1 | /* |
2 | * Copyright 2006 The Android Open Source Project |
3 | * |
4 | * Use of this source code is governed by a BSD-style license that can be |
5 | * found in the LICENSE file. |
6 | */ |
7 | |
8 | #ifndef SkMatrix_DEFINED |
9 | #define SkMatrix_DEFINED |
10 | |
11 | #include "include/core/SkPoint.h" |
12 | #include "include/core/SkRect.h" |
13 | #include "include/core/SkScalar.h" |
14 | #include "include/core/SkTypes.h" |
15 | #include "include/private/base/SkMacros.h" |
16 | #include "include/private/base/SkTo.h" |
17 | |
18 | #include <cstdint> |
19 | #include <cstring> |
20 | |
21 | struct SkPoint3; |
22 | struct SkRSXform; |
23 | struct SkSize; |
24 | |
25 | // Remove when clients are updated to live without this |
26 | #define SK_SUPPORT_LEGACY_MATRIX_RECTTORECT |
27 | |
28 | /** |
29 | * When we transform points through a matrix containing perspective (the bottom row is something |
30 | * other than 0,0,1), the bruteforce math can produce confusing results (since we might divide |
31 | * by 0, or a negative w value). By default, methods that map rects and paths will apply |
32 | * perspective clipping, but this can be changed by specifying kYes to those methods. |
33 | */ |
34 | enum class SkApplyPerspectiveClip { |
35 | kNo, //!< Don't pre-clip the geometry before applying the (perspective) matrix |
36 | kYes, //!< Do pre-clip the geometry before applying the (perspective) matrix |
37 | }; |
38 | |
39 | /** \class SkMatrix |
40 | SkMatrix holds a 3x3 matrix for transforming coordinates. This allows mapping |
41 | SkPoint and vectors with translation, scaling, skewing, rotation, and |
42 | perspective. |
43 | |
44 | SkMatrix elements are in row major order. |
45 | SkMatrix constexpr default constructs to identity. |
46 | |
47 | SkMatrix includes a hidden variable that classifies the type of matrix to |
48 | improve performance. SkMatrix is not thread safe unless getType() is called first. |
49 | |
50 | example: https://fiddle.skia.org/c/@Matrix_063 |
51 | */ |
52 | SK_BEGIN_REQUIRE_DENSE |
53 | class SK_API SkMatrix { |
54 | public: |
55 | |
56 | /** Creates an identity SkMatrix: |
57 | |
58 | | 1 0 0 | |
59 | | 0 1 0 | |
60 | | 0 0 1 | |
61 | */ |
62 | constexpr SkMatrix() : SkMatrix(1,0,0, 0,1,0, 0,0,1, kIdentity_Mask | kRectStaysRect_Mask) {} |
63 | |
64 | /** Sets SkMatrix to scale by (sx, sy). Returned matrix is: |
65 | |
66 | | sx 0 0 | |
67 | | 0 sy 0 | |
68 | | 0 0 1 | |
69 | |
70 | @param sx horizontal scale factor |
71 | @param sy vertical scale factor |
72 | @return SkMatrix with scale |
73 | */ |
74 | [[nodiscard]] static SkMatrix Scale(SkScalar sx, SkScalar sy) { |
75 | SkMatrix m; |
76 | m.setScale(sx, sy); |
77 | return m; |
78 | } |
79 | |
80 | /** Sets SkMatrix to translate by (dx, dy). Returned matrix is: |
81 | |
82 | | 1 0 dx | |
83 | | 0 1 dy | |
84 | | 0 0 1 | |
85 | |
86 | @param dx horizontal translation |
87 | @param dy vertical translation |
88 | @return SkMatrix with translation |
89 | */ |
90 | [[nodiscard]] static SkMatrix Translate(SkScalar dx, SkScalar dy) { |
91 | SkMatrix m; |
92 | m.setTranslate(dx, dy); |
93 | return m; |
94 | } |
95 | [[nodiscard]] static SkMatrix Translate(SkVector t) { return Translate(dx: t.x(), dy: t.y()); } |
96 | [[nodiscard]] static SkMatrix Translate(SkIVector t) { return Translate(dx: t.x(), dy: t.y()); } |
97 | |
98 | /** Sets SkMatrix to rotate by |deg| about a pivot point at (0, 0). |
99 | |
100 | @param deg rotation angle in degrees (positive rotates clockwise) |
101 | @return SkMatrix with rotation |
102 | */ |
103 | [[nodiscard]] static SkMatrix RotateDeg(SkScalar deg) { |
104 | SkMatrix m; |
105 | m.setRotate(deg); |
106 | return m; |
107 | } |
108 | [[nodiscard]] static SkMatrix RotateDeg(SkScalar deg, SkPoint pt) { |
109 | SkMatrix m; |
110 | m.setRotate(degrees: deg, px: pt.x(), py: pt.y()); |
111 | return m; |
112 | } |
113 | [[nodiscard]] static SkMatrix RotateRad(SkScalar rad) { |
114 | return RotateDeg(SkRadiansToDegrees(rad)); |
115 | } |
116 | |
117 | /** Sets SkMatrix to skew by (kx, ky) about pivot point (0, 0). |
118 | |
119 | @param kx horizontal skew factor |
120 | @param ky vertical skew factor |
121 | @return SkMatrix with skew |
122 | */ |
123 | [[nodiscard]] static SkMatrix Skew(SkScalar kx, SkScalar ky) { |
124 | SkMatrix m; |
125 | m.setSkew(kx, ky); |
126 | return m; |
127 | } |
128 | |
129 | /** \enum SkMatrix::ScaleToFit |
130 | ScaleToFit describes how SkMatrix is constructed to map one SkRect to another. |
131 | ScaleToFit may allow SkMatrix to have unequal horizontal and vertical scaling, |
132 | or may restrict SkMatrix to square scaling. If restricted, ScaleToFit specifies |
133 | how SkMatrix maps to the side or center of the destination SkRect. |
134 | */ |
135 | enum ScaleToFit { |
136 | kFill_ScaleToFit, //!< scales in x and y to fill destination SkRect |
137 | kStart_ScaleToFit, //!< scales and aligns to left and top |
138 | kCenter_ScaleToFit, //!< scales and aligns to center |
139 | kEnd_ScaleToFit, //!< scales and aligns to right and bottom |
140 | }; |
141 | |
142 | /** Returns SkMatrix set to scale and translate src to dst. ScaleToFit selects |
143 | whether mapping completely fills dst or preserves the aspect ratio, and how to |
144 | align src within dst. Returns the identity SkMatrix if src is empty. If dst is |
145 | empty, returns SkMatrix set to: |
146 | |
147 | | 0 0 0 | |
148 | | 0 0 0 | |
149 | | 0 0 1 | |
150 | |
151 | @param src SkRect to map from |
152 | @param dst SkRect to map to |
153 | @param mode How to handle the mapping |
154 | @return SkMatrix mapping src to dst |
155 | */ |
156 | [[nodiscard]] static SkMatrix RectToRect(const SkRect& src, const SkRect& dst, |
157 | ScaleToFit mode = kFill_ScaleToFit) { |
158 | return MakeRectToRect(src, dst, stf: mode); |
159 | } |
160 | |
161 | /** Sets SkMatrix to: |
162 | |
163 | | scaleX skewX transX | |
164 | | skewY scaleY transY | |
165 | | pers0 pers1 pers2 | |
166 | |
167 | @param scaleX horizontal scale factor |
168 | @param skewX horizontal skew factor |
169 | @param transX horizontal translation |
170 | @param skewY vertical skew factor |
171 | @param scaleY vertical scale factor |
172 | @param transY vertical translation |
173 | @param pers0 input x-axis perspective factor |
174 | @param pers1 input y-axis perspective factor |
175 | @param pers2 perspective scale factor |
176 | @return SkMatrix constructed from parameters |
177 | */ |
178 | [[nodiscard]] static SkMatrix MakeAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
179 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
180 | SkScalar pers0, SkScalar pers1, SkScalar pers2) { |
181 | SkMatrix m; |
182 | m.setAll(scaleX, skewX, transX, skewY, scaleY, transY, persp0: pers0, persp1: pers1, persp2: pers2); |
183 | return m; |
184 | } |
185 | |
186 | /** \enum SkMatrix::TypeMask |
187 | Enum of bit fields for mask returned by getType(). |
188 | Used to identify the complexity of SkMatrix, to optimize performance. |
189 | */ |
190 | enum TypeMask { |
191 | kIdentity_Mask = 0, //!< identity SkMatrix; all bits clear |
192 | kTranslate_Mask = 0x01, //!< translation SkMatrix |
193 | kScale_Mask = 0x02, //!< scale SkMatrix |
194 | kAffine_Mask = 0x04, //!< skew or rotate SkMatrix |
195 | kPerspective_Mask = 0x08, //!< perspective SkMatrix |
196 | }; |
197 | |
198 | /** Returns a bit field describing the transformations the matrix may |
199 | perform. The bit field is computed conservatively, so it may include |
200 | false positives. For example, when kPerspective_Mask is set, all |
201 | other bits are set. |
202 | |
203 | @return kIdentity_Mask, or combinations of: kTranslate_Mask, kScale_Mask, |
204 | kAffine_Mask, kPerspective_Mask |
205 | */ |
206 | TypeMask getType() const { |
207 | if (fTypeMask & kUnknown_Mask) { |
208 | fTypeMask = this->computeTypeMask(); |
209 | } |
210 | // only return the public masks |
211 | return (TypeMask)(fTypeMask & 0xF); |
212 | } |
213 | |
214 | /** Returns true if SkMatrix is identity. Identity matrix is: |
215 | |
216 | | 1 0 0 | |
217 | | 0 1 0 | |
218 | | 0 0 1 | |
219 | |
220 | @return true if SkMatrix has no effect |
221 | */ |
222 | bool isIdentity() const { |
223 | return this->getType() == 0; |
224 | } |
225 | |
226 | /** Returns true if SkMatrix at most scales and translates. SkMatrix may be identity, |
227 | contain only scale elements, only translate elements, or both. SkMatrix form is: |
228 | |
229 | | scale-x 0 translate-x | |
230 | | 0 scale-y translate-y | |
231 | | 0 0 1 | |
232 | |
233 | @return true if SkMatrix is identity; or scales, translates, or both |
234 | */ |
235 | bool isScaleTranslate() const { |
236 | return !(this->getType() & ~(kScale_Mask | kTranslate_Mask)); |
237 | } |
238 | |
239 | /** Returns true if SkMatrix is identity, or translates. SkMatrix form is: |
240 | |
241 | | 1 0 translate-x | |
242 | | 0 1 translate-y | |
243 | | 0 0 1 | |
244 | |
245 | @return true if SkMatrix is identity, or translates |
246 | */ |
247 | bool isTranslate() const { return !(this->getType() & ~(kTranslate_Mask)); } |
248 | |
249 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
250 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
251 | cases, SkMatrix may also have translation. SkMatrix form is either: |
252 | |
253 | | scale-x 0 translate-x | |
254 | | 0 scale-y translate-y | |
255 | | 0 0 1 | |
256 | |
257 | or |
258 | |
259 | | 0 rotate-x translate-x | |
260 | | rotate-y 0 translate-y | |
261 | | 0 0 1 | |
262 | |
263 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
264 | |
265 | Also called preservesAxisAlignment(); use the one that provides better inline |
266 | documentation. |
267 | |
268 | @return true if SkMatrix maps one SkRect into another |
269 | */ |
270 | bool rectStaysRect() const { |
271 | if (fTypeMask & kUnknown_Mask) { |
272 | fTypeMask = this->computeTypeMask(); |
273 | } |
274 | return (fTypeMask & kRectStaysRect_Mask) != 0; |
275 | } |
276 | |
277 | /** Returns true SkMatrix maps SkRect to another SkRect. If true, SkMatrix is identity, |
278 | or scales, or rotates a multiple of 90 degrees, or mirrors on axes. In all |
279 | cases, SkMatrix may also have translation. SkMatrix form is either: |
280 | |
281 | | scale-x 0 translate-x | |
282 | | 0 scale-y translate-y | |
283 | | 0 0 1 | |
284 | |
285 | or |
286 | |
287 | | 0 rotate-x translate-x | |
288 | | rotate-y 0 translate-y | |
289 | | 0 0 1 | |
290 | |
291 | for non-zero values of scale-x, scale-y, rotate-x, and rotate-y. |
292 | |
293 | Also called rectStaysRect(); use the one that provides better inline |
294 | documentation. |
295 | |
296 | @return true if SkMatrix maps one SkRect into another |
297 | */ |
298 | bool preservesAxisAlignment() const { return this->rectStaysRect(); } |
299 | |
300 | /** Returns true if the matrix contains perspective elements. SkMatrix form is: |
301 | |
302 | | -- -- -- | |
303 | | -- -- -- | |
304 | | perspective-x perspective-y perspective-scale | |
305 | |
306 | where perspective-x or perspective-y is non-zero, or perspective-scale is |
307 | not one. All other elements may have any value. |
308 | |
309 | @return true if SkMatrix is in most general form |
310 | */ |
311 | bool hasPerspective() const { |
312 | return SkToBool(x: this->getPerspectiveTypeMaskOnly() & |
313 | kPerspective_Mask); |
314 | } |
315 | |
316 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
317 | uniform scale. |
318 | Returns false if SkMatrix contains different scales, skewing, perspective, or |
319 | degenerate forms that collapse to a line or point. |
320 | |
321 | Describes that the SkMatrix makes rendering with and without the matrix are |
322 | visually alike; a transformed circle remains a circle. Mathematically, this is |
323 | referred to as similarity of a Euclidean space, or a similarity transformation. |
324 | |
325 | Preserves right angles, keeping the arms of the angle equal lengths. |
326 | |
327 | @param tol to be deprecated |
328 | @return true if SkMatrix only rotates, uniformly scales, translates |
329 | |
330 | example: https://fiddle.skia.org/c/@Matrix_isSimilarity |
331 | */ |
332 | bool isSimilarity(SkScalar tol = SK_ScalarNearlyZero) const; |
333 | |
334 | /** Returns true if SkMatrix contains only translation, rotation, reflection, and |
335 | scale. Scale may differ along rotated axes. |
336 | Returns false if SkMatrix skewing, perspective, or degenerate forms that collapse |
337 | to a line or point. |
338 | |
339 | Preserves right angles, but not requiring that the arms of the angle |
340 | retain equal lengths. |
341 | |
342 | @param tol to be deprecated |
343 | @return true if SkMatrix only rotates, scales, translates |
344 | |
345 | example: https://fiddle.skia.org/c/@Matrix_preservesRightAngles |
346 | */ |
347 | bool preservesRightAngles(SkScalar tol = SK_ScalarNearlyZero) const; |
348 | |
349 | /** SkMatrix organizes its values in row-major order. These members correspond to |
350 | each value in SkMatrix. |
351 | */ |
352 | static constexpr int kMScaleX = 0; //!< horizontal scale factor |
353 | static constexpr int kMSkewX = 1; //!< horizontal skew factor |
354 | static constexpr int kMTransX = 2; //!< horizontal translation |
355 | static constexpr int kMSkewY = 3; //!< vertical skew factor |
356 | static constexpr int kMScaleY = 4; //!< vertical scale factor |
357 | static constexpr int kMTransY = 5; //!< vertical translation |
358 | static constexpr int kMPersp0 = 6; //!< input x perspective factor |
359 | static constexpr int kMPersp1 = 7; //!< input y perspective factor |
360 | static constexpr int kMPersp2 = 8; //!< perspective bias |
361 | |
362 | /** Affine arrays are in column-major order to match the matrix used by |
363 | PDF and XPS. |
364 | */ |
365 | static constexpr int kAScaleX = 0; //!< horizontal scale factor |
366 | static constexpr int kASkewY = 1; //!< vertical skew factor |
367 | static constexpr int kASkewX = 2; //!< horizontal skew factor |
368 | static constexpr int kAScaleY = 3; //!< vertical scale factor |
369 | static constexpr int kATransX = 4; //!< horizontal translation |
370 | static constexpr int kATransY = 5; //!< vertical translation |
371 | |
372 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
373 | defined. |
374 | |
375 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
376 | kMPersp0, kMPersp1, kMPersp2 |
377 | @return value corresponding to index |
378 | */ |
379 | SkScalar operator[](int index) const { |
380 | SkASSERT((unsigned)index < 9); |
381 | return fMat[index]; |
382 | } |
383 | |
384 | /** Returns one matrix value. Asserts if index is out of range and SK_DEBUG is |
385 | defined. |
386 | |
387 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
388 | kMPersp0, kMPersp1, kMPersp2 |
389 | @return value corresponding to index |
390 | */ |
391 | SkScalar get(int index) const { |
392 | SkASSERT((unsigned)index < 9); |
393 | return fMat[index]; |
394 | } |
395 | |
396 | /** Returns one matrix value from a particular row/column. Asserts if index is out |
397 | of range and SK_DEBUG is defined. |
398 | |
399 | @param r matrix row to fetch |
400 | @param c matrix column to fetch |
401 | @return value at the given matrix position |
402 | */ |
403 | SkScalar rc(int r, int c) const { |
404 | SkASSERT(r >= 0 && r <= 2); |
405 | SkASSERT(c >= 0 && c <= 2); |
406 | return fMat[r*3 + c]; |
407 | } |
408 | |
409 | /** Returns scale factor multiplied by x-axis input, contributing to x-axis output. |
410 | With mapPoints(), scales SkPoint along the x-axis. |
411 | |
412 | @return horizontal scale factor |
413 | */ |
414 | SkScalar getScaleX() const { return fMat[kMScaleX]; } |
415 | |
416 | /** Returns scale factor multiplied by y-axis input, contributing to y-axis output. |
417 | With mapPoints(), scales SkPoint along the y-axis. |
418 | |
419 | @return vertical scale factor |
420 | */ |
421 | SkScalar getScaleY() const { return fMat[kMScaleY]; } |
422 | |
423 | /** Returns scale factor multiplied by x-axis input, contributing to y-axis output. |
424 | With mapPoints(), skews SkPoint along the y-axis. |
425 | Skewing both axes can rotate SkPoint. |
426 | |
427 | @return vertical skew factor |
428 | */ |
429 | SkScalar getSkewY() const { return fMat[kMSkewY]; } |
430 | |
431 | /** Returns scale factor multiplied by y-axis input, contributing to x-axis output. |
432 | With mapPoints(), skews SkPoint along the x-axis. |
433 | Skewing both axes can rotate SkPoint. |
434 | |
435 | @return horizontal scale factor |
436 | */ |
437 | SkScalar getSkewX() const { return fMat[kMSkewX]; } |
438 | |
439 | /** Returns translation contributing to x-axis output. |
440 | With mapPoints(), moves SkPoint along the x-axis. |
441 | |
442 | @return horizontal translation factor |
443 | */ |
444 | SkScalar getTranslateX() const { return fMat[kMTransX]; } |
445 | |
446 | /** Returns translation contributing to y-axis output. |
447 | With mapPoints(), moves SkPoint along the y-axis. |
448 | |
449 | @return vertical translation factor |
450 | */ |
451 | SkScalar getTranslateY() const { return fMat[kMTransY]; } |
452 | |
453 | /** Returns factor scaling input x-axis relative to input y-axis. |
454 | |
455 | @return input x-axis perspective factor |
456 | */ |
457 | SkScalar getPerspX() const { return fMat[kMPersp0]; } |
458 | |
459 | /** Returns factor scaling input y-axis relative to input x-axis. |
460 | |
461 | @return input y-axis perspective factor |
462 | */ |
463 | SkScalar getPerspY() const { return fMat[kMPersp1]; } |
464 | |
465 | /** Returns writable SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
466 | defined. Clears internal cache anticipating that caller will change SkMatrix value. |
467 | |
468 | Next call to read SkMatrix state may recompute cache; subsequent writes to SkMatrix |
469 | value must be followed by dirtyMatrixTypeCache(). |
470 | |
471 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
472 | kMPersp0, kMPersp1, kMPersp2 |
473 | @return writable value corresponding to index |
474 | */ |
475 | SkScalar& operator[](int index) { |
476 | SkASSERT((unsigned)index < 9); |
477 | this->setTypeMask(kUnknown_Mask); |
478 | return fMat[index]; |
479 | } |
480 | |
481 | /** Sets SkMatrix value. Asserts if index is out of range and SK_DEBUG is |
482 | defined. Safer than operator[]; internal cache is always maintained. |
483 | |
484 | @param index one of: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
485 | kMPersp0, kMPersp1, kMPersp2 |
486 | @param value scalar to store in SkMatrix |
487 | */ |
488 | SkMatrix& set(int index, SkScalar value) { |
489 | SkASSERT((unsigned)index < 9); |
490 | fMat[index] = value; |
491 | this->setTypeMask(kUnknown_Mask); |
492 | return *this; |
493 | } |
494 | |
495 | /** Sets horizontal scale factor. |
496 | |
497 | @param v horizontal scale factor to store |
498 | */ |
499 | SkMatrix& setScaleX(SkScalar v) { return this->set(index: kMScaleX, value: v); } |
500 | |
501 | /** Sets vertical scale factor. |
502 | |
503 | @param v vertical scale factor to store |
504 | */ |
505 | SkMatrix& setScaleY(SkScalar v) { return this->set(index: kMScaleY, value: v); } |
506 | |
507 | /** Sets vertical skew factor. |
508 | |
509 | @param v vertical skew factor to store |
510 | */ |
511 | SkMatrix& setSkewY(SkScalar v) { return this->set(index: kMSkewY, value: v); } |
512 | |
513 | /** Sets horizontal skew factor. |
514 | |
515 | @param v horizontal skew factor to store |
516 | */ |
517 | SkMatrix& setSkewX(SkScalar v) { return this->set(index: kMSkewX, value: v); } |
518 | |
519 | /** Sets horizontal translation. |
520 | |
521 | @param v horizontal translation to store |
522 | */ |
523 | SkMatrix& setTranslateX(SkScalar v) { return this->set(index: kMTransX, value: v); } |
524 | |
525 | /** Sets vertical translation. |
526 | |
527 | @param v vertical translation to store |
528 | */ |
529 | SkMatrix& setTranslateY(SkScalar v) { return this->set(index: kMTransY, value: v); } |
530 | |
531 | /** Sets input x-axis perspective factor, which causes mapXY() to vary input x-axis values |
532 | inversely proportional to input y-axis values. |
533 | |
534 | @param v perspective factor |
535 | */ |
536 | SkMatrix& setPerspX(SkScalar v) { return this->set(index: kMPersp0, value: v); } |
537 | |
538 | /** Sets input y-axis perspective factor, which causes mapXY() to vary input y-axis values |
539 | inversely proportional to input x-axis values. |
540 | |
541 | @param v perspective factor |
542 | */ |
543 | SkMatrix& setPerspY(SkScalar v) { return this->set(index: kMPersp1, value: v); } |
544 | |
545 | /** Sets all values from parameters. Sets matrix to: |
546 | |
547 | | scaleX skewX transX | |
548 | | skewY scaleY transY | |
549 | | persp0 persp1 persp2 | |
550 | |
551 | @param scaleX horizontal scale factor to store |
552 | @param skewX horizontal skew factor to store |
553 | @param transX horizontal translation to store |
554 | @param skewY vertical skew factor to store |
555 | @param scaleY vertical scale factor to store |
556 | @param transY vertical translation to store |
557 | @param persp0 input x-axis values perspective factor to store |
558 | @param persp1 input y-axis values perspective factor to store |
559 | @param persp2 perspective scale factor to store |
560 | */ |
561 | SkMatrix& setAll(SkScalar scaleX, SkScalar skewX, SkScalar transX, |
562 | SkScalar skewY, SkScalar scaleY, SkScalar transY, |
563 | SkScalar persp0, SkScalar persp1, SkScalar persp2) { |
564 | fMat[kMScaleX] = scaleX; |
565 | fMat[kMSkewX] = skewX; |
566 | fMat[kMTransX] = transX; |
567 | fMat[kMSkewY] = skewY; |
568 | fMat[kMScaleY] = scaleY; |
569 | fMat[kMTransY] = transY; |
570 | fMat[kMPersp0] = persp0; |
571 | fMat[kMPersp1] = persp1; |
572 | fMat[kMPersp2] = persp2; |
573 | this->setTypeMask(kUnknown_Mask); |
574 | return *this; |
575 | } |
576 | |
577 | /** Copies nine scalar values contained by SkMatrix into buffer, in member value |
578 | ascending order: kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, |
579 | kMPersp0, kMPersp1, kMPersp2. |
580 | |
581 | @param buffer storage for nine scalar values |
582 | */ |
583 | void get9(SkScalar buffer[9]) const { |
584 | memcpy(dest: buffer, src: fMat, n: 9 * sizeof(SkScalar)); |
585 | } |
586 | |
587 | /** Sets SkMatrix to nine scalar values in buffer, in member value ascending order: |
588 | kMScaleX, kMSkewX, kMTransX, kMSkewY, kMScaleY, kMTransY, kMPersp0, kMPersp1, |
589 | kMPersp2. |
590 | |
591 | Sets matrix to: |
592 | |
593 | | buffer[0] buffer[1] buffer[2] | |
594 | | buffer[3] buffer[4] buffer[5] | |
595 | | buffer[6] buffer[7] buffer[8] | |
596 | |
597 | In the future, set9 followed by get9 may not return the same values. Since SkMatrix |
598 | maps non-homogeneous coordinates, scaling all nine values produces an equivalent |
599 | transformation, possibly improving precision. |
600 | |
601 | @param buffer nine scalar values |
602 | */ |
603 | SkMatrix& set9(const SkScalar buffer[9]); |
604 | |
605 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
606 | |
607 | | 1 0 0 | |
608 | | 0 1 0 | |
609 | | 0 0 1 | |
610 | |
611 | Also called setIdentity(); use the one that provides better inline |
612 | documentation. |
613 | */ |
614 | SkMatrix& reset(); |
615 | |
616 | /** Sets SkMatrix to identity; which has no effect on mapped SkPoint. Sets SkMatrix to: |
617 | |
618 | | 1 0 0 | |
619 | | 0 1 0 | |
620 | | 0 0 1 | |
621 | |
622 | Also called reset(); use the one that provides better inline |
623 | documentation. |
624 | */ |
625 | SkMatrix& setIdentity() { return this->reset(); } |
626 | |
627 | /** Sets SkMatrix to translate by (dx, dy). |
628 | |
629 | @param dx horizontal translation |
630 | @param dy vertical translation |
631 | */ |
632 | SkMatrix& setTranslate(SkScalar dx, SkScalar dy); |
633 | |
634 | /** Sets SkMatrix to translate by (v.fX, v.fY). |
635 | |
636 | @param v vector containing horizontal and vertical translation |
637 | */ |
638 | SkMatrix& setTranslate(const SkVector& v) { return this->setTranslate(dx: v.fX, dy: v.fY); } |
639 | |
640 | /** Sets SkMatrix to scale by sx and sy, about a pivot point at (px, py). |
641 | The pivot point is unchanged when mapped with SkMatrix. |
642 | |
643 | @param sx horizontal scale factor |
644 | @param sy vertical scale factor |
645 | @param px pivot on x-axis |
646 | @param py pivot on y-axis |
647 | */ |
648 | SkMatrix& setScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
649 | |
650 | /** Sets SkMatrix to scale by sx and sy about at pivot point at (0, 0). |
651 | |
652 | @param sx horizontal scale factor |
653 | @param sy vertical scale factor |
654 | */ |
655 | SkMatrix& setScale(SkScalar sx, SkScalar sy); |
656 | |
657 | /** Sets SkMatrix to rotate by degrees about a pivot point at (px, py). |
658 | The pivot point is unchanged when mapped with SkMatrix. |
659 | |
660 | Positive degrees rotates clockwise. |
661 | |
662 | @param degrees angle of axes relative to upright axes |
663 | @param px pivot on x-axis |
664 | @param py pivot on y-axis |
665 | */ |
666 | SkMatrix& setRotate(SkScalar degrees, SkScalar px, SkScalar py); |
667 | |
668 | /** Sets SkMatrix to rotate by degrees about a pivot point at (0, 0). |
669 | Positive degrees rotates clockwise. |
670 | |
671 | @param degrees angle of axes relative to upright axes |
672 | */ |
673 | SkMatrix& setRotate(SkScalar degrees); |
674 | |
675 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (px, py). |
676 | The pivot point is unchanged when mapped with SkMatrix. |
677 | |
678 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
679 | Vector length specifies scale. |
680 | |
681 | @param sinValue rotation vector x-axis component |
682 | @param cosValue rotation vector y-axis component |
683 | @param px pivot on x-axis |
684 | @param py pivot on y-axis |
685 | */ |
686 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue, |
687 | SkScalar px, SkScalar py); |
688 | |
689 | /** Sets SkMatrix to rotate by sinValue and cosValue, about a pivot point at (0, 0). |
690 | |
691 | Vector (sinValue, cosValue) describes the angle of rotation relative to (0, 1). |
692 | Vector length specifies scale. |
693 | |
694 | @param sinValue rotation vector x-axis component |
695 | @param cosValue rotation vector y-axis component |
696 | */ |
697 | SkMatrix& setSinCos(SkScalar sinValue, SkScalar cosValue); |
698 | |
699 | /** Sets SkMatrix to rotate, scale, and translate using a compressed matrix form. |
700 | |
701 | Vector (rsxForm.fSSin, rsxForm.fSCos) describes the angle of rotation relative |
702 | to (0, 1). Vector length specifies scale. Mapped point is rotated and scaled |
703 | by vector, then translated by (rsxForm.fTx, rsxForm.fTy). |
704 | |
705 | @param rsxForm compressed SkRSXform matrix |
706 | @return reference to SkMatrix |
707 | |
708 | example: https://fiddle.skia.org/c/@Matrix_setRSXform |
709 | */ |
710 | SkMatrix& setRSXform(const SkRSXform& rsxForm); |
711 | |
712 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (px, py). |
713 | The pivot point is unchanged when mapped with SkMatrix. |
714 | |
715 | @param kx horizontal skew factor |
716 | @param ky vertical skew factor |
717 | @param px pivot on x-axis |
718 | @param py pivot on y-axis |
719 | */ |
720 | SkMatrix& setSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
721 | |
722 | /** Sets SkMatrix to skew by kx and ky, about a pivot point at (0, 0). |
723 | |
724 | @param kx horizontal skew factor |
725 | @param ky vertical skew factor |
726 | */ |
727 | SkMatrix& setSkew(SkScalar kx, SkScalar ky); |
728 | |
729 | /** Sets SkMatrix to SkMatrix a multiplied by SkMatrix b. Either a or b may be this. |
730 | |
731 | Given: |
732 | |
733 | | A B C | | J K L | |
734 | a = | D E F |, b = | M N O | |
735 | | G H I | | P Q R | |
736 | |
737 | sets SkMatrix to: |
738 | |
739 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
740 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
741 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
742 | |
743 | @param a SkMatrix on left side of multiply expression |
744 | @param b SkMatrix on right side of multiply expression |
745 | */ |
746 | SkMatrix& setConcat(const SkMatrix& a, const SkMatrix& b); |
747 | |
748 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from translation (dx, dy). |
749 | This can be thought of as moving the point to be mapped before applying SkMatrix. |
750 | |
751 | Given: |
752 | |
753 | | A B C | | 1 0 dx | |
754 | Matrix = | D E F |, T(dx, dy) = | 0 1 dy | |
755 | | G H I | | 0 0 1 | |
756 | |
757 | sets SkMatrix to: |
758 | |
759 | | A B C | | 1 0 dx | | A B A*dx+B*dy+C | |
760 | Matrix * T(dx, dy) = | D E F | | 0 1 dy | = | D E D*dx+E*dy+F | |
761 | | G H I | | 0 0 1 | | G H G*dx+H*dy+I | |
762 | |
763 | @param dx x-axis translation before applying SkMatrix |
764 | @param dy y-axis translation before applying SkMatrix |
765 | */ |
766 | SkMatrix& preTranslate(SkScalar dx, SkScalar dy); |
767 | |
768 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
769 | about pivot point (px, py). |
770 | This can be thought of as scaling about a pivot point before applying SkMatrix. |
771 | |
772 | Given: |
773 | |
774 | | A B C | | sx 0 dx | |
775 | Matrix = | D E F |, S(sx, sy, px, py) = | 0 sy dy | |
776 | | G H I | | 0 0 1 | |
777 | |
778 | where |
779 | |
780 | dx = px - sx * px |
781 | dy = py - sy * py |
782 | |
783 | sets SkMatrix to: |
784 | |
785 | | A B C | | sx 0 dx | | A*sx B*sy A*dx+B*dy+C | |
786 | Matrix * S(sx, sy, px, py) = | D E F | | 0 sy dy | = | D*sx E*sy D*dx+E*dy+F | |
787 | | G H I | | 0 0 1 | | G*sx H*sy G*dx+H*dy+I | |
788 | |
789 | @param sx horizontal scale factor |
790 | @param sy vertical scale factor |
791 | @param px pivot on x-axis |
792 | @param py pivot on y-axis |
793 | */ |
794 | SkMatrix& preScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
795 | |
796 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from scaling by (sx, sy) |
797 | about pivot point (0, 0). |
798 | This can be thought of as scaling about the origin before applying SkMatrix. |
799 | |
800 | Given: |
801 | |
802 | | A B C | | sx 0 0 | |
803 | Matrix = | D E F |, S(sx, sy) = | 0 sy 0 | |
804 | | G H I | | 0 0 1 | |
805 | |
806 | sets SkMatrix to: |
807 | |
808 | | A B C | | sx 0 0 | | A*sx B*sy C | |
809 | Matrix * S(sx, sy) = | D E F | | 0 sy 0 | = | D*sx E*sy F | |
810 | | G H I | | 0 0 1 | | G*sx H*sy I | |
811 | |
812 | @param sx horizontal scale factor |
813 | @param sy vertical scale factor |
814 | */ |
815 | SkMatrix& preScale(SkScalar sx, SkScalar sy); |
816 | |
817 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
818 | about pivot point (px, py). |
819 | This can be thought of as rotating about a pivot point before applying SkMatrix. |
820 | |
821 | Positive degrees rotates clockwise. |
822 | |
823 | Given: |
824 | |
825 | | A B C | | c -s dx | |
826 | Matrix = | D E F |, R(degrees, px, py) = | s c dy | |
827 | | G H I | | 0 0 1 | |
828 | |
829 | where |
830 | |
831 | c = cos(degrees) |
832 | s = sin(degrees) |
833 | dx = s * py + (1 - c) * px |
834 | dy = -s * px + (1 - c) * py |
835 | |
836 | sets SkMatrix to: |
837 | |
838 | | A B C | | c -s dx | | Ac+Bs -As+Bc A*dx+B*dy+C | |
839 | Matrix * R(degrees, px, py) = | D E F | | s c dy | = | Dc+Es -Ds+Ec D*dx+E*dy+F | |
840 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc G*dx+H*dy+I | |
841 | |
842 | @param degrees angle of axes relative to upright axes |
843 | @param px pivot on x-axis |
844 | @param py pivot on y-axis |
845 | */ |
846 | SkMatrix& preRotate(SkScalar degrees, SkScalar px, SkScalar py); |
847 | |
848 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from rotating by degrees |
849 | about pivot point (0, 0). |
850 | This can be thought of as rotating about the origin before applying SkMatrix. |
851 | |
852 | Positive degrees rotates clockwise. |
853 | |
854 | Given: |
855 | |
856 | | A B C | | c -s 0 | |
857 | Matrix = | D E F |, R(degrees, px, py) = | s c 0 | |
858 | | G H I | | 0 0 1 | |
859 | |
860 | where |
861 | |
862 | c = cos(degrees) |
863 | s = sin(degrees) |
864 | |
865 | sets SkMatrix to: |
866 | |
867 | | A B C | | c -s 0 | | Ac+Bs -As+Bc C | |
868 | Matrix * R(degrees, px, py) = | D E F | | s c 0 | = | Dc+Es -Ds+Ec F | |
869 | | G H I | | 0 0 1 | | Gc+Hs -Gs+Hc I | |
870 | |
871 | @param degrees angle of axes relative to upright axes |
872 | */ |
873 | SkMatrix& preRotate(SkScalar degrees); |
874 | |
875 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
876 | about pivot point (px, py). |
877 | This can be thought of as skewing about a pivot point before applying SkMatrix. |
878 | |
879 | Given: |
880 | |
881 | | A B C | | 1 kx dx | |
882 | Matrix = | D E F |, K(kx, ky, px, py) = | ky 1 dy | |
883 | | G H I | | 0 0 1 | |
884 | |
885 | where |
886 | |
887 | dx = -kx * py |
888 | dy = -ky * px |
889 | |
890 | sets SkMatrix to: |
891 | |
892 | | A B C | | 1 kx dx | | A+B*ky A*kx+B A*dx+B*dy+C | |
893 | Matrix * K(kx, ky, px, py) = | D E F | | ky 1 dy | = | D+E*ky D*kx+E D*dx+E*dy+F | |
894 | | G H I | | 0 0 1 | | G+H*ky G*kx+H G*dx+H*dy+I | |
895 | |
896 | @param kx horizontal skew factor |
897 | @param ky vertical skew factor |
898 | @param px pivot on x-axis |
899 | @param py pivot on y-axis |
900 | */ |
901 | SkMatrix& preSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
902 | |
903 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix constructed from skewing by (kx, ky) |
904 | about pivot point (0, 0). |
905 | This can be thought of as skewing about the origin before applying SkMatrix. |
906 | |
907 | Given: |
908 | |
909 | | A B C | | 1 kx 0 | |
910 | Matrix = | D E F |, K(kx, ky) = | ky 1 0 | |
911 | | G H I | | 0 0 1 | |
912 | |
913 | sets SkMatrix to: |
914 | |
915 | | A B C | | 1 kx 0 | | A+B*ky A*kx+B C | |
916 | Matrix * K(kx, ky) = | D E F | | ky 1 0 | = | D+E*ky D*kx+E F | |
917 | | G H I | | 0 0 1 | | G+H*ky G*kx+H I | |
918 | |
919 | @param kx horizontal skew factor |
920 | @param ky vertical skew factor |
921 | */ |
922 | SkMatrix& preSkew(SkScalar kx, SkScalar ky); |
923 | |
924 | /** Sets SkMatrix to SkMatrix multiplied by SkMatrix other. |
925 | This can be thought of mapping by other before applying SkMatrix. |
926 | |
927 | Given: |
928 | |
929 | | A B C | | J K L | |
930 | Matrix = | D E F |, other = | M N O | |
931 | | G H I | | P Q R | |
932 | |
933 | sets SkMatrix to: |
934 | |
935 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
936 | Matrix * other = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
937 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
938 | |
939 | @param other SkMatrix on right side of multiply expression |
940 | */ |
941 | SkMatrix& preConcat(const SkMatrix& other); |
942 | |
943 | /** Sets SkMatrix to SkMatrix constructed from translation (dx, dy) multiplied by SkMatrix. |
944 | This can be thought of as moving the point to be mapped after applying SkMatrix. |
945 | |
946 | Given: |
947 | |
948 | | J K L | | 1 0 dx | |
949 | Matrix = | M N O |, T(dx, dy) = | 0 1 dy | |
950 | | P Q R | | 0 0 1 | |
951 | |
952 | sets SkMatrix to: |
953 | |
954 | | 1 0 dx | | J K L | | J+dx*P K+dx*Q L+dx*R | |
955 | T(dx, dy) * Matrix = | 0 1 dy | | M N O | = | M+dy*P N+dy*Q O+dy*R | |
956 | | 0 0 1 | | P Q R | | P Q R | |
957 | |
958 | @param dx x-axis translation after applying SkMatrix |
959 | @param dy y-axis translation after applying SkMatrix |
960 | */ |
961 | SkMatrix& postTranslate(SkScalar dx, SkScalar dy); |
962 | |
963 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
964 | (px, py), multiplied by SkMatrix. |
965 | This can be thought of as scaling about a pivot point after applying SkMatrix. |
966 | |
967 | Given: |
968 | |
969 | | J K L | | sx 0 dx | |
970 | Matrix = | M N O |, S(sx, sy, px, py) = | 0 sy dy | |
971 | | P Q R | | 0 0 1 | |
972 | |
973 | where |
974 | |
975 | dx = px - sx * px |
976 | dy = py - sy * py |
977 | |
978 | sets SkMatrix to: |
979 | |
980 | | sx 0 dx | | J K L | | sx*J+dx*P sx*K+dx*Q sx*L+dx+R | |
981 | S(sx, sy, px, py) * Matrix = | 0 sy dy | | M N O | = | sy*M+dy*P sy*N+dy*Q sy*O+dy*R | |
982 | | 0 0 1 | | P Q R | | P Q R | |
983 | |
984 | @param sx horizontal scale factor |
985 | @param sy vertical scale factor |
986 | @param px pivot on x-axis |
987 | @param py pivot on y-axis |
988 | */ |
989 | SkMatrix& postScale(SkScalar sx, SkScalar sy, SkScalar px, SkScalar py); |
990 | |
991 | /** Sets SkMatrix to SkMatrix constructed from scaling by (sx, sy) about pivot point |
992 | (0, 0), multiplied by SkMatrix. |
993 | This can be thought of as scaling about the origin after applying SkMatrix. |
994 | |
995 | Given: |
996 | |
997 | | J K L | | sx 0 0 | |
998 | Matrix = | M N O |, S(sx, sy) = | 0 sy 0 | |
999 | | P Q R | | 0 0 1 | |
1000 | |
1001 | sets SkMatrix to: |
1002 | |
1003 | | sx 0 0 | | J K L | | sx*J sx*K sx*L | |
1004 | S(sx, sy) * Matrix = | 0 sy 0 | | M N O | = | sy*M sy*N sy*O | |
1005 | | 0 0 1 | | P Q R | | P Q R | |
1006 | |
1007 | @param sx horizontal scale factor |
1008 | @param sy vertical scale factor |
1009 | */ |
1010 | SkMatrix& postScale(SkScalar sx, SkScalar sy); |
1011 | |
1012 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
1013 | (px, py), multiplied by SkMatrix. |
1014 | This can be thought of as rotating about a pivot point after applying SkMatrix. |
1015 | |
1016 | Positive degrees rotates clockwise. |
1017 | |
1018 | Given: |
1019 | |
1020 | | J K L | | c -s dx | |
1021 | Matrix = | M N O |, R(degrees, px, py) = | s c dy | |
1022 | | P Q R | | 0 0 1 | |
1023 | |
1024 | where |
1025 | |
1026 | c = cos(degrees) |
1027 | s = sin(degrees) |
1028 | dx = s * py + (1 - c) * px |
1029 | dy = -s * px + (1 - c) * py |
1030 | |
1031 | sets SkMatrix to: |
1032 | |
1033 | |c -s dx| |J K L| |cJ-sM+dx*P cK-sN+dx*Q cL-sO+dx+R| |
1034 | R(degrees, px, py) * Matrix = |s c dy| |M N O| = |sJ+cM+dy*P sK+cN+dy*Q sL+cO+dy*R| |
1035 | |0 0 1| |P Q R| | P Q R| |
1036 | |
1037 | @param degrees angle of axes relative to upright axes |
1038 | @param px pivot on x-axis |
1039 | @param py pivot on y-axis |
1040 | */ |
1041 | SkMatrix& postRotate(SkScalar degrees, SkScalar px, SkScalar py); |
1042 | |
1043 | /** Sets SkMatrix to SkMatrix constructed from rotating by degrees about pivot point |
1044 | (0, 0), multiplied by SkMatrix. |
1045 | This can be thought of as rotating about the origin after applying SkMatrix. |
1046 | |
1047 | Positive degrees rotates clockwise. |
1048 | |
1049 | Given: |
1050 | |
1051 | | J K L | | c -s 0 | |
1052 | Matrix = | M N O |, R(degrees, px, py) = | s c 0 | |
1053 | | P Q R | | 0 0 1 | |
1054 | |
1055 | where |
1056 | |
1057 | c = cos(degrees) |
1058 | s = sin(degrees) |
1059 | |
1060 | sets SkMatrix to: |
1061 | |
1062 | | c -s dx | | J K L | | cJ-sM cK-sN cL-sO | |
1063 | R(degrees, px, py) * Matrix = | s c dy | | M N O | = | sJ+cM sK+cN sL+cO | |
1064 | | 0 0 1 | | P Q R | | P Q R | |
1065 | |
1066 | @param degrees angle of axes relative to upright axes |
1067 | */ |
1068 | SkMatrix& postRotate(SkScalar degrees); |
1069 | |
1070 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1071 | (px, py), multiplied by SkMatrix. |
1072 | This can be thought of as skewing about a pivot point after applying SkMatrix. |
1073 | |
1074 | Given: |
1075 | |
1076 | | J K L | | 1 kx dx | |
1077 | Matrix = | M N O |, K(kx, ky, px, py) = | ky 1 dy | |
1078 | | P Q R | | 0 0 1 | |
1079 | |
1080 | where |
1081 | |
1082 | dx = -kx * py |
1083 | dy = -ky * px |
1084 | |
1085 | sets SkMatrix to: |
1086 | |
1087 | | 1 kx dx| |J K L| |J+kx*M+dx*P K+kx*N+dx*Q L+kx*O+dx+R| |
1088 | K(kx, ky, px, py) * Matrix = |ky 1 dy| |M N O| = |ky*J+M+dy*P ky*K+N+dy*Q ky*L+O+dy*R| |
1089 | | 0 0 1| |P Q R| | P Q R| |
1090 | |
1091 | @param kx horizontal skew factor |
1092 | @param ky vertical skew factor |
1093 | @param px pivot on x-axis |
1094 | @param py pivot on y-axis |
1095 | */ |
1096 | SkMatrix& postSkew(SkScalar kx, SkScalar ky, SkScalar px, SkScalar py); |
1097 | |
1098 | /** Sets SkMatrix to SkMatrix constructed from skewing by (kx, ky) about pivot point |
1099 | (0, 0), multiplied by SkMatrix. |
1100 | This can be thought of as skewing about the origin after applying SkMatrix. |
1101 | |
1102 | Given: |
1103 | |
1104 | | J K L | | 1 kx 0 | |
1105 | Matrix = | M N O |, K(kx, ky) = | ky 1 0 | |
1106 | | P Q R | | 0 0 1 | |
1107 | |
1108 | sets SkMatrix to: |
1109 | |
1110 | | 1 kx 0 | | J K L | | J+kx*M K+kx*N L+kx*O | |
1111 | K(kx, ky) * Matrix = | ky 1 0 | | M N O | = | ky*J+M ky*K+N ky*L+O | |
1112 | | 0 0 1 | | P Q R | | P Q R | |
1113 | |
1114 | @param kx horizontal skew factor |
1115 | @param ky vertical skew factor |
1116 | */ |
1117 | SkMatrix& postSkew(SkScalar kx, SkScalar ky); |
1118 | |
1119 | /** Sets SkMatrix to SkMatrix other multiplied by SkMatrix. |
1120 | This can be thought of mapping by other after applying SkMatrix. |
1121 | |
1122 | Given: |
1123 | |
1124 | | J K L | | A B C | |
1125 | Matrix = | M N O |, other = | D E F | |
1126 | | P Q R | | G H I | |
1127 | |
1128 | sets SkMatrix to: |
1129 | |
1130 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1131 | other * Matrix = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1132 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1133 | |
1134 | @param other SkMatrix on left side of multiply expression |
1135 | */ |
1136 | SkMatrix& postConcat(const SkMatrix& other); |
1137 | |
1138 | #ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT |
1139 | private: |
1140 | #endif |
1141 | /** Sets SkMatrix to scale and translate src SkRect to dst SkRect. stf selects whether |
1142 | mapping completely fills dst or preserves the aspect ratio, and how to align |
1143 | src within dst. Returns false if src is empty, and sets SkMatrix to identity. |
1144 | Returns true if dst is empty, and sets SkMatrix to: |
1145 | |
1146 | | 0 0 0 | |
1147 | | 0 0 0 | |
1148 | | 0 0 1 | |
1149 | |
1150 | @param src SkRect to map from |
1151 | @param dst SkRect to map to |
1152 | @return true if SkMatrix can represent SkRect mapping |
1153 | |
1154 | example: https://fiddle.skia.org/c/@Matrix_setRectToRect |
1155 | */ |
1156 | bool setRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf); |
1157 | |
1158 | /** Returns SkMatrix set to scale and translate src SkRect to dst SkRect. stf selects |
1159 | whether mapping completely fills dst or preserves the aspect ratio, and how to |
1160 | align src within dst. Returns the identity SkMatrix if src is empty. If dst is |
1161 | empty, returns SkMatrix set to: |
1162 | |
1163 | | 0 0 0 | |
1164 | | 0 0 0 | |
1165 | | 0 0 1 | |
1166 | |
1167 | @param src SkRect to map from |
1168 | @param dst SkRect to map to |
1169 | @return SkMatrix mapping src to dst |
1170 | */ |
1171 | static SkMatrix MakeRectToRect(const SkRect& src, const SkRect& dst, ScaleToFit stf) { |
1172 | SkMatrix m; |
1173 | m.setRectToRect(src, dst, stf); |
1174 | return m; |
1175 | } |
1176 | #ifndef SK_SUPPORT_LEGACY_MATRIX_RECTTORECT |
1177 | public: |
1178 | #endif |
1179 | |
1180 | /** Sets SkMatrix to map src to dst. count must be zero or greater, and four or less. |
1181 | |
1182 | If count is zero, sets SkMatrix to identity and returns true. |
1183 | If count is one, sets SkMatrix to translate and returns true. |
1184 | If count is two or more, sets SkMatrix to map SkPoint if possible; returns false |
1185 | if SkMatrix cannot be constructed. If count is four, SkMatrix may include |
1186 | perspective. |
1187 | |
1188 | @param src SkPoint to map from |
1189 | @param dst SkPoint to map to |
1190 | @param count number of SkPoint in src and dst |
1191 | @return true if SkMatrix was constructed successfully |
1192 | |
1193 | example: https://fiddle.skia.org/c/@Matrix_setPolyToPoly |
1194 | */ |
1195 | bool setPolyToPoly(const SkPoint src[], const SkPoint dst[], int count); |
1196 | |
1197 | /** Sets inverse to reciprocal matrix, returning true if SkMatrix can be inverted. |
1198 | Geometrically, if SkMatrix maps from source to destination, inverse SkMatrix |
1199 | maps from destination to source. If SkMatrix can not be inverted, inverse is |
1200 | unchanged. |
1201 | |
1202 | @param inverse storage for inverted SkMatrix; may be nullptr |
1203 | @return true if SkMatrix can be inverted |
1204 | */ |
1205 | [[nodiscard]] bool invert(SkMatrix* inverse) const { |
1206 | // Allow the trivial case to be inlined. |
1207 | if (this->isIdentity()) { |
1208 | if (inverse) { |
1209 | inverse->reset(); |
1210 | } |
1211 | return true; |
1212 | } |
1213 | return this->invertNonIdentity(inverse); |
1214 | } |
1215 | |
1216 | /** Fills affine with identity values in column major order. |
1217 | Sets affine to: |
1218 | |
1219 | | 1 0 0 | |
1220 | | 0 1 0 | |
1221 | |
1222 | Affine 3 by 2 matrices in column major order are used by OpenGL and XPS. |
1223 | |
1224 | @param affine storage for 3 by 2 affine matrix |
1225 | |
1226 | example: https://fiddle.skia.org/c/@Matrix_SetAffineIdentity |
1227 | */ |
1228 | static void SetAffineIdentity(SkScalar affine[6]); |
1229 | |
1230 | /** Fills affine in column major order. Sets affine to: |
1231 | |
1232 | | scale-x skew-x translate-x | |
1233 | | skew-y scale-y translate-y | |
1234 | |
1235 | If SkMatrix contains perspective, returns false and leaves affine unchanged. |
1236 | |
1237 | @param affine storage for 3 by 2 affine matrix; may be nullptr |
1238 | @return true if SkMatrix does not contain perspective |
1239 | */ |
1240 | [[nodiscard]] bool asAffine(SkScalar affine[6]) const; |
1241 | |
1242 | /** Sets SkMatrix to affine values, passed in column major order. Given affine, |
1243 | column, then row, as: |
1244 | |
1245 | | scale-x skew-x translate-x | |
1246 | | skew-y scale-y translate-y | |
1247 | |
1248 | SkMatrix is set, row, then column, to: |
1249 | |
1250 | | scale-x skew-x translate-x | |
1251 | | skew-y scale-y translate-y | |
1252 | | 0 0 1 | |
1253 | |
1254 | @param affine 3 by 2 affine matrix |
1255 | */ |
1256 | SkMatrix& setAffine(const SkScalar affine[6]); |
1257 | |
1258 | /** |
1259 | * A matrix is categorized as 'perspective' if the bottom row is not [0, 0, 1]. |
1260 | * However, for most uses (e.g. mapPoints) a bottom row of [0, 0, X] behaves like a |
1261 | * non-perspective matrix, though it will be categorized as perspective. Calling |
1262 | * normalizePerspective() will change the matrix such that, if its bottom row was [0, 0, X], |
1263 | * it will be changed to [0, 0, 1] by scaling the rest of the matrix by 1/X. |
1264 | * |
1265 | * | A B C | | A/X B/X C/X | |
1266 | * | D E F | -> | D/X E/X F/X | for X != 0 |
1267 | * | 0 0 X | | 0 0 1 | |
1268 | */ |
1269 | void normalizePerspective() { |
1270 | if (fMat[8] != 1) { |
1271 | this->doNormalizePerspective(); |
1272 | } |
1273 | } |
1274 | |
1275 | /** Maps src SkPoint array of length count to dst SkPoint array of equal or greater |
1276 | length. SkPoint are mapped by multiplying each SkPoint by SkMatrix. Given: |
1277 | |
1278 | | A B C | | x | |
1279 | Matrix = | D E F |, pt = | y | |
1280 | | G H I | | 1 | |
1281 | |
1282 | where |
1283 | |
1284 | for (i = 0; i < count; ++i) { |
1285 | x = src[i].fX |
1286 | y = src[i].fY |
1287 | } |
1288 | |
1289 | each dst SkPoint is computed as: |
1290 | |
1291 | |A B C| |x| Ax+By+C Dx+Ey+F |
1292 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1293 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1294 | |
1295 | src and dst may point to the same storage. |
1296 | |
1297 | @param dst storage for mapped SkPoint |
1298 | @param src SkPoint to transform |
1299 | @param count number of SkPoint to transform |
1300 | |
1301 | example: https://fiddle.skia.org/c/@Matrix_mapPoints |
1302 | */ |
1303 | void mapPoints(SkPoint dst[], const SkPoint src[], int count) const; |
1304 | |
1305 | /** Maps pts SkPoint array of length count in place. SkPoint are mapped by multiplying |
1306 | each SkPoint by SkMatrix. Given: |
1307 | |
1308 | | A B C | | x | |
1309 | Matrix = | D E F |, pt = | y | |
1310 | | G H I | | 1 | |
1311 | |
1312 | where |
1313 | |
1314 | for (i = 0; i < count; ++i) { |
1315 | x = pts[i].fX |
1316 | y = pts[i].fY |
1317 | } |
1318 | |
1319 | each resulting pts SkPoint is computed as: |
1320 | |
1321 | |A B C| |x| Ax+By+C Dx+Ey+F |
1322 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1323 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1324 | |
1325 | @param pts storage for mapped SkPoint |
1326 | @param count number of SkPoint to transform |
1327 | */ |
1328 | void mapPoints(SkPoint pts[], int count) const { |
1329 | this->mapPoints(dst: pts, src: pts, count); |
1330 | } |
1331 | |
1332 | /** Maps src SkPoint3 array of length count to dst SkPoint3 array, which must of length count or |
1333 | greater. SkPoint3 array is mapped by multiplying each SkPoint3 by SkMatrix. Given: |
1334 | |
1335 | | A B C | | x | |
1336 | Matrix = | D E F |, src = | y | |
1337 | | G H I | | z | |
1338 | |
1339 | each resulting dst SkPoint is computed as: |
1340 | |
1341 | |A B C| |x| |
1342 | Matrix * src = |D E F| |y| = |Ax+By+Cz Dx+Ey+Fz Gx+Hy+Iz| |
1343 | |G H I| |z| |
1344 | |
1345 | @param dst storage for mapped SkPoint3 array |
1346 | @param src SkPoint3 array to transform |
1347 | @param count items in SkPoint3 array to transform |
1348 | |
1349 | example: https://fiddle.skia.org/c/@Matrix_mapHomogeneousPoints |
1350 | */ |
1351 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint3 src[], int count) const; |
1352 | |
1353 | /** |
1354 | * Returns homogeneous points, starting with 2D src points (with implied w = 1). |
1355 | */ |
1356 | void mapHomogeneousPoints(SkPoint3 dst[], const SkPoint src[], int count) const; |
1357 | |
1358 | /** Returns SkPoint pt multiplied by SkMatrix. Given: |
1359 | |
1360 | | A B C | | x | |
1361 | Matrix = | D E F |, pt = | y | |
1362 | | G H I | | 1 | |
1363 | |
1364 | result is computed as: |
1365 | |
1366 | |A B C| |x| Ax+By+C Dx+Ey+F |
1367 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1368 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1369 | |
1370 | @param p SkPoint to map |
1371 | @return mapped SkPoint |
1372 | */ |
1373 | SkPoint mapPoint(SkPoint pt) const { |
1374 | SkPoint result; |
1375 | this->mapXY(x: pt.x(), y: pt.y(), result: &result); |
1376 | return result; |
1377 | } |
1378 | |
1379 | /** Maps SkPoint (x, y) to result. SkPoint is mapped by multiplying by SkMatrix. Given: |
1380 | |
1381 | | A B C | | x | |
1382 | Matrix = | D E F |, pt = | y | |
1383 | | G H I | | 1 | |
1384 | |
1385 | result is computed as: |
1386 | |
1387 | |A B C| |x| Ax+By+C Dx+Ey+F |
1388 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1389 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1390 | |
1391 | @param x x-axis value of SkPoint to map |
1392 | @param y y-axis value of SkPoint to map |
1393 | @param result storage for mapped SkPoint |
1394 | |
1395 | example: https://fiddle.skia.org/c/@Matrix_mapXY |
1396 | */ |
1397 | void mapXY(SkScalar x, SkScalar y, SkPoint* result) const; |
1398 | |
1399 | /** Returns SkPoint (x, y) multiplied by SkMatrix. Given: |
1400 | |
1401 | | A B C | | x | |
1402 | Matrix = | D E F |, pt = | y | |
1403 | | G H I | | 1 | |
1404 | |
1405 | result is computed as: |
1406 | |
1407 | |A B C| |x| Ax+By+C Dx+Ey+F |
1408 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1409 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1410 | |
1411 | @param x x-axis value of SkPoint to map |
1412 | @param y y-axis value of SkPoint to map |
1413 | @return mapped SkPoint |
1414 | */ |
1415 | SkPoint mapXY(SkScalar x, SkScalar y) const { |
1416 | SkPoint result; |
1417 | this->mapXY(x,y, result: &result); |
1418 | return result; |
1419 | } |
1420 | |
1421 | |
1422 | /** Returns (0, 0) multiplied by SkMatrix. Given: |
1423 | |
1424 | | A B C | | 0 | |
1425 | Matrix = | D E F |, pt = | 0 | |
1426 | | G H I | | 1 | |
1427 | |
1428 | result is computed as: |
1429 | |
1430 | |A B C| |0| C F |
1431 | Matrix * pt = |D E F| |0| = |C F I| = - , - |
1432 | |G H I| |1| I I |
1433 | |
1434 | @return mapped (0, 0) |
1435 | */ |
1436 | SkPoint mapOrigin() const { |
1437 | SkScalar x = this->getTranslateX(), |
1438 | y = this->getTranslateY(); |
1439 | if (this->hasPerspective()) { |
1440 | SkScalar w = fMat[kMPersp2]; |
1441 | if (w) { w = 1 / w; } |
1442 | x *= w; |
1443 | y *= w; |
1444 | } |
1445 | return {.fX: x, .fY: y}; |
1446 | } |
1447 | |
1448 | /** Maps src vector array of length count to vector SkPoint array of equal or greater |
1449 | length. Vectors are mapped by multiplying each vector by SkMatrix, treating |
1450 | SkMatrix translation as zero. Given: |
1451 | |
1452 | | A B 0 | | x | |
1453 | Matrix = | D E 0 |, src = | y | |
1454 | | G H I | | 1 | |
1455 | |
1456 | where |
1457 | |
1458 | for (i = 0; i < count; ++i) { |
1459 | x = src[i].fX |
1460 | y = src[i].fY |
1461 | } |
1462 | |
1463 | each dst vector is computed as: |
1464 | |
1465 | |A B 0| |x| Ax+By Dx+Ey |
1466 | Matrix * src = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1467 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1468 | |
1469 | src and dst may point to the same storage. |
1470 | |
1471 | @param dst storage for mapped vectors |
1472 | @param src vectors to transform |
1473 | @param count number of vectors to transform |
1474 | |
1475 | example: https://fiddle.skia.org/c/@Matrix_mapVectors |
1476 | */ |
1477 | void mapVectors(SkVector dst[], const SkVector src[], int count) const; |
1478 | |
1479 | /** Maps vecs vector array of length count in place, multiplying each vector by |
1480 | SkMatrix, treating SkMatrix translation as zero. Given: |
1481 | |
1482 | | A B 0 | | x | |
1483 | Matrix = | D E 0 |, vec = | y | |
1484 | | G H I | | 1 | |
1485 | |
1486 | where |
1487 | |
1488 | for (i = 0; i < count; ++i) { |
1489 | x = vecs[i].fX |
1490 | y = vecs[i].fY |
1491 | } |
1492 | |
1493 | each result vector is computed as: |
1494 | |
1495 | |A B 0| |x| Ax+By Dx+Ey |
1496 | Matrix * vec = |D E 0| |y| = |Ax+By Dx+Ey Gx+Hy+I| = ------- , ------- |
1497 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1498 | |
1499 | @param vecs vectors to transform, and storage for mapped vectors |
1500 | @param count number of vectors to transform |
1501 | */ |
1502 | void mapVectors(SkVector vecs[], int count) const { |
1503 | this->mapVectors(dst: vecs, src: vecs, count); |
1504 | } |
1505 | |
1506 | /** Maps vector (dx, dy) to result. Vector is mapped by multiplying by SkMatrix, |
1507 | treating SkMatrix translation as zero. Given: |
1508 | |
1509 | | A B 0 | | dx | |
1510 | Matrix = | D E 0 |, vec = | dy | |
1511 | | G H I | | 1 | |
1512 | |
1513 | each result vector is computed as: |
1514 | |
1515 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1516 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1517 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1518 | |
1519 | @param dx x-axis value of vector to map |
1520 | @param dy y-axis value of vector to map |
1521 | @param result storage for mapped vector |
1522 | */ |
1523 | void mapVector(SkScalar dx, SkScalar dy, SkVector* result) const { |
1524 | SkVector vec = { .fX: dx, .fY: dy }; |
1525 | this->mapVectors(dst: result, src: &vec, count: 1); |
1526 | } |
1527 | |
1528 | /** Returns vector (dx, dy) multiplied by SkMatrix, treating SkMatrix translation as zero. |
1529 | Given: |
1530 | |
1531 | | A B 0 | | dx | |
1532 | Matrix = | D E 0 |, vec = | dy | |
1533 | | G H I | | 1 | |
1534 | |
1535 | each result vector is computed as: |
1536 | |
1537 | |A B 0| |dx| A*dx+B*dy D*dx+E*dy |
1538 | Matrix * vec = |D E 0| |dy| = |A*dx+B*dy D*dx+E*dy G*dx+H*dy+I| = ----------- , ----------- |
1539 | |G H I| | 1| G*dx+H*dy+I G*dx+*dHy+I |
1540 | |
1541 | @param dx x-axis value of vector to map |
1542 | @param dy y-axis value of vector to map |
1543 | @return mapped vector |
1544 | */ |
1545 | SkVector mapVector(SkScalar dx, SkScalar dy) const { |
1546 | SkVector vec = { .fX: dx, .fY: dy }; |
1547 | this->mapVectors(dst: &vec, src: &vec, count: 1); |
1548 | return vec; |
1549 | } |
1550 | |
1551 | /** Sets dst to bounds of src corners mapped by SkMatrix. |
1552 | Returns true if mapped corners are dst corners. |
1553 | |
1554 | Returned value is the same as calling rectStaysRect(). |
1555 | |
1556 | @param dst storage for bounds of mapped SkPoint |
1557 | @param src SkRect to map |
1558 | @param pc whether to apply perspective clipping |
1559 | @return true if dst is equivalent to mapped src |
1560 | |
1561 | example: https://fiddle.skia.org/c/@Matrix_mapRect |
1562 | */ |
1563 | bool mapRect(SkRect* dst, const SkRect& src, |
1564 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const; |
1565 | |
1566 | /** Sets rect to bounds of rect corners mapped by SkMatrix. |
1567 | Returns true if mapped corners are computed rect corners. |
1568 | |
1569 | Returned value is the same as calling rectStaysRect(). |
1570 | |
1571 | @param rect rectangle to map, and storage for bounds of mapped corners |
1572 | @param pc whether to apply perspective clipping |
1573 | @return true if result is equivalent to mapped rect |
1574 | */ |
1575 | bool mapRect(SkRect* rect, SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1576 | return this->mapRect(dst: rect, src: *rect, pc); |
1577 | } |
1578 | |
1579 | /** Returns bounds of src corners mapped by SkMatrix. |
1580 | |
1581 | @param src rectangle to map |
1582 | @return mapped bounds |
1583 | */ |
1584 | SkRect mapRect(const SkRect& src, |
1585 | SkApplyPerspectiveClip pc = SkApplyPerspectiveClip::kYes) const { |
1586 | SkRect dst; |
1587 | (void)this->mapRect(dst: &dst, src, pc); |
1588 | return dst; |
1589 | } |
1590 | |
1591 | /** Maps four corners of rect to dst. SkPoint are mapped by multiplying each |
1592 | rect corner by SkMatrix. rect corner is processed in this order: |
1593 | (rect.fLeft, rect.fTop), (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), |
1594 | (rect.fLeft, rect.fBottom). |
1595 | |
1596 | rect may be empty: rect.fLeft may be greater than or equal to rect.fRight; |
1597 | rect.fTop may be greater than or equal to rect.fBottom. |
1598 | |
1599 | Given: |
1600 | |
1601 | | A B C | | x | |
1602 | Matrix = | D E F |, pt = | y | |
1603 | | G H I | | 1 | |
1604 | |
1605 | where pt is initialized from each of (rect.fLeft, rect.fTop), |
1606 | (rect.fRight, rect.fTop), (rect.fRight, rect.fBottom), (rect.fLeft, rect.fBottom), |
1607 | each dst SkPoint is computed as: |
1608 | |
1609 | |A B C| |x| Ax+By+C Dx+Ey+F |
1610 | Matrix * pt = |D E F| |y| = |Ax+By+C Dx+Ey+F Gx+Hy+I| = ------- , ------- |
1611 | |G H I| |1| Gx+Hy+I Gx+Hy+I |
1612 | |
1613 | @param dst storage for mapped corner SkPoint |
1614 | @param rect SkRect to map |
1615 | |
1616 | Note: this does not perform perspective clipping (as that might result in more than |
1617 | 4 points, so results are suspect if the matrix contains perspective. |
1618 | */ |
1619 | void mapRectToQuad(SkPoint dst[4], const SkRect& rect) const { |
1620 | // This could potentially be faster if we only transformed each x and y of the rect once. |
1621 | rect.toQuad(quad: dst); |
1622 | this->mapPoints(pts: dst, count: 4); |
1623 | } |
1624 | |
1625 | /** Sets dst to bounds of src corners mapped by SkMatrix. If matrix contains |
1626 | elements other than scale or translate: asserts if SK_DEBUG is defined; |
1627 | otherwise, results are undefined. |
1628 | |
1629 | @param dst storage for bounds of mapped SkPoint |
1630 | @param src SkRect to map |
1631 | |
1632 | example: https://fiddle.skia.org/c/@Matrix_mapRectScaleTranslate |
1633 | */ |
1634 | void mapRectScaleTranslate(SkRect* dst, const SkRect& src) const; |
1635 | |
1636 | /** Returns geometric mean radius of ellipse formed by constructing circle of |
1637 | size radius, and mapping constructed circle with SkMatrix. The result squared is |
1638 | equal to the major axis length times the minor axis length. |
1639 | Result is not meaningful if SkMatrix contains perspective elements. |
1640 | |
1641 | @param radius circle size to map |
1642 | @return average mapped radius |
1643 | |
1644 | example: https://fiddle.skia.org/c/@Matrix_mapRadius |
1645 | */ |
1646 | SkScalar mapRadius(SkScalar radius) const; |
1647 | |
1648 | /** Compares a and b; returns true if a and b are numerically equal. Returns true |
1649 | even if sign of zero values are different. Returns false if either SkMatrix |
1650 | contains NaN, even if the other SkMatrix also contains NaN. |
1651 | |
1652 | @param a SkMatrix to compare |
1653 | @param b SkMatrix to compare |
1654 | @return true if SkMatrix a and SkMatrix b are numerically equal |
1655 | */ |
1656 | friend SK_API bool operator==(const SkMatrix& a, const SkMatrix& b); |
1657 | |
1658 | /** Compares a and b; returns true if a and b are not numerically equal. Returns false |
1659 | even if sign of zero values are different. Returns true if either SkMatrix |
1660 | contains NaN, even if the other SkMatrix also contains NaN. |
1661 | |
1662 | @param a SkMatrix to compare |
1663 | @param b SkMatrix to compare |
1664 | @return true if SkMatrix a and SkMatrix b are numerically not equal |
1665 | */ |
1666 | friend SK_API bool operator!=(const SkMatrix& a, const SkMatrix& b) { |
1667 | return !(a == b); |
1668 | } |
1669 | |
1670 | /** Writes text representation of SkMatrix to standard output. Floating point values |
1671 | are written with limited precision; it may not be possible to reconstruct |
1672 | original SkMatrix from output. |
1673 | |
1674 | example: https://fiddle.skia.org/c/@Matrix_dump |
1675 | */ |
1676 | void dump() const; |
1677 | |
1678 | /** Returns the minimum scaling factor of SkMatrix by decomposing the scaling and |
1679 | skewing elements. |
1680 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1681 | |
1682 | @return minimum scale factor |
1683 | |
1684 | example: https://fiddle.skia.org/c/@Matrix_getMinScale |
1685 | */ |
1686 | SkScalar getMinScale() const; |
1687 | |
1688 | /** Returns the maximum scaling factor of SkMatrix by decomposing the scaling and |
1689 | skewing elements. |
1690 | Returns -1 if scale factor overflows or SkMatrix contains perspective. |
1691 | |
1692 | @return maximum scale factor |
1693 | |
1694 | example: https://fiddle.skia.org/c/@Matrix_getMaxScale |
1695 | */ |
1696 | SkScalar getMaxScale() const; |
1697 | |
1698 | /** Sets scaleFactors[0] to the minimum scaling factor, and scaleFactors[1] to the |
1699 | maximum scaling factor. Scaling factors are computed by decomposing |
1700 | the SkMatrix scaling and skewing elements. |
1701 | |
1702 | Returns true if scaleFactors are found; otherwise, returns false and sets |
1703 | scaleFactors to undefined values. |
1704 | |
1705 | @param scaleFactors storage for minimum and maximum scale factors |
1706 | @return true if scale factors were computed correctly |
1707 | */ |
1708 | [[nodiscard]] bool getMinMaxScales(SkScalar scaleFactors[2]) const; |
1709 | |
1710 | /** Decomposes SkMatrix into scale components and whatever remains. Returns false if |
1711 | SkMatrix could not be decomposed. |
1712 | |
1713 | Sets scale to portion of SkMatrix that scale axes. Sets remaining to SkMatrix |
1714 | with scaling factored out. remaining may be passed as nullptr |
1715 | to determine if SkMatrix can be decomposed without computing remainder. |
1716 | |
1717 | Returns true if scale components are found. scale and remaining are |
1718 | unchanged if SkMatrix contains perspective; scale factors are not finite, or |
1719 | are nearly zero. |
1720 | |
1721 | On success: Matrix = Remaining * scale. |
1722 | |
1723 | @param scale axes scaling factors; may be nullptr |
1724 | @param remaining SkMatrix without scaling; may be nullptr |
1725 | @return true if scale can be computed |
1726 | |
1727 | example: https://fiddle.skia.org/c/@Matrix_decomposeScale |
1728 | */ |
1729 | bool decomposeScale(SkSize* scale, SkMatrix* remaining = nullptr) const; |
1730 | |
1731 | /** Returns reference to const identity SkMatrix. Returned SkMatrix is set to: |
1732 | |
1733 | | 1 0 0 | |
1734 | | 0 1 0 | |
1735 | | 0 0 1 | |
1736 | |
1737 | @return const identity SkMatrix |
1738 | |
1739 | example: https://fiddle.skia.org/c/@Matrix_I |
1740 | */ |
1741 | static const SkMatrix& I(); |
1742 | |
1743 | /** Returns reference to a const SkMatrix with invalid values. Returned SkMatrix is set |
1744 | to: |
1745 | |
1746 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1747 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1748 | | SK_ScalarMax SK_ScalarMax SK_ScalarMax | |
1749 | |
1750 | @return const invalid SkMatrix |
1751 | |
1752 | example: https://fiddle.skia.org/c/@Matrix_InvalidMatrix |
1753 | */ |
1754 | static const SkMatrix& InvalidMatrix(); |
1755 | |
1756 | /** Returns SkMatrix a multiplied by SkMatrix b. |
1757 | |
1758 | Given: |
1759 | |
1760 | | A B C | | J K L | |
1761 | a = | D E F |, b = | M N O | |
1762 | | G H I | | P Q R | |
1763 | |
1764 | sets SkMatrix to: |
1765 | |
1766 | | A B C | | J K L | | AJ+BM+CP AK+BN+CQ AL+BO+CR | |
1767 | a * b = | D E F | * | M N O | = | DJ+EM+FP DK+EN+FQ DL+EO+FR | |
1768 | | G H I | | P Q R | | GJ+HM+IP GK+HN+IQ GL+HO+IR | |
1769 | |
1770 | @param a SkMatrix on left side of multiply expression |
1771 | @param b SkMatrix on right side of multiply expression |
1772 | @return SkMatrix computed from a times b |
1773 | */ |
1774 | static SkMatrix Concat(const SkMatrix& a, const SkMatrix& b) { |
1775 | SkMatrix result; |
1776 | result.setConcat(a, b); |
1777 | return result; |
1778 | } |
1779 | |
1780 | friend SkMatrix operator*(const SkMatrix& a, const SkMatrix& b) { |
1781 | return Concat(a, b); |
1782 | } |
1783 | |
1784 | /** Sets internal cache to unknown state. Use to force update after repeated |
1785 | modifications to SkMatrix element reference returned by operator[](int index). |
1786 | */ |
1787 | void dirtyMatrixTypeCache() { |
1788 | this->setTypeMask(kUnknown_Mask); |
1789 | } |
1790 | |
1791 | /** Initializes SkMatrix with scale and translate elements. |
1792 | |
1793 | | sx 0 tx | |
1794 | | 0 sy ty | |
1795 | | 0 0 1 | |
1796 | |
1797 | @param sx horizontal scale factor to store |
1798 | @param sy vertical scale factor to store |
1799 | @param tx horizontal translation to store |
1800 | @param ty vertical translation to store |
1801 | */ |
1802 | void setScaleTranslate(SkScalar sx, SkScalar sy, SkScalar tx, SkScalar ty) { |
1803 | fMat[kMScaleX] = sx; |
1804 | fMat[kMSkewX] = 0; |
1805 | fMat[kMTransX] = tx; |
1806 | |
1807 | fMat[kMSkewY] = 0; |
1808 | fMat[kMScaleY] = sy; |
1809 | fMat[kMTransY] = ty; |
1810 | |
1811 | fMat[kMPersp0] = 0; |
1812 | fMat[kMPersp1] = 0; |
1813 | fMat[kMPersp2] = 1; |
1814 | |
1815 | int mask = 0; |
1816 | if (sx != 1 || sy != 1) { |
1817 | mask |= kScale_Mask; |
1818 | } |
1819 | if (tx != 0.0f || ty != 0.0f) { |
1820 | mask |= kTranslate_Mask; |
1821 | } |
1822 | if (sx != 0 && sy != 0) { |
1823 | mask |= kRectStaysRect_Mask; |
1824 | } |
1825 | this->setTypeMask(mask); |
1826 | } |
1827 | |
1828 | /** Returns true if all elements of the matrix are finite. Returns false if any |
1829 | element is infinity, or NaN. |
1830 | |
1831 | @return true if matrix has only finite elements |
1832 | */ |
1833 | bool isFinite() const { return SkScalarsAreFinite(array: fMat, count: 9); } |
1834 | |
1835 | private: |
1836 | /** Set if the matrix will map a rectangle to another rectangle. This |
1837 | can be true if the matrix is scale-only, or rotates a multiple of |
1838 | 90 degrees. |
1839 | |
1840 | This bit will be set on identity matrices |
1841 | */ |
1842 | static constexpr int kRectStaysRect_Mask = 0x10; |
1843 | |
1844 | /** Set if the perspective bit is valid even though the rest of |
1845 | the matrix is Unknown. |
1846 | */ |
1847 | static constexpr int kOnlyPerspectiveValid_Mask = 0x40; |
1848 | |
1849 | static constexpr int kUnknown_Mask = 0x80; |
1850 | |
1851 | static constexpr int kORableMasks = kTranslate_Mask | |
1852 | kScale_Mask | |
1853 | kAffine_Mask | |
1854 | kPerspective_Mask; |
1855 | |
1856 | static constexpr int kAllMasks = kTranslate_Mask | |
1857 | kScale_Mask | |
1858 | kAffine_Mask | |
1859 | kPerspective_Mask | |
1860 | kRectStaysRect_Mask; |
1861 | |
1862 | SkScalar fMat[9]; |
1863 | mutable int32_t fTypeMask; |
1864 | |
1865 | constexpr SkMatrix(SkScalar sx, SkScalar kx, SkScalar tx, |
1866 | SkScalar ky, SkScalar sy, SkScalar ty, |
1867 | SkScalar p0, SkScalar p1, SkScalar p2, int typeMask) |
1868 | : fMat{sx, kx, tx, |
1869 | ky, sy, ty, |
1870 | p0, p1, p2} |
1871 | , fTypeMask(typeMask) {} |
1872 | |
1873 | static void ComputeInv(SkScalar dst[9], const SkScalar src[9], double invDet, bool isPersp); |
1874 | |
1875 | uint8_t computeTypeMask() const; |
1876 | uint8_t computePerspectiveTypeMask() const; |
1877 | |
1878 | void setTypeMask(int mask) { |
1879 | // allow kUnknown or a valid mask |
1880 | SkASSERT(kUnknown_Mask == mask || (mask & kAllMasks) == mask || |
1881 | ((kUnknown_Mask | kOnlyPerspectiveValid_Mask) & mask) |
1882 | == (kUnknown_Mask | kOnlyPerspectiveValid_Mask)); |
1883 | fTypeMask = mask; |
1884 | } |
1885 | |
1886 | void orTypeMask(int mask) { |
1887 | SkASSERT((mask & kORableMasks) == mask); |
1888 | fTypeMask |= mask; |
1889 | } |
1890 | |
1891 | void clearTypeMask(int mask) { |
1892 | // only allow a valid mask |
1893 | SkASSERT((mask & kAllMasks) == mask); |
1894 | fTypeMask &= ~mask; |
1895 | } |
1896 | |
1897 | TypeMask getPerspectiveTypeMaskOnly() const { |
1898 | if ((fTypeMask & kUnknown_Mask) && |
1899 | !(fTypeMask & kOnlyPerspectiveValid_Mask)) { |
1900 | fTypeMask = this->computePerspectiveTypeMask(); |
1901 | } |
1902 | return (TypeMask)(fTypeMask & 0xF); |
1903 | } |
1904 | |
1905 | /** Returns true if we already know that the matrix is identity; |
1906 | false otherwise. |
1907 | */ |
1908 | bool isTriviallyIdentity() const { |
1909 | if (fTypeMask & kUnknown_Mask) { |
1910 | return false; |
1911 | } |
1912 | return ((fTypeMask & 0xF) == 0); |
1913 | } |
1914 | |
1915 | inline void updateTranslateMask() { |
1916 | if ((fMat[kMTransX] != 0) | (fMat[kMTransY] != 0)) { |
1917 | fTypeMask |= kTranslate_Mask; |
1918 | } else { |
1919 | fTypeMask &= ~kTranslate_Mask; |
1920 | } |
1921 | } |
1922 | |
1923 | typedef void (*MapXYProc)(const SkMatrix& mat, SkScalar x, SkScalar y, |
1924 | SkPoint* result); |
1925 | |
1926 | static MapXYProc GetMapXYProc(TypeMask mask) { |
1927 | SkASSERT((mask & ~kAllMasks) == 0); |
1928 | return gMapXYProcs[mask & kAllMasks]; |
1929 | } |
1930 | |
1931 | MapXYProc getMapXYProc() const { |
1932 | return GetMapXYProc(mask: this->getType()); |
1933 | } |
1934 | |
1935 | typedef void (*MapPtsProc)(const SkMatrix& mat, SkPoint dst[], |
1936 | const SkPoint src[], int count); |
1937 | |
1938 | static MapPtsProc GetMapPtsProc(TypeMask mask) { |
1939 | SkASSERT((mask & ~kAllMasks) == 0); |
1940 | return gMapPtsProcs[mask & kAllMasks]; |
1941 | } |
1942 | |
1943 | MapPtsProc getMapPtsProc() const { |
1944 | return GetMapPtsProc(mask: this->getType()); |
1945 | } |
1946 | |
1947 | [[nodiscard]] bool invertNonIdentity(SkMatrix* inverse) const; |
1948 | |
1949 | static bool Poly2Proc(const SkPoint[], SkMatrix*); |
1950 | static bool Poly3Proc(const SkPoint[], SkMatrix*); |
1951 | static bool Poly4Proc(const SkPoint[], SkMatrix*); |
1952 | |
1953 | static void Identity_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1954 | static void Trans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1955 | static void Scale_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1956 | static void ScaleTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1957 | static void Rot_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1958 | static void RotTrans_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1959 | static void Persp_xy(const SkMatrix&, SkScalar, SkScalar, SkPoint*); |
1960 | |
1961 | static const MapXYProc gMapXYProcs[]; |
1962 | |
1963 | static void Identity_pts(const SkMatrix&, SkPoint[], const SkPoint[], int); |
1964 | static void Trans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1965 | static void Scale_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1966 | static void ScaleTrans_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], |
1967 | int count); |
1968 | static void Persp_pts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1969 | |
1970 | static void Affine_vpts(const SkMatrix&, SkPoint dst[], const SkPoint[], int); |
1971 | |
1972 | static const MapPtsProc gMapPtsProcs[]; |
1973 | |
1974 | // return the number of bytes written, whether or not buffer is null |
1975 | size_t writeToMemory(void* buffer) const; |
1976 | /** |
1977 | * Reads data from the buffer parameter |
1978 | * |
1979 | * @param buffer Memory to read from |
1980 | * @param length Amount of memory available in the buffer |
1981 | * @return number of bytes read (must be a multiple of 4) or |
1982 | * 0 if there was not enough memory available |
1983 | */ |
1984 | size_t readFromMemory(const void* buffer, size_t length); |
1985 | |
1986 | // legacy method -- still needed? why not just postScale(1/divx, ...)? |
1987 | bool postIDiv(int divx, int divy); |
1988 | void doNormalizePerspective(); |
1989 | |
1990 | friend class SkPerspIter; |
1991 | friend class SkMatrixPriv; |
1992 | friend class SerializationTest; |
1993 | }; |
1994 | SK_END_REQUIRE_DENSE |
1995 | |
1996 | #endif |
1997 | |