| 1 | /* Define control flow data structures for the CFG. |
| 2 | Copyright (C) 1987-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #ifndef GCC_BASIC_BLOCK_H |
| 21 | #define GCC_BASIC_BLOCK_H |
| 22 | |
| 23 | #include <profile-count.h> |
| 24 | |
| 25 | /* Control flow edge information. */ |
| 26 | class GTY((user)) edge_def { |
| 27 | public: |
| 28 | /* The two blocks at the ends of the edge. */ |
| 29 | basic_block src; |
| 30 | basic_block dest; |
| 31 | |
| 32 | /* Instructions queued on the edge. */ |
| 33 | union edge_def_insns { |
| 34 | gimple_seq g; |
| 35 | rtx_insn *r; |
| 36 | } insns; |
| 37 | |
| 38 | /* Auxiliary info specific to a pass. */ |
| 39 | void *aux; |
| 40 | |
| 41 | /* Location of any goto implicit in the edge. */ |
| 42 | location_t goto_locus; |
| 43 | |
| 44 | /* The index number corresponding to this edge in the edge vector |
| 45 | dest->preds. */ |
| 46 | unsigned int dest_idx; |
| 47 | |
| 48 | int flags; /* see cfg-flags.def */ |
| 49 | profile_probability probability; |
| 50 | |
| 51 | /* Return count of edge E. */ |
| 52 | inline profile_count count () const; |
| 53 | }; |
| 54 | |
| 55 | /* Masks for edge.flags. */ |
| 56 | #define DEF_EDGE_FLAG(NAME,IDX) EDGE_##NAME = 1 << IDX , |
| 57 | enum cfg_edge_flags { |
| 58 | #include "cfg-flags.def" |
| 59 | LAST_CFG_EDGE_FLAG /* this is only used for EDGE_ALL_FLAGS */ |
| 60 | }; |
| 61 | #undef DEF_EDGE_FLAG |
| 62 | |
| 63 | /* Bit mask for all edge flags. */ |
| 64 | #define EDGE_ALL_FLAGS ((LAST_CFG_EDGE_FLAG - 1) * 2 - 1) |
| 65 | |
| 66 | /* The following four flags all indicate something special about an edge. |
| 67 | Test the edge flags on EDGE_COMPLEX to detect all forms of "strange" |
| 68 | control flow transfers. */ |
| 69 | #define EDGE_COMPLEX \ |
| 70 | (EDGE_ABNORMAL | EDGE_ABNORMAL_CALL | EDGE_EH | EDGE_PRESERVE) |
| 71 | |
| 72 | struct GTY(()) rtl_bb_info { |
| 73 | /* The first insn of the block is embedded into bb->il.x. */ |
| 74 | /* The last insn of the block. */ |
| 75 | rtx_insn *end_; |
| 76 | |
| 77 | /* In CFGlayout mode points to insn notes/jumptables to be placed just before |
| 78 | and after the block. */ |
| 79 | rtx_insn *; |
| 80 | rtx_insn *; |
| 81 | }; |
| 82 | |
| 83 | struct GTY(()) gimple_bb_info { |
| 84 | /* Sequence of statements in this block. */ |
| 85 | gimple_seq seq; |
| 86 | |
| 87 | /* PHI nodes for this block. */ |
| 88 | gimple_seq phi_nodes; |
| 89 | }; |
| 90 | |
| 91 | /* A basic block is a sequence of instructions with only one entry and |
| 92 | only one exit. If any one of the instructions are executed, they |
| 93 | will all be executed, and in sequence from first to last. |
| 94 | |
| 95 | There may be COND_EXEC instructions in the basic block. The |
| 96 | COND_EXEC *instructions* will be executed -- but if the condition |
| 97 | is false the conditionally executed *expressions* will of course |
| 98 | not be executed. We don't consider the conditionally executed |
| 99 | expression (which might have side-effects) to be in a separate |
| 100 | basic block because the program counter will always be at the same |
| 101 | location after the COND_EXEC instruction, regardless of whether the |
| 102 | condition is true or not. |
| 103 | |
| 104 | Basic blocks need not start with a label nor end with a jump insn. |
| 105 | For example, a previous basic block may just "conditionally fall" |
| 106 | into the succeeding basic block, and the last basic block need not |
| 107 | end with a jump insn. Block 0 is a descendant of the entry block. |
| 108 | |
| 109 | A basic block beginning with two labels cannot have notes between |
| 110 | the labels. |
| 111 | |
| 112 | Data for jump tables are stored in jump_insns that occur in no |
| 113 | basic block even though these insns can follow or precede insns in |
| 114 | basic blocks. */ |
| 115 | |
| 116 | /* Basic block information indexed by block number. */ |
| 117 | struct GTY((chain_next ("%h.next_bb" ), chain_prev ("%h.prev_bb" ))) basic_block_def { |
| 118 | /* The edges into and out of the block. */ |
| 119 | vec<edge, va_gc> *preds; |
| 120 | vec<edge, va_gc> *succs; |
| 121 | |
| 122 | /* Auxiliary info specific to a pass. */ |
| 123 | void *GTY ((skip ("" ))) aux; |
| 124 | |
| 125 | /* Innermost loop containing the block. */ |
| 126 | class loop *loop_father; |
| 127 | |
| 128 | /* The dominance and postdominance information node. */ |
| 129 | struct et_node * GTY ((skip ("" ))) dom[2]; |
| 130 | |
| 131 | /* Previous and next blocks in the chain. */ |
| 132 | basic_block prev_bb; |
| 133 | basic_block next_bb; |
| 134 | |
| 135 | union basic_block_il_dependent { |
| 136 | struct gimple_bb_info GTY ((tag ("0" ))) gimple; |
| 137 | struct { |
| 138 | rtx_insn *head_; |
| 139 | struct rtl_bb_info * rtl; |
| 140 | } GTY ((tag ("1" ))) x; |
| 141 | } GTY ((desc ("((%1.flags & BB_RTL) != 0)" ))) il; |
| 142 | |
| 143 | /* Various flags. See cfg-flags.def. */ |
| 144 | int flags; |
| 145 | |
| 146 | /* The index of this block. */ |
| 147 | int index; |
| 148 | |
| 149 | /* Expected number of executions: calculated in profile.cc. */ |
| 150 | profile_count count; |
| 151 | }; |
| 152 | |
| 153 | /* This ensures that struct gimple_bb_info is smaller than |
| 154 | struct rtl_bb_info, so that inlining the former into basic_block_def |
| 155 | is the better choice. */ |
| 156 | STATIC_ASSERT (sizeof (rtl_bb_info) >= sizeof (gimple_bb_info)); |
| 157 | |
| 158 | #define BB_FREQ_MAX 10000 |
| 159 | |
| 160 | /* Masks for basic_block.flags. */ |
| 161 | #define DEF_BASIC_BLOCK_FLAG(NAME,IDX) BB_##NAME = 1 << IDX , |
| 162 | enum cfg_bb_flags |
| 163 | { |
| 164 | #include "cfg-flags.def" |
| 165 | LAST_CFG_BB_FLAG /* this is only used for BB_ALL_FLAGS */ |
| 166 | }; |
| 167 | #undef DEF_BASIC_BLOCK_FLAG |
| 168 | |
| 169 | /* Bit mask for all basic block flags. */ |
| 170 | #define BB_ALL_FLAGS ((LAST_CFG_BB_FLAG - 1) * 2 - 1) |
| 171 | |
| 172 | /* Bit mask for all basic block flags that must be preserved. These are |
| 173 | the bit masks that are *not* cleared by clear_bb_flags. */ |
| 174 | #define BB_FLAGS_TO_PRESERVE \ |
| 175 | (BB_DISABLE_SCHEDULE | BB_RTL | BB_NON_LOCAL_GOTO_TARGET \ |
| 176 | | BB_HOT_PARTITION | BB_COLD_PARTITION) |
| 177 | |
| 178 | /* Dummy bitmask for convenience in the hot/cold partitioning code. */ |
| 179 | #define BB_UNPARTITIONED 0 |
| 180 | |
| 181 | /* Partitions, to be used when partitioning hot and cold basic blocks into |
| 182 | separate sections. */ |
| 183 | #define BB_PARTITION(bb) ((bb)->flags & (BB_HOT_PARTITION|BB_COLD_PARTITION)) |
| 184 | #define BB_SET_PARTITION(bb, part) do { \ |
| 185 | basic_block bb_ = (bb); \ |
| 186 | bb_->flags = ((bb_->flags & ~(BB_HOT_PARTITION|BB_COLD_PARTITION)) \ |
| 187 | | (part)); \ |
| 188 | } while (0) |
| 189 | |
| 190 | #define BB_COPY_PARTITION(dstbb, srcbb) \ |
| 191 | BB_SET_PARTITION (dstbb, BB_PARTITION (srcbb)) |
| 192 | |
| 193 | /* Defines for accessing the fields of the CFG structure for function FN. */ |
| 194 | #define ENTRY_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_entry_block_ptr) |
| 195 | #define EXIT_BLOCK_PTR_FOR_FN(FN) ((FN)->cfg->x_exit_block_ptr) |
| 196 | #define basic_block_info_for_fn(FN) ((FN)->cfg->x_basic_block_info) |
| 197 | #define n_basic_blocks_for_fn(FN) ((FN)->cfg->x_n_basic_blocks) |
| 198 | #define n_edges_for_fn(FN) ((FN)->cfg->x_n_edges) |
| 199 | #define last_basic_block_for_fn(FN) ((FN)->cfg->x_last_basic_block) |
| 200 | #define label_to_block_map_for_fn(FN) ((FN)->cfg->x_label_to_block_map) |
| 201 | #define profile_status_for_fn(FN) ((FN)->cfg->x_profile_status) |
| 202 | |
| 203 | #define BASIC_BLOCK_FOR_FN(FN,N) \ |
| 204 | ((*basic_block_info_for_fn (FN))[(N)]) |
| 205 | #define SET_BASIC_BLOCK_FOR_FN(FN,N,BB) \ |
| 206 | ((*basic_block_info_for_fn (FN))[(N)] = (BB)) |
| 207 | |
| 208 | /* For iterating over basic blocks. */ |
| 209 | #define FOR_BB_BETWEEN(BB, FROM, TO, DIR) \ |
| 210 | for (BB = FROM; BB != TO; BB = BB->DIR) |
| 211 | |
| 212 | #define FOR_EACH_BB_FN(BB, FN) \ |
| 213 | FOR_BB_BETWEEN (BB, (FN)->cfg->x_entry_block_ptr->next_bb, (FN)->cfg->x_exit_block_ptr, next_bb) |
| 214 | |
| 215 | #define FOR_EACH_BB_REVERSE_FN(BB, FN) \ |
| 216 | FOR_BB_BETWEEN (BB, (FN)->cfg->x_exit_block_ptr->prev_bb, (FN)->cfg->x_entry_block_ptr, prev_bb) |
| 217 | |
| 218 | /* For iterating over insns in basic block. */ |
| 219 | #define FOR_BB_INSNS(BB, INSN) \ |
| 220 | for ((INSN) = BB_HEAD (BB); \ |
| 221 | (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \ |
| 222 | (INSN) = NEXT_INSN (INSN)) |
| 223 | |
| 224 | /* For iterating over insns in basic block when we might remove the |
| 225 | current insn. */ |
| 226 | #define FOR_BB_INSNS_SAFE(BB, INSN, CURR) \ |
| 227 | for ((INSN) = BB_HEAD (BB), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL; \ |
| 228 | (INSN) && (INSN) != NEXT_INSN (BB_END (BB)); \ |
| 229 | (INSN) = (CURR), (CURR) = (INSN) ? NEXT_INSN ((INSN)) : NULL) |
| 230 | |
| 231 | #define FOR_BB_INSNS_REVERSE(BB, INSN) \ |
| 232 | for ((INSN) = BB_END (BB); \ |
| 233 | (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \ |
| 234 | (INSN) = PREV_INSN (INSN)) |
| 235 | |
| 236 | #define FOR_BB_INSNS_REVERSE_SAFE(BB, INSN, CURR) \ |
| 237 | for ((INSN) = BB_END (BB),(CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL; \ |
| 238 | (INSN) && (INSN) != PREV_INSN (BB_HEAD (BB)); \ |
| 239 | (INSN) = (CURR), (CURR) = (INSN) ? PREV_INSN ((INSN)) : NULL) |
| 240 | |
| 241 | /* Cycles through _all_ basic blocks, even the fake ones (entry and |
| 242 | exit block). */ |
| 243 | |
| 244 | #define FOR_ALL_BB_FN(BB, FN) \ |
| 245 | for (BB = ENTRY_BLOCK_PTR_FOR_FN (FN); BB; BB = BB->next_bb) |
| 246 | |
| 247 | |
| 248 | /* Stuff for recording basic block info. */ |
| 249 | |
| 250 | /* For now, these will be functions (so that they can include checked casts |
| 251 | to rtx_insn. Once the underlying fields are converted from rtx |
| 252 | to rtx_insn, these can be converted back to macros. */ |
| 253 | |
| 254 | #define BB_HEAD(B) (B)->il.x.head_ |
| 255 | #define BB_END(B) (B)->il.x.rtl->end_ |
| 256 | #define (B) (B)->il.x.rtl->header_ |
| 257 | #define (B) (B)->il.x.rtl->footer_ |
| 258 | |
| 259 | /* Special block numbers [markers] for entry and exit. |
| 260 | Neither of them is supposed to hold actual statements. */ |
| 261 | #define ENTRY_BLOCK (0) |
| 262 | #define EXIT_BLOCK (1) |
| 263 | |
| 264 | /* The two blocks that are always in the cfg. */ |
| 265 | #define NUM_FIXED_BLOCKS (2) |
| 266 | |
| 267 | /* This is the value which indicates no edge is present. */ |
| 268 | #define EDGE_INDEX_NO_EDGE -1 |
| 269 | |
| 270 | /* EDGE_INDEX returns an integer index for an edge, or EDGE_INDEX_NO_EDGE |
| 271 | if there is no edge between the 2 basic blocks. */ |
| 272 | #define EDGE_INDEX(el, pred, succ) (find_edge_index ((el), (pred), (succ))) |
| 273 | |
| 274 | /* INDEX_EDGE_PRED_BB and INDEX_EDGE_SUCC_BB return a pointer to the basic |
| 275 | block which is either the pred or succ end of the indexed edge. */ |
| 276 | #define INDEX_EDGE_PRED_BB(el, index) ((el)->index_to_edge[(index)]->src) |
| 277 | #define INDEX_EDGE_SUCC_BB(el, index) ((el)->index_to_edge[(index)]->dest) |
| 278 | |
| 279 | /* INDEX_EDGE returns a pointer to the edge. */ |
| 280 | #define INDEX_EDGE(el, index) ((el)->index_to_edge[(index)]) |
| 281 | |
| 282 | /* Number of edges in the compressed edge list. */ |
| 283 | #define NUM_EDGES(el) ((el)->num_edges) |
| 284 | |
| 285 | /* BB is assumed to contain conditional jump. Return the fallthru edge. */ |
| 286 | #define FALLTHRU_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \ |
| 287 | ? EDGE_SUCC ((bb), 0) : EDGE_SUCC ((bb), 1)) |
| 288 | |
| 289 | /* BB is assumed to contain conditional jump. Return the branch edge. */ |
| 290 | #define BRANCH_EDGE(bb) (EDGE_SUCC ((bb), 0)->flags & EDGE_FALLTHRU \ |
| 291 | ? EDGE_SUCC ((bb), 1) : EDGE_SUCC ((bb), 0)) |
| 292 | |
| 293 | /* Return expected execution frequency of the edge E. */ |
| 294 | #define EDGE_FREQUENCY(e) e->count ().to_frequency (cfun) |
| 295 | |
| 296 | /* Compute a scale factor (or probability) suitable for scaling of |
| 297 | gcov_type values via apply_probability() and apply_scale(). */ |
| 298 | #define GCOV_COMPUTE_SCALE(num,den) \ |
| 299 | ((den) ? RDIV ((num) * REG_BR_PROB_BASE, (den)) : REG_BR_PROB_BASE) |
| 300 | |
| 301 | /* Return nonzero if edge is critical. */ |
| 302 | #define EDGE_CRITICAL_P(e) (EDGE_COUNT ((e)->src->succs) >= 2 \ |
| 303 | && EDGE_COUNT ((e)->dest->preds) >= 2) |
| 304 | |
| 305 | #define EDGE_COUNT(ev) vec_safe_length (ev) |
| 306 | #define EDGE_I(ev,i) (*ev)[(i)] |
| 307 | #define EDGE_PRED(bb,i) (*(bb)->preds)[(i)] |
| 308 | #define EDGE_SUCC(bb,i) (*(bb)->succs)[(i)] |
| 309 | |
| 310 | /* Returns true if BB has precisely one successor. */ |
| 311 | |
| 312 | inline bool |
| 313 | single_succ_p (const_basic_block bb) |
| 314 | { |
| 315 | return EDGE_COUNT (bb->succs) == 1; |
| 316 | } |
| 317 | |
| 318 | /* Returns true if BB has precisely one predecessor. */ |
| 319 | |
| 320 | inline bool |
| 321 | single_pred_p (const_basic_block bb) |
| 322 | { |
| 323 | return EDGE_COUNT (bb->preds) == 1; |
| 324 | } |
| 325 | |
| 326 | /* Returns the single successor edge of basic block BB. Aborts if |
| 327 | BB does not have exactly one successor. */ |
| 328 | |
| 329 | inline edge |
| 330 | single_succ_edge (const_basic_block bb) |
| 331 | { |
| 332 | gcc_checking_assert (single_succ_p (bb)); |
| 333 | return EDGE_SUCC (bb, 0); |
| 334 | } |
| 335 | |
| 336 | /* Returns the single predecessor edge of basic block BB. Aborts |
| 337 | if BB does not have exactly one predecessor. */ |
| 338 | |
| 339 | inline edge |
| 340 | single_pred_edge (const_basic_block bb) |
| 341 | { |
| 342 | gcc_checking_assert (single_pred_p (bb)); |
| 343 | return EDGE_PRED (bb, 0); |
| 344 | } |
| 345 | |
| 346 | /* Returns the single successor block of basic block BB. Aborts |
| 347 | if BB does not have exactly one successor. */ |
| 348 | |
| 349 | inline basic_block |
| 350 | single_succ (const_basic_block bb) |
| 351 | { |
| 352 | return single_succ_edge (bb)->dest; |
| 353 | } |
| 354 | |
| 355 | /* Returns the single predecessor block of basic block BB. Aborts |
| 356 | if BB does not have exactly one predecessor.*/ |
| 357 | |
| 358 | inline basic_block |
| 359 | single_pred (const_basic_block bb) |
| 360 | { |
| 361 | return single_pred_edge (bb)->src; |
| 362 | } |
| 363 | |
| 364 | /* Iterator object for edges. */ |
| 365 | |
| 366 | struct edge_iterator { |
| 367 | unsigned index; |
| 368 | vec<edge, va_gc> **container; |
| 369 | }; |
| 370 | |
| 371 | inline vec<edge, va_gc> * |
| 372 | ei_container (edge_iterator i) |
| 373 | { |
| 374 | gcc_checking_assert (i.container); |
| 375 | return *i.container; |
| 376 | } |
| 377 | |
| 378 | #define ei_start(iter) ei_start_1 (&(iter)) |
| 379 | #define ei_last(iter) ei_last_1 (&(iter)) |
| 380 | |
| 381 | /* Return an iterator pointing to the start of an edge vector. */ |
| 382 | inline edge_iterator |
| 383 | ei_start_1 (vec<edge, va_gc> **ev) |
| 384 | { |
| 385 | edge_iterator i; |
| 386 | |
| 387 | i.index = 0; |
| 388 | i.container = ev; |
| 389 | |
| 390 | return i; |
| 391 | } |
| 392 | |
| 393 | /* Return an iterator pointing to the last element of an edge |
| 394 | vector. */ |
| 395 | inline edge_iterator |
| 396 | ei_last_1 (vec<edge, va_gc> **ev) |
| 397 | { |
| 398 | edge_iterator i; |
| 399 | |
| 400 | i.index = EDGE_COUNT (*ev) - 1; |
| 401 | i.container = ev; |
| 402 | |
| 403 | return i; |
| 404 | } |
| 405 | |
| 406 | /* Is the iterator `i' at the end of the sequence? */ |
| 407 | inline bool |
| 408 | ei_end_p (edge_iterator i) |
| 409 | { |
| 410 | return (i.index == EDGE_COUNT (ei_container (i))); |
| 411 | } |
| 412 | |
| 413 | /* Is the iterator `i' at one position before the end of the |
| 414 | sequence? */ |
| 415 | inline bool |
| 416 | ei_one_before_end_p (edge_iterator i) |
| 417 | { |
| 418 | return (i.index + 1 == EDGE_COUNT (ei_container (i))); |
| 419 | } |
| 420 | |
| 421 | /* Advance the iterator to the next element. */ |
| 422 | inline void |
| 423 | ei_next (edge_iterator *i) |
| 424 | { |
| 425 | gcc_checking_assert (i->index < EDGE_COUNT (ei_container (*i))); |
| 426 | i->index++; |
| 427 | } |
| 428 | |
| 429 | /* Move the iterator to the previous element. */ |
| 430 | inline void |
| 431 | ei_prev (edge_iterator *i) |
| 432 | { |
| 433 | gcc_checking_assert (i->index > 0); |
| 434 | i->index--; |
| 435 | } |
| 436 | |
| 437 | /* Return the edge pointed to by the iterator `i'. */ |
| 438 | inline edge |
| 439 | ei_edge (edge_iterator i) |
| 440 | { |
| 441 | return EDGE_I (ei_container (i), i.index); |
| 442 | } |
| 443 | |
| 444 | /* Return an edge pointed to by the iterator. Do it safely so that |
| 445 | NULL is returned when the iterator is pointing at the end of the |
| 446 | sequence. */ |
| 447 | inline edge |
| 448 | ei_safe_edge (edge_iterator i) |
| 449 | { |
| 450 | return !ei_end_p (i) ? ei_edge (i) : NULL; |
| 451 | } |
| 452 | |
| 453 | /* Return 1 if we should continue to iterate. Return 0 otherwise. |
| 454 | *Edge P is set to the next edge if we are to continue to iterate |
| 455 | and NULL otherwise. */ |
| 456 | |
| 457 | inline bool |
| 458 | ei_cond (edge_iterator ei, edge *p) |
| 459 | { |
| 460 | if (!ei_end_p (i: ei)) |
| 461 | { |
| 462 | *p = ei_edge (i: ei); |
| 463 | return 1; |
| 464 | } |
| 465 | else |
| 466 | { |
| 467 | *p = NULL; |
| 468 | return 0; |
| 469 | } |
| 470 | } |
| 471 | |
| 472 | /* This macro serves as a convenient way to iterate each edge in a |
| 473 | vector of predecessor or successor edges. It must not be used when |
| 474 | an element might be removed during the traversal, otherwise |
| 475 | elements will be missed. Instead, use a for-loop like that shown |
| 476 | in the following pseudo-code: |
| 477 | |
| 478 | FOR (ei = ei_start (bb->succs); (e = ei_safe_edge (ei)); ) |
| 479 | { |
| 480 | IF (e != taken_edge) |
| 481 | remove_edge (e); |
| 482 | ELSE |
| 483 | ei_next (&ei); |
| 484 | } |
| 485 | */ |
| 486 | |
| 487 | #define FOR_EACH_EDGE(EDGE,ITER,EDGE_VEC) \ |
| 488 | for ((ITER) = ei_start ((EDGE_VEC)); \ |
| 489 | ei_cond ((ITER), &(EDGE)); \ |
| 490 | ei_next (&(ITER))) |
| 491 | |
| 492 | #define CLEANUP_EXPENSIVE 1 /* Do relatively expensive optimizations |
| 493 | except for edge forwarding */ |
| 494 | #define CLEANUP_CROSSJUMP 2 /* Do crossjumping. */ |
| 495 | #define CLEANUP_POST_REGSTACK 4 /* We run after reg-stack and need |
| 496 | to care REG_DEAD notes. */ |
| 497 | #define CLEANUP_THREADING 8 /* Do jump threading. */ |
| 498 | #define CLEANUP_NO_INSN_DEL 16 /* Do not try to delete trivially dead |
| 499 | insns. */ |
| 500 | #define CLEANUP_CFGLAYOUT 32 /* Do cleanup in cfglayout mode. */ |
| 501 | #define CLEANUP_CFG_CHANGED 64 /* The caller changed the CFG. */ |
| 502 | #define CLEANUP_NO_PARTITIONING 128 /* Do not try to fix partitions. */ |
| 503 | #define CLEANUP_FORCE_FAST_DCE 0x100 /* Force run_fast_dce to be called |
| 504 | at least once. */ |
| 505 | |
| 506 | /* Return true if BB is in a transaction. */ |
| 507 | |
| 508 | inline bool |
| 509 | bb_in_transaction (basic_block bb) |
| 510 | { |
| 511 | return bb->flags & BB_IN_TRANSACTION; |
| 512 | } |
| 513 | |
| 514 | /* Return true when one of the predecessor edges of BB is marked with EDGE_EH. */ |
| 515 | inline bool |
| 516 | bb_has_eh_pred (basic_block bb) |
| 517 | { |
| 518 | edge e; |
| 519 | edge_iterator ei; |
| 520 | |
| 521 | FOR_EACH_EDGE (e, ei, bb->preds) |
| 522 | { |
| 523 | if (e->flags & EDGE_EH) |
| 524 | return true; |
| 525 | } |
| 526 | return false; |
| 527 | } |
| 528 | |
| 529 | /* Return true when one of the predecessor edges of BB is marked with EDGE_ABNORMAL. */ |
| 530 | inline bool |
| 531 | bb_has_abnormal_pred (basic_block bb) |
| 532 | { |
| 533 | edge e; |
| 534 | edge_iterator ei; |
| 535 | |
| 536 | FOR_EACH_EDGE (e, ei, bb->preds) |
| 537 | { |
| 538 | if (e->flags & EDGE_ABNORMAL) |
| 539 | return true; |
| 540 | } |
| 541 | return false; |
| 542 | } |
| 543 | |
| 544 | /* Return the fallthru edge in EDGES if it exists, NULL otherwise. */ |
| 545 | inline edge |
| 546 | find_fallthru_edge (vec<edge, va_gc> *edges) |
| 547 | { |
| 548 | edge e; |
| 549 | edge_iterator ei; |
| 550 | |
| 551 | FOR_EACH_EDGE (e, ei, edges) |
| 552 | if (e->flags & EDGE_FALLTHRU) |
| 553 | break; |
| 554 | |
| 555 | return e; |
| 556 | } |
| 557 | |
| 558 | /* Check tha probability is sane. */ |
| 559 | |
| 560 | inline void |
| 561 | check_probability (int prob) |
| 562 | { |
| 563 | gcc_checking_assert (prob >= 0 && prob <= REG_BR_PROB_BASE); |
| 564 | } |
| 565 | |
| 566 | /* Given PROB1 and PROB2, return PROB1*PROB2/REG_BR_PROB_BASE. |
| 567 | Used to combine BB probabilities. */ |
| 568 | |
| 569 | inline int |
| 570 | combine_probabilities (int prob1, int prob2) |
| 571 | { |
| 572 | check_probability (prob: prob1); |
| 573 | check_probability (prob: prob2); |
| 574 | return RDIV (prob1 * prob2, REG_BR_PROB_BASE); |
| 575 | } |
| 576 | |
| 577 | /* Apply scale factor SCALE on frequency or count FREQ. Use this |
| 578 | interface when potentially scaling up, so that SCALE is not |
| 579 | constrained to be < REG_BR_PROB_BASE. */ |
| 580 | |
| 581 | inline gcov_type |
| 582 | apply_scale (gcov_type freq, gcov_type scale) |
| 583 | { |
| 584 | return RDIV (freq * scale, REG_BR_PROB_BASE); |
| 585 | } |
| 586 | |
| 587 | /* Apply probability PROB on frequency or count FREQ. */ |
| 588 | |
| 589 | inline gcov_type |
| 590 | apply_probability (gcov_type freq, int prob) |
| 591 | { |
| 592 | check_probability (prob); |
| 593 | return apply_scale (freq, scale: prob); |
| 594 | } |
| 595 | |
| 596 | /* Return inverse probability for PROB. */ |
| 597 | |
| 598 | inline int |
| 599 | inverse_probability (int prob1) |
| 600 | { |
| 601 | check_probability (prob: prob1); |
| 602 | return REG_BR_PROB_BASE - prob1; |
| 603 | } |
| 604 | |
| 605 | /* Return true if BB has at least one abnormal outgoing edge. */ |
| 606 | |
| 607 | inline bool |
| 608 | has_abnormal_or_eh_outgoing_edge_p (basic_block bb) |
| 609 | { |
| 610 | edge e; |
| 611 | edge_iterator ei; |
| 612 | |
| 613 | FOR_EACH_EDGE (e, ei, bb->succs) |
| 614 | if (e->flags & (EDGE_ABNORMAL | EDGE_EH)) |
| 615 | return true; |
| 616 | |
| 617 | return false; |
| 618 | } |
| 619 | |
| 620 | /* Return true when one of the predecessor edges of BB is marked with |
| 621 | EDGE_ABNORMAL_CALL or EDGE_EH. */ |
| 622 | |
| 623 | inline bool |
| 624 | has_abnormal_call_or_eh_pred_edge_p (basic_block bb) |
| 625 | { |
| 626 | edge e; |
| 627 | edge_iterator ei; |
| 628 | |
| 629 | FOR_EACH_EDGE (e, ei, bb->preds) |
| 630 | if (e->flags & (EDGE_ABNORMAL_CALL | EDGE_EH)) |
| 631 | return true; |
| 632 | |
| 633 | return false; |
| 634 | } |
| 635 | |
| 636 | /* Return count of edge E. */ |
| 637 | inline profile_count edge_def::count () const |
| 638 | { |
| 639 | return src->count.apply_probability (prob: probability); |
| 640 | } |
| 641 | |
| 642 | #endif /* GCC_BASIC_BLOCK_H */ |
| 643 | |