every word in the array. |
| 600 | |
| 601 | // Since we're shifting each word right, some bits will fall off the end |
| 602 | // of each word to the right, and empty space will be created on the left. |
| 603 | // The final word in the array will lose bits permanently, so starting at |
| 604 | // the beginning, work forwards shifting each word to the right, and |
| 605 | // OR'ing in the bits from the end of the next word to the beginning of |
| 606 | // the current word. |
| 607 | |
| 608 | // Example: |
| 609 | // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting right |
| 610 | // by 4 bits. |
| 611 | // Step 1: Word[0] >>= 4 ; 0x0ABBCCDD |
| 612 | // Step 2: Word[0] |= 0x10000000 ; 0x1ABBCCDD |
| 613 | // Step 3: Word[1] >>= 4 ; 0x0EEFF001 |
| 614 | // Step 4: Word[1] |= 0x50000000 ; 0x5EEFF001 |
| 615 | // Step 5: Word[2] >>= 4 ; 0x02334455 |
| 616 | // Result: { 0x1ABBCCDD, 0x5EEFF001, 0x02334455 } |
| 617 | const BitWord Mask = maskTrailingOnes<BitWord>(N: BitDistance); |
| 618 | const unsigned LSH = BITWORD_SIZE - BitDistance; |
| 619 | |
| 620 | for (unsigned I = 0; I < NumWords - 1; ++I) { |
| 621 | Bits[I] >>= BitDistance; |
| 622 | Bits[I] |= (Bits[I + 1] & Mask) << LSH; |
| 623 | } |
| 624 | |
| 625 | Bits[NumWords - 1] >>= BitDistance; |
| 626 | |
| 627 | return *this; |
| 628 | } |
| 629 | |
| 630 | BitVector &operator<<=(unsigned N) { |
| 631 | assert(N <= Size); |
| 632 | if (LLVM_UNLIKELY(empty() || N == 0)) |
| 633 | return *this; |
| 634 | |
| 635 | unsigned NumWords = Bits.size(); |
| 636 | assert(NumWords >= 1); |
| 637 | |
| 638 | wordShl(Count: N / BITWORD_SIZE); |
| 639 | |
| 640 | unsigned BitDistance = N % BITWORD_SIZE; |
| 641 | if (BitDistance == 0) |
| 642 | return *this; |
| 643 | |
| 644 | // When the shift size is not a multiple of the word size, then we have |
| 645 | // a tricky situation where each word in succession needs to extract some |
| 646 | // of the bits from the previous word and or them into this word while |
| 647 | // shifting this word to make room for the new bits. This has to be done |
| 648 | // for every word in the array. This is similar to the algorithm outlined |
| 649 | // in operator>>=, but backwards. |
| 650 | |
| 651 | // Since we're shifting each word left, some bits will fall off the end |
| 652 | // of each word to the left, and empty space will be created on the right. |
| 653 | // The first word in the array will lose bits permanently, so starting at |
| 654 | // the end, work backwards shifting each word to the left, and OR'ing |
| 655 | // in the bits from the end of the next word to the beginning of the |
| 656 | // current word. |
| 657 | |
| 658 | // Example: |
| 659 | // Starting with {0xAABBCCDD, 0xEEFF0011, 0x22334455} and shifting left |
| 660 | // by 4 bits. |
| 661 | // Step 1: Word[2] <<= 4 ; 0x23344550 |
| 662 | // Step 2: Word[2] |= 0x0000000E ; 0x2334455E |
| 663 | // Step 3: Word[1] <<= 4 ; 0xEFF00110 |
| 664 | // Step 4: Word[1] |= 0x0000000A ; 0xEFF0011A |
| 665 | // Step 5: Word[0] <<= 4 ; 0xABBCCDD0 |
| 666 | // Result: { 0xABBCCDD0, 0xEFF0011A, 0x2334455E } |
| 667 | const BitWord Mask = maskLeadingOnes<BitWord>(N: BitDistance); |
| 668 | const unsigned RSH = BITWORD_SIZE - BitDistance; |
| 669 | |
| 670 | for (int I = NumWords - 1; I > 0; --I) { |
| 671 | Bits[I] <<= BitDistance; |
| 672 | Bits[I] |= (Bits[I - 1] & Mask) >> RSH; |
| 673 | } |
| 674 | Bits[0] <<= BitDistance; |
| 675 | clear_unused_bits(); |
| 676 | |
| 677 | return *this; |
| 678 | } |
| 679 | |
| 680 | void swap(BitVector &RHS) { |
| 681 | std::swap(LHS&: Bits, RHS&: RHS.Bits); |
| 682 | std::swap(a&: Size, b&: RHS.Size); |
| 683 | } |
| 684 | |
| 685 | void invalid() { |
| 686 | assert(!Size && Bits.empty()); |
| 687 | Size = (unsigned)-1; |
| 688 | } |
| 689 | bool isInvalid() const { return Size == (unsigned)-1; } |
| 690 | |
| 691 | ArrayRef<BitWord> getData() const { return {&Bits[0], Bits.size()}; } |
| 692 | |
| 693 | //===--------------------------------------------------------------------===// |
| 694 | // Portable bit mask operations. |
| 695 | //===--------------------------------------------------------------------===// |
| 696 | // |
| 697 | // These methods all operate on arrays of uint32_t, each holding 32 bits. The |
| 698 | // fixed word size makes it easier to work with literal bit vector constants |
| 699 | // in portable code. |
| 700 | // |
| 701 | // The LSB in each word is the lowest numbered bit. The size of a portable |
| 702 | // bit mask is always a whole multiple of 32 bits. If no bit mask size is |
| 703 | // given, the bit mask is assumed to cover the entire BitVector. |
| 704 | |
| 705 | /// setBitsInMask - Add '1' bits from Mask to this vector. Don't resize. |
| 706 | /// This computes "*this |= Mask". |
| 707 | void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 708 | applyMask<true, false>(Mask, MaskWords); |
| 709 | } |
| 710 | |
| 711 | /// clearBitsInMask - Clear any bits in this vector that are set in Mask. |
| 712 | /// Don't resize. This computes "*this &= ~Mask". |
| 713 | void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 714 | applyMask<false, false>(Mask, MaskWords); |
| 715 | } |
| 716 | |
| 717 | /// setBitsNotInMask - Add a bit to this vector for every '0' bit in Mask. |
| 718 | /// Don't resize. This computes "*this |= ~Mask". |
| 719 | void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 720 | applyMask<true, true>(Mask, MaskWords); |
| 721 | } |
| 722 | |
| 723 | /// clearBitsNotInMask - Clear a bit in this vector for every '0' bit in Mask. |
| 724 | /// Don't resize. This computes "*this &= Mask". |
| 725 | void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) { |
| 726 | applyMask<false, true>(Mask, MaskWords); |
| 727 | } |
| 728 | |
| 729 | private: |
| 730 | /// Perform a logical left shift of \p Count words by moving everything |
| 731 | /// \p Count words to the right in memory. |
| 732 | /// |
| 733 | /// While confusing, words are stored from least significant at Bits[0] to |
| 734 | /// most significant at Bits[NumWords-1]. A logical shift left, however, |
| 735 | /// moves the current least significant bit to a higher logical index, and |
| 736 | /// fills the previous least significant bits with 0. Thus, we actually |
| 737 | /// need to move the bytes of the memory to the right, not to the left. |
| 738 | /// Example: |
| 739 | /// Words = [0xBBBBAAAA, 0xDDDDFFFF, 0x00000000, 0xDDDD0000] |
| 740 | /// represents a BitVector where 0xBBBBAAAA contain the least significant |
| 741 | /// bits. So if we want to shift the BitVector left by 2 words, we need |
| 742 | /// to turn this into 0x00000000 0x00000000 0xBBBBAAAA 0xDDDDFFFF by using a |
| 743 | /// memmove which moves right, not left. |
| 744 | void wordShl(uint32_t Count) { |
| 745 | if (Count == 0) |
| 746 | return; |
| 747 | |
| 748 | uint32_t NumWords = Bits.size(); |
| 749 | |
| 750 | // Since we always move Word-sized chunks of data with src and dest both |
| 751 | // aligned to a word-boundary, we don't need to worry about endianness |
| 752 | // here. |
| 753 | std::copy(first: Bits.begin(), last: Bits.begin() + NumWords - Count, |
| 754 | result: Bits.begin() + Count); |
| 755 | std::fill(first: Bits.begin(), last: Bits.begin() + Count, value: 0); |
| 756 | clear_unused_bits(); |
| 757 | } |
| 758 | |
| 759 | /// Perform a logical right shift of \p Count words by moving those |
| 760 | /// words to the left in memory. See wordShl for more information. |
| 761 | /// |
| 762 | void wordShr(uint32_t Count) { |
| 763 | if (Count == 0) |
| 764 | return; |
| 765 | |
| 766 | uint32_t NumWords = Bits.size(); |
| 767 | |
| 768 | std::copy(first: Bits.begin() + Count, last: Bits.begin() + NumWords, result: Bits.begin()); |
| 769 | std::fill(first: Bits.begin() + NumWords - Count, last: Bits.begin() + NumWords, value: 0); |
| 770 | } |
| 771 | |
| 772 | int next_unset_in_word(int WordIndex, BitWord Word) const { |
| 773 | unsigned Result = WordIndex * BITWORD_SIZE + llvm::countr_one(Value: Word); |
| 774 | return Result < size() ? Result : -1; |
| 775 | } |
| 776 | |
| 777 | unsigned NumBitWords(unsigned S) const { |
| 778 | return (S + BITWORD_SIZE-1) / BITWORD_SIZE; |
| 779 | } |
| 780 | |
| 781 | // Set the unused bits in the high words. |
| 782 | void set_unused_bits(bool t = true) { |
| 783 | // Then set any stray high bits of the last used word. |
| 784 | if (unsigned = Size % BITWORD_SIZE) { |
| 785 | BitWord = ~BitWord(0) << ExtraBits; |
| 786 | if (t) |
| 787 | Bits.back() |= ExtraBitMask; |
| 788 | else |
| 789 | Bits.back() &= ~ExtraBitMask; |
| 790 | } |
| 791 | } |
| 792 | |
| 793 | // Clear the unused bits in the high words. |
| 794 | void clear_unused_bits() { |
| 795 | set_unused_bits(false); |
| 796 | } |
| 797 | |
| 798 | void init_words(bool t) { |
| 799 | std::fill(first: Bits.begin(), last: Bits.end(), value: 0 - (BitWord)t); |
| 800 | } |
| 801 | |
| 802 | template<bool AddBits, bool InvertMask> |
| 803 | void applyMask(const uint32_t *Mask, unsigned MaskWords) { |
| 804 | static_assert(BITWORD_SIZE % 32 == 0, "Unsupported BitWord size." ); |
| 805 | MaskWords = std::min(a: MaskWords, b: (size() + 31) / 32); |
| 806 | const unsigned Scale = BITWORD_SIZE / 32; |
| 807 | unsigned i; |
| 808 | for (i = 0; MaskWords >= Scale; ++i, MaskWords -= Scale) { |
| 809 | BitWord BW = Bits[i]; |
| 810 | // This inner loop should unroll completely when BITWORD_SIZE > 32. |
| 811 | for (unsigned b = 0; b != BITWORD_SIZE; b += 32) { |
| 812 | uint32_t M = *Mask++; |
| 813 | if (InvertMask) M = ~M; |
| 814 | if (AddBits) BW |= BitWord(M) << b; |
| 815 | else BW &= ~(BitWord(M) << b); |
| 816 | } |
| 817 | Bits[i] = BW; |
| 818 | } |
| 819 | for (unsigned b = 0; MaskWords; b += 32, --MaskWords) { |
| 820 | uint32_t M = *Mask++; |
| 821 | if (InvertMask) M = ~M; |
| 822 | if (AddBits) Bits[i] |= BitWord(M) << b; |
| 823 | else Bits[i] &= ~(BitWord(M) << b); |
| 824 | } |
| 825 | if (AddBits) |
| 826 | clear_unused_bits(); |
| 827 | } |
| 828 | |
| 829 | public: |
| 830 | /// Return the size (in bytes) of the bit vector. |
| 831 | size_type getMemorySize() const { return Bits.size() * sizeof(BitWord); } |
| 832 | size_type getBitCapacity() const { return Bits.size() * BITWORD_SIZE; } |
| 833 | }; |
| 834 | |
| 835 | inline BitVector::size_type capacity_in_bytes(const BitVector &X) { |
| 836 | return X.getMemorySize(); |
| 837 | } |
| 838 | |
| 839 | template <> struct DenseMapInfo<BitVector> { |
| 840 | static inline BitVector getEmptyKey() { return {}; } |
| 841 | static inline BitVector getTombstoneKey() { |
| 842 | BitVector V; |
| 843 | V.invalid(); |
| 844 | return V; |
| 845 | } |
| 846 | static unsigned getHashValue(const BitVector &V) { |
| 847 | return DenseMapInfo<std::pair<BitVector::size_type, ArrayRef<uintptr_t>>>:: |
| 848 | getHashValue(PairVal: std::make_pair(x: V.size(), y: V.getData())); |
| 849 | } |
| 850 | static bool isEqual(const BitVector &LHS, const BitVector &RHS) { |
| 851 | if (LHS.isInvalid() || RHS.isInvalid()) |
| 852 | return LHS.isInvalid() == RHS.isInvalid(); |
| 853 | return LHS == RHS; |
| 854 | } |
| 855 | }; |
| 856 | } // end namespace llvm |
| 857 | |
| 858 | namespace std { |
| 859 | /// Implement std::swap in terms of BitVector swap. |
| 860 | inline void swap(llvm::BitVector &LHS, llvm::BitVector &RHS) { LHS.swap(RHS); } |
| 861 | } // end namespace std |
| 862 | |
| 863 | #endif // LLVM_ADT_BITVECTOR_H |
| 864 | |