| 1 | /* Register Transfer Language (RTL) definitions for GCC |
| 2 | Copyright (C) 1987-2025 Free Software Foundation, Inc. |
| 3 | |
| 4 | This file is part of GCC. |
| 5 | |
| 6 | GCC is free software; you can redistribute it and/or modify it under |
| 7 | the terms of the GNU General Public License as published by the Free |
| 8 | Software Foundation; either version 3, or (at your option) any later |
| 9 | version. |
| 10 | |
| 11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 14 | for more details. |
| 15 | |
| 16 | You should have received a copy of the GNU General Public License |
| 17 | along with GCC; see the file COPYING3. If not see |
| 18 | <http://www.gnu.org/licenses/>. */ |
| 19 | |
| 20 | #ifndef GCC_RTL_H |
| 21 | #define GCC_RTL_H |
| 22 | |
| 23 | /* This file is occasionally included by generator files which expect |
| 24 | machmode.h and other files to exist and would not normally have been |
| 25 | included by coretypes.h. */ |
| 26 | #ifdef GENERATOR_FILE |
| 27 | #include "real.h" |
| 28 | #include "fixed-value.h" |
| 29 | #include "statistics.h" |
| 30 | #include "vec.h" |
| 31 | #include "hash-table.h" |
| 32 | #include "hash-set.h" |
| 33 | #include "input.h" |
| 34 | #include "is-a.h" |
| 35 | #endif /* GENERATOR_FILE */ |
| 36 | |
| 37 | #include "hard-reg-set.h" |
| 38 | |
| 39 | class predefined_function_abi; |
| 40 | |
| 41 | /* Value used by some passes to "recognize" noop moves as valid |
| 42 | instructions. */ |
| 43 | #define NOOP_MOVE_INSN_CODE INT_MAX |
| 44 | |
| 45 | /* Register Transfer Language EXPRESSIONS CODES */ |
| 46 | |
| 47 | #define RTX_CODE enum rtx_code |
| 48 | enum rtx_code : unsigned { |
| 49 | |
| 50 | #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM , |
| 51 | #include "rtl.def" /* rtl expressions are documented here */ |
| 52 | #undef DEF_RTL_EXPR |
| 53 | |
| 54 | LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for |
| 55 | NUM_RTX_CODE. |
| 56 | Assumes default enum value assignment. */ |
| 57 | |
| 58 | /* The cast here, saves many elsewhere. */ |
| 59 | #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE) |
| 60 | |
| 61 | /* Similar, but since generator files get more entries... */ |
| 62 | #ifdef GENERATOR_FILE |
| 63 | # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND) |
| 64 | #endif |
| 65 | |
| 66 | #define RTX_CODE_BITSIZE 8 |
| 67 | |
| 68 | /* Register Transfer Language EXPRESSIONS CODE CLASSES */ |
| 69 | |
| 70 | enum rtx_class { |
| 71 | /* We check bit 0-1 of some rtx class codes in the predicates below. */ |
| 72 | |
| 73 | /* Bit 0 = comparison if 0, arithmetic is 1 |
| 74 | Bit 1 = 1 if commutative. */ |
| 75 | RTX_COMPARE, /* 0 */ |
| 76 | RTX_COMM_COMPARE, |
| 77 | RTX_BIN_ARITH, |
| 78 | RTX_COMM_ARITH, |
| 79 | |
| 80 | /* Must follow the four preceding values. */ |
| 81 | RTX_UNARY, /* 4 */ |
| 82 | |
| 83 | , |
| 84 | RTX_MATCH, |
| 85 | RTX_INSN, |
| 86 | |
| 87 | /* Bit 0 = 1 if constant. */ |
| 88 | RTX_OBJ, /* 8 */ |
| 89 | RTX_CONST_OBJ, |
| 90 | |
| 91 | RTX_TERNARY, |
| 92 | RTX_BITFIELD_OPS, |
| 93 | RTX_AUTOINC |
| 94 | }; |
| 95 | |
| 96 | #define RTX_OBJ_MASK (~1) |
| 97 | #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK) |
| 98 | #define RTX_COMPARE_MASK (~1) |
| 99 | #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK) |
| 100 | #define RTX_ARITHMETIC_MASK (~1) |
| 101 | #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK) |
| 102 | #define RTX_BINARY_MASK (~3) |
| 103 | #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK) |
| 104 | #define RTX_COMMUTATIVE_MASK (~2) |
| 105 | #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK) |
| 106 | #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK) |
| 107 | |
| 108 | extern const unsigned char rtx_length[NUM_RTX_CODE]; |
| 109 | #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)]) |
| 110 | |
| 111 | extern const char * const rtx_name[NUM_RTX_CODE]; |
| 112 | #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)]) |
| 113 | |
| 114 | extern const char * const rtx_format[NUM_RTX_CODE]; |
| 115 | #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)]) |
| 116 | |
| 117 | extern const enum rtx_class rtx_class[NUM_RTX_CODE]; |
| 118 | #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)]) |
| 119 | |
| 120 | /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN |
| 121 | and NEXT_INSN fields). */ |
| 122 | #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE) |
| 123 | |
| 124 | extern const unsigned char rtx_code_size[NUM_RTX_CODE]; |
| 125 | extern const unsigned char rtx_next[NUM_RTX_CODE]; |
| 126 | |
| 127 | /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label |
| 128 | relative to which the offsets are calculated, as explained in rtl.def. */ |
| 129 | struct addr_diff_vec_flags |
| 130 | { |
| 131 | /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */ |
| 132 | unsigned min_align: 8; |
| 133 | /* Flags: */ |
| 134 | unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */ |
| 135 | unsigned min_after_vec: 1; /* minimum address target label is |
| 136 | after the ADDR_DIFF_VEC. */ |
| 137 | unsigned max_after_vec: 1; /* maximum address target label is |
| 138 | after the ADDR_DIFF_VEC. */ |
| 139 | unsigned min_after_base: 1; /* minimum address target label is |
| 140 | after BASE. */ |
| 141 | unsigned max_after_base: 1; /* maximum address target label is |
| 142 | after BASE. */ |
| 143 | /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */ |
| 144 | unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */ |
| 145 | unsigned : 2; |
| 146 | unsigned scale : 8; |
| 147 | }; |
| 148 | |
| 149 | /* Structure used to describe the attributes of a MEM. These are hashed |
| 150 | so MEMs that the same attributes share a data structure. This means |
| 151 | they cannot be modified in place. */ |
| 152 | class GTY(()) mem_attrs |
| 153 | { |
| 154 | public: |
| 155 | mem_attrs (); |
| 156 | |
| 157 | /* The expression that the MEM accesses, or null if not known. |
| 158 | This expression might be larger than the memory reference itself. |
| 159 | (In other words, the MEM might access only part of the object.) */ |
| 160 | tree expr; |
| 161 | |
| 162 | /* The offset of the memory reference from the start of EXPR. |
| 163 | Only valid if OFFSET_KNOWN_P. */ |
| 164 | poly_int64 offset; |
| 165 | |
| 166 | /* The size of the memory reference in bytes. Only valid if |
| 167 | SIZE_KNOWN_P. */ |
| 168 | poly_int64 size; |
| 169 | |
| 170 | /* The alias set of the memory reference. */ |
| 171 | alias_set_type alias; |
| 172 | |
| 173 | /* The alignment of the reference in bits. Always a multiple of |
| 174 | BITS_PER_UNIT. Note that EXPR may have a stricter alignment |
| 175 | than the memory reference itself. */ |
| 176 | unsigned int align; |
| 177 | |
| 178 | /* The address space that the memory reference uses. */ |
| 179 | unsigned char addrspace; |
| 180 | |
| 181 | /* True if OFFSET is known. */ |
| 182 | bool offset_known_p; |
| 183 | |
| 184 | /* True if SIZE is known. */ |
| 185 | bool size_known_p; |
| 186 | }; |
| 187 | |
| 188 | /* Structure used to describe the attributes of a REG in similar way as |
| 189 | mem_attrs does for MEM above. Note that the OFFSET field is calculated |
| 190 | in the same way as for mem_attrs, rather than in the same way as a |
| 191 | SUBREG_BYTE. For example, if a big-endian target stores a byte |
| 192 | object in the low part of a 4-byte register, the OFFSET field |
| 193 | will be -3 rather than 0. */ |
| 194 | |
| 195 | class GTY((for_user)) reg_attrs { |
| 196 | public: |
| 197 | tree decl; /* decl corresponding to REG. */ |
| 198 | poly_int64 offset; /* Offset from start of DECL. */ |
| 199 | }; |
| 200 | |
| 201 | /* Common union for an element of an rtx. */ |
| 202 | |
| 203 | union rtunion |
| 204 | { |
| 205 | int rt_int; |
| 206 | unsigned int rt_uint; |
| 207 | location_t rt_loc; |
| 208 | poly_uint16 rt_subreg; |
| 209 | const char *rt_str; |
| 210 | rtx rt_rtx; |
| 211 | rtvec rt_rtvec; |
| 212 | machine_mode rt_type; |
| 213 | addr_diff_vec_flags rt_addr_diff_vec_flags; |
| 214 | struct cselib_val *rt_cselib; |
| 215 | tree rt_tree; |
| 216 | basic_block rt_bb; |
| 217 | mem_attrs *rt_mem; |
| 218 | class constant_descriptor_rtx *rt_constant; |
| 219 | struct dw_cfi_node *rt_cfi; |
| 220 | }; |
| 221 | |
| 222 | /* Describes the properties of a REG. */ |
| 223 | struct GTY(()) reg_info { |
| 224 | /* The value of REGNO. */ |
| 225 | unsigned int regno; |
| 226 | |
| 227 | /* The value of REG_NREGS. */ |
| 228 | unsigned int nregs : 8; |
| 229 | unsigned int unused : 24; |
| 230 | |
| 231 | /* The value of REG_ATTRS. */ |
| 232 | reg_attrs *attrs; |
| 233 | }; |
| 234 | |
| 235 | /* This structure remembers the position of a SYMBOL_REF within an |
| 236 | object_block structure. A SYMBOL_REF only provides this information |
| 237 | if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */ |
| 238 | struct GTY(()) block_symbol { |
| 239 | /* The usual SYMBOL_REF fields. */ |
| 240 | rtunion GTY ((skip)) fld[2]; |
| 241 | |
| 242 | /* The block that contains this object. */ |
| 243 | struct object_block *block; |
| 244 | |
| 245 | /* The offset of this object from the start of its block. It is negative |
| 246 | if the symbol has not yet been assigned an offset. */ |
| 247 | HOST_WIDE_INT offset; |
| 248 | }; |
| 249 | |
| 250 | /* Describes a group of objects that are to be placed together in such |
| 251 | a way that their relative positions are known. */ |
| 252 | struct GTY((for_user)) object_block { |
| 253 | /* The section in which these objects should be placed. */ |
| 254 | section *sect; |
| 255 | |
| 256 | /* The alignment of the first object, measured in bits. */ |
| 257 | unsigned int alignment; |
| 258 | |
| 259 | /* The total size of the objects, measured in bytes. */ |
| 260 | HOST_WIDE_INT size; |
| 261 | |
| 262 | /* The SYMBOL_REFs for each object. The vector is sorted in |
| 263 | order of increasing offset and the following conditions will |
| 264 | hold for each element X: |
| 265 | |
| 266 | SYMBOL_REF_HAS_BLOCK_INFO_P (X) |
| 267 | !SYMBOL_REF_ANCHOR_P (X) |
| 268 | SYMBOL_REF_BLOCK (X) == [address of this structure] |
| 269 | SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */ |
| 270 | vec<rtx, va_gc> *objects; |
| 271 | |
| 272 | /* All the anchor SYMBOL_REFs used to address these objects, sorted |
| 273 | in order of increasing offset, and then increasing TLS model. |
| 274 | The following conditions will hold for each element X in this vector: |
| 275 | |
| 276 | SYMBOL_REF_HAS_BLOCK_INFO_P (X) |
| 277 | SYMBOL_REF_ANCHOR_P (X) |
| 278 | SYMBOL_REF_BLOCK (X) == [address of this structure] |
| 279 | SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */ |
| 280 | vec<rtx, va_gc> *anchors; |
| 281 | }; |
| 282 | |
| 283 | struct GTY((variable_size)) hwivec_def { |
| 284 | HOST_WIDE_INT elem[1]; |
| 285 | }; |
| 286 | |
| 287 | /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */ |
| 288 | #define CWI_GET_NUM_ELEM(RTX) \ |
| 289 | ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem) |
| 290 | #define CWI_PUT_NUM_ELEM(RTX, NUM) \ |
| 291 | (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM)) |
| 292 | |
| 293 | struct GTY((variable_size)) const_poly_int_def { |
| 294 | trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs; |
| 295 | }; |
| 296 | |
| 297 | /* RTL expression ("rtx"). */ |
| 298 | |
| 299 | /* The GTY "desc" and "tag" options below are a kludge: we need a desc |
| 300 | field for gengtype to recognize that inheritance is occurring, |
| 301 | so that all subclasses are redirected to the traversal hook for the |
| 302 | base class. |
| 303 | However, all of the fields are in the base class, and special-casing |
| 304 | is at work. Hence we use desc and tag of 0, generating a switch |
| 305 | statement of the form: |
| 306 | switch (0) |
| 307 | { |
| 308 | case 0: // all the work happens here |
| 309 | } |
| 310 | in order to work with the existing special-casing in gengtype. */ |
| 311 | |
| 312 | struct GTY((desc("0" ), tag("0" ), |
| 313 | chain_next ("RTX_NEXT (&%h)" ), |
| 314 | chain_prev ("RTX_PREV (&%h)" ))) rtx_def { |
| 315 | /* The kind of value the expression has. */ |
| 316 | ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE; |
| 317 | |
| 318 | /* The kind of expression this is. */ |
| 319 | ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE; |
| 320 | |
| 321 | /* 1 in a MEM if we should keep the alias set for this mem unchanged |
| 322 | when we access a component. |
| 323 | 1 in a JUMP_INSN if it is a crossing jump. |
| 324 | 1 in a CALL_INSN if it is a sibling call. |
| 325 | 1 in a SET that is for a return. |
| 326 | In a CODE_LABEL, part of the two-bit alternate entry field. |
| 327 | 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc. |
| 328 | 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc. |
| 329 | 1 in a SUBREG generated by LRA for reload insns. |
| 330 | 1 in a REG if this is a static chain register. |
| 331 | Dumped as "/j" in RTL dumps. */ |
| 332 | unsigned int jump : 1; |
| 333 | /* In a CODE_LABEL, part of the two-bit alternate entry field. |
| 334 | 1 in a MEM if it cannot trap. |
| 335 | 1 in a CALL_INSN logically equivalent to |
| 336 | ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. |
| 337 | 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc. |
| 338 | Dumped as "/c" in RTL dumps. */ |
| 339 | unsigned int call : 1; |
| 340 | /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere. |
| 341 | 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P. |
| 342 | 1 in a SYMBOL_REF if it addresses something in the per-function |
| 343 | constants pool. |
| 344 | 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY. |
| 345 | 1 in a NOTE, or EXPR_LIST for a const call. |
| 346 | 1 in a JUMP_INSN of an annulling branch. |
| 347 | 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc. |
| 348 | 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc. |
| 349 | 1 in a clobber temporarily created for LRA. |
| 350 | Dumped as "/u" in RTL dumps. */ |
| 351 | unsigned int unchanging : 1; |
| 352 | /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile. |
| 353 | 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE |
| 354 | if it has been deleted. |
| 355 | 1 in a REG expression if corresponds to a variable declared by the user, |
| 356 | 0 for an internally generated temporary. |
| 357 | 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P. |
| 358 | 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a |
| 359 | non-local label. |
| 360 | In a SYMBOL_REF, this flag is used for machine-specific purposes. |
| 361 | In a PREFETCH, this flag indicates that it should be considered a |
| 362 | scheduling barrier. |
| 363 | 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc. |
| 364 | Dumped as "/v" in RTL dumps. */ |
| 365 | unsigned int volatil : 1; |
| 366 | /* 1 in a REG if the register is used only in exit code a loop. |
| 367 | 1 in a SUBREG expression if was generated from a variable with a |
| 368 | promoted mode. |
| 369 | 1 in a CODE_LABEL if the label is used for nonlocal gotos |
| 370 | and must not be deleted even if its count is zero. |
| 371 | 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled |
| 372 | together with the preceding insn. Valid only within sched. |
| 373 | 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and |
| 374 | from the target of a branch. Valid from reorg until end of compilation; |
| 375 | cleared before used. |
| 376 | |
| 377 | The name of the field is historical. It used to be used in MEMs |
| 378 | to record whether the MEM accessed part of a structure. |
| 379 | Dumped as "/s" in RTL dumps. */ |
| 380 | unsigned int in_struct : 1; |
| 381 | /* At the end of RTL generation, 1 if this rtx is used. This is used for |
| 382 | copying shared structure. See `unshare_all_rtl'. |
| 383 | In a REG, this is not needed for that purpose, and used instead |
| 384 | in `leaf_renumber_regs_insn'. |
| 385 | 1 in a SYMBOL_REF, means that emit_library_call |
| 386 | has used it as the function. |
| 387 | 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc. |
| 388 | 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */ |
| 389 | unsigned int used : 1; |
| 390 | /* 1 in an INSN or a SET if this rtx is related to the call frame, |
| 391 | either changing how we compute the frame address or saving and |
| 392 | restoring registers in the prologue and epilogue. |
| 393 | 1 in a REG or MEM if it is a pointer. |
| 394 | 1 in a SYMBOL_REF if it addresses something in the per-function |
| 395 | constant string pool. |
| 396 | 1 in a VALUE is VALUE_CHANGED in var-tracking.cc. |
| 397 | Dumped as "/f" in RTL dumps. */ |
| 398 | unsigned frame_related : 1; |
| 399 | /* 1 in a REG or PARALLEL that is the current function's return value. |
| 400 | 1 in a SYMBOL_REF for a weak symbol. |
| 401 | 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P. |
| 402 | 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc. |
| 403 | 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc. |
| 404 | Dumped as "/i" in RTL dumps. */ |
| 405 | unsigned return_val : 1; |
| 406 | |
| 407 | union { |
| 408 | /* The final union field is aligned to 64 bits on LP64 hosts, |
| 409 | giving a 32-bit gap after the fields above. We optimize the |
| 410 | layout for that case and use the gap for extra code-specific |
| 411 | information. */ |
| 412 | |
| 413 | /* The ORIGINAL_REGNO of a REG. */ |
| 414 | unsigned int original_regno; |
| 415 | |
| 416 | /* The INSN_UID of an RTX_INSN-class code. */ |
| 417 | int insn_uid; |
| 418 | |
| 419 | /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */ |
| 420 | unsigned int symbol_ref_flags; |
| 421 | |
| 422 | /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */ |
| 423 | enum var_init_status var_location_status; |
| 424 | |
| 425 | /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of |
| 426 | HOST_WIDE_INTs in the hwivec_def. */ |
| 427 | unsigned int num_elem; |
| 428 | |
| 429 | /* Information about a CONST_VECTOR. */ |
| 430 | struct |
| 431 | { |
| 432 | /* The value of CONST_VECTOR_NPATTERNS. */ |
| 433 | unsigned int npatterns : 16; |
| 434 | |
| 435 | /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */ |
| 436 | unsigned int nelts_per_pattern : 8; |
| 437 | |
| 438 | /* For future expansion. */ |
| 439 | unsigned int unused : 8; |
| 440 | } const_vector; |
| 441 | } GTY ((skip)) u2; |
| 442 | |
| 443 | /* The first element of the operands of this rtx. |
| 444 | The number of operands and their types are controlled |
| 445 | by the `code' field, according to rtl.def. */ |
| 446 | union u { |
| 447 | rtunion fld[1]; |
| 448 | HOST_WIDE_INT hwint[1]; |
| 449 | struct reg_info reg; |
| 450 | struct block_symbol block_sym; |
| 451 | struct real_value rv; |
| 452 | struct fixed_value fv; |
| 453 | struct hwivec_def hwiv; |
| 454 | struct const_poly_int_def cpi; |
| 455 | } GTY ((special ("rtx_def" ), desc ("GET_CODE (&%0)" ))) u; |
| 456 | }; |
| 457 | |
| 458 | /* A node for constructing singly-linked lists of rtx. */ |
| 459 | |
| 460 | struct GTY(()) rtx_expr_list : public rtx_def |
| 461 | { |
| 462 | private: |
| 463 | /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */ |
| 464 | |
| 465 | public: |
| 466 | /* Get next in list. */ |
| 467 | rtx_expr_list *next () const; |
| 468 | |
| 469 | /* Get at the underlying rtx. */ |
| 470 | rtx element () const; |
| 471 | }; |
| 472 | |
| 473 | template <> |
| 474 | template <> |
| 475 | inline bool |
| 476 | is_a_helper <rtx_expr_list *>::test (rtx rt) |
| 477 | { |
| 478 | return rt->code == EXPR_LIST; |
| 479 | } |
| 480 | |
| 481 | struct GTY(()) rtx_insn_list : public rtx_def |
| 482 | { |
| 483 | private: |
| 484 | /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST). |
| 485 | |
| 486 | This is an instance of: |
| 487 | |
| 488 | DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA) |
| 489 | |
| 490 | i.e. a node for constructing singly-linked lists of rtx_insn *, where |
| 491 | the list is "external" to the insn (as opposed to the doubly-linked |
| 492 | list embedded within rtx_insn itself). */ |
| 493 | |
| 494 | public: |
| 495 | /* Get next in list. */ |
| 496 | rtx_insn_list *next () const; |
| 497 | |
| 498 | /* Get at the underlying instruction. */ |
| 499 | rtx_insn *insn () const; |
| 500 | |
| 501 | }; |
| 502 | |
| 503 | template <> |
| 504 | template <> |
| 505 | inline bool |
| 506 | is_a_helper <rtx_insn_list *>::test (rtx rt) |
| 507 | { |
| 508 | return rt->code == INSN_LIST; |
| 509 | } |
| 510 | |
| 511 | /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx, |
| 512 | typically (but not always) of rtx_insn *, used in the late passes. */ |
| 513 | |
| 514 | struct GTY(()) rtx_sequence : public rtx_def |
| 515 | { |
| 516 | private: |
| 517 | /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */ |
| 518 | |
| 519 | public: |
| 520 | /* Get number of elements in sequence. */ |
| 521 | int len () const; |
| 522 | |
| 523 | /* Get i-th element of the sequence. */ |
| 524 | rtx element (int index) const; |
| 525 | |
| 526 | /* Get i-th element of the sequence, with a checked cast to |
| 527 | rtx_insn *. */ |
| 528 | rtx_insn *insn (int index) const; |
| 529 | }; |
| 530 | |
| 531 | template <> |
| 532 | template <> |
| 533 | inline bool |
| 534 | is_a_helper <rtx_sequence *>::test (rtx rt) |
| 535 | { |
| 536 | return rt->code == SEQUENCE; |
| 537 | } |
| 538 | |
| 539 | template <> |
| 540 | template <> |
| 541 | inline bool |
| 542 | is_a_helper <const rtx_sequence *>::test (const_rtx rt) |
| 543 | { |
| 544 | return rt->code == SEQUENCE; |
| 545 | } |
| 546 | |
| 547 | struct GTY(()) rtx_insn : public rtx_def |
| 548 | { |
| 549 | public: |
| 550 | /* No extra fields, but adds the invariant: |
| 551 | |
| 552 | (INSN_P (X) |
| 553 | || NOTE_P (X) |
| 554 | || JUMP_TABLE_DATA_P (X) |
| 555 | || BARRIER_P (X) |
| 556 | || LABEL_P (X)) |
| 557 | |
| 558 | i.e. that we must be able to use the following: |
| 559 | INSN_UID () |
| 560 | NEXT_INSN () |
| 561 | PREV_INSN () |
| 562 | i.e. we have an rtx that has an INSN_UID field and can be part of |
| 563 | a linked list of insns. |
| 564 | */ |
| 565 | |
| 566 | /* Returns true if this insn has been deleted. */ |
| 567 | |
| 568 | bool deleted () const { return volatil; } |
| 569 | |
| 570 | /* Mark this insn as deleted. */ |
| 571 | |
| 572 | void set_deleted () { volatil = true; } |
| 573 | |
| 574 | /* Mark this insn as not deleted. */ |
| 575 | |
| 576 | void set_undeleted () { volatil = false; } |
| 577 | }; |
| 578 | |
| 579 | /* Subclasses of rtx_insn. */ |
| 580 | |
| 581 | struct GTY(()) rtx_debug_insn : public rtx_insn |
| 582 | { |
| 583 | /* No extra fields, but adds the invariant: |
| 584 | DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN) |
| 585 | i.e. an annotation for tracking variable assignments. |
| 586 | |
| 587 | This is an instance of: |
| 588 | DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeLie", RTX_INSN) |
| 589 | from rtl.def. */ |
| 590 | }; |
| 591 | |
| 592 | struct GTY(()) rtx_nonjump_insn : public rtx_insn |
| 593 | { |
| 594 | /* No extra fields, but adds the invariant: |
| 595 | NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN) |
| 596 | i.e an instruction that cannot jump. |
| 597 | |
| 598 | This is an instance of: |
| 599 | DEF_RTL_EXPR(INSN, "insn", "uuBeLie", RTX_INSN) |
| 600 | from rtl.def. */ |
| 601 | }; |
| 602 | |
| 603 | struct GTY(()) rtx_jump_insn : public rtx_insn |
| 604 | { |
| 605 | public: |
| 606 | /* No extra fields, but adds the invariant: |
| 607 | JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN) |
| 608 | i.e. an instruction that can possibly jump. |
| 609 | |
| 610 | This is an instance of: |
| 611 | DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeLie0", RTX_INSN) |
| 612 | from rtl.def. */ |
| 613 | |
| 614 | /* Returns jump target of this instruction. The returned value is not |
| 615 | necessarily a code label: it may also be a RETURN or SIMPLE_RETURN |
| 616 | expression. Also, when the code label is marked "deleted", it is |
| 617 | replaced by a NOTE. In some cases the value is NULL_RTX. */ |
| 618 | |
| 619 | inline rtx jump_label () const; |
| 620 | |
| 621 | /* Returns jump target cast to rtx_code_label *. */ |
| 622 | |
| 623 | inline rtx_code_label *jump_target () const; |
| 624 | |
| 625 | /* Set jump target. */ |
| 626 | |
| 627 | inline void set_jump_target (rtx_code_label *); |
| 628 | }; |
| 629 | |
| 630 | struct GTY(()) rtx_call_insn : public rtx_insn |
| 631 | { |
| 632 | /* No extra fields, but adds the invariant: |
| 633 | CALL_P (X) aka (GET_CODE (X) == CALL_INSN) |
| 634 | i.e. an instruction that can possibly call a subroutine |
| 635 | but which will not change which instruction comes next |
| 636 | in the current function. |
| 637 | |
| 638 | This is an instance of: |
| 639 | DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeLiee", RTX_INSN) |
| 640 | from rtl.def. */ |
| 641 | }; |
| 642 | |
| 643 | struct GTY(()) rtx_jump_table_data : public rtx_insn |
| 644 | { |
| 645 | /* No extra fields, but adds the invariant: |
| 646 | JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA) |
| 647 | i.e. a data for a jump table, considered an instruction for |
| 648 | historical reasons. |
| 649 | |
| 650 | This is an instance of: |
| 651 | DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN) |
| 652 | from rtl.def. */ |
| 653 | |
| 654 | /* This can be either: |
| 655 | |
| 656 | (a) a table of absolute jumps, in which case PATTERN (this) is an |
| 657 | ADDR_VEC with arg 0 a vector of labels, or |
| 658 | |
| 659 | (b) a table of relative jumps (e.g. for -fPIC), in which case |
| 660 | PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and |
| 661 | arg 1 the vector of labels. |
| 662 | |
| 663 | This method gets the underlying vec. */ |
| 664 | |
| 665 | inline rtvec get_labels () const; |
| 666 | inline scalar_int_mode get_data_mode () const; |
| 667 | }; |
| 668 | |
| 669 | struct GTY(()) rtx_barrier : public rtx_insn |
| 670 | { |
| 671 | /* No extra fields, but adds the invariant: |
| 672 | BARRIER_P (X) aka (GET_CODE (X) == BARRIER) |
| 673 | i.e. a marker that indicates that control will not flow through. |
| 674 | |
| 675 | This is an instance of: |
| 676 | DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA) |
| 677 | from rtl.def. */ |
| 678 | }; |
| 679 | |
| 680 | struct GTY(()) rtx_code_label : public rtx_insn |
| 681 | { |
| 682 | /* No extra fields, but adds the invariant: |
| 683 | LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL) |
| 684 | i.e. a label in the assembler. |
| 685 | |
| 686 | This is an instance of: |
| 687 | DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA) |
| 688 | from rtl.def. */ |
| 689 | }; |
| 690 | |
| 691 | struct GTY(()) rtx_note : public rtx_insn |
| 692 | { |
| 693 | /* No extra fields, but adds the invariant: |
| 694 | NOTE_P(X) aka (GET_CODE (X) == NOTE) |
| 695 | i.e. a note about the corresponding source code. |
| 696 | |
| 697 | This is an instance of: |
| 698 | DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA) |
| 699 | from rtl.def. */ |
| 700 | }; |
| 701 | |
| 702 | /* The size in bytes of an rtx header (code, mode and flags). */ |
| 703 | #define RTX_HDR_SIZE offsetof (struct rtx_def, u) |
| 704 | |
| 705 | /* The size in bytes of an rtx with code CODE. */ |
| 706 | #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE] |
| 707 | |
| 708 | #define NULL_RTX (rtx) 0 |
| 709 | |
| 710 | /* The "next" and "previous" RTX, relative to this one. */ |
| 711 | |
| 712 | #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \ |
| 713 | : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)])) |
| 714 | |
| 715 | /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed. |
| 716 | */ |
| 717 | #define RTX_PREV(X) ((INSN_P (X) \ |
| 718 | || NOTE_P (X) \ |
| 719 | || JUMP_TABLE_DATA_P (X) \ |
| 720 | || BARRIER_P (X) \ |
| 721 | || LABEL_P (X)) \ |
| 722 | && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \ |
| 723 | && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \ |
| 724 | ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL) |
| 725 | |
| 726 | /* Define macros to access the `code' field of the rtx. */ |
| 727 | |
| 728 | #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code) |
| 729 | #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE)) |
| 730 | |
| 731 | #define GET_MODE(RTX) ((machine_mode) (RTX)->mode) |
| 732 | #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE)) |
| 733 | |
| 734 | /* RTL vector. These appear inside RTX's when there is a need |
| 735 | for a variable number of things. The principle use is inside |
| 736 | PARALLEL expressions. */ |
| 737 | |
| 738 | struct GTY(()) rtvec_def { |
| 739 | int num_elem; /* number of elements */ |
| 740 | rtx GTY ((length ("%h.num_elem" ))) elem[1]; |
| 741 | }; |
| 742 | |
| 743 | #define NULL_RTVEC (rtvec) 0 |
| 744 | |
| 745 | #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem) |
| 746 | #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM)) |
| 747 | |
| 748 | /* Predicate yielding nonzero iff X is an rtx for a register. */ |
| 749 | #define REG_P(X) (GET_CODE (X) == REG) |
| 750 | |
| 751 | /* Predicate yielding nonzero iff X is an rtx for a memory location. */ |
| 752 | #define MEM_P(X) (GET_CODE (X) == MEM) |
| 753 | |
| 754 | #if TARGET_SUPPORTS_WIDE_INT |
| 755 | |
| 756 | /* Match CONST_*s that can represent compile-time constant integers. */ |
| 757 | #define CASE_CONST_SCALAR_INT \ |
| 758 | case CONST_INT: \ |
| 759 | case CONST_WIDE_INT |
| 760 | |
| 761 | /* Match CONST_*s for which pointer equality corresponds to value |
| 762 | equality. */ |
| 763 | #define CASE_CONST_UNIQUE \ |
| 764 | case CONST_INT: \ |
| 765 | case CONST_WIDE_INT: \ |
| 766 | case CONST_POLY_INT: \ |
| 767 | case CONST_DOUBLE: \ |
| 768 | case CONST_FIXED |
| 769 | |
| 770 | /* Match all CONST_* rtxes. */ |
| 771 | #define CASE_CONST_ANY \ |
| 772 | case CONST_INT: \ |
| 773 | case CONST_WIDE_INT: \ |
| 774 | case CONST_POLY_INT: \ |
| 775 | case CONST_DOUBLE: \ |
| 776 | case CONST_FIXED: \ |
| 777 | case CONST_VECTOR |
| 778 | |
| 779 | #else |
| 780 | |
| 781 | /* Match CONST_*s that can represent compile-time constant integers. */ |
| 782 | #define CASE_CONST_SCALAR_INT \ |
| 783 | case CONST_INT: \ |
| 784 | case CONST_DOUBLE |
| 785 | |
| 786 | /* Match CONST_*s for which pointer equality corresponds to value |
| 787 | equality. */ |
| 788 | #define CASE_CONST_UNIQUE \ |
| 789 | case CONST_INT: \ |
| 790 | case CONST_DOUBLE: \ |
| 791 | case CONST_FIXED |
| 792 | |
| 793 | /* Match all CONST_* rtxes. */ |
| 794 | #define CASE_CONST_ANY \ |
| 795 | case CONST_INT: \ |
| 796 | case CONST_DOUBLE: \ |
| 797 | case CONST_FIXED: \ |
| 798 | case CONST_VECTOR |
| 799 | #endif |
| 800 | |
| 801 | /* Predicate yielding nonzero iff X is an rtx for a constant integer. */ |
| 802 | #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT) |
| 803 | |
| 804 | /* Predicate yielding nonzero iff X is an rtx for a constant integer. */ |
| 805 | #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT) |
| 806 | |
| 807 | /* Predicate yielding nonzero iff X is an rtx for a polynomial constant |
| 808 | integer. */ |
| 809 | #define CONST_POLY_INT_P(X) \ |
| 810 | (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT) |
| 811 | |
| 812 | /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */ |
| 813 | #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED) |
| 814 | |
| 815 | /* Predicate yielding true iff X is an rtx for a double-int |
| 816 | or floating point constant. */ |
| 817 | #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE) |
| 818 | |
| 819 | /* Predicate yielding true iff X is an rtx for a double-int. */ |
| 820 | #define CONST_DOUBLE_AS_INT_P(X) \ |
| 821 | (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode) |
| 822 | |
| 823 | /* Predicate yielding true iff X is an rtx for a integer const. */ |
| 824 | #if TARGET_SUPPORTS_WIDE_INT |
| 825 | #define CONST_SCALAR_INT_P(X) \ |
| 826 | (CONST_INT_P (X) || CONST_WIDE_INT_P (X)) |
| 827 | #else |
| 828 | #define CONST_SCALAR_INT_P(X) \ |
| 829 | (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X)) |
| 830 | #endif |
| 831 | |
| 832 | /* Predicate yielding true iff X is an rtx for a double-int. */ |
| 833 | #define CONST_DOUBLE_AS_FLOAT_P(X) \ |
| 834 | (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) |
| 835 | |
| 836 | /* Predicate yielding nonzero iff X is an rtx for a constant vector. */ |
| 837 | #define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR) |
| 838 | |
| 839 | /* Predicate yielding nonzero iff X is a label insn. */ |
| 840 | #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL) |
| 841 | |
| 842 | /* Predicate yielding nonzero iff X is a jump insn. */ |
| 843 | #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN) |
| 844 | |
| 845 | /* Predicate yielding nonzero iff X is a call insn. */ |
| 846 | #define CALL_P(X) (GET_CODE (X) == CALL_INSN) |
| 847 | |
| 848 | /* 1 if RTX is a call_insn for a fake call. |
| 849 | CALL_INSN use "used" flag to indicate it's a fake call. */ |
| 850 | #define FAKE_CALL_P(RTX) \ |
| 851 | (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used) |
| 852 | |
| 853 | /* Predicate yielding nonzero iff X is an insn that cannot jump. */ |
| 854 | #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN) |
| 855 | |
| 856 | /* Predicate yielding nonzero iff X is a debug note/insn. */ |
| 857 | #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN) |
| 858 | |
| 859 | /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */ |
| 860 | #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X)) |
| 861 | |
| 862 | /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */ |
| 863 | #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p |
| 864 | /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */ |
| 865 | #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments |
| 866 | /* Nonzero if DEBUG_INSN_P may possibly hold. */ |
| 867 | #define MAY_HAVE_DEBUG_INSNS \ |
| 868 | (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS) |
| 869 | |
| 870 | /* Predicate yielding nonzero iff X is a real insn. */ |
| 871 | #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X)) |
| 872 | |
| 873 | /* Predicate yielding nonzero iff X is a note insn. */ |
| 874 | #define NOTE_P(X) (GET_CODE (X) == NOTE) |
| 875 | |
| 876 | /* Predicate yielding nonzero iff X is a barrier insn. */ |
| 877 | #define BARRIER_P(X) (GET_CODE (X) == BARRIER) |
| 878 | |
| 879 | /* Predicate yielding nonzero iff X is a data for a jump table. */ |
| 880 | #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA) |
| 881 | |
| 882 | /* Predicate yielding nonzero iff RTX is a subreg. */ |
| 883 | #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG) |
| 884 | |
| 885 | /* Predicate yielding true iff RTX is a symbol ref. */ |
| 886 | #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF) |
| 887 | |
| 888 | template <> |
| 889 | template <> |
| 890 | inline bool |
| 891 | is_a_helper <rtx_insn *>::test (rtx rt) |
| 892 | { |
| 893 | return (INSN_P (rt) |
| 894 | || NOTE_P (rt) |
| 895 | || JUMP_TABLE_DATA_P (rt) |
| 896 | || BARRIER_P (rt) |
| 897 | || LABEL_P (rt)); |
| 898 | } |
| 899 | |
| 900 | template <> |
| 901 | template <> |
| 902 | inline bool |
| 903 | is_a_helper <const rtx_insn *>::test (const_rtx rt) |
| 904 | { |
| 905 | return (INSN_P (rt) |
| 906 | || NOTE_P (rt) |
| 907 | || JUMP_TABLE_DATA_P (rt) |
| 908 | || BARRIER_P (rt) |
| 909 | || LABEL_P (rt)); |
| 910 | } |
| 911 | |
| 912 | template <> |
| 913 | template <> |
| 914 | inline bool |
| 915 | is_a_helper <rtx_debug_insn *>::test (rtx rt) |
| 916 | { |
| 917 | return DEBUG_INSN_P (rt); |
| 918 | } |
| 919 | |
| 920 | template <> |
| 921 | template <> |
| 922 | inline bool |
| 923 | is_a_helper <rtx_nonjump_insn *>::test (rtx rt) |
| 924 | { |
| 925 | return NONJUMP_INSN_P (rt); |
| 926 | } |
| 927 | |
| 928 | template <> |
| 929 | template <> |
| 930 | inline bool |
| 931 | is_a_helper <rtx_jump_insn *>::test (rtx rt) |
| 932 | { |
| 933 | return JUMP_P (rt); |
| 934 | } |
| 935 | |
| 936 | template <> |
| 937 | template <> |
| 938 | inline bool |
| 939 | is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn) |
| 940 | { |
| 941 | return JUMP_P (insn); |
| 942 | } |
| 943 | |
| 944 | template <> |
| 945 | template <> |
| 946 | inline bool |
| 947 | is_a_helper <rtx_call_insn *>::test (rtx rt) |
| 948 | { |
| 949 | return CALL_P (rt); |
| 950 | } |
| 951 | |
| 952 | template <> |
| 953 | template <> |
| 954 | inline bool |
| 955 | is_a_helper <rtx_call_insn *>::test (rtx_insn *insn) |
| 956 | { |
| 957 | return CALL_P (insn); |
| 958 | } |
| 959 | |
| 960 | template <> |
| 961 | template <> |
| 962 | inline bool |
| 963 | is_a_helper <const rtx_call_insn *>::test (const rtx_insn *insn) |
| 964 | { |
| 965 | return CALL_P (insn); |
| 966 | } |
| 967 | |
| 968 | template <> |
| 969 | template <> |
| 970 | inline bool |
| 971 | is_a_helper <rtx_jump_table_data *>::test (rtx rt) |
| 972 | { |
| 973 | return JUMP_TABLE_DATA_P (rt); |
| 974 | } |
| 975 | |
| 976 | template <> |
| 977 | template <> |
| 978 | inline bool |
| 979 | is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn) |
| 980 | { |
| 981 | return JUMP_TABLE_DATA_P (insn); |
| 982 | } |
| 983 | |
| 984 | template <> |
| 985 | template <> |
| 986 | inline bool |
| 987 | is_a_helper <rtx_barrier *>::test (rtx rt) |
| 988 | { |
| 989 | return BARRIER_P (rt); |
| 990 | } |
| 991 | |
| 992 | template <> |
| 993 | template <> |
| 994 | inline bool |
| 995 | is_a_helper <rtx_code_label *>::test (rtx rt) |
| 996 | { |
| 997 | return LABEL_P (rt); |
| 998 | } |
| 999 | |
| 1000 | template <> |
| 1001 | template <> |
| 1002 | inline bool |
| 1003 | is_a_helper <rtx_code_label *>::test (rtx_insn *insn) |
| 1004 | { |
| 1005 | return LABEL_P (insn); |
| 1006 | } |
| 1007 | |
| 1008 | template <> |
| 1009 | template <> |
| 1010 | inline bool |
| 1011 | is_a_helper <rtx_note *>::test (rtx rt) |
| 1012 | { |
| 1013 | return NOTE_P (rt); |
| 1014 | } |
| 1015 | |
| 1016 | template <> |
| 1017 | template <> |
| 1018 | inline bool |
| 1019 | is_a_helper <rtx_note *>::test (rtx_insn *insn) |
| 1020 | { |
| 1021 | return NOTE_P (insn); |
| 1022 | } |
| 1023 | |
| 1024 | /* Predicate yielding nonzero iff X is a return or simple_return. */ |
| 1025 | #define ANY_RETURN_P(X) \ |
| 1026 | (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN) |
| 1027 | |
| 1028 | /* 1 if X is a unary operator. */ |
| 1029 | |
| 1030 | #define UNARY_P(X) \ |
| 1031 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY) |
| 1032 | |
| 1033 | /* 1 if X is a binary operator. */ |
| 1034 | |
| 1035 | #define BINARY_P(X) \ |
| 1036 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT) |
| 1037 | |
| 1038 | /* 1 if X is an arithmetic operator. */ |
| 1039 | |
| 1040 | #define ARITHMETIC_P(X) \ |
| 1041 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \ |
| 1042 | == RTX_ARITHMETIC_RESULT) |
| 1043 | |
| 1044 | /* 1 if X is an arithmetic operator. */ |
| 1045 | |
| 1046 | #define COMMUTATIVE_ARITH_P(X) \ |
| 1047 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH) |
| 1048 | |
| 1049 | /* 1 if X is a commutative arithmetic operator or a comparison operator. |
| 1050 | These two are sometimes selected together because it is possible to |
| 1051 | swap the two operands. */ |
| 1052 | |
| 1053 | #define SWAPPABLE_OPERANDS_P(X) \ |
| 1054 | ((1 << GET_RTX_CLASS (GET_CODE (X))) \ |
| 1055 | & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \ |
| 1056 | | (1 << RTX_COMPARE))) |
| 1057 | |
| 1058 | /* 1 if X is a non-commutative operator. */ |
| 1059 | |
| 1060 | #define NON_COMMUTATIVE_P(X) \ |
| 1061 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \ |
| 1062 | == RTX_NON_COMMUTATIVE_RESULT) |
| 1063 | |
| 1064 | /* 1 if X is a commutative operator on integers. */ |
| 1065 | |
| 1066 | #define COMMUTATIVE_P(X) \ |
| 1067 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \ |
| 1068 | == RTX_COMMUTATIVE_RESULT) |
| 1069 | |
| 1070 | /* 1 if X is a relational operator. */ |
| 1071 | |
| 1072 | #define COMPARISON_P(X) \ |
| 1073 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT) |
| 1074 | |
| 1075 | /* 1 if X is a constant value that is an integer. */ |
| 1076 | |
| 1077 | #define CONSTANT_P(X) \ |
| 1078 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ) |
| 1079 | |
| 1080 | /* 1 if X is a LABEL_REF. */ |
| 1081 | #define LABEL_REF_P(X) \ |
| 1082 | (GET_CODE (X) == LABEL_REF) |
| 1083 | |
| 1084 | /* 1 if X can be used to represent an object. */ |
| 1085 | #define OBJECT_P(X) \ |
| 1086 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT) |
| 1087 | |
| 1088 | /* General accessor macros for accessing the fields of an rtx. */ |
| 1089 | |
| 1090 | #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007) |
| 1091 | /* The bit with a star outside the statement expr and an & inside is |
| 1092 | so that N can be evaluated only once. */ |
| 1093 | #define RTL_CHECK1(RTX, N, C1) __extension__ \ |
| 1094 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1095 | const enum rtx_code _code = GET_CODE (_rtx); \ |
| 1096 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
| 1097 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
| 1098 | __FUNCTION__); \ |
| 1099 | if (GET_RTX_FORMAT (_code)[_n] != C1) \ |
| 1100 | rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \ |
| 1101 | __FUNCTION__); \ |
| 1102 | &_rtx->u.fld[_n]; })) |
| 1103 | |
| 1104 | #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \ |
| 1105 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1106 | const enum rtx_code _code = GET_CODE (_rtx); \ |
| 1107 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
| 1108 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
| 1109 | __FUNCTION__); \ |
| 1110 | if (GET_RTX_FORMAT (_code)[_n] != C1 \ |
| 1111 | && GET_RTX_FORMAT (_code)[_n] != C2) \ |
| 1112 | rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \ |
| 1113 | __FUNCTION__); \ |
| 1114 | &_rtx->u.fld[_n]; })) |
| 1115 | |
| 1116 | #define RTL_CHECKC1(RTX, N, C) __extension__ \ |
| 1117 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1118 | if (GET_CODE (_rtx) != (C)) \ |
| 1119 | rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ |
| 1120 | __FUNCTION__); \ |
| 1121 | &_rtx->u.fld[_n]; })) |
| 1122 | |
| 1123 | #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \ |
| 1124 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1125 | const enum rtx_code _code = GET_CODE (_rtx); \ |
| 1126 | if (_code != (C1) && _code != (C2)) \ |
| 1127 | rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \ |
| 1128 | __FUNCTION__); \ |
| 1129 | &_rtx->u.fld[_n]; })) |
| 1130 | |
| 1131 | #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \ |
| 1132 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1133 | const enum rtx_code _code = GET_CODE (_rtx); \ |
| 1134 | if (_code != (C1) && _code != (C2) && _code != (C3)) \ |
| 1135 | rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \ |
| 1136 | __LINE__, __FUNCTION__); \ |
| 1137 | &_rtx->u.fld[_n]; })) |
| 1138 | |
| 1139 | #define RTVEC_ELT(RTVEC, I) __extension__ \ |
| 1140 | (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \ |
| 1141 | if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \ |
| 1142 | rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \ |
| 1143 | __FUNCTION__); \ |
| 1144 | &_rtvec->elem[_i]; })) |
| 1145 | |
| 1146 | #define XWINT(RTX, N) __extension__ \ |
| 1147 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
| 1148 | const enum rtx_code _code = GET_CODE (_rtx); \ |
| 1149 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
| 1150 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
| 1151 | __FUNCTION__); \ |
| 1152 | if (GET_RTX_FORMAT (_code)[_n] != 'w') \ |
| 1153 | rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \ |
| 1154 | __FUNCTION__); \ |
| 1155 | &_rtx->u.hwint[_n]; })) |
| 1156 | |
| 1157 | #define CWI_ELT(RTX, I) __extension__ \ |
| 1158 | (*({ __typeof (RTX) const _cwi = (RTX); \ |
| 1159 | int _max = CWI_GET_NUM_ELEM (_cwi); \ |
| 1160 | const int _i = (I); \ |
| 1161 | if (_i < 0 || _i >= _max) \ |
| 1162 | cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \ |
| 1163 | __FUNCTION__); \ |
| 1164 | &_cwi->u.hwiv.elem[_i]; })) |
| 1165 | |
| 1166 | #define XCWINT(RTX, N, C) __extension__ \ |
| 1167 | (*({ __typeof (RTX) const _rtx = (RTX); \ |
| 1168 | if (GET_CODE (_rtx) != (C)) \ |
| 1169 | rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ |
| 1170 | __FUNCTION__); \ |
| 1171 | &_rtx->u.hwint[N]; })) |
| 1172 | |
| 1173 | #define XCMWINT(RTX, N, C, M) __extension__ \ |
| 1174 | (*({ __typeof (RTX) const _rtx = (RTX); \ |
| 1175 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \ |
| 1176 | rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \ |
| 1177 | __LINE__, __FUNCTION__); \ |
| 1178 | &_rtx->u.hwint[N]; })) |
| 1179 | |
| 1180 | #define XCNMPRV(RTX, C, M) __extension__ \ |
| 1181 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1182 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \ |
| 1183 | rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \ |
| 1184 | __LINE__, __FUNCTION__); \ |
| 1185 | &_rtx->u.rv; }) |
| 1186 | |
| 1187 | #define XCNMPFV(RTX, C, M) __extension__ \ |
| 1188 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1189 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \ |
| 1190 | rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \ |
| 1191 | __LINE__, __FUNCTION__); \ |
| 1192 | &_rtx->u.fv; }) |
| 1193 | |
| 1194 | #define REG_CHECK(RTX) __extension__ \ |
| 1195 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1196 | if (GET_CODE (_rtx) != REG) \ |
| 1197 | rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \ |
| 1198 | __FUNCTION__); \ |
| 1199 | &_rtx->u.reg; }) |
| 1200 | |
| 1201 | #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \ |
| 1202 | ({ __typeof (RTX) const _symbol = (RTX); \ |
| 1203 | const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \ |
| 1204 | if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \ |
| 1205 | rtl_check_failed_block_symbol (__FILE__, __LINE__, \ |
| 1206 | __FUNCTION__); \ |
| 1207 | &_symbol->u.block_sym; }) |
| 1208 | |
| 1209 | #define HWIVEC_CHECK(RTX,C) __extension__ \ |
| 1210 | ({ __typeof (RTX) const _symbol = (RTX); \ |
| 1211 | RTL_CHECKC1 (_symbol, 0, C); \ |
| 1212 | &_symbol->u.hwiv; }) |
| 1213 | |
| 1214 | extern void rtl_check_failed_bounds (const_rtx, int, const char *, int, |
| 1215 | const char *) |
| 1216 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1217 | extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int, |
| 1218 | const char *) |
| 1219 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1220 | extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *, |
| 1221 | int, const char *) |
| 1222 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1223 | extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *, |
| 1224 | int, const char *) |
| 1225 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1226 | extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code, |
| 1227 | const char *, int, const char *) |
| 1228 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1229 | extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code, |
| 1230 | enum rtx_code, const char *, int, |
| 1231 | const char *) |
| 1232 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1233 | extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode, |
| 1234 | bool, const char *, int, const char *) |
| 1235 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1236 | extern void rtl_check_failed_block_symbol (const char *, int, const char *) |
| 1237 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1238 | extern void cwi_check_failed_bounds (const_rtx, int, const char *, int, |
| 1239 | const char *) |
| 1240 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1241 | extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int, |
| 1242 | const char *) |
| 1243 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 1244 | |
| 1245 | #else /* not ENABLE_RTL_CHECKING */ |
| 1246 | |
| 1247 | #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N]) |
| 1248 | #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N]) |
| 1249 | #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N]) |
| 1250 | #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N]) |
| 1251 | #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N]) |
| 1252 | #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I]) |
| 1253 | #define XWINT(RTX, N) ((RTX)->u.hwint[N]) |
| 1254 | #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I]) |
| 1255 | #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N]) |
| 1256 | #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N]) |
| 1257 | #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N]) |
| 1258 | #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv) |
| 1259 | #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv) |
| 1260 | #define REG_CHECK(RTX) (&(RTX)->u.reg) |
| 1261 | #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym) |
| 1262 | #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv) |
| 1263 | |
| 1264 | #endif |
| 1265 | |
| 1266 | /* General accessor macros for accessing the flags of an rtx. */ |
| 1267 | |
| 1268 | /* Access an individual rtx flag, with no checking of any kind. */ |
| 1269 | #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG) |
| 1270 | |
| 1271 | #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007) |
| 1272 | #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \ |
| 1273 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1274 | if (GET_CODE (_rtx) != C1) \ |
| 1275 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1276 | __FUNCTION__); \ |
| 1277 | _rtx; }) |
| 1278 | |
| 1279 | #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \ |
| 1280 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1281 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \ |
| 1282 | rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ |
| 1283 | __FUNCTION__); \ |
| 1284 | _rtx; }) |
| 1285 | |
| 1286 | #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \ |
| 1287 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1288 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \ |
| 1289 | && GET_CODE (_rtx) != C3) \ |
| 1290 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1291 | __FUNCTION__); \ |
| 1292 | _rtx; }) |
| 1293 | |
| 1294 | #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \ |
| 1295 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1296 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \ |
| 1297 | && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \ |
| 1298 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1299 | __FUNCTION__); \ |
| 1300 | _rtx; }) |
| 1301 | |
| 1302 | #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \ |
| 1303 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1304 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
| 1305 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
| 1306 | && GET_CODE (_rtx) != C5) \ |
| 1307 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1308 | __FUNCTION__); \ |
| 1309 | _rtx; }) |
| 1310 | |
| 1311 | #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \ |
| 1312 | __extension__ \ |
| 1313 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1314 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
| 1315 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
| 1316 | && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \ |
| 1317 | rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ |
| 1318 | __FUNCTION__); \ |
| 1319 | _rtx; }) |
| 1320 | |
| 1321 | #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \ |
| 1322 | __extension__ \ |
| 1323 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1324 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
| 1325 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
| 1326 | && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \ |
| 1327 | && GET_CODE (_rtx) != C7) \ |
| 1328 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1329 | __FUNCTION__); \ |
| 1330 | _rtx; }) |
| 1331 | |
| 1332 | #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \ |
| 1333 | __extension__ \ |
| 1334 | ({ __typeof (RTX) const _rtx = (RTX); \ |
| 1335 | if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \ |
| 1336 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
| 1337 | __FUNCTION__); \ |
| 1338 | _rtx; }) |
| 1339 | |
| 1340 | extern void rtl_check_failed_flag (const char *, const_rtx, const char *, |
| 1341 | int, const char *) |
| 1342 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD |
| 1343 | ; |
| 1344 | |
| 1345 | #else /* not ENABLE_RTL_FLAG_CHECKING */ |
| 1346 | |
| 1347 | #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX) |
| 1348 | #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX) |
| 1349 | #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX) |
| 1350 | #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX) |
| 1351 | #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX) |
| 1352 | #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX) |
| 1353 | #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX) |
| 1354 | #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX) |
| 1355 | #endif |
| 1356 | |
| 1357 | #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int) |
| 1358 | #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint) |
| 1359 | #define XLOC(RTX, N) (RTL_CHECK1 (RTX, N, 'L').rt_loc) |
| 1360 | #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str) |
| 1361 | #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx) |
| 1362 | #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec) |
| 1363 | #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type) |
| 1364 | #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree) |
| 1365 | #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb) |
| 1366 | #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str) |
| 1367 | #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi) |
| 1368 | |
| 1369 | #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M) |
| 1370 | #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N)) |
| 1371 | |
| 1372 | /* These are like XINT, etc. except that they expect a '0' field instead |
| 1373 | of the normal type code. */ |
| 1374 | |
| 1375 | #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int) |
| 1376 | #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint) |
| 1377 | #define X0LOC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_loc) |
| 1378 | #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str) |
| 1379 | #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx) |
| 1380 | #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec) |
| 1381 | #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type) |
| 1382 | #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree) |
| 1383 | #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb) |
| 1384 | #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags) |
| 1385 | #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib) |
| 1386 | #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem) |
| 1387 | #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant) |
| 1388 | |
| 1389 | /* Access a '0' field with any type. */ |
| 1390 | #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0') |
| 1391 | |
| 1392 | #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int) |
| 1393 | #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint) |
| 1394 | #define XCLOC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_loc) |
| 1395 | #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg) |
| 1396 | #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str) |
| 1397 | #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx) |
| 1398 | #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec) |
| 1399 | #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type) |
| 1400 | #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree) |
| 1401 | #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb) |
| 1402 | #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi) |
| 1403 | #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib) |
| 1404 | |
| 1405 | #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M) |
| 1406 | #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C)) |
| 1407 | |
| 1408 | #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx) |
| 1409 | #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx) |
| 1410 | |
| 1411 | |
| 1412 | /* Methods of rtx_expr_list. */ |
| 1413 | |
| 1414 | inline rtx_expr_list *rtx_expr_list::next () const |
| 1415 | { |
| 1416 | rtx tmp = XEXP (this, 1); |
| 1417 | return safe_as_a <rtx_expr_list *> (p: tmp); |
| 1418 | } |
| 1419 | |
| 1420 | inline rtx rtx_expr_list::element () const |
| 1421 | { |
| 1422 | return XEXP (this, 0); |
| 1423 | } |
| 1424 | |
| 1425 | /* Methods of rtx_insn_list. */ |
| 1426 | |
| 1427 | inline rtx_insn_list *rtx_insn_list::next () const |
| 1428 | { |
| 1429 | rtx tmp = XEXP (this, 1); |
| 1430 | return safe_as_a <rtx_insn_list *> (p: tmp); |
| 1431 | } |
| 1432 | |
| 1433 | inline rtx_insn *rtx_insn_list::insn () const |
| 1434 | { |
| 1435 | rtx tmp = XEXP (this, 0); |
| 1436 | return safe_as_a <rtx_insn *> (p: tmp); |
| 1437 | } |
| 1438 | |
| 1439 | /* Methods of rtx_sequence. */ |
| 1440 | |
| 1441 | inline int rtx_sequence::len () const |
| 1442 | { |
| 1443 | return XVECLEN (this, 0); |
| 1444 | } |
| 1445 | |
| 1446 | inline rtx rtx_sequence::element (int index) const |
| 1447 | { |
| 1448 | return XVECEXP (this, 0, index); |
| 1449 | } |
| 1450 | |
| 1451 | inline rtx_insn *rtx_sequence::insn (int index) const |
| 1452 | { |
| 1453 | return as_a <rtx_insn *> (XVECEXP (this, 0, index)); |
| 1454 | } |
| 1455 | |
| 1456 | /* ACCESS MACROS for particular fields of insns. */ |
| 1457 | |
| 1458 | /* Holds a unique number for each insn. |
| 1459 | These are not necessarily sequentially increasing. */ |
| 1460 | inline int INSN_UID (const_rtx insn) |
| 1461 | { |
| 1462 | return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID" , |
| 1463 | (insn))->u2.insn_uid; |
| 1464 | } |
| 1465 | inline int& INSN_UID (rtx insn) |
| 1466 | { |
| 1467 | return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID" , |
| 1468 | (insn))->u2.insn_uid; |
| 1469 | } |
| 1470 | |
| 1471 | /* Chain insns together in sequence. */ |
| 1472 | |
| 1473 | /* For now these are split in two: an rvalue form: |
| 1474 | PREV_INSN/NEXT_INSN |
| 1475 | and an lvalue form: |
| 1476 | SET_NEXT_INSN/SET_PREV_INSN. */ |
| 1477 | |
| 1478 | inline rtx_insn *PREV_INSN (const rtx_insn *insn) |
| 1479 | { |
| 1480 | rtx prev = XEXP (insn, 0); |
| 1481 | return safe_as_a <rtx_insn *> (p: prev); |
| 1482 | } |
| 1483 | |
| 1484 | inline rtx& SET_PREV_INSN (rtx_insn *insn) |
| 1485 | { |
| 1486 | return XEXP (insn, 0); |
| 1487 | } |
| 1488 | |
| 1489 | inline rtx_insn *NEXT_INSN (const rtx_insn *insn) |
| 1490 | { |
| 1491 | rtx next = XEXP (insn, 1); |
| 1492 | return safe_as_a <rtx_insn *> (p: next); |
| 1493 | } |
| 1494 | |
| 1495 | inline rtx& SET_NEXT_INSN (rtx_insn *insn) |
| 1496 | { |
| 1497 | return XEXP (insn, 1); |
| 1498 | } |
| 1499 | |
| 1500 | inline basic_block BLOCK_FOR_INSN (const_rtx insn) |
| 1501 | { |
| 1502 | return XBBDEF (insn, 2); |
| 1503 | } |
| 1504 | |
| 1505 | inline basic_block& BLOCK_FOR_INSN (rtx insn) |
| 1506 | { |
| 1507 | return XBBDEF (insn, 2); |
| 1508 | } |
| 1509 | |
| 1510 | inline void set_block_for_insn (rtx_insn *insn, basic_block bb) |
| 1511 | { |
| 1512 | BLOCK_FOR_INSN (insn) = bb; |
| 1513 | } |
| 1514 | |
| 1515 | /* The body of an insn. */ |
| 1516 | inline rtx PATTERN (const_rtx insn) |
| 1517 | { |
| 1518 | return XEXP (insn, 3); |
| 1519 | } |
| 1520 | |
| 1521 | inline rtx& PATTERN (rtx insn) |
| 1522 | { |
| 1523 | return XEXP (insn, 3); |
| 1524 | } |
| 1525 | |
| 1526 | inline location_t INSN_LOCATION (const rtx_insn *insn) |
| 1527 | { |
| 1528 | return XLOC (insn, 4); |
| 1529 | } |
| 1530 | |
| 1531 | inline location_t& INSN_LOCATION (rtx_insn *insn) |
| 1532 | { |
| 1533 | return XLOC (insn, 4); |
| 1534 | } |
| 1535 | |
| 1536 | inline bool INSN_HAS_LOCATION (const rtx_insn *insn) |
| 1537 | { |
| 1538 | return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION; |
| 1539 | } |
| 1540 | |
| 1541 | /* LOCATION of an RTX if relevant. */ |
| 1542 | #define RTL_LOCATION(X) (INSN_P (X) ? \ |
| 1543 | INSN_LOCATION (as_a <rtx_insn *> (X)) \ |
| 1544 | : UNKNOWN_LOCATION) |
| 1545 | |
| 1546 | /* Code number of instruction, from when it was recognized. |
| 1547 | -1 means this instruction has not been recognized yet. */ |
| 1548 | #define INSN_CODE(INSN) XINT (INSN, 5) |
| 1549 | |
| 1550 | inline rtvec rtx_jump_table_data::get_labels () const |
| 1551 | { |
| 1552 | rtx pat = PATTERN (insn: this); |
| 1553 | if (GET_CODE (pat) == ADDR_VEC) |
| 1554 | return XVEC (pat, 0); |
| 1555 | else |
| 1556 | return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */ |
| 1557 | } |
| 1558 | |
| 1559 | /* Return the mode of the data in the table, which is always a scalar |
| 1560 | integer. */ |
| 1561 | |
| 1562 | inline scalar_int_mode |
| 1563 | rtx_jump_table_data::get_data_mode () const |
| 1564 | { |
| 1565 | return as_a <scalar_int_mode> (GET_MODE (PATTERN (this))); |
| 1566 | } |
| 1567 | |
| 1568 | /* If LABEL is followed by a jump table, return the table, otherwise |
| 1569 | return null. */ |
| 1570 | |
| 1571 | inline rtx_jump_table_data * |
| 1572 | jump_table_for_label (const rtx_code_label *label) |
| 1573 | { |
| 1574 | return safe_dyn_cast <rtx_jump_table_data *> (p: NEXT_INSN (insn: label)); |
| 1575 | } |
| 1576 | |
| 1577 | #define RTX_FRAME_RELATED_P(RTX) \ |
| 1578 | (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \ |
| 1579 | CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related) |
| 1580 | |
| 1581 | /* 1 if JUMP RTX is a crossing jump. */ |
| 1582 | #define CROSSING_JUMP_P(RTX) \ |
| 1583 | (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump) |
| 1584 | |
| 1585 | /* 1 if RTX is a call to a const function. Built from ECF_CONST and |
| 1586 | TREE_READONLY. */ |
| 1587 | #define RTL_CONST_CALL_P(RTX) \ |
| 1588 | (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging) |
| 1589 | |
| 1590 | /* 1 if RTX is a call to a pure function. Built from ECF_PURE and |
| 1591 | DECL_PURE_P. */ |
| 1592 | #define RTL_PURE_CALL_P(RTX) \ |
| 1593 | (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val) |
| 1594 | |
| 1595 | /* 1 if RTX is a call to a const or pure function. */ |
| 1596 | #define RTL_CONST_OR_PURE_CALL_P(RTX) \ |
| 1597 | (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX)) |
| 1598 | |
| 1599 | /* 1 if RTX is a call to a looping const or pure function. Built from |
| 1600 | ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */ |
| 1601 | #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \ |
| 1602 | (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call) |
| 1603 | |
| 1604 | /* 1 if RTX is a call_insn for a sibling call. */ |
| 1605 | #define SIBLING_CALL_P(RTX) \ |
| 1606 | (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump) |
| 1607 | |
| 1608 | /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */ |
| 1609 | #define INSN_ANNULLED_BRANCH_P(RTX) \ |
| 1610 | (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging) |
| 1611 | |
| 1612 | /* 1 if RTX is an insn in a delay slot and is from the target of the branch. |
| 1613 | If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be |
| 1614 | executed if the branch is taken. For annulled branches with this bit |
| 1615 | clear, the insn should be executed only if the branch is not taken. */ |
| 1616 | #define INSN_FROM_TARGET_P(RTX) \ |
| 1617 | (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \ |
| 1618 | CALL_INSN)->in_struct) |
| 1619 | |
| 1620 | /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening. |
| 1621 | See the comments for ADDR_DIFF_VEC in rtl.def. */ |
| 1622 | #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4) |
| 1623 | |
| 1624 | /* In a VALUE, the value cselib has assigned to RTX. |
| 1625 | This is a "struct cselib_val", see cselib.h. */ |
| 1626 | #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0) |
| 1627 | |
| 1628 | /* Holds a list of notes on what this insn does to various REGs. |
| 1629 | It is a chain of EXPR_LIST rtx's, where the second operand is the |
| 1630 | chain pointer and the first operand is the REG being described. |
| 1631 | The mode field of the EXPR_LIST contains not a real machine mode |
| 1632 | but a value from enum reg_note. */ |
| 1633 | #define REG_NOTES(INSN) XEXP(INSN, 6) |
| 1634 | |
| 1635 | /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in |
| 1636 | question. */ |
| 1637 | #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx) |
| 1638 | |
| 1639 | enum reg_note |
| 1640 | { |
| 1641 | #define DEF_REG_NOTE(NAME) NAME, |
| 1642 | #include "reg-notes.def" |
| 1643 | #undef DEF_REG_NOTE |
| 1644 | REG_NOTE_MAX |
| 1645 | }; |
| 1646 | |
| 1647 | /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */ |
| 1648 | #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK)) |
| 1649 | #define PUT_REG_NOTE_KIND(LINK, KIND) \ |
| 1650 | PUT_MODE_RAW (LINK, (machine_mode) (KIND)) |
| 1651 | |
| 1652 | /* Names for REG_NOTE's in EXPR_LIST insn's. */ |
| 1653 | |
| 1654 | extern const char * const reg_note_name[]; |
| 1655 | #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)]) |
| 1656 | |
| 1657 | /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of |
| 1658 | USE, CLOBBER and SET expressions. |
| 1659 | USE expressions list the registers filled with arguments that |
| 1660 | are passed to the function. |
| 1661 | CLOBBER expressions document the registers explicitly clobbered |
| 1662 | by this CALL_INSN. |
| 1663 | SET expressions say that the return value of the call (the SET_DEST) |
| 1664 | is equivalent to a value available before the call (the SET_SRC). |
| 1665 | This kind of SET is used when the return value is predictable in |
| 1666 | advance. It is purely an optimisation hint; unlike USEs and CLOBBERs, |
| 1667 | it does not affect register liveness. |
| 1668 | |
| 1669 | Pseudo registers cannot be mentioned in this list. */ |
| 1670 | #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7) |
| 1671 | |
| 1672 | /* The label-number of a code-label. The assembler label |
| 1673 | is made from `L' and the label-number printed in decimal. |
| 1674 | Label numbers are unique in a compilation. */ |
| 1675 | #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5) |
| 1676 | |
| 1677 | /* In a NOTE that is a line number, this is a string for the file name that the |
| 1678 | line is in. We use the same field to record block numbers temporarily in |
| 1679 | NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts |
| 1680 | between ints and pointers if we use a different macro for the block number.) |
| 1681 | */ |
| 1682 | |
| 1683 | /* Opaque data. */ |
| 1684 | #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE) |
| 1685 | #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE) |
| 1686 | #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN); |
| 1687 | #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE) |
| 1688 | #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE) |
| 1689 | #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE) |
| 1690 | #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE) |
| 1691 | #define NOTE_MARKER_LOCATION(INSN) XCLOC (INSN, 3, NOTE) |
| 1692 | #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE) |
| 1693 | #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE) |
| 1694 | |
| 1695 | /* In a NOTE that is a line number, this is the line number. |
| 1696 | Other kinds of NOTEs are identified by negative numbers here. */ |
| 1697 | #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE) |
| 1698 | |
| 1699 | /* Nonzero if INSN is a note marking the beginning of a basic block. */ |
| 1700 | #define NOTE_INSN_BASIC_BLOCK_P(INSN) \ |
| 1701 | (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK) |
| 1702 | |
| 1703 | /* Nonzero if INSN is a debug nonbind marker note, |
| 1704 | for which NOTE_MARKER_LOCATION can be used. */ |
| 1705 | #define NOTE_MARKER_P(INSN) \ |
| 1706 | (NOTE_P (INSN) && \ |
| 1707 | (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \ |
| 1708 | || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY)) |
| 1709 | |
| 1710 | /* Variable declaration and the location of a variable. */ |
| 1711 | #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION)) |
| 1712 | #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION)) |
| 1713 | |
| 1714 | /* Initialization status of the variable in the location. Status |
| 1715 | can be unknown, uninitialized or initialized. See enumeration |
| 1716 | type below. */ |
| 1717 | #define PAT_VAR_LOCATION_STATUS(PAT) \ |
| 1718 | (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \ |
| 1719 | ->u2.var_location_status) |
| 1720 | |
| 1721 | /* Accessors for a NOTE_INSN_VAR_LOCATION. */ |
| 1722 | #define NOTE_VAR_LOCATION_DECL(NOTE) \ |
| 1723 | PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE)) |
| 1724 | #define NOTE_VAR_LOCATION_LOC(NOTE) \ |
| 1725 | PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE)) |
| 1726 | #define NOTE_VAR_LOCATION_STATUS(NOTE) \ |
| 1727 | PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE)) |
| 1728 | |
| 1729 | /* Evaluate to TRUE if INSN is a debug insn that denotes a variable |
| 1730 | location/value tracking annotation. */ |
| 1731 | #define DEBUG_BIND_INSN_P(INSN) \ |
| 1732 | (DEBUG_INSN_P (INSN) \ |
| 1733 | && (GET_CODE (PATTERN (INSN)) \ |
| 1734 | == VAR_LOCATION)) |
| 1735 | /* Evaluate to TRUE if INSN is a debug insn that denotes a program |
| 1736 | source location marker. */ |
| 1737 | #define DEBUG_MARKER_INSN_P(INSN) \ |
| 1738 | (DEBUG_INSN_P (INSN) \ |
| 1739 | && (GET_CODE (PATTERN (INSN)) \ |
| 1740 | != VAR_LOCATION)) |
| 1741 | /* Evaluate to the marker kind. */ |
| 1742 | #define INSN_DEBUG_MARKER_KIND(INSN) \ |
| 1743 | (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \ |
| 1744 | ? (GET_MODE (PATTERN (INSN)) == VOIDmode \ |
| 1745 | ? NOTE_INSN_BEGIN_STMT \ |
| 1746 | : GET_MODE (PATTERN (INSN)) == BLKmode \ |
| 1747 | ? NOTE_INSN_INLINE_ENTRY \ |
| 1748 | : (enum insn_note)-1) \ |
| 1749 | : (enum insn_note)-1) |
| 1750 | /* Create patterns for debug markers. These and the above abstract |
| 1751 | the representation, so that it's easier to get rid of the abuse of |
| 1752 | the mode to hold the marker kind. Other marker types are |
| 1753 | envisioned, so a single bit flag won't do; maybe separate RTL codes |
| 1754 | wouldn't be a problem. */ |
| 1755 | #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \ |
| 1756 | gen_rtx_DEBUG_MARKER (VOIDmode) |
| 1757 | #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \ |
| 1758 | gen_rtx_DEBUG_MARKER (BLKmode) |
| 1759 | |
| 1760 | /* The VAR_LOCATION rtx in a DEBUG_INSN. */ |
| 1761 | #define INSN_VAR_LOCATION(INSN) \ |
| 1762 | (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION)) |
| 1763 | /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */ |
| 1764 | #define INSN_VAR_LOCATION_PTR(INSN) \ |
| 1765 | (&PATTERN (INSN)) |
| 1766 | |
| 1767 | /* Accessors for a tree-expanded var location debug insn. */ |
| 1768 | #define INSN_VAR_LOCATION_DECL(INSN) \ |
| 1769 | PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN)) |
| 1770 | #define INSN_VAR_LOCATION_LOC(INSN) \ |
| 1771 | PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN)) |
| 1772 | #define INSN_VAR_LOCATION_STATUS(INSN) \ |
| 1773 | PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN)) |
| 1774 | |
| 1775 | /* Expand to the RTL that denotes an unknown variable location in a |
| 1776 | DEBUG_INSN. */ |
| 1777 | #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx)) |
| 1778 | |
| 1779 | /* Determine whether X is such an unknown location. */ |
| 1780 | #define VAR_LOC_UNKNOWN_P(X) \ |
| 1781 | (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx) |
| 1782 | |
| 1783 | /* 1 if RTX is emitted after a call, but it should take effect before |
| 1784 | the call returns. */ |
| 1785 | #define NOTE_DURING_CALL_P(RTX) \ |
| 1786 | (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call) |
| 1787 | |
| 1788 | /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */ |
| 1789 | #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR) |
| 1790 | |
| 1791 | /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */ |
| 1792 | #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR) |
| 1793 | |
| 1794 | /* PARM_DECL DEBUG_PARAMETER_REF references. */ |
| 1795 | #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF) |
| 1796 | |
| 1797 | /* Codes that appear in the NOTE_KIND field for kinds of notes |
| 1798 | that are not line numbers. These codes are all negative. |
| 1799 | |
| 1800 | Notice that we do not try to use zero here for any of |
| 1801 | the special note codes because sometimes the source line |
| 1802 | actually can be zero! This happens (for example) when we |
| 1803 | are generating code for the per-translation-unit constructor |
| 1804 | and destructor routines for some C++ translation unit. */ |
| 1805 | |
| 1806 | enum insn_note |
| 1807 | { |
| 1808 | #define DEF_INSN_NOTE(NAME) NAME, |
| 1809 | #include "insn-notes.def" |
| 1810 | #undef DEF_INSN_NOTE |
| 1811 | |
| 1812 | NOTE_INSN_MAX |
| 1813 | }; |
| 1814 | |
| 1815 | /* Names for NOTE insn's other than line numbers. */ |
| 1816 | |
| 1817 | extern const char * const note_insn_name[NOTE_INSN_MAX]; |
| 1818 | #define GET_NOTE_INSN_NAME(NOTE_CODE) \ |
| 1819 | (note_insn_name[(NOTE_CODE)]) |
| 1820 | |
| 1821 | /* The name of a label, in case it corresponds to an explicit label |
| 1822 | in the input source code. */ |
| 1823 | #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL) |
| 1824 | |
| 1825 | /* In jump.cc, each label contains a count of the number |
| 1826 | of LABEL_REFs that point at it, so unused labels can be deleted. */ |
| 1827 | #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL) |
| 1828 | |
| 1829 | /* Labels carry a two-bit field composed of the ->jump and ->call |
| 1830 | bits. This field indicates whether the label is an alternate |
| 1831 | entry point, and if so, what kind. */ |
| 1832 | enum label_kind |
| 1833 | { |
| 1834 | LABEL_NORMAL = 0, /* ordinary label */ |
| 1835 | LABEL_STATIC_ENTRY, /* alternate entry point, not exported */ |
| 1836 | LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */ |
| 1837 | LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */ |
| 1838 | }; |
| 1839 | |
| 1840 | #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007) |
| 1841 | |
| 1842 | /* Retrieve the kind of LABEL. */ |
| 1843 | #define LABEL_KIND(LABEL) __extension__ \ |
| 1844 | ({ __typeof (LABEL) const _label = (LABEL); \ |
| 1845 | if (! LABEL_P (_label)) \ |
| 1846 | rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \ |
| 1847 | __FUNCTION__); \ |
| 1848 | (enum label_kind) ((_label->jump << 1) | _label->call); }) |
| 1849 | |
| 1850 | /* Set the kind of LABEL. */ |
| 1851 | #define SET_LABEL_KIND(LABEL, KIND) do { \ |
| 1852 | __typeof (LABEL) const _label = (LABEL); \ |
| 1853 | const unsigned int _kind = (KIND); \ |
| 1854 | if (! LABEL_P (_label)) \ |
| 1855 | rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \ |
| 1856 | __FUNCTION__); \ |
| 1857 | _label->jump = ((_kind >> 1) & 1); \ |
| 1858 | _label->call = (_kind & 1); \ |
| 1859 | } while (0) |
| 1860 | |
| 1861 | #else |
| 1862 | |
| 1863 | /* Retrieve the kind of LABEL. */ |
| 1864 | #define LABEL_KIND(LABEL) \ |
| 1865 | ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call)) |
| 1866 | |
| 1867 | /* Set the kind of LABEL. */ |
| 1868 | #define SET_LABEL_KIND(LABEL, KIND) do { \ |
| 1869 | rtx const _label = (LABEL); \ |
| 1870 | const unsigned int _kind = (KIND); \ |
| 1871 | _label->jump = ((_kind >> 1) & 1); \ |
| 1872 | _label->call = (_kind & 1); \ |
| 1873 | } while (0) |
| 1874 | |
| 1875 | #endif /* rtl flag checking */ |
| 1876 | |
| 1877 | #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL) |
| 1878 | |
| 1879 | /* In jump.cc, each JUMP_INSN can point to a label that it can jump to, |
| 1880 | so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can |
| 1881 | be decremented and possibly the label can be deleted. */ |
| 1882 | #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN) |
| 1883 | |
| 1884 | inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn) |
| 1885 | { |
| 1886 | return safe_as_a <rtx_insn *> (JUMP_LABEL (insn)); |
| 1887 | } |
| 1888 | |
| 1889 | /* Methods of rtx_jump_insn. */ |
| 1890 | |
| 1891 | inline rtx rtx_jump_insn::jump_label () const |
| 1892 | { |
| 1893 | return JUMP_LABEL (this); |
| 1894 | } |
| 1895 | |
| 1896 | inline rtx_code_label *rtx_jump_insn::jump_target () const |
| 1897 | { |
| 1898 | return safe_as_a <rtx_code_label *> (JUMP_LABEL (this)); |
| 1899 | } |
| 1900 | |
| 1901 | inline void rtx_jump_insn::set_jump_target (rtx_code_label *target) |
| 1902 | { |
| 1903 | JUMP_LABEL (this) = target; |
| 1904 | } |
| 1905 | |
| 1906 | /* Once basic blocks are found, each CODE_LABEL starts a chain that |
| 1907 | goes through all the LABEL_REFs that jump to that label. The chain |
| 1908 | eventually winds up at the CODE_LABEL: it is circular. */ |
| 1909 | #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL) |
| 1910 | |
| 1911 | /* Get the label that a LABEL_REF references. */ |
| 1912 | inline rtx_insn * |
| 1913 | label_ref_label (const_rtx ref) |
| 1914 | { |
| 1915 | return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF)); |
| 1916 | } |
| 1917 | |
| 1918 | /* Set the label that LABEL_REF ref refers to. */ |
| 1919 | |
| 1920 | inline void |
| 1921 | set_label_ref_label (rtx ref, rtx_insn *label) |
| 1922 | { |
| 1923 | XCEXP (ref, 0, LABEL_REF) = label; |
| 1924 | } |
| 1925 | |
| 1926 | /* For a REG rtx, REGNO extracts the register number. REGNO can only |
| 1927 | be used on RHS. Use SET_REGNO to change the value. */ |
| 1928 | #define REGNO(RTX) (rhs_regno(RTX)) |
| 1929 | #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N)) |
| 1930 | |
| 1931 | /* Return the number of consecutive registers in a REG. This is always |
| 1932 | 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for |
| 1933 | hard registers. */ |
| 1934 | #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs) |
| 1935 | |
| 1936 | /* ORIGINAL_REGNO holds the number the register originally had; for a |
| 1937 | pseudo register turned into a hard reg this will hold the old pseudo |
| 1938 | register number. */ |
| 1939 | #define ORIGINAL_REGNO(RTX) \ |
| 1940 | (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno) |
| 1941 | |
| 1942 | /* Force the REGNO macro to only be used on the lhs. */ |
| 1943 | inline unsigned int |
| 1944 | rhs_regno (const_rtx x) |
| 1945 | { |
| 1946 | return REG_CHECK (x)->regno; |
| 1947 | } |
| 1948 | |
| 1949 | /* Return the final register in REG X plus one. */ |
| 1950 | inline unsigned int |
| 1951 | END_REGNO (const_rtx x) |
| 1952 | { |
| 1953 | return REGNO (x) + REG_NREGS (x); |
| 1954 | } |
| 1955 | |
| 1956 | /* Change the REGNO and REG_NREGS of REG X to the specified values, |
| 1957 | bypassing the df machinery. */ |
| 1958 | inline void |
| 1959 | set_regno_raw (rtx x, unsigned int regno, unsigned int nregs) |
| 1960 | { |
| 1961 | reg_info *reg = REG_CHECK (x); |
| 1962 | reg->regno = regno; |
| 1963 | reg->nregs = nregs; |
| 1964 | } |
| 1965 | |
| 1966 | /* 1 if RTX is a reg or parallel that is the current function's return |
| 1967 | value. */ |
| 1968 | #define REG_FUNCTION_VALUE_P(RTX) \ |
| 1969 | (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val) |
| 1970 | |
| 1971 | /* 1 if RTX is a reg that corresponds to a variable declared by the user. */ |
| 1972 | #define REG_USERVAR_P(RTX) \ |
| 1973 | (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil) |
| 1974 | |
| 1975 | /* 1 if RTX is a reg that holds a pointer value. */ |
| 1976 | #define REG_POINTER(RTX) \ |
| 1977 | (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related) |
| 1978 | |
| 1979 | /* 1 if RTX is a mem that holds a pointer value. */ |
| 1980 | #define MEM_POINTER(RTX) \ |
| 1981 | (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related) |
| 1982 | |
| 1983 | /* 1 if the given register REG corresponds to a hard register. */ |
| 1984 | #define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG)) |
| 1985 | |
| 1986 | /* 1 if the given register number REG_NO corresponds to a hard register. */ |
| 1987 | #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER) |
| 1988 | |
| 1989 | /* 1 if the given register REG corresponds to a virtual register. */ |
| 1990 | #define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG)) |
| 1991 | |
| 1992 | /* 1 if the given register number REG_NO corresponds to a virtual register. */ |
| 1993 | #define VIRTUAL_REGISTER_NUM_P(REG_NO) \ |
| 1994 | IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER) |
| 1995 | |
| 1996 | /* For a CONST_INT rtx, INTVAL extracts the integer. */ |
| 1997 | #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT) |
| 1998 | #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX)) |
| 1999 | |
| 2000 | /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of |
| 2001 | elements actually needed to represent the constant. |
| 2002 | CONST_WIDE_INT_ELT gets one of the elements. 0 is the least |
| 2003 | significant HOST_WIDE_INT. */ |
| 2004 | #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT) |
| 2005 | #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX) |
| 2006 | #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N) |
| 2007 | |
| 2008 | /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the |
| 2009 | individual coefficients, in the form of a trailing_wide_ints structure. */ |
| 2010 | #define CONST_POLY_INT_COEFFS(RTX) \ |
| 2011 | (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \ |
| 2012 | CONST_POLY_INT)->u.cpi.coeffs) |
| 2013 | |
| 2014 | /* For a CONST_DOUBLE: |
| 2015 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
| 2016 | For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the |
| 2017 | low-order word and ..._HIGH the high-order. |
| 2018 | #endif |
| 2019 | For a float, there is a REAL_VALUE_TYPE structure, and |
| 2020 | CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */ |
| 2021 | #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode) |
| 2022 | #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode) |
| 2023 | #define CONST_DOUBLE_REAL_VALUE(r) \ |
| 2024 | ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode)) |
| 2025 | |
| 2026 | #define CONST_FIXED_VALUE(r) \ |
| 2027 | ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode)) |
| 2028 | #define CONST_FIXED_VALUE_HIGH(r) \ |
| 2029 | ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high)) |
| 2030 | #define CONST_FIXED_VALUE_LOW(r) \ |
| 2031 | ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low)) |
| 2032 | |
| 2033 | /* For a CONST_VECTOR, return element #n. */ |
| 2034 | #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N) |
| 2035 | |
| 2036 | /* See rtl.texi for a description of these macros. */ |
| 2037 | #define CONST_VECTOR_NPATTERNS(RTX) \ |
| 2038 | (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \ |
| 2039 | ->u2.const_vector.npatterns) |
| 2040 | |
| 2041 | #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \ |
| 2042 | (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \ |
| 2043 | ->u2.const_vector.nelts_per_pattern) |
| 2044 | |
| 2045 | #define CONST_VECTOR_DUPLICATE_P(RTX) \ |
| 2046 | (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1) |
| 2047 | |
| 2048 | #define CONST_VECTOR_STEPPED_P(RTX) \ |
| 2049 | (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3) |
| 2050 | |
| 2051 | #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR) |
| 2052 | |
| 2053 | /* Return the number of elements encoded directly in a CONST_VECTOR. */ |
| 2054 | |
| 2055 | inline unsigned int |
| 2056 | const_vector_encoded_nelts (const_rtx x) |
| 2057 | { |
| 2058 | return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x); |
| 2059 | } |
| 2060 | |
| 2061 | /* For a CONST_VECTOR, return the number of elements in a vector. */ |
| 2062 | #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX)) |
| 2063 | |
| 2064 | /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of. |
| 2065 | SUBREG_BYTE extracts the byte-number. */ |
| 2066 | |
| 2067 | #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG) |
| 2068 | #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG) |
| 2069 | |
| 2070 | /* in rtlanal.cc */ |
| 2071 | /* Return the right cost to give to an operation |
| 2072 | to make the cost of the corresponding register-to-register instruction |
| 2073 | N times that of a fast register-to-register instruction. */ |
| 2074 | #define COSTS_N_INSNS(N) ((N) * 4) |
| 2075 | |
| 2076 | /* Maximum cost of an rtl expression. This value has the special meaning |
| 2077 | not to use an rtx with this cost under any circumstances. */ |
| 2078 | #define MAX_COST INT_MAX |
| 2079 | |
| 2080 | /* Return true if CODE always has VOIDmode. */ |
| 2081 | |
| 2082 | inline bool |
| 2083 | always_void_p (enum rtx_code code) |
| 2084 | { |
| 2085 | switch (code) |
| 2086 | { |
| 2087 | case SET: |
| 2088 | case PC: |
| 2089 | case RETURN: |
| 2090 | case SIMPLE_RETURN: |
| 2091 | return true; |
| 2092 | |
| 2093 | default: |
| 2094 | return false; |
| 2095 | } |
| 2096 | } |
| 2097 | |
| 2098 | /* A structure to hold all available cost information about an rtl |
| 2099 | expression. */ |
| 2100 | struct full_rtx_costs |
| 2101 | { |
| 2102 | int speed; |
| 2103 | int size; |
| 2104 | }; |
| 2105 | |
| 2106 | /* Initialize a full_rtx_costs structure C to the maximum cost. */ |
| 2107 | inline void |
| 2108 | init_costs_to_max (struct full_rtx_costs *c) |
| 2109 | { |
| 2110 | c->speed = MAX_COST; |
| 2111 | c->size = MAX_COST; |
| 2112 | } |
| 2113 | |
| 2114 | /* Initialize a full_rtx_costs structure C to zero cost. */ |
| 2115 | inline void |
| 2116 | init_costs_to_zero (struct full_rtx_costs *c) |
| 2117 | { |
| 2118 | c->speed = 0; |
| 2119 | c->size = 0; |
| 2120 | } |
| 2121 | |
| 2122 | /* Compare two full_rtx_costs structures A and B, returning true |
| 2123 | if A < B when optimizing for speed. */ |
| 2124 | inline bool |
| 2125 | costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b, |
| 2126 | bool speed) |
| 2127 | { |
| 2128 | if (speed) |
| 2129 | return (a->speed < b->speed |
| 2130 | || (a->speed == b->speed && a->size < b->size)); |
| 2131 | else |
| 2132 | return (a->size < b->size |
| 2133 | || (a->size == b->size && a->speed < b->speed)); |
| 2134 | } |
| 2135 | |
| 2136 | /* Increase both members of the full_rtx_costs structure C by the |
| 2137 | cost of N insns. */ |
| 2138 | inline void |
| 2139 | costs_add_n_insns (struct full_rtx_costs *c, int n) |
| 2140 | { |
| 2141 | c->speed += COSTS_N_INSNS (n); |
| 2142 | c->size += COSTS_N_INSNS (n); |
| 2143 | } |
| 2144 | |
| 2145 | /* Describes the shape of a subreg: |
| 2146 | |
| 2147 | inner_mode == the mode of the SUBREG_REG |
| 2148 | offset == the SUBREG_BYTE |
| 2149 | outer_mode == the mode of the SUBREG itself. */ |
| 2150 | class subreg_shape { |
| 2151 | public: |
| 2152 | subreg_shape (machine_mode, poly_uint16, machine_mode); |
| 2153 | bool operator == (const subreg_shape &) const; |
| 2154 | bool operator != (const subreg_shape &) const; |
| 2155 | unsigned HOST_WIDE_INT unique_id () const; |
| 2156 | |
| 2157 | machine_mode inner_mode; |
| 2158 | poly_uint16 offset; |
| 2159 | machine_mode outer_mode; |
| 2160 | }; |
| 2161 | |
| 2162 | inline |
| 2163 | subreg_shape::subreg_shape (machine_mode inner_mode_in, |
| 2164 | poly_uint16 offset_in, |
| 2165 | machine_mode outer_mode_in) |
| 2166 | : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in) |
| 2167 | {} |
| 2168 | |
| 2169 | inline bool |
| 2170 | subreg_shape::operator == (const subreg_shape &other) const |
| 2171 | { |
| 2172 | return (inner_mode == other.inner_mode |
| 2173 | && known_eq (offset, other.offset) |
| 2174 | && outer_mode == other.outer_mode); |
| 2175 | } |
| 2176 | |
| 2177 | inline bool |
| 2178 | subreg_shape::operator != (const subreg_shape &other) const |
| 2179 | { |
| 2180 | return !operator == (other); |
| 2181 | } |
| 2182 | |
| 2183 | /* Return an integer that uniquely identifies this shape. Structures |
| 2184 | like rtx_def assume that a mode can fit in an 8-bit bitfield and no |
| 2185 | current mode is anywhere near being 65536 bytes in size, so the |
| 2186 | id comfortably fits in an int. */ |
| 2187 | |
| 2188 | inline unsigned HOST_WIDE_INT |
| 2189 | subreg_shape::unique_id () const |
| 2190 | { |
| 2191 | { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); } |
| 2192 | { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); } |
| 2193 | { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); } |
| 2194 | int res = (int) inner_mode + ((int) outer_mode << 8); |
| 2195 | for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
| 2196 | res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16); |
| 2197 | return res; |
| 2198 | } |
| 2199 | |
| 2200 | /* Return the shape of a SUBREG rtx. */ |
| 2201 | |
| 2202 | inline subreg_shape |
| 2203 | shape_of_subreg (const_rtx x) |
| 2204 | { |
| 2205 | return subreg_shape (GET_MODE (SUBREG_REG (x)), |
| 2206 | SUBREG_BYTE (x), GET_MODE (x)); |
| 2207 | } |
| 2208 | |
| 2209 | /* Information about an address. This structure is supposed to be able |
| 2210 | to represent all supported target addresses. Please extend it if it |
| 2211 | is not yet general enough. */ |
| 2212 | struct address_info { |
| 2213 | /* The mode of the value being addressed, or VOIDmode if this is |
| 2214 | a load-address operation with no known address mode. */ |
| 2215 | machine_mode mode; |
| 2216 | |
| 2217 | /* The address space. */ |
| 2218 | addr_space_t as; |
| 2219 | |
| 2220 | /* True if this is an RTX_AUTOINC address. */ |
| 2221 | bool autoinc_p; |
| 2222 | |
| 2223 | /* A pointer to the top-level address. */ |
| 2224 | rtx *outer; |
| 2225 | |
| 2226 | /* A pointer to the inner address, after all address mutations |
| 2227 | have been stripped from the top-level address. It can be one |
| 2228 | of the following: |
| 2229 | |
| 2230 | - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null. |
| 2231 | |
| 2232 | - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP |
| 2233 | points to the step value, depending on whether the step is variable |
| 2234 | or constant respectively. SEGMENT is null. |
| 2235 | |
| 2236 | - A plain sum of the form SEGMENT + BASE + INDEX + DISP, |
| 2237 | with null fields evaluating to 0. */ |
| 2238 | rtx *inner; |
| 2239 | |
| 2240 | /* Components that make up *INNER. Each one may be null or nonnull. |
| 2241 | When nonnull, their meanings are as follows: |
| 2242 | |
| 2243 | - *SEGMENT is the "segment" of memory to which the address refers. |
| 2244 | This value is entirely target-specific and is only called a "segment" |
| 2245 | because that's its most typical use. It contains exactly one UNSPEC, |
| 2246 | pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need |
| 2247 | reloading. |
| 2248 | |
| 2249 | - *BASE is a variable expression representing a base address. |
| 2250 | It contains exactly one "term", pointed to by BASE_TERM. |
| 2251 | This term can be one of the following: |
| 2252 | |
| 2253 | (1) a REG, or a SUBREG of a REG |
| 2254 | (2) an eliminated REG (a PLUS of (1) and a constant) |
| 2255 | (3) a MEM, or a SUBREG of a MEM |
| 2256 | (4) a SCRATCH |
| 2257 | |
| 2258 | This term is the one that base_reg_class constrains. |
| 2259 | |
| 2260 | - *INDEX is a variable expression representing an index value. |
| 2261 | It may be a scaled expression, such as a MULT. It has exactly |
| 2262 | one "term", pointed to by INDEX_TERM. The possible terms are |
| 2263 | the same as for BASE. This term is the one that index_reg_class |
| 2264 | constrains. |
| 2265 | |
| 2266 | - *DISP is a constant, possibly mutated. DISP_TERM points to the |
| 2267 | unmutated RTX_CONST_OBJ. */ |
| 2268 | rtx *segment; |
| 2269 | rtx *base; |
| 2270 | rtx *index; |
| 2271 | rtx *disp; |
| 2272 | |
| 2273 | rtx *segment_term; |
| 2274 | rtx *base_term; |
| 2275 | rtx *index_term; |
| 2276 | rtx *disp_term; |
| 2277 | |
| 2278 | /* In a {PRE,POST}_MODIFY address, this points to a second copy |
| 2279 | of BASE_TERM, otherwise it is null. */ |
| 2280 | rtx *base_term2; |
| 2281 | |
| 2282 | /* ADDRESS if this structure describes an address operand, MEM if |
| 2283 | it describes a MEM address. */ |
| 2284 | enum rtx_code addr_outer_code; |
| 2285 | |
| 2286 | /* If BASE is nonnull, this is the code of the rtx that contains it. */ |
| 2287 | enum rtx_code base_outer_code; |
| 2288 | }; |
| 2289 | |
| 2290 | /* This is used to bundle an rtx and a mode together so that the pair |
| 2291 | can be used with the wi:: routines. If we ever put modes into rtx |
| 2292 | integer constants, this should go away and then just pass an rtx in. */ |
| 2293 | typedef std::pair <rtx, machine_mode> rtx_mode_t; |
| 2294 | |
| 2295 | namespace wi |
| 2296 | { |
| 2297 | template <> |
| 2298 | struct int_traits <rtx_mode_t> |
| 2299 | { |
| 2300 | static const enum precision_type precision_type = VAR_PRECISION; |
| 2301 | static const bool host_dependent_precision = false; |
| 2302 | /* This ought to be true, except for the special case that BImode |
| 2303 | is canonicalized to STORE_FLAG_VALUE, which might be 1. */ |
| 2304 | static const bool is_sign_extended = false; |
| 2305 | static const bool needs_write_val_arg = false; |
| 2306 | static unsigned int get_precision (const rtx_mode_t &); |
| 2307 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
| 2308 | const rtx_mode_t &); |
| 2309 | }; |
| 2310 | } |
| 2311 | |
| 2312 | inline unsigned int |
| 2313 | wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x) |
| 2314 | { |
| 2315 | return GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: x.second)); |
| 2316 | } |
| 2317 | |
| 2318 | inline wi::storage_ref |
| 2319 | wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *, |
| 2320 | unsigned int precision, |
| 2321 | const rtx_mode_t &x) |
| 2322 | { |
| 2323 | gcc_checking_assert (precision == get_precision (x)); |
| 2324 | switch (GET_CODE (x.first)) |
| 2325 | { |
| 2326 | case CONST_INT: |
| 2327 | if (precision < HOST_BITS_PER_WIDE_INT) |
| 2328 | /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many |
| 2329 | targets is 1 rather than -1. */ |
| 2330 | gcc_checking_assert (INTVAL (x.first) |
| 2331 | == sext_hwi (INTVAL (x.first), precision) |
| 2332 | || (x.second == BImode && INTVAL (x.first) == 1)); |
| 2333 | |
| 2334 | return wi::storage_ref (&INTVAL (x.first), 1, precision); |
| 2335 | |
| 2336 | case CONST_WIDE_INT: |
| 2337 | return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0), |
| 2338 | CONST_WIDE_INT_NUNITS (x.first), precision); |
| 2339 | |
| 2340 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
| 2341 | case CONST_DOUBLE: |
| 2342 | return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision); |
| 2343 | #endif |
| 2344 | |
| 2345 | default: |
| 2346 | gcc_unreachable (); |
| 2347 | } |
| 2348 | } |
| 2349 | |
| 2350 | namespace wi |
| 2351 | { |
| 2352 | hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode); |
| 2353 | wide_int min_value (machine_mode, signop); |
| 2354 | wide_int max_value (machine_mode, signop); |
| 2355 | } |
| 2356 | |
| 2357 | inline wi::hwi_with_prec |
| 2358 | wi::shwi (HOST_WIDE_INT val, machine_mode mode) |
| 2359 | { |
| 2360 | return shwi (val, precision: GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode))); |
| 2361 | } |
| 2362 | |
| 2363 | /* Produce the smallest number that is represented in MODE. The precision |
| 2364 | is taken from MODE and the sign from SGN. */ |
| 2365 | inline wide_int |
| 2366 | wi::min_value (machine_mode mode, signop sgn) |
| 2367 | { |
| 2368 | return min_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn); |
| 2369 | } |
| 2370 | |
| 2371 | /* Produce the largest number that is represented in MODE. The precision |
| 2372 | is taken from MODE and the sign from SGN. */ |
| 2373 | inline wide_int |
| 2374 | wi::max_value (machine_mode mode, signop sgn) |
| 2375 | { |
| 2376 | return max_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn); |
| 2377 | } |
| 2378 | |
| 2379 | namespace wi |
| 2380 | { |
| 2381 | typedef poly_int<NUM_POLY_INT_COEFFS, |
| 2382 | generic_wide_int <wide_int_ref_storage <false, false> > > |
| 2383 | rtx_to_poly_wide_ref; |
| 2384 | rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode); |
| 2385 | } |
| 2386 | |
| 2387 | /* Return the value of a CONST_POLY_INT in its native precision. */ |
| 2388 | |
| 2389 | inline wi::rtx_to_poly_wide_ref |
| 2390 | const_poly_int_value (const_rtx x) |
| 2391 | { |
| 2392 | poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res; |
| 2393 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
| 2394 | res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i]; |
| 2395 | return res; |
| 2396 | } |
| 2397 | |
| 2398 | /* Return true if X is a scalar integer or a CONST_POLY_INT. The value |
| 2399 | can then be extracted using wi::to_poly_wide. */ |
| 2400 | |
| 2401 | inline bool |
| 2402 | poly_int_rtx_p (const_rtx x) |
| 2403 | { |
| 2404 | return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x); |
| 2405 | } |
| 2406 | |
| 2407 | /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int. |
| 2408 | MODE is the mode of X. */ |
| 2409 | |
| 2410 | inline wi::rtx_to_poly_wide_ref |
| 2411 | wi::to_poly_wide (const_rtx x, machine_mode mode) |
| 2412 | { |
| 2413 | if (CONST_POLY_INT_P (x)) |
| 2414 | return const_poly_int_value (x); |
| 2415 | return rtx_mode_t (const_cast<rtx> (x), mode); |
| 2416 | } |
| 2417 | |
| 2418 | /* Return the value of X as a poly_int64. */ |
| 2419 | |
| 2420 | inline poly_int64 |
| 2421 | rtx_to_poly_int64 (const_rtx x) |
| 2422 | { |
| 2423 | if (CONST_POLY_INT_P (x)) |
| 2424 | { |
| 2425 | poly_int64 res; |
| 2426 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
| 2427 | res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi (); |
| 2428 | return res; |
| 2429 | } |
| 2430 | return INTVAL (x); |
| 2431 | } |
| 2432 | |
| 2433 | /* Return true if arbitrary value X is an integer constant that can |
| 2434 | be represented as a poly_int64. Store the value in *RES if so, |
| 2435 | otherwise leave it unmodified. */ |
| 2436 | |
| 2437 | inline bool |
| 2438 | poly_int_rtx_p (const_rtx x, poly_int64 *res) |
| 2439 | { |
| 2440 | if (CONST_INT_P (x)) |
| 2441 | { |
| 2442 | *res = INTVAL (x); |
| 2443 | return true; |
| 2444 | } |
| 2445 | if (CONST_POLY_INT_P (x)) |
| 2446 | { |
| 2447 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
| 2448 | if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i])) |
| 2449 | return false; |
| 2450 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
| 2451 | res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi (); |
| 2452 | return true; |
| 2453 | } |
| 2454 | return false; |
| 2455 | } |
| 2456 | |
| 2457 | extern void init_rtlanal (void); |
| 2458 | extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool); |
| 2459 | extern int address_cost (rtx, machine_mode, addr_space_t, bool); |
| 2460 | extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int, |
| 2461 | struct full_rtx_costs *); |
| 2462 | extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &, |
| 2463 | unsigned int, unsigned int); |
| 2464 | extern wide_int native_decode_int (const vec<target_unit> &, unsigned int, |
| 2465 | unsigned int, unsigned int); |
| 2466 | extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &, |
| 2467 | unsigned int); |
| 2468 | extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &, |
| 2469 | unsigned int, unsigned int, unsigned int); |
| 2470 | extern poly_uint64 subreg_lsb (const_rtx); |
| 2471 | extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64); |
| 2472 | extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64, |
| 2473 | poly_uint64); |
| 2474 | extern bool read_modify_subreg_p (const_rtx); |
| 2475 | |
| 2476 | /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the |
| 2477 | bit offset at which the subreg begins (counting from the least significant |
| 2478 | bit of the operand). */ |
| 2479 | |
| 2480 | inline poly_uint64 |
| 2481 | subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode, |
| 2482 | poly_uint64 subreg_byte) |
| 2483 | { |
| 2484 | return subreg_size_lsb (GET_MODE_SIZE (mode: outer_mode), |
| 2485 | GET_MODE_SIZE (mode: inner_mode), subreg_byte); |
| 2486 | } |
| 2487 | |
| 2488 | /* Return the subreg byte offset for a subreg whose outer mode is |
| 2489 | OUTER_MODE, whose inner mode is INNER_MODE, and where there are |
| 2490 | LSB_SHIFT *bits* between the lsb of the outer value and the lsb of |
| 2491 | the inner value. This is the inverse of subreg_lsb_1 (which converts |
| 2492 | byte offsets to bit shifts). */ |
| 2493 | |
| 2494 | inline poly_uint64 |
| 2495 | subreg_offset_from_lsb (machine_mode outer_mode, |
| 2496 | machine_mode inner_mode, |
| 2497 | poly_uint64 lsb_shift) |
| 2498 | { |
| 2499 | return subreg_size_offset_from_lsb (GET_MODE_SIZE (mode: outer_mode), |
| 2500 | GET_MODE_SIZE (mode: inner_mode), lsb_shift); |
| 2501 | } |
| 2502 | |
| 2503 | extern unsigned int subreg_regno_offset (unsigned int, machine_mode, |
| 2504 | poly_uint64, machine_mode); |
| 2505 | extern bool subreg_offset_representable_p (unsigned int, machine_mode, |
| 2506 | poly_uint64, machine_mode); |
| 2507 | extern unsigned int subreg_regno (const_rtx); |
| 2508 | extern int simplify_subreg_regno (unsigned int, machine_mode, |
| 2509 | poly_uint64, machine_mode); |
| 2510 | extern int lowpart_subreg_regno (unsigned int, machine_mode, |
| 2511 | machine_mode); |
| 2512 | extern unsigned int subreg_nregs (const_rtx); |
| 2513 | extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx); |
| 2514 | extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode); |
| 2515 | extern unsigned int num_sign_bit_copies (const_rtx, machine_mode); |
| 2516 | extern bool constant_pool_constant_p (rtx); |
| 2517 | extern bool truncated_to_mode (machine_mode, const_rtx); |
| 2518 | extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT); |
| 2519 | extern void split_double (rtx, rtx *, rtx *); |
| 2520 | extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0); |
| 2521 | extern void decompose_address (struct address_info *, rtx *, |
| 2522 | machine_mode, addr_space_t, enum rtx_code); |
| 2523 | extern void decompose_lea_address (struct address_info *, rtx *); |
| 2524 | extern void decompose_mem_address (struct address_info *, rtx); |
| 2525 | extern void update_address (struct address_info *); |
| 2526 | extern HOST_WIDE_INT get_index_scale (const struct address_info *); |
| 2527 | extern enum rtx_code get_index_code (const struct address_info *); |
| 2528 | |
| 2529 | /* 1 if RTX is a subreg containing a reg that is already known to be |
| 2530 | sign- or zero-extended from the mode of the subreg to the mode of |
| 2531 | the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the |
| 2532 | extension. |
| 2533 | |
| 2534 | When used as a LHS, is means that this extension must be done |
| 2535 | when assigning to SUBREG_REG. */ |
| 2536 | |
| 2537 | #define SUBREG_PROMOTED_VAR_P(RTX) \ |
| 2538 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct) |
| 2539 | |
| 2540 | /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case |
| 2541 | this gives the necessary extensions: |
| 2542 | 0 - signed (SPR_SIGNED) |
| 2543 | 1 - normal unsigned (SPR_UNSIGNED) |
| 2544 | 2 - value is both sign and unsign extended for mode |
| 2545 | (SPR_SIGNED_AND_UNSIGNED). |
| 2546 | -1 - pointer unsigned, which most often can be handled like unsigned |
| 2547 | extension, except for generating instructions where we need to |
| 2548 | emit special code (ptr_extend insns) on some architectures |
| 2549 | (SPR_POINTER). */ |
| 2550 | |
| 2551 | const int SRP_POINTER = -1; |
| 2552 | const int SRP_SIGNED = 0; |
| 2553 | const int SRP_UNSIGNED = 1; |
| 2554 | const int SRP_SIGNED_AND_UNSIGNED = 2; |
| 2555 | |
| 2556 | /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */ |
| 2557 | #define SUBREG_PROMOTED_SET(RTX, VAL) \ |
| 2558 | do { \ |
| 2559 | rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \ |
| 2560 | (RTX), SUBREG); \ |
| 2561 | switch (VAL) \ |
| 2562 | { \ |
| 2563 | case SRP_POINTER: \ |
| 2564 | _rtx->volatil = 0; \ |
| 2565 | _rtx->unchanging = 0; \ |
| 2566 | break; \ |
| 2567 | case SRP_SIGNED: \ |
| 2568 | _rtx->volatil = 0; \ |
| 2569 | _rtx->unchanging = 1; \ |
| 2570 | break; \ |
| 2571 | case SRP_UNSIGNED: \ |
| 2572 | _rtx->volatil = 1; \ |
| 2573 | _rtx->unchanging = 0; \ |
| 2574 | break; \ |
| 2575 | case SRP_SIGNED_AND_UNSIGNED: \ |
| 2576 | _rtx->volatil = 1; \ |
| 2577 | _rtx->unchanging = 1; \ |
| 2578 | break; \ |
| 2579 | } \ |
| 2580 | } while (0) |
| 2581 | |
| 2582 | /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(), |
| 2583 | including SRP_SIGNED_AND_UNSIGNED if promoted for |
| 2584 | both signed and unsigned. */ |
| 2585 | #define SUBREG_PROMOTED_GET(RTX) \ |
| 2586 | (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\ |
| 2587 | + (RTX)->unchanging - 1) |
| 2588 | |
| 2589 | /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */ |
| 2590 | #define SUBREG_PROMOTED_SIGN(RTX) \ |
| 2591 | ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\ |
| 2592 | : (RTX)->unchanging - 1) |
| 2593 | |
| 2594 | /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted |
| 2595 | for SIGNED type. */ |
| 2596 | #define SUBREG_PROMOTED_SIGNED_P(RTX) \ |
| 2597 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging) |
| 2598 | |
| 2599 | /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted |
| 2600 | for UNSIGNED type. */ |
| 2601 | #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \ |
| 2602 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil) |
| 2603 | |
| 2604 | /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */ |
| 2605 | #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \ |
| 2606 | ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \ |
| 2607 | : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \ |
| 2608 | : SUBREG_PROMOTED_UNSIGNED_P (RTX)) |
| 2609 | |
| 2610 | /* True if the REG is the static chain register for some CALL_INSN. */ |
| 2611 | #define STATIC_CHAIN_REG_P(RTX) \ |
| 2612 | (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump) |
| 2613 | |
| 2614 | /* True if the subreg was generated by LRA for reload insns. Such |
| 2615 | subregs are valid only during LRA. */ |
| 2616 | #define LRA_SUBREG_P(RTX) \ |
| 2617 | (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump) |
| 2618 | |
| 2619 | /* Access various components of an ASM_OPERANDS rtx. */ |
| 2620 | |
| 2621 | #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS) |
| 2622 | #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS) |
| 2623 | #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS) |
| 2624 | #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS) |
| 2625 | #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS) |
| 2626 | #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS) |
| 2627 | #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS) |
| 2628 | #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \ |
| 2629 | XCVECEXP (RTX, 4, N, ASM_OPERANDS) |
| 2630 | #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \ |
| 2631 | XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0) |
| 2632 | #define ASM_OPERANDS_INPUT_MODE(RTX, N) \ |
| 2633 | GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS)) |
| 2634 | #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS) |
| 2635 | #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS) |
| 2636 | #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS) |
| 2637 | #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCLOC (RTX, 6, ASM_OPERANDS) |
| 2638 | #define ASM_INPUT_SOURCE_LOCATION(RTX) XCLOC (RTX, 1, ASM_INPUT) |
| 2639 | |
| 2640 | /* 1 if RTX is a mem that is statically allocated in read-only memory. */ |
| 2641 | #define MEM_READONLY_P(RTX) \ |
| 2642 | (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging) |
| 2643 | |
| 2644 | /* 1 if RTX is a mem and we should keep the alias set for this mem |
| 2645 | unchanged when we access a component. Set to 1, or example, when we |
| 2646 | are already in a non-addressable component of an aggregate. */ |
| 2647 | #define MEM_KEEP_ALIAS_SET_P(RTX) \ |
| 2648 | (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump) |
| 2649 | |
| 2650 | /* 1 if RTX is a mem or asm_operand for a volatile reference. */ |
| 2651 | #define MEM_VOLATILE_P(RTX) \ |
| 2652 | (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \ |
| 2653 | ASM_INPUT)->volatil) |
| 2654 | |
| 2655 | /* 1 if RTX is a mem that cannot trap. */ |
| 2656 | #define MEM_NOTRAP_P(RTX) \ |
| 2657 | (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call) |
| 2658 | |
| 2659 | /* The memory attribute block. We provide access macros for each value |
| 2660 | in the block and provide defaults if none specified. */ |
| 2661 | #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1) |
| 2662 | |
| 2663 | /* The register attribute block. We provide access macros for each value |
| 2664 | in the block and provide defaults if none specified. */ |
| 2665 | #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs) |
| 2666 | |
| 2667 | #ifndef GENERATOR_FILE |
| 2668 | /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias |
| 2669 | set, and may alias anything. Otherwise, the MEM can only alias |
| 2670 | MEMs in a conflicting alias set. This value is set in a |
| 2671 | language-dependent manner in the front-end, and should not be |
| 2672 | altered in the back-end. These set numbers are tested with |
| 2673 | alias_sets_conflict_p. */ |
| 2674 | #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias) |
| 2675 | |
| 2676 | /* For a MEM rtx, the decl it is known to refer to, if it is known to |
| 2677 | refer to part of a DECL. It may also be a COMPONENT_REF. */ |
| 2678 | #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr) |
| 2679 | |
| 2680 | /* For a MEM rtx, true if its MEM_OFFSET is known. */ |
| 2681 | #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p) |
| 2682 | |
| 2683 | /* For a MEM rtx, the offset from the start of MEM_EXPR. */ |
| 2684 | #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset) |
| 2685 | |
| 2686 | /* For a MEM rtx, the address space. */ |
| 2687 | #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace) |
| 2688 | |
| 2689 | /* For a MEM rtx, true if its MEM_SIZE is known. */ |
| 2690 | #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p) |
| 2691 | |
| 2692 | /* For a MEM rtx, the size in bytes of the MEM. */ |
| 2693 | #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size) |
| 2694 | |
| 2695 | /* For a MEM rtx, the alignment in bits. We can use the alignment of the |
| 2696 | mode as a default when STRICT_ALIGNMENT, but not if not. */ |
| 2697 | #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align) |
| 2698 | #else |
| 2699 | #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC |
| 2700 | #endif |
| 2701 | |
| 2702 | /* For a REG rtx, the decl it is known to refer to, if it is known to |
| 2703 | refer to part of a DECL. */ |
| 2704 | #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl) |
| 2705 | |
| 2706 | /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an |
| 2707 | HOST_WIDE_INT. */ |
| 2708 | #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset) |
| 2709 | |
| 2710 | /* Copy the attributes that apply to memory locations from RHS to LHS. */ |
| 2711 | #define MEM_COPY_ATTRIBUTES(LHS, RHS) \ |
| 2712 | (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \ |
| 2713 | MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \ |
| 2714 | MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \ |
| 2715 | MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \ |
| 2716 | MEM_POINTER (LHS) = MEM_POINTER (RHS), \ |
| 2717 | MEM_ATTRS (LHS) = MEM_ATTRS (RHS)) |
| 2718 | |
| 2719 | /* 1 if RTX is a label_ref for a nonlocal label. */ |
| 2720 | /* Likewise in an expr_list for a REG_LABEL_OPERAND or |
| 2721 | REG_LABEL_TARGET note. */ |
| 2722 | #define LABEL_REF_NONLOCAL_P(RTX) \ |
| 2723 | (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil) |
| 2724 | |
| 2725 | /* 1 if RTX is a code_label that should always be considered to be needed. */ |
| 2726 | #define LABEL_PRESERVE_P(RTX) \ |
| 2727 | (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct) |
| 2728 | |
| 2729 | /* During sched, 1 if RTX is an insn that must be scheduled together |
| 2730 | with the preceding insn. */ |
| 2731 | #define SCHED_GROUP_P(RTX) \ |
| 2732 | (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \ |
| 2733 | JUMP_INSN, CALL_INSN)->in_struct) |
| 2734 | |
| 2735 | /* For a SET rtx, SET_DEST is the place that is set |
| 2736 | and SET_SRC is the value it is set to. */ |
| 2737 | #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER) |
| 2738 | #define SET_SRC(RTX) XCEXP (RTX, 1, SET) |
| 2739 | #define SET_IS_RETURN_P(RTX) \ |
| 2740 | (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump) |
| 2741 | |
| 2742 | /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */ |
| 2743 | #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF) |
| 2744 | #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF) |
| 2745 | |
| 2746 | /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base |
| 2747 | conditionally executing the code on, COND_EXEC_CODE is the code |
| 2748 | to execute if the condition is true. */ |
| 2749 | #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC) |
| 2750 | #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC) |
| 2751 | |
| 2752 | /* 1 if RTX is a symbol_ref that addresses this function's rtl |
| 2753 | constants pool. */ |
| 2754 | #define CONSTANT_POOL_ADDRESS_P(RTX) \ |
| 2755 | (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging) |
| 2756 | |
| 2757 | /* 1 if RTX is a symbol_ref that addresses a value in the file's |
| 2758 | tree constant pool. This information is private to varasm.cc. */ |
| 2759 | #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \ |
| 2760 | (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \ |
| 2761 | (RTX), SYMBOL_REF)->frame_related) |
| 2762 | |
| 2763 | /* Used if RTX is a symbol_ref, for machine-specific purposes. */ |
| 2764 | #define SYMBOL_REF_FLAG(RTX) \ |
| 2765 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil) |
| 2766 | |
| 2767 | /* 1 if RTX is a symbol_ref that has been the library function in |
| 2768 | emit_library_call. */ |
| 2769 | #define SYMBOL_REF_USED(RTX) \ |
| 2770 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used) |
| 2771 | |
| 2772 | /* 1 if RTX is a symbol_ref for a weak symbol. */ |
| 2773 | #define SYMBOL_REF_WEAK(RTX) \ |
| 2774 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val) |
| 2775 | |
| 2776 | /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or |
| 2777 | SYMBOL_REF_CONSTANT. */ |
| 2778 | #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1) |
| 2779 | |
| 2780 | /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant |
| 2781 | pool symbol. */ |
| 2782 | #define SET_SYMBOL_REF_DECL(RTX, DECL) \ |
| 2783 | (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL)) |
| 2784 | |
| 2785 | /* The tree (decl or constant) associated with the symbol, or null. */ |
| 2786 | #define SYMBOL_REF_DECL(RTX) \ |
| 2787 | (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1)) |
| 2788 | |
| 2789 | /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */ |
| 2790 | #define SET_SYMBOL_REF_CONSTANT(RTX, C) \ |
| 2791 | (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C)) |
| 2792 | |
| 2793 | /* The rtx constant pool entry for a symbol, or null. */ |
| 2794 | #define SYMBOL_REF_CONSTANT(RTX) \ |
| 2795 | (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL) |
| 2796 | |
| 2797 | /* A set of flags on a symbol_ref that are, in some respects, redundant with |
| 2798 | information derivable from the tree decl associated with this symbol. |
| 2799 | Except that we build a *lot* of SYMBOL_REFs that aren't associated with a |
| 2800 | decl. In some cases this is a bug. But beyond that, it's nice to cache |
| 2801 | this information to avoid recomputing it. Finally, this allows space for |
| 2802 | the target to store more than one bit of information, as with |
| 2803 | SYMBOL_REF_FLAG. */ |
| 2804 | #define SYMBOL_REF_FLAGS(RTX) \ |
| 2805 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \ |
| 2806 | ->u2.symbol_ref_flags) |
| 2807 | |
| 2808 | /* These flags are common enough to be defined for all targets. They |
| 2809 | are computed by the default version of targetm.encode_section_info. */ |
| 2810 | |
| 2811 | /* Set if this symbol is a function. */ |
| 2812 | #define SYMBOL_FLAG_FUNCTION (1 << 0) |
| 2813 | #define SYMBOL_REF_FUNCTION_P(RTX) \ |
| 2814 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0) |
| 2815 | /* Set if targetm.binds_local_p is true. */ |
| 2816 | #define SYMBOL_FLAG_LOCAL (1 << 1) |
| 2817 | #define SYMBOL_REF_LOCAL_P(RTX) \ |
| 2818 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0) |
| 2819 | /* Set if targetm.in_small_data_p is true. */ |
| 2820 | #define SYMBOL_FLAG_SMALL (1 << 2) |
| 2821 | #define SYMBOL_REF_SMALL_P(RTX) \ |
| 2822 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0) |
| 2823 | /* The three-bit field at [5:3] is true for TLS variables; use |
| 2824 | SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */ |
| 2825 | #define SYMBOL_FLAG_TLS_SHIFT 3 |
| 2826 | #define SYMBOL_REF_TLS_MODEL(RTX) \ |
| 2827 | ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7)) |
| 2828 | /* Set if this symbol is not defined in this translation unit. */ |
| 2829 | #define SYMBOL_FLAG_EXTERNAL (1 << 6) |
| 2830 | #define SYMBOL_REF_EXTERNAL_P(RTX) \ |
| 2831 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0) |
| 2832 | /* Set if this symbol has a block_symbol structure associated with it. */ |
| 2833 | #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7) |
| 2834 | #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \ |
| 2835 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0) |
| 2836 | /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies |
| 2837 | SYMBOL_REF_HAS_BLOCK_INFO_P. */ |
| 2838 | #define SYMBOL_FLAG_ANCHOR (1 << 8) |
| 2839 | #define SYMBOL_REF_ANCHOR_P(RTX) \ |
| 2840 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0) |
| 2841 | |
| 2842 | /* Subsequent bits are available for the target to use. */ |
| 2843 | #define SYMBOL_FLAG_MACH_DEP_SHIFT 9 |
| 2844 | #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT) |
| 2845 | |
| 2846 | /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block |
| 2847 | structure to which the symbol belongs, or NULL if it has not been |
| 2848 | assigned a block. */ |
| 2849 | #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block) |
| 2850 | |
| 2851 | /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from |
| 2852 | the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if |
| 2853 | RTX has not yet been assigned to a block, or it has not been given an |
| 2854 | offset within that block. */ |
| 2855 | #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset) |
| 2856 | |
| 2857 | /* True if RTX is flagged to be a scheduling barrier. */ |
| 2858 | #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \ |
| 2859 | (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil) |
| 2860 | |
| 2861 | /* Indicate whether the machine has any sort of auto increment addressing. |
| 2862 | If not, we can avoid checking for REG_INC notes. */ |
| 2863 | |
| 2864 | #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \ |
| 2865 | || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \ |
| 2866 | || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \ |
| 2867 | || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG)) |
| 2868 | #define AUTO_INC_DEC 1 |
| 2869 | #else |
| 2870 | #define AUTO_INC_DEC 0 |
| 2871 | #endif |
| 2872 | |
| 2873 | /* Define a macro to look for REG_INC notes, |
| 2874 | but save time on machines where they never exist. */ |
| 2875 | |
| 2876 | #if AUTO_INC_DEC |
| 2877 | #define FIND_REG_INC_NOTE(INSN, REG) \ |
| 2878 | ((REG) != NULL_RTX && REG_P ((REG)) \ |
| 2879 | ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \ |
| 2880 | : find_reg_note ((INSN), REG_INC, (REG))) |
| 2881 | #else |
| 2882 | #define FIND_REG_INC_NOTE(INSN, REG) 0 |
| 2883 | #endif |
| 2884 | |
| 2885 | #ifndef HAVE_PRE_INCREMENT |
| 2886 | #define HAVE_PRE_INCREMENT 0 |
| 2887 | #endif |
| 2888 | |
| 2889 | #ifndef HAVE_PRE_DECREMENT |
| 2890 | #define HAVE_PRE_DECREMENT 0 |
| 2891 | #endif |
| 2892 | |
| 2893 | #ifndef HAVE_POST_INCREMENT |
| 2894 | #define HAVE_POST_INCREMENT 0 |
| 2895 | #endif |
| 2896 | |
| 2897 | #ifndef HAVE_POST_DECREMENT |
| 2898 | #define HAVE_POST_DECREMENT 0 |
| 2899 | #endif |
| 2900 | |
| 2901 | #ifndef HAVE_POST_MODIFY_DISP |
| 2902 | #define HAVE_POST_MODIFY_DISP 0 |
| 2903 | #endif |
| 2904 | |
| 2905 | #ifndef HAVE_POST_MODIFY_REG |
| 2906 | #define HAVE_POST_MODIFY_REG 0 |
| 2907 | #endif |
| 2908 | |
| 2909 | #ifndef HAVE_PRE_MODIFY_DISP |
| 2910 | #define HAVE_PRE_MODIFY_DISP 0 |
| 2911 | #endif |
| 2912 | |
| 2913 | #ifndef HAVE_PRE_MODIFY_REG |
| 2914 | #define HAVE_PRE_MODIFY_REG 0 |
| 2915 | #endif |
| 2916 | |
| 2917 | |
| 2918 | /* Some architectures do not have complete pre/post increment/decrement |
| 2919 | instruction sets, or only move some modes efficiently. These macros |
| 2920 | allow us to tune autoincrement generation. */ |
| 2921 | |
| 2922 | #ifndef USE_LOAD_POST_INCREMENT |
| 2923 | #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT |
| 2924 | #endif |
| 2925 | |
| 2926 | #ifndef USE_LOAD_POST_DECREMENT |
| 2927 | #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT |
| 2928 | #endif |
| 2929 | |
| 2930 | #ifndef USE_LOAD_PRE_INCREMENT |
| 2931 | #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT |
| 2932 | #endif |
| 2933 | |
| 2934 | #ifndef USE_LOAD_PRE_DECREMENT |
| 2935 | #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT |
| 2936 | #endif |
| 2937 | |
| 2938 | #ifndef USE_STORE_POST_INCREMENT |
| 2939 | #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT |
| 2940 | #endif |
| 2941 | |
| 2942 | #ifndef USE_STORE_POST_DECREMENT |
| 2943 | #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT |
| 2944 | #endif |
| 2945 | |
| 2946 | #ifndef USE_STORE_PRE_INCREMENT |
| 2947 | #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT |
| 2948 | #endif |
| 2949 | |
| 2950 | #ifndef USE_STORE_PRE_DECREMENT |
| 2951 | #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT |
| 2952 | #endif |
| 2953 | |
| 2954 | /* Nonzero when we are generating CONCATs. */ |
| 2955 | extern int generating_concat_p; |
| 2956 | |
| 2957 | /* Nonzero when we are expanding trees to RTL. */ |
| 2958 | extern int currently_expanding_to_rtl; |
| 2959 | |
| 2960 | /* Generally useful functions. */ |
| 2961 | |
| 2962 | #ifndef GENERATOR_FILE |
| 2963 | /* Return the cost of SET X. SPEED_P is true if optimizing for speed |
| 2964 | rather than size. */ |
| 2965 | |
| 2966 | inline int |
| 2967 | set_rtx_cost (rtx x, bool speed_p) |
| 2968 | { |
| 2969 | return rtx_cost (x, VOIDmode, INSN, 4, speed_p); |
| 2970 | } |
| 2971 | |
| 2972 | /* Like set_rtx_cost, but return both the speed and size costs in C. */ |
| 2973 | |
| 2974 | inline void |
| 2975 | get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c) |
| 2976 | { |
| 2977 | get_full_rtx_cost (x, VOIDmode, INSN, 4, c); |
| 2978 | } |
| 2979 | |
| 2980 | /* Return the cost of moving X into a register, relative to the cost |
| 2981 | of a register move. SPEED_P is true if optimizing for speed rather |
| 2982 | than size. */ |
| 2983 | |
| 2984 | inline int |
| 2985 | set_src_cost (rtx x, machine_mode mode, bool speed_p) |
| 2986 | { |
| 2987 | return rtx_cost (x, mode, SET, 1, speed_p); |
| 2988 | } |
| 2989 | |
| 2990 | /* Like set_src_cost, but return both the speed and size costs in C. */ |
| 2991 | |
| 2992 | inline void |
| 2993 | get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c) |
| 2994 | { |
| 2995 | get_full_rtx_cost (x, mode, SET, 1, c); |
| 2996 | } |
| 2997 | #endif |
| 2998 | |
| 2999 | /* A convenience macro to validate the arguments of a zero_extract |
| 3000 | expression. It determines whether SIZE lies inclusively within |
| 3001 | [1, RANGE], POS lies inclusively within between [0, RANGE - 1] |
| 3002 | and the sum lies inclusively within [1, RANGE]. RANGE must be |
| 3003 | >= 1, but SIZE and POS may be negative. */ |
| 3004 | #define (SIZE, POS, RANGE) \ |
| 3005 | (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \ |
| 3006 | && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \ |
| 3007 | - (unsigned HOST_WIDE_INT)(POS))) |
| 3008 | |
| 3009 | /* In explow.cc */ |
| 3010 | extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode); |
| 3011 | extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode); |
| 3012 | extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false); |
| 3013 | extern HOST_WIDE_INT get_stack_check_protect (void); |
| 3014 | |
| 3015 | /* In rtl.cc */ |
| 3016 | extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO); |
| 3017 | inline rtx |
| 3018 | rtx_init (rtx rt, RTX_CODE code) |
| 3019 | { |
| 3020 | memset (s: rt, c: 0, RTX_HDR_SIZE); |
| 3021 | PUT_CODE (rt, code); |
| 3022 | return rt; |
| 3023 | } |
| 3024 | #define rtx_alloca(code) \ |
| 3025 | rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code)) |
| 3026 | extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int); |
| 3027 | #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ) |
| 3028 | #define const_wide_int_alloc(NWORDS) \ |
| 3029 | rtx_alloc_v (CONST_WIDE_INT, \ |
| 3030 | (sizeof (struct hwivec_def) \ |
| 3031 | + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \ |
| 3032 | |
| 3033 | extern rtvec rtvec_alloc (size_t); |
| 3034 | extern rtvec shallow_copy_rtvec (rtvec); |
| 3035 | extern bool shared_const_p (const_rtx); |
| 3036 | extern rtx copy_rtx (rtx); |
| 3037 | extern enum rtx_code classify_insn (rtx); |
| 3038 | extern void dump_rtx_statistics (void); |
| 3039 | |
| 3040 | /* In emit-rtl.cc */ |
| 3041 | |
| 3042 | /* Opcodes used in the bytecode generated by genemit.cc. */ |
| 3043 | enum class expand_opcode { |
| 3044 | /* NULL_RTX. */ |
| 3045 | NO_RTX, |
| 3046 | |
| 3047 | /* A (match_operand N) or (match_dup N). Followed by the operand number. */ |
| 3048 | MATCH_OPERAND, |
| 3049 | |
| 3050 | /* A (match_operator N) or (match_op_dup N) that preserves the original mode. |
| 3051 | Followed by the operand number. */ |
| 3052 | MATCH_OPERATOR, |
| 3053 | |
| 3054 | /* A (match_operator N) or (match_op_dup N) that overrides the original mode. |
| 3055 | Followed by the new mode and by the operand number. */ |
| 3056 | MATCH_OPERATOR_WITH_MODE, |
| 3057 | |
| 3058 | /* A (match_parallel N) or (match_par_dup N). Followed by the operand |
| 3059 | number. */ |
| 3060 | MATCH_PARALLEL, |
| 3061 | |
| 3062 | /* A (clobber (reg:M R)). Followed by M and R. */ |
| 3063 | CLOBBER_REG, |
| 3064 | |
| 3065 | /* FIRST_CODE + X represents a normal rtx with code X. */ |
| 3066 | FIRST_CODE |
| 3067 | }; |
| 3068 | |
| 3069 | extern rtx expand_rtx (const uint8_t *, rtx *); |
| 3070 | extern rtx_insn *complete_seq (const uint8_t *, rtx *); |
| 3071 | extern rtx copy_rtx_if_shared (rtx); |
| 3072 | |
| 3073 | /* In rtl.cc */ |
| 3074 | extern unsigned int rtx_size (const_rtx); |
| 3075 | extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO); |
| 3076 | |
| 3077 | typedef bool (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *, |
| 3078 | rtx *, rtx *); |
| 3079 | extern bool rtx_equal_p (const_rtx, const_rtx, |
| 3080 | rtx_equal_p_callback_function = NULL); |
| 3081 | |
| 3082 | extern bool rtvec_all_equal_p (const_rtvec); |
| 3083 | extern bool rtvec_series_p (rtvec, int); |
| 3084 | |
| 3085 | /* Return true if X is a vector constant with a duplicated element value. */ |
| 3086 | |
| 3087 | inline bool |
| 3088 | const_vec_duplicate_p (const_rtx x) |
| 3089 | { |
| 3090 | return (GET_CODE (x) == CONST_VECTOR |
| 3091 | && CONST_VECTOR_NPATTERNS (x) == 1 |
| 3092 | && CONST_VECTOR_DUPLICATE_P (x)); |
| 3093 | } |
| 3094 | |
| 3095 | /* Return true if X is a vector constant with a duplicated element value. |
| 3096 | Store the duplicated element in *ELT if so. */ |
| 3097 | |
| 3098 | template <typename T> |
| 3099 | inline bool |
| 3100 | const_vec_duplicate_p (T x, T *elt) |
| 3101 | { |
| 3102 | if (const_vec_duplicate_p (x)) |
| 3103 | { |
| 3104 | *elt = CONST_VECTOR_ENCODED_ELT (x, 0); |
| 3105 | return true; |
| 3106 | } |
| 3107 | return false; |
| 3108 | } |
| 3109 | |
| 3110 | /* Return true if X is a vector with a duplicated element value, either |
| 3111 | constant or nonconstant. Store the duplicated element in *ELT if so. */ |
| 3112 | |
| 3113 | template <typename T> |
| 3114 | inline bool |
| 3115 | vec_duplicate_p (T x, T *elt) |
| 3116 | { |
| 3117 | if (GET_CODE (x) == VEC_DUPLICATE |
| 3118 | && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0)))) |
| 3119 | { |
| 3120 | *elt = XEXP (x, 0); |
| 3121 | return true; |
| 3122 | } |
| 3123 | return const_vec_duplicate_p (x, elt); |
| 3124 | } |
| 3125 | |
| 3126 | /* If X is a vector constant with a duplicated element value, return that |
| 3127 | element value, otherwise return X. */ |
| 3128 | |
| 3129 | template <typename T> |
| 3130 | inline T |
| 3131 | unwrap_const_vec_duplicate (T x) |
| 3132 | { |
| 3133 | if (const_vec_duplicate_p (x)) |
| 3134 | x = CONST_VECTOR_ELT (x, 0); |
| 3135 | return x; |
| 3136 | } |
| 3137 | |
| 3138 | /* In emit-rtl.cc. */ |
| 3139 | extern wide_int const_vector_int_elt (const_rtx, unsigned int); |
| 3140 | extern rtx const_vector_elt (const_rtx, unsigned int); |
| 3141 | extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *); |
| 3142 | |
| 3143 | /* Return true if X is an integer constant vector that contains a linear |
| 3144 | series of the form: |
| 3145 | |
| 3146 | { B, B + S, B + 2 * S, B + 3 * S, ... } |
| 3147 | |
| 3148 | for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */ |
| 3149 | |
| 3150 | inline bool |
| 3151 | const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out) |
| 3152 | { |
| 3153 | if (GET_CODE (x) == CONST_VECTOR |
| 3154 | && CONST_VECTOR_NPATTERNS (x) == 1 |
| 3155 | && !CONST_VECTOR_DUPLICATE_P (x)) |
| 3156 | return const_vec_series_p_1 (x, base_out, step_out); |
| 3157 | return false; |
| 3158 | } |
| 3159 | |
| 3160 | /* Return true if X is a vector that contains a linear series of the |
| 3161 | form: |
| 3162 | |
| 3163 | { B, B + S, B + 2 * S, B + 3 * S, ... } |
| 3164 | |
| 3165 | where B and S are constant or nonconstant. Store B and S in |
| 3166 | *BASE_OUT and *STEP_OUT on sucess. */ |
| 3167 | |
| 3168 | inline bool |
| 3169 | vec_series_p (const_rtx x, rtx *base_out, rtx *step_out) |
| 3170 | { |
| 3171 | if (GET_CODE (x) == VEC_SERIES) |
| 3172 | { |
| 3173 | *base_out = XEXP (x, 0); |
| 3174 | *step_out = XEXP (x, 1); |
| 3175 | return true; |
| 3176 | } |
| 3177 | return const_vec_series_p (x, base_out, step_out); |
| 3178 | } |
| 3179 | |
| 3180 | /* Return true if CONST_VECTORs X and Y, which are known to have the same mode, |
| 3181 | also have the same encoding. This means that they are equal whenever their |
| 3182 | operands are equal. */ |
| 3183 | |
| 3184 | inline bool |
| 3185 | same_vector_encodings_p (const_rtx x, const_rtx y) |
| 3186 | { |
| 3187 | /* Don't be fussy about the encoding of constant-length vectors, |
| 3188 | since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */ |
| 3189 | if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ()) |
| 3190 | return true; |
| 3191 | |
| 3192 | return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y) |
| 3193 | && (CONST_VECTOR_NELTS_PER_PATTERN (x) |
| 3194 | == CONST_VECTOR_NELTS_PER_PATTERN (y))); |
| 3195 | } |
| 3196 | |
| 3197 | /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */ |
| 3198 | |
| 3199 | inline scalar_int_mode |
| 3200 | subreg_unpromoted_mode (rtx x) |
| 3201 | { |
| 3202 | gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x)); |
| 3203 | return as_a <scalar_int_mode> (GET_MODE (x)); |
| 3204 | } |
| 3205 | |
| 3206 | /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */ |
| 3207 | |
| 3208 | inline scalar_int_mode |
| 3209 | subreg_promoted_mode (rtx x) |
| 3210 | { |
| 3211 | gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x)); |
| 3212 | return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x))); |
| 3213 | } |
| 3214 | |
| 3215 | /* In emit-rtl.cc */ |
| 3216 | extern rtvec gen_rtvec_v (int, rtx *); |
| 3217 | extern rtvec gen_rtvec_v (int, rtx_insn **); |
| 3218 | extern rtx gen_reg_rtx (machine_mode); |
| 3219 | extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64); |
| 3220 | extern rtx gen_reg_rtx_offset (rtx, machine_mode, int); |
| 3221 | extern rtx gen_reg_rtx_and_attrs (rtx); |
| 3222 | extern rtx_code_label *gen_label_rtx (void); |
| 3223 | extern rtx gen_lowpart_common (machine_mode, rtx); |
| 3224 | |
| 3225 | /* In cse.cc */ |
| 3226 | extern rtx gen_lowpart_if_possible (machine_mode, rtx); |
| 3227 | |
| 3228 | /* In emit-rtl.cc */ |
| 3229 | extern rtx gen_highpart (machine_mode, rtx); |
| 3230 | extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx); |
| 3231 | extern rtx operand_subword (rtx, poly_uint64, int, machine_mode); |
| 3232 | |
| 3233 | /* In emit-rtl.cc */ |
| 3234 | extern rtx operand_subword_force (rtx, poly_uint64, machine_mode); |
| 3235 | extern bool subreg_lowpart_p (const_rtx); |
| 3236 | extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64); |
| 3237 | |
| 3238 | /* Return true if a subreg of mode OUTERMODE would only access part of |
| 3239 | an inner register with mode INNERMODE. The other bits of the inner |
| 3240 | register would then be "don't care" on read. The behavior for writes |
| 3241 | depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d |
| 3242 | chunk would be clobbered but other bits would be preserved. */ |
| 3243 | |
| 3244 | inline bool |
| 3245 | partial_subreg_p (machine_mode outermode, machine_mode innermode) |
| 3246 | { |
| 3247 | /* Modes involved in a subreg must be ordered. In particular, we must |
| 3248 | always know at compile time whether the subreg is paradoxical. */ |
| 3249 | poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode); |
| 3250 | poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode); |
| 3251 | gcc_checking_assert (ordered_p (outer_prec, inner_prec)); |
| 3252 | return maybe_lt (a: outer_prec, b: inner_prec); |
| 3253 | } |
| 3254 | |
| 3255 | /* Likewise return true if X is a subreg that is smaller than the inner |
| 3256 | register. Use read_modify_subreg_p to test whether writing to such |
| 3257 | a subreg preserves any part of the inner register. */ |
| 3258 | |
| 3259 | inline bool |
| 3260 | partial_subreg_p (const_rtx x) |
| 3261 | { |
| 3262 | if (GET_CODE (x) != SUBREG) |
| 3263 | return false; |
| 3264 | return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
| 3265 | } |
| 3266 | |
| 3267 | /* Return true if a subreg with the given outer and inner modes is |
| 3268 | paradoxical. */ |
| 3269 | |
| 3270 | inline bool |
| 3271 | paradoxical_subreg_p (machine_mode outermode, machine_mode innermode) |
| 3272 | { |
| 3273 | /* Modes involved in a subreg must be ordered. In particular, we must |
| 3274 | always know at compile time whether the subreg is paradoxical. */ |
| 3275 | poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode); |
| 3276 | poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode); |
| 3277 | gcc_checking_assert (ordered_p (outer_prec, inner_prec)); |
| 3278 | return maybe_gt (outer_prec, inner_prec); |
| 3279 | } |
| 3280 | |
| 3281 | /* Return true if X is a paradoxical subreg, false otherwise. */ |
| 3282 | |
| 3283 | inline bool |
| 3284 | paradoxical_subreg_p (const_rtx x) |
| 3285 | { |
| 3286 | if (GET_CODE (x) != SUBREG) |
| 3287 | return false; |
| 3288 | return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
| 3289 | } |
| 3290 | |
| 3291 | /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */ |
| 3292 | |
| 3293 | inline poly_uint64 |
| 3294 | subreg_lowpart_offset (machine_mode outermode, machine_mode innermode) |
| 3295 | { |
| 3296 | return subreg_size_lowpart_offset (GET_MODE_SIZE (mode: outermode), |
| 3297 | GET_MODE_SIZE (mode: innermode)); |
| 3298 | } |
| 3299 | |
| 3300 | /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE, |
| 3301 | return the smaller of the two modes if they are different sizes, |
| 3302 | otherwise return the outer mode. */ |
| 3303 | |
| 3304 | inline machine_mode |
| 3305 | narrower_subreg_mode (machine_mode outermode, machine_mode innermode) |
| 3306 | { |
| 3307 | return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode; |
| 3308 | } |
| 3309 | |
| 3310 | /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE, |
| 3311 | return the mode that is big enough to hold both the outer and inner |
| 3312 | values. Prefer the outer mode in the event of a tie. */ |
| 3313 | |
| 3314 | inline machine_mode |
| 3315 | wider_subreg_mode (machine_mode outermode, machine_mode innermode) |
| 3316 | { |
| 3317 | return partial_subreg_p (outermode, innermode) ? innermode : outermode; |
| 3318 | } |
| 3319 | |
| 3320 | /* Likewise for subreg X. */ |
| 3321 | |
| 3322 | inline machine_mode |
| 3323 | wider_subreg_mode (const_rtx x) |
| 3324 | { |
| 3325 | return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
| 3326 | } |
| 3327 | |
| 3328 | extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64); |
| 3329 | |
| 3330 | /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */ |
| 3331 | |
| 3332 | inline poly_uint64 |
| 3333 | subreg_highpart_offset (machine_mode outermode, machine_mode innermode) |
| 3334 | { |
| 3335 | return subreg_size_highpart_offset (GET_MODE_SIZE (mode: outermode), |
| 3336 | GET_MODE_SIZE (mode: innermode)); |
| 3337 | } |
| 3338 | |
| 3339 | extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode); |
| 3340 | extern poly_int64 subreg_memory_offset (machine_mode, machine_mode, |
| 3341 | poly_uint64); |
| 3342 | extern poly_int64 subreg_memory_offset (const_rtx); |
| 3343 | extern rtx make_safe_from (rtx, rtx); |
| 3344 | extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx, |
| 3345 | addr_space_t, bool, bool); |
| 3346 | extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx, |
| 3347 | addr_space_t); |
| 3348 | #define convert_memory_address(to_mode,x) \ |
| 3349 | convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC) |
| 3350 | extern const char *get_insn_name (int); |
| 3351 | extern rtx_insn *get_last_insn_anywhere (void); |
| 3352 | extern rtx_insn *get_first_nonnote_insn (void); |
| 3353 | extern rtx_insn *get_last_nonnote_insn (void); |
| 3354 | extern void start_sequence (void); |
| 3355 | extern void push_to_sequence (rtx_insn *); |
| 3356 | extern void push_to_sequence2 (rtx_insn *, rtx_insn *); |
| 3357 | extern rtx_insn *end_sequence (void); |
| 3358 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
| 3359 | extern double_int rtx_to_double_int (const_rtx); |
| 3360 | #endif |
| 3361 | extern void cwi_output_hex (FILE *, const_rtx); |
| 3362 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
| 3363 | extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT, |
| 3364 | machine_mode); |
| 3365 | #endif |
| 3366 | extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode); |
| 3367 | |
| 3368 | /* In varasm.cc */ |
| 3369 | extern rtx force_const_mem (machine_mode, rtx); |
| 3370 | |
| 3371 | /* In varasm.cc */ |
| 3372 | |
| 3373 | struct function; |
| 3374 | extern rtx get_pool_constant (const_rtx); |
| 3375 | extern rtx get_pool_constant_mark (rtx, bool *); |
| 3376 | extern fixed_size_mode get_pool_mode (const_rtx); |
| 3377 | extern rtx simplify_subtraction (rtx); |
| 3378 | extern void decide_function_section (tree); |
| 3379 | |
| 3380 | /* In emit-rtl.cc */ |
| 3381 | extern rtx_insn *emit_insn_before (rtx, rtx_insn *); |
| 3382 | extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block); |
| 3383 | extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t); |
| 3384 | extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *); |
| 3385 | extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *); |
| 3386 | extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, |
| 3387 | location_t); |
| 3388 | extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *); |
| 3389 | extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *); |
| 3390 | extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t); |
| 3391 | extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *); |
| 3392 | extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *); |
| 3393 | extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t); |
| 3394 | extern rtx_barrier *emit_barrier_before (rtx_insn *); |
| 3395 | extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *); |
| 3396 | extern rtx_note *emit_note_before (enum insn_note, rtx_insn *); |
| 3397 | extern rtx_insn *emit_insn_after (rtx, rtx_insn *); |
| 3398 | extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block); |
| 3399 | extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t); |
| 3400 | extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *); |
| 3401 | extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *); |
| 3402 | extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t); |
| 3403 | extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *); |
| 3404 | extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *); |
| 3405 | extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t); |
| 3406 | extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *); |
| 3407 | extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *); |
| 3408 | extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t); |
| 3409 | extern rtx_barrier *emit_barrier_after (rtx_insn *); |
| 3410 | extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *); |
| 3411 | extern rtx_note *emit_note_after (enum insn_note, rtx_insn *); |
| 3412 | extern rtx_insn *emit_insn (rtx); |
| 3413 | extern rtx_insn *emit_debug_insn (rtx); |
| 3414 | extern rtx_insn *emit_jump_insn (rtx); |
| 3415 | extern rtx_insn *emit_likely_jump_insn (rtx); |
| 3416 | extern rtx_insn *emit_unlikely_jump_insn (rtx); |
| 3417 | extern rtx_insn *emit_call_insn (rtx); |
| 3418 | extern rtx_code_label *emit_label (rtx); |
| 3419 | extern rtx_jump_table_data *emit_jump_table_data (rtx); |
| 3420 | extern rtx_barrier *emit_barrier (void); |
| 3421 | extern rtx_note *emit_note (enum insn_note); |
| 3422 | extern rtx_note *emit_note_copy (rtx_note *); |
| 3423 | extern rtx_insn *gen_clobber (rtx); |
| 3424 | extern rtx_insn *emit_clobber (rtx); |
| 3425 | extern rtx_insn *gen_use (rtx); |
| 3426 | extern rtx_insn *emit_use (rtx); |
| 3427 | extern rtx_insn *make_insn_raw (rtx); |
| 3428 | extern void add_function_usage_to (rtx, rtx); |
| 3429 | extern rtx_call_insn *last_call_insn (void); |
| 3430 | extern rtx_insn *previous_insn (rtx_insn *); |
| 3431 | extern rtx_insn *next_insn (rtx_insn *); |
| 3432 | extern rtx_insn *prev_nonnote_insn (rtx_insn *); |
| 3433 | extern rtx_insn *next_nonnote_insn (rtx_insn *); |
| 3434 | extern rtx_insn *prev_nondebug_insn (rtx_insn *); |
| 3435 | extern rtx_insn *next_nondebug_insn (rtx_insn *); |
| 3436 | extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *); |
| 3437 | extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *); |
| 3438 | extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *); |
| 3439 | extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *); |
| 3440 | extern rtx_insn *prev_real_insn (rtx_insn *); |
| 3441 | extern rtx_insn *next_real_insn (rtx_insn *); |
| 3442 | extern rtx_insn *prev_real_nondebug_insn (rtx_insn *); |
| 3443 | extern rtx_insn *next_real_nondebug_insn (rtx); |
| 3444 | extern rtx_insn *prev_active_insn (rtx_insn *); |
| 3445 | extern rtx_insn *next_active_insn (rtx_insn *); |
| 3446 | extern bool active_insn_p (const rtx_insn *); |
| 3447 | |
| 3448 | /* In emit-rtl.cc */ |
| 3449 | extern int insn_line (const rtx_insn *); |
| 3450 | extern const char * insn_file (const rtx_insn *); |
| 3451 | extern tree insn_scope (const rtx_insn *); |
| 3452 | extern expanded_location insn_location (const rtx_insn *); |
| 3453 | extern int insn_discriminator (const rtx_insn *); |
| 3454 | extern location_t prologue_location, epilogue_location; |
| 3455 | |
| 3456 | /* In jump.cc */ |
| 3457 | extern enum rtx_code reverse_condition (enum rtx_code); |
| 3458 | extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code); |
| 3459 | extern enum rtx_code swap_condition (enum rtx_code); |
| 3460 | extern enum rtx_code unsigned_condition (enum rtx_code); |
| 3461 | extern enum rtx_code signed_condition (enum rtx_code); |
| 3462 | extern void mark_jump_label (rtx, rtx_insn *, int); |
| 3463 | |
| 3464 | /* Return true if integer comparison operator CODE interprets its operands |
| 3465 | as unsigned. */ |
| 3466 | |
| 3467 | inline bool |
| 3468 | unsigned_condition_p (enum rtx_code code) |
| 3469 | { |
| 3470 | return unsigned_condition (code) == code; |
| 3471 | } |
| 3472 | |
| 3473 | /* In jump.cc */ |
| 3474 | extern rtx_insn *delete_related_insns (rtx); |
| 3475 | |
| 3476 | /* In recog.cc */ |
| 3477 | extern rtx *find_constant_term_loc (rtx *); |
| 3478 | |
| 3479 | /* In emit-rtl.cc */ |
| 3480 | extern rtx_insn *try_split (rtx, rtx_insn *, int); |
| 3481 | |
| 3482 | /* In insn-recog.cc (generated by genrecog). */ |
| 3483 | extern rtx_insn *split_insns (rtx, rtx_insn *); |
| 3484 | |
| 3485 | /* In simplify-rtx.cc */ |
| 3486 | |
| 3487 | /* A class that records the context in which a simplification |
| 3488 | is being mode. */ |
| 3489 | class simplify_context |
| 3490 | { |
| 3491 | public: |
| 3492 | rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode); |
| 3493 | rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx); |
| 3494 | rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode, |
| 3495 | rtx, rtx, rtx); |
| 3496 | rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode, |
| 3497 | rtx, rtx); |
| 3498 | rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64); |
| 3499 | |
| 3500 | rtx lowpart_subreg (machine_mode, rtx, machine_mode); |
| 3501 | |
| 3502 | rtx simplify_merge_mask (rtx, rtx, int); |
| 3503 | |
| 3504 | rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode); |
| 3505 | rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx); |
| 3506 | rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode, |
| 3507 | rtx, rtx, rtx); |
| 3508 | rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx); |
| 3509 | rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64); |
| 3510 | rtx simplify_gen_vec_select (rtx, unsigned int); |
| 3511 | |
| 3512 | /* Tracks the level of MEM nesting for the value being simplified: |
| 3513 | 0 means the value is not in a MEM, >0 means it is. This is needed |
| 3514 | because the canonical representation of multiplication is different |
| 3515 | inside a MEM than outside. */ |
| 3516 | unsigned int mem_depth = 0; |
| 3517 | |
| 3518 | /* Tracks number of simplify_associative_operation calls performed during |
| 3519 | outermost simplify* call. */ |
| 3520 | unsigned int assoc_count = 0; |
| 3521 | |
| 3522 | /* Limit for the above number, return NULL from |
| 3523 | simplify_associative_operation after we reach that assoc_count. */ |
| 3524 | static const unsigned int max_assoc_count = 64; |
| 3525 | |
| 3526 | private: |
| 3527 | rtx simplify_truncation (machine_mode, rtx, machine_mode); |
| 3528 | rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx); |
| 3529 | rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx); |
| 3530 | rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx); |
| 3531 | rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx, |
| 3532 | bool = false); |
| 3533 | rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx); |
| 3534 | rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx); |
| 3535 | rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int); |
| 3536 | rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx); |
| 3537 | rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx); |
| 3538 | |
| 3539 | rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx); |
| 3540 | rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx); |
| 3541 | rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode, |
| 3542 | rtx, rtx, rtx); |
| 3543 | rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode, |
| 3544 | rtx, rtx); |
| 3545 | }; |
| 3546 | |
| 3547 | inline rtx |
| 3548 | simplify_unary_operation (rtx_code code, machine_mode mode, rtx op, |
| 3549 | machine_mode op_mode) |
| 3550 | { |
| 3551 | return simplify_context ().simplify_unary_operation (code, mode, op, |
| 3552 | op_mode); |
| 3553 | } |
| 3554 | |
| 3555 | inline rtx |
| 3556 | simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1) |
| 3557 | { |
| 3558 | return simplify_context ().simplify_binary_operation (code, mode, op0, op1); |
| 3559 | } |
| 3560 | |
| 3561 | inline rtx |
| 3562 | simplify_ternary_operation (rtx_code code, machine_mode mode, |
| 3563 | machine_mode op0_mode, rtx op0, rtx op1, rtx op2) |
| 3564 | { |
| 3565 | return simplify_context ().simplify_ternary_operation (code, mode, op0_mode, |
| 3566 | op0, op1, op2); |
| 3567 | } |
| 3568 | |
| 3569 | inline rtx |
| 3570 | simplify_relational_operation (rtx_code code, machine_mode mode, |
| 3571 | machine_mode op_mode, rtx op0, rtx op1) |
| 3572 | { |
| 3573 | return simplify_context ().simplify_relational_operation (code, mode, |
| 3574 | op_mode, op0, op1); |
| 3575 | } |
| 3576 | |
| 3577 | inline rtx |
| 3578 | simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode, |
| 3579 | poly_uint64 byte) |
| 3580 | { |
| 3581 | return simplify_context ().simplify_subreg (outermode, op, innermode, byte); |
| 3582 | } |
| 3583 | |
| 3584 | inline rtx |
| 3585 | simplify_gen_unary (rtx_code code, machine_mode mode, rtx op, |
| 3586 | machine_mode op_mode) |
| 3587 | { |
| 3588 | return simplify_context ().simplify_gen_unary (code, mode, op, op_mode); |
| 3589 | } |
| 3590 | |
| 3591 | inline rtx |
| 3592 | simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1) |
| 3593 | { |
| 3594 | return simplify_context ().simplify_gen_binary (code, mode, op0, op1); |
| 3595 | } |
| 3596 | |
| 3597 | inline rtx |
| 3598 | simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode, |
| 3599 | rtx op0, rtx op1, rtx op2) |
| 3600 | { |
| 3601 | return simplify_context ().simplify_gen_ternary (code, mode, op0_mode, |
| 3602 | op0, op1, op2); |
| 3603 | } |
| 3604 | |
| 3605 | inline rtx |
| 3606 | simplify_gen_relational (rtx_code code, machine_mode mode, |
| 3607 | machine_mode op_mode, rtx op0, rtx op1) |
| 3608 | { |
| 3609 | return simplify_context ().simplify_gen_relational (code, mode, op_mode, |
| 3610 | op0, op1); |
| 3611 | } |
| 3612 | |
| 3613 | inline rtx |
| 3614 | simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode, |
| 3615 | poly_uint64 byte) |
| 3616 | { |
| 3617 | return simplify_context ().simplify_gen_subreg (outermode, op, |
| 3618 | innermode, byte); |
| 3619 | } |
| 3620 | |
| 3621 | inline rtx |
| 3622 | simplify_gen_vec_select (rtx op, unsigned int index) |
| 3623 | { |
| 3624 | return simplify_context ().simplify_gen_vec_select (op, index); |
| 3625 | } |
| 3626 | |
| 3627 | inline rtx |
| 3628 | lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode) |
| 3629 | { |
| 3630 | return simplify_context ().lowpart_subreg (outermode, op, innermode); |
| 3631 | } |
| 3632 | |
| 3633 | extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode, |
| 3634 | rtx, machine_mode); |
| 3635 | extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode, |
| 3636 | rtx, rtx); |
| 3637 | extern rtx simplify_const_relational_operation (enum rtx_code, |
| 3638 | machine_mode, rtx, rtx); |
| 3639 | extern rtx simplify_replace_fn_rtx (rtx, const_rtx, |
| 3640 | rtx (*fn) (rtx, const_rtx, void *), void *); |
| 3641 | extern rtx simplify_replace_rtx (rtx, const_rtx, rtx); |
| 3642 | extern rtx simplify_rtx (const_rtx); |
| 3643 | extern rtx avoid_constant_pool_reference (rtx); |
| 3644 | extern rtx delegitimize_mem_from_attrs (rtx); |
| 3645 | extern bool mode_signbit_p (machine_mode, const_rtx); |
| 3646 | extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT); |
| 3647 | extern bool val_signbit_known_set_p (machine_mode, |
| 3648 | unsigned HOST_WIDE_INT); |
| 3649 | extern bool val_signbit_known_clear_p (machine_mode, |
| 3650 | unsigned HOST_WIDE_INT); |
| 3651 | extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx); |
| 3652 | |
| 3653 | /* In reginfo.cc */ |
| 3654 | extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int, |
| 3655 | const predefined_function_abi *); |
| 3656 | extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &); |
| 3657 | |
| 3658 | /* In emit-rtl.cc */ |
| 3659 | extern rtx set_for_reg_notes (rtx); |
| 3660 | extern rtx set_unique_reg_note (rtx, enum reg_note, rtx); |
| 3661 | extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx); |
| 3662 | extern void set_insn_deleted (rtx_insn *); |
| 3663 | |
| 3664 | /* Functions in rtlanal.cc */ |
| 3665 | |
| 3666 | extern rtx single_set_2 (const rtx_insn *, const_rtx); |
| 3667 | extern rtx simple_regno_set (rtx, unsigned int); |
| 3668 | extern bool contains_symbol_ref_p (const_rtx); |
| 3669 | extern bool contains_symbolic_reference_p (const_rtx); |
| 3670 | extern bool contains_constant_pool_address_p (const_rtx); |
| 3671 | extern void add_auto_inc_notes (rtx_insn *, rtx); |
| 3672 | |
| 3673 | /* Handle the cheap and common cases inline for performance. */ |
| 3674 | |
| 3675 | inline rtx single_set (const rtx_insn *insn) |
| 3676 | { |
| 3677 | if (!INSN_P (insn)) |
| 3678 | return NULL_RTX; |
| 3679 | |
| 3680 | if (GET_CODE (PATTERN (insn)) == SET) |
| 3681 | return PATTERN (insn); |
| 3682 | |
| 3683 | /* Defer to the more expensive case. */ |
| 3684 | return single_set_2 (insn, PATTERN (insn)); |
| 3685 | } |
| 3686 | |
| 3687 | extern scalar_int_mode get_address_mode (rtx mem); |
| 3688 | extern bool rtx_addr_can_trap_p (const_rtx); |
| 3689 | extern bool nonzero_address_p (const_rtx); |
| 3690 | extern bool rtx_unstable_p (const_rtx); |
| 3691 | extern bool rtx_varies_p (const_rtx, bool); |
| 3692 | extern bool rtx_addr_varies_p (const_rtx, bool); |
| 3693 | extern tree get_call_fndecl (const rtx_insn *); |
| 3694 | extern HOST_WIDE_INT get_integer_term (const_rtx); |
| 3695 | extern rtx get_related_value (const_rtx); |
| 3696 | extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT); |
| 3697 | extern void split_const (rtx, rtx *, rtx *); |
| 3698 | extern rtx strip_offset (rtx, poly_int64 *); |
| 3699 | extern poly_int64 get_args_size (const_rtx); |
| 3700 | extern bool unsigned_reg_p (rtx); |
| 3701 | extern bool reg_mentioned_p (const_rtx, const_rtx); |
| 3702 | extern int count_occurrences (const_rtx, const_rtx, int); |
| 3703 | extern bool reg_referenced_p (const_rtx, const_rtx); |
| 3704 | extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
| 3705 | extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
| 3706 | extern int commutative_operand_precedence (rtx); |
| 3707 | extern bool swap_commutative_operands_p (rtx, rtx); |
| 3708 | extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
| 3709 | extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *); |
| 3710 | extern bool modified_in_p (const_rtx, const_rtx); |
| 3711 | extern bool reg_set_p (const_rtx, const_rtx); |
| 3712 | extern bool multiple_sets (const_rtx); |
| 3713 | extern bool set_noop_p (const_rtx); |
| 3714 | extern bool noop_move_p (const rtx_insn *); |
| 3715 | extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *); |
| 3716 | extern bool reg_overlap_mentioned_p (const_rtx, const_rtx); |
| 3717 | extern const_rtx set_of (const_rtx, const_rtx); |
| 3718 | extern void record_hard_reg_sets (rtx, const_rtx, void *); |
| 3719 | extern void record_hard_reg_uses (rtx *, void *); |
| 3720 | extern void find_all_hard_regs (const_rtx, HARD_REG_SET *); |
| 3721 | extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool); |
| 3722 | extern void note_pattern_stores (const_rtx, |
| 3723 | void (*) (rtx, const_rtx, void *), void *); |
| 3724 | extern void note_stores (const rtx_insn *, |
| 3725 | void (*) (rtx, const_rtx, void *), void *); |
| 3726 | extern void note_uses (rtx *, void (*) (rtx *, void *), void *); |
| 3727 | extern bool dead_or_set_p (const rtx_insn *, const_rtx); |
| 3728 | extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int); |
| 3729 | extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx); |
| 3730 | extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int); |
| 3731 | extern rtx find_reg_equal_equiv_note (const_rtx); |
| 3732 | extern rtx find_constant_src (const rtx_insn *); |
| 3733 | extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx); |
| 3734 | extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int); |
| 3735 | extern rtx alloc_reg_note (enum reg_note, rtx, rtx); |
| 3736 | extern void add_reg_note (rtx, enum reg_note, rtx); |
| 3737 | extern void add_int_reg_note (rtx_insn *, enum reg_note, int); |
| 3738 | extern void add_args_size_note (rtx_insn *, poly_int64); |
| 3739 | extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx); |
| 3740 | extern rtx duplicate_reg_note (rtx); |
| 3741 | extern void remove_note (rtx_insn *, const_rtx); |
| 3742 | extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false); |
| 3743 | extern void remove_reg_equal_equiv_notes_for_regno (unsigned int); |
| 3744 | extern bool side_effects_p (const_rtx); |
| 3745 | extern bool volatile_refs_p (const_rtx); |
| 3746 | extern bool volatile_insn_p (const_rtx); |
| 3747 | extern bool may_trap_p_1 (const_rtx, unsigned); |
| 3748 | extern bool may_trap_p (const_rtx); |
| 3749 | extern bool may_trap_or_fault_p (const_rtx); |
| 3750 | extern bool can_throw_internal (const_rtx); |
| 3751 | extern bool can_throw_external (const_rtx); |
| 3752 | extern bool insn_could_throw_p (const_rtx); |
| 3753 | extern bool insn_nothrow_p (const_rtx); |
| 3754 | extern bool can_nonlocal_goto (const rtx_insn *); |
| 3755 | extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx); |
| 3756 | extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx); |
| 3757 | extern rtx replace_rtx (rtx, rtx, rtx, bool = false); |
| 3758 | extern void replace_label (rtx *, rtx, rtx, bool); |
| 3759 | extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool); |
| 3760 | extern bool rtx_referenced_p (const_rtx, const_rtx); |
| 3761 | extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **); |
| 3762 | extern rtx tablejump_casesi_pattern (const rtx_insn *insn); |
| 3763 | extern bool computed_jump_p (const rtx_insn *); |
| 3764 | extern bool tls_referenced_p (const_rtx); |
| 3765 | extern bool contains_mem_rtx_p (rtx x); |
| 3766 | extern bool register_asm_p (const_rtx); |
| 3767 | |
| 3768 | /* Overload for refers_to_regno_p for checking a single register. */ |
| 3769 | inline bool |
| 3770 | refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL) |
| 3771 | { |
| 3772 | return refers_to_regno_p (regnum, regnum + 1, x, loc); |
| 3773 | } |
| 3774 | |
| 3775 | /* Callback for for_each_inc_dec, to process the autoinc operation OP |
| 3776 | within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is |
| 3777 | NULL. The callback is passed the same opaque ARG passed to |
| 3778 | for_each_inc_dec. Return zero to continue looking for other |
| 3779 | autoinc operations or any other value to interrupt the traversal and |
| 3780 | return that value to the caller of for_each_inc_dec. */ |
| 3781 | typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src, |
| 3782 | rtx srcoff, void *arg); |
| 3783 | extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg); |
| 3784 | |
| 3785 | extern rtx regno_use_in (unsigned int, rtx); |
| 3786 | extern bool auto_inc_p (const_rtx); |
| 3787 | extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *); |
| 3788 | extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **); |
| 3789 | extern bool loc_mentioned_in_p (rtx *, const_rtx); |
| 3790 | extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *); |
| 3791 | extern bool keep_with_call_p (const rtx_insn *); |
| 3792 | extern bool label_is_jump_target_p (const_rtx, const rtx_insn *); |
| 3793 | extern int pattern_cost (rtx, bool); |
| 3794 | extern int insn_cost (rtx_insn *, bool); |
| 3795 | extern unsigned seq_cost (const rtx_insn *, bool); |
| 3796 | |
| 3797 | /* Given an insn and condition, return a canonical description of |
| 3798 | the test being made. */ |
| 3799 | extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx, |
| 3800 | int, int); |
| 3801 | |
| 3802 | /* Given a JUMP_INSN, return a canonical description of the test |
| 3803 | being made. */ |
| 3804 | extern rtx get_condition (rtx_insn *, rtx_insn **, int, int); |
| 3805 | |
| 3806 | /* Information about a subreg of a hard register. */ |
| 3807 | struct subreg_info |
| 3808 | { |
| 3809 | /* Offset of first hard register involved in the subreg. */ |
| 3810 | int offset; |
| 3811 | /* Number of hard registers involved in the subreg. In the case of |
| 3812 | a paradoxical subreg, this is the number of registers that would |
| 3813 | be modified by writing to the subreg; some of them may be don't-care |
| 3814 | when reading from the subreg. */ |
| 3815 | int nregs; |
| 3816 | /* Whether this subreg can be represented as a hard reg with the new |
| 3817 | mode (by adding OFFSET to the original hard register). */ |
| 3818 | bool representable_p; |
| 3819 | }; |
| 3820 | |
| 3821 | extern void subreg_get_info (unsigned int, machine_mode, |
| 3822 | poly_uint64, machine_mode, |
| 3823 | struct subreg_info *); |
| 3824 | |
| 3825 | /* lists.cc */ |
| 3826 | |
| 3827 | extern void free_EXPR_LIST_list (rtx_expr_list **); |
| 3828 | extern void free_INSN_LIST_list (rtx_insn_list **); |
| 3829 | extern void free_EXPR_LIST_node (rtx); |
| 3830 | extern void free_INSN_LIST_node (rtx); |
| 3831 | extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx); |
| 3832 | extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *); |
| 3833 | extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *); |
| 3834 | extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx); |
| 3835 | extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **); |
| 3836 | extern rtx remove_list_elem (rtx, rtx *); |
| 3837 | extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **); |
| 3838 | extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **); |
| 3839 | |
| 3840 | |
| 3841 | /* reginfo.cc */ |
| 3842 | |
| 3843 | /* Resize reg info. */ |
| 3844 | extern bool resize_reg_info (void); |
| 3845 | /* Free up register info memory. */ |
| 3846 | extern void free_reg_info (void); |
| 3847 | extern void init_subregs_of_mode (void); |
| 3848 | extern void finish_subregs_of_mode (void); |
| 3849 | extern void reginfo_cc_finalize (void); |
| 3850 | |
| 3851 | /* recog.cc */ |
| 3852 | extern rtx extract_asm_operands (rtx); |
| 3853 | extern int asm_noperands (const_rtx); |
| 3854 | extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **, |
| 3855 | machine_mode *, location_t *); |
| 3856 | extern void get_referenced_operands (const char *, bool *, unsigned int); |
| 3857 | |
| 3858 | extern enum reg_class reg_preferred_class (int); |
| 3859 | extern enum reg_class reg_alternate_class (int); |
| 3860 | extern enum reg_class reg_allocno_class (int); |
| 3861 | extern void setup_reg_classes (int, enum reg_class, enum reg_class, |
| 3862 | enum reg_class); |
| 3863 | |
| 3864 | extern void split_all_insns (void); |
| 3865 | extern void split_all_insns_noflow (void); |
| 3866 | |
| 3867 | #define MAX_SAVED_CONST_INT 64 |
| 3868 | extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; |
| 3869 | |
| 3870 | #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT]) |
| 3871 | #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1]) |
| 3872 | #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2]) |
| 3873 | #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1]) |
| 3874 | extern GTY(()) rtx const_true_rtx; |
| 3875 | |
| 3876 | extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; |
| 3877 | |
| 3878 | /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the |
| 3879 | same as VOIDmode. */ |
| 3880 | |
| 3881 | #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)]) |
| 3882 | |
| 3883 | /* Likewise, for the constants 1 and 2 and -1. */ |
| 3884 | |
| 3885 | #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)]) |
| 3886 | #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)]) |
| 3887 | #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)]) |
| 3888 | |
| 3889 | extern GTY(()) rtx pc_rtx; |
| 3890 | extern GTY(()) rtx ret_rtx; |
| 3891 | extern GTY(()) rtx simple_return_rtx; |
| 3892 | extern GTY(()) rtx_insn *invalid_insn_rtx; |
| 3893 | |
| 3894 | /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg |
| 3895 | is used to represent the frame pointer. This is because the |
| 3896 | hard frame pointer and the automatic variables are separated by an amount |
| 3897 | that cannot be determined until after register allocation. We can assume |
| 3898 | that in this case ELIMINABLE_REGS will be defined, one action of which |
| 3899 | will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */ |
| 3900 | #ifndef HARD_FRAME_POINTER_REGNUM |
| 3901 | #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM |
| 3902 | #endif |
| 3903 | |
| 3904 | #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER |
| 3905 | #define HARD_FRAME_POINTER_IS_FRAME_POINTER \ |
| 3906 | (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM) |
| 3907 | #endif |
| 3908 | |
| 3909 | #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER |
| 3910 | #define HARD_FRAME_POINTER_IS_ARG_POINTER \ |
| 3911 | (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM) |
| 3912 | #endif |
| 3913 | |
| 3914 | /* Index labels for global_rtl. */ |
| 3915 | enum global_rtl_index |
| 3916 | { |
| 3917 | GR_STACK_POINTER, |
| 3918 | GR_FRAME_POINTER, |
| 3919 | /* For register elimination to work properly these hard_frame_pointer_rtx, |
| 3920 | frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to |
| 3921 | the same register. */ |
| 3922 | #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM |
| 3923 | GR_ARG_POINTER = GR_FRAME_POINTER, |
| 3924 | #endif |
| 3925 | #if HARD_FRAME_POINTER_IS_FRAME_POINTER |
| 3926 | GR_HARD_FRAME_POINTER = GR_FRAME_POINTER, |
| 3927 | #else |
| 3928 | GR_HARD_FRAME_POINTER, |
| 3929 | #endif |
| 3930 | #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
| 3931 | #if HARD_FRAME_POINTER_IS_ARG_POINTER |
| 3932 | GR_ARG_POINTER = GR_HARD_FRAME_POINTER, |
| 3933 | #else |
| 3934 | GR_ARG_POINTER, |
| 3935 | #endif |
| 3936 | #endif |
| 3937 | GR_VIRTUAL_INCOMING_ARGS, |
| 3938 | GR_VIRTUAL_STACK_ARGS, |
| 3939 | GR_VIRTUAL_STACK_DYNAMIC, |
| 3940 | GR_VIRTUAL_OUTGOING_ARGS, |
| 3941 | GR_VIRTUAL_CFA, |
| 3942 | GR_VIRTUAL_PREFERRED_STACK_BOUNDARY, |
| 3943 | |
| 3944 | GR_MAX |
| 3945 | }; |
| 3946 | |
| 3947 | /* Target-dependent globals. */ |
| 3948 | struct GTY(()) target_rtl { |
| 3949 | /* All references to the hard registers in global_rtl_index go through |
| 3950 | these unique rtl objects. On machines where the frame-pointer and |
| 3951 | arg-pointer are the same register, they use the same unique object. |
| 3952 | |
| 3953 | After register allocation, other rtl objects which used to be pseudo-regs |
| 3954 | may be clobbered to refer to the frame-pointer register. |
| 3955 | But references that were originally to the frame-pointer can be |
| 3956 | distinguished from the others because they contain frame_pointer_rtx. |
| 3957 | |
| 3958 | When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little |
| 3959 | tricky: until register elimination has taken place hard_frame_pointer_rtx |
| 3960 | should be used if it is being set, and frame_pointer_rtx otherwise. After |
| 3961 | register elimination hard_frame_pointer_rtx should always be used. |
| 3962 | On machines where the two registers are same (most) then these are the |
| 3963 | same. */ |
| 3964 | rtx x_global_rtl[GR_MAX]; |
| 3965 | |
| 3966 | /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */ |
| 3967 | rtx x_pic_offset_table_rtx; |
| 3968 | |
| 3969 | /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM). |
| 3970 | This is used to implement __builtin_return_address for some machines; |
| 3971 | see for instance the MIPS port. */ |
| 3972 | rtx x_return_address_pointer_rtx; |
| 3973 | |
| 3974 | /* Commonly used RTL for hard registers. These objects are not |
| 3975 | necessarily unique, so we allocate them separately from global_rtl. |
| 3976 | They are initialized once per compilation unit, then copied into |
| 3977 | regno_reg_rtx at the beginning of each function. */ |
| 3978 | rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER]; |
| 3979 | |
| 3980 | /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */ |
| 3981 | rtx x_top_of_stack[MAX_MACHINE_MODE]; |
| 3982 | |
| 3983 | /* Static hunks of RTL used by the aliasing code; these are treated |
| 3984 | as persistent to avoid unnecessary RTL allocations. */ |
| 3985 | rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER]; |
| 3986 | |
| 3987 | /* The default memory attributes for each mode. */ |
| 3988 | class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE]; |
| 3989 | |
| 3990 | /* Track if RTL has been initialized. */ |
| 3991 | bool target_specific_initialized; |
| 3992 | }; |
| 3993 | |
| 3994 | extern GTY(()) struct target_rtl default_target_rtl; |
| 3995 | #if SWITCHABLE_TARGET |
| 3996 | extern struct target_rtl *this_target_rtl; |
| 3997 | #else |
| 3998 | #define this_target_rtl (&default_target_rtl) |
| 3999 | #endif |
| 4000 | |
| 4001 | #define global_rtl \ |
| 4002 | (this_target_rtl->x_global_rtl) |
| 4003 | #define pic_offset_table_rtx \ |
| 4004 | (this_target_rtl->x_pic_offset_table_rtx) |
| 4005 | #define return_address_pointer_rtx \ |
| 4006 | (this_target_rtl->x_return_address_pointer_rtx) |
| 4007 | #define top_of_stack \ |
| 4008 | (this_target_rtl->x_top_of_stack) |
| 4009 | #define mode_mem_attrs \ |
| 4010 | (this_target_rtl->x_mode_mem_attrs) |
| 4011 | |
| 4012 | /* All references to certain hard regs, except those created |
| 4013 | by allocating pseudo regs into them (when that's possible), |
| 4014 | go through these unique rtx objects. */ |
| 4015 | #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER]) |
| 4016 | #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER]) |
| 4017 | #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER]) |
| 4018 | #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER]) |
| 4019 | |
| 4020 | #ifndef GENERATOR_FILE |
| 4021 | /* Return the attributes of a MEM rtx. */ |
| 4022 | inline const class mem_attrs * |
| 4023 | get_mem_attrs (const_rtx x) |
| 4024 | { |
| 4025 | class mem_attrs *attrs; |
| 4026 | |
| 4027 | attrs = MEM_ATTRS (x); |
| 4028 | if (!attrs) |
| 4029 | attrs = mode_mem_attrs[(int) GET_MODE (x)]; |
| 4030 | return attrs; |
| 4031 | } |
| 4032 | #endif |
| 4033 | |
| 4034 | /* Include the RTL generation functions. */ |
| 4035 | |
| 4036 | #ifndef GENERATOR_FILE |
| 4037 | #include "genrtl.h" |
| 4038 | #undef gen_rtx_ASM_INPUT |
| 4039 | #define gen_rtx_ASM_INPUT(MODE, ARG0) \ |
| 4040 | gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), 0) |
| 4041 | #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \ |
| 4042 | gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), (LOC)) |
| 4043 | #endif |
| 4044 | |
| 4045 | /* There are some RTL codes that require special attention; the |
| 4046 | generation functions included above do the raw handling. If you |
| 4047 | add to this list, modify special_rtx in gengenrtl.cc as well. */ |
| 4048 | |
| 4049 | extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx); |
| 4050 | extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx); |
| 4051 | extern rtx_insn * |
| 4052 | gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn, |
| 4053 | basic_block bb, rtx pattern, location_t location, int code, |
| 4054 | rtx reg_notes); |
| 4055 | extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT); |
| 4056 | extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec); |
| 4057 | extern void set_mode_and_regno (rtx, machine_mode, unsigned int); |
| 4058 | extern rtx init_raw_REG (rtx, machine_mode, unsigned int); |
| 4059 | extern rtx gen_raw_REG (machine_mode, unsigned int); |
| 4060 | #define alloca_raw_REG(mode, regno) \ |
| 4061 | init_raw_REG (rtx_alloca (REG), (mode), (regno)) |
| 4062 | extern rtx gen_rtx_REG (machine_mode, unsigned int); |
| 4063 | extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64); |
| 4064 | extern rtx gen_rtx_MEM (machine_mode, rtx); |
| 4065 | extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx, |
| 4066 | enum var_init_status); |
| 4067 | |
| 4068 | #ifdef GENERATOR_FILE |
| 4069 | #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE) |
| 4070 | #else |
| 4071 | inline void |
| 4072 | PUT_MODE (rtx x, machine_mode mode) |
| 4073 | { |
| 4074 | if (REG_P (x)) |
| 4075 | set_mode_and_regno (x, mode, REGNO (x)); |
| 4076 | else |
| 4077 | PUT_MODE_RAW (x, mode); |
| 4078 | } |
| 4079 | #endif |
| 4080 | |
| 4081 | #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N)) |
| 4082 | |
| 4083 | /* Virtual registers are used during RTL generation to refer to locations into |
| 4084 | the stack frame when the actual location isn't known until RTL generation |
| 4085 | is complete. The routine instantiate_virtual_regs replaces these with |
| 4086 | the proper value, which is normally {frame,arg,stack}_pointer_rtx plus |
| 4087 | a constant. */ |
| 4088 | |
| 4089 | #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER) |
| 4090 | |
| 4091 | /* This points to the first word of the incoming arguments passed on the stack, |
| 4092 | either by the caller or by the callee when pretending it was passed by the |
| 4093 | caller. */ |
| 4094 | |
| 4095 | #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS]) |
| 4096 | |
| 4097 | #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER) |
| 4098 | |
| 4099 | /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first |
| 4100 | variable on the stack. Otherwise, it points to the first variable on |
| 4101 | the stack. */ |
| 4102 | |
| 4103 | #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS]) |
| 4104 | |
| 4105 | #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1) |
| 4106 | |
| 4107 | /* This points to the location of dynamically-allocated memory on the stack |
| 4108 | immediately after the stack pointer has been adjusted by the amount |
| 4109 | desired. */ |
| 4110 | |
| 4111 | #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC]) |
| 4112 | |
| 4113 | #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2) |
| 4114 | |
| 4115 | /* This points to the location in the stack at which outgoing arguments should |
| 4116 | be written when the stack is pre-pushed (arguments pushed using push |
| 4117 | insns always use sp). */ |
| 4118 | |
| 4119 | #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS]) |
| 4120 | |
| 4121 | #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3) |
| 4122 | |
| 4123 | /* This points to the Canonical Frame Address of the function. This |
| 4124 | should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET, |
| 4125 | but is calculated relative to the arg pointer for simplicity; the |
| 4126 | frame pointer nor stack pointer are necessarily fixed relative to |
| 4127 | the CFA until after reload. */ |
| 4128 | |
| 4129 | #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA]) |
| 4130 | |
| 4131 | #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4) |
| 4132 | |
| 4133 | #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4) |
| 4134 | |
| 4135 | /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT |
| 4136 | when finalized. */ |
| 4137 | |
| 4138 | #define virtual_preferred_stack_boundary_rtx \ |
| 4139 | (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY]) |
| 4140 | |
| 4141 | #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \ |
| 4142 | ((FIRST_VIRTUAL_REGISTER) + 5) |
| 4143 | |
| 4144 | #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5) |
| 4145 | |
| 4146 | /* Nonzero if REGNUM is a pointer into the stack frame. */ |
| 4147 | #define REGNO_PTR_FRAME_P(REGNUM) \ |
| 4148 | ((REGNUM) == STACK_POINTER_REGNUM \ |
| 4149 | || (REGNUM) == FRAME_POINTER_REGNUM \ |
| 4150 | || (REGNUM) == HARD_FRAME_POINTER_REGNUM \ |
| 4151 | || (REGNUM) == ARG_POINTER_REGNUM \ |
| 4152 | || VIRTUAL_REGISTER_NUM_P (REGNUM)) |
| 4153 | |
| 4154 | /* REGNUM never really appearing in the INSN stream. */ |
| 4155 | #define INVALID_REGNUM (~(unsigned int) 0) |
| 4156 | |
| 4157 | /* REGNUM for which no debug information can be generated. */ |
| 4158 | #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1) |
| 4159 | |
| 4160 | extern rtx output_constant_def (tree, int); |
| 4161 | extern rtx lookup_constant_def (tree); |
| 4162 | |
| 4163 | /* Nonzero after end of reload pass. |
| 4164 | Set to 1 or 0 by reload1.cc. */ |
| 4165 | |
| 4166 | extern int reload_completed; |
| 4167 | |
| 4168 | /* Nonzero after thread_prologue_and_epilogue_insns has run. */ |
| 4169 | extern int epilogue_completed; |
| 4170 | |
| 4171 | /* Set to 1 while reload_as_needed is operating. |
| 4172 | Required by some machines to handle any generated moves differently. */ |
| 4173 | |
| 4174 | extern int reload_in_progress; |
| 4175 | |
| 4176 | /* Set to true while in IRA. */ |
| 4177 | extern bool ira_in_progress; |
| 4178 | |
| 4179 | /* Set to true while in LRA. */ |
| 4180 | extern bool lra_in_progress; |
| 4181 | |
| 4182 | /* This macro indicates whether you may create a new |
| 4183 | pseudo-register. */ |
| 4184 | |
| 4185 | #define can_create_pseudo_p() (!reload_in_progress && !reload_completed) |
| 4186 | |
| 4187 | #ifdef STACK_REGS |
| 4188 | /* Nonzero after end of regstack pass. |
| 4189 | Set to 1 or 0 by reg-stack.cc. */ |
| 4190 | extern int regstack_completed; |
| 4191 | #endif |
| 4192 | |
| 4193 | /* If this is nonzero, we do not bother generating VOLATILE |
| 4194 | around volatile memory references, and we are willing to |
| 4195 | output indirect addresses. If cse is to follow, we reject |
| 4196 | indirect addresses so a useful potential cse is generated; |
| 4197 | if it is used only once, instruction combination will produce |
| 4198 | the same indirect address eventually. */ |
| 4199 | extern int cse_not_expected; |
| 4200 | |
| 4201 | /* Translates rtx code to tree code, for those codes needed by |
| 4202 | real_arithmetic. The function returns an int because the caller may not |
| 4203 | know what `enum tree_code' means. */ |
| 4204 | |
| 4205 | extern int rtx_to_tree_code (enum rtx_code); |
| 4206 | |
| 4207 | /* In cse.cc */ |
| 4208 | extern int delete_trivially_dead_insns (rtx_insn *, int); |
| 4209 | extern bool exp_equiv_p (const_rtx, const_rtx, int, bool); |
| 4210 | |
| 4211 | typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *, |
| 4212 | machine_mode *); |
| 4213 | extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *, |
| 4214 | bool, hash_rtx_callback_function = NULL); |
| 4215 | |
| 4216 | /* In dse.cc */ |
| 4217 | extern bool check_for_inc_dec (rtx_insn *insn); |
| 4218 | |
| 4219 | /* In jump.cc */ |
| 4220 | extern bool comparison_dominates_p (enum rtx_code, enum rtx_code); |
| 4221 | extern bool jump_to_label_p (const rtx_insn *); |
| 4222 | extern bool condjump_p (const rtx_insn *); |
| 4223 | extern bool any_condjump_p (const rtx_insn *); |
| 4224 | extern bool any_uncondjump_p (const rtx_insn *); |
| 4225 | extern rtx pc_set (const rtx_insn *); |
| 4226 | extern rtx condjump_label (const rtx_insn *); |
| 4227 | extern bool simplejump_p (const rtx_insn *); |
| 4228 | extern bool returnjump_p (const rtx_insn *); |
| 4229 | extern bool eh_returnjump_p (rtx_insn *); |
| 4230 | extern bool onlyjump_p (const rtx_insn *); |
| 4231 | extern bool invert_jump_1 (rtx_jump_insn *, rtx); |
| 4232 | extern bool invert_jump (rtx_jump_insn *, rtx, int); |
| 4233 | extern bool rtx_renumbered_equal_p (const_rtx, const_rtx); |
| 4234 | extern int true_regnum (const_rtx); |
| 4235 | extern unsigned int reg_or_subregno (const_rtx); |
| 4236 | extern bool redirect_jump_1 (rtx_insn *, rtx); |
| 4237 | extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int); |
| 4238 | extern bool redirect_jump (rtx_jump_insn *, rtx, int); |
| 4239 | extern void rebuild_jump_labels (rtx_insn *); |
| 4240 | extern void rebuild_jump_labels_chain (rtx_insn *); |
| 4241 | extern rtx reversed_comparison (const_rtx, machine_mode); |
| 4242 | extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *); |
| 4243 | extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx, |
| 4244 | const_rtx, const rtx_insn *); |
| 4245 | extern void delete_for_peephole (rtx_insn *, rtx_insn *); |
| 4246 | extern bool condjump_in_parallel_p (const rtx_insn *); |
| 4247 | |
| 4248 | /* In emit-rtl.cc. */ |
| 4249 | extern int max_reg_num (void); |
| 4250 | extern int max_label_num (void); |
| 4251 | extern int get_first_label_num (void); |
| 4252 | extern void maybe_set_first_label_num (rtx_code_label *); |
| 4253 | extern void delete_insns_since (rtx_insn *); |
| 4254 | extern void mark_reg_pointer (rtx, int); |
| 4255 | extern void mark_user_reg (rtx); |
| 4256 | extern void reset_used_flags (rtx); |
| 4257 | extern void set_used_flags (rtx); |
| 4258 | extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *); |
| 4259 | extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *); |
| 4260 | extern int get_max_insn_count (void); |
| 4261 | extern bool in_sequence_p (void); |
| 4262 | extern void init_emit (void); |
| 4263 | extern void init_emit_regs (void); |
| 4264 | extern void init_derived_machine_modes (void); |
| 4265 | extern void init_emit_once (void); |
| 4266 | extern void push_topmost_sequence (void); |
| 4267 | extern void pop_topmost_sequence (void); |
| 4268 | extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *); |
| 4269 | extern void unshare_all_rtl (void); |
| 4270 | extern void unshare_all_rtl_again (rtx_insn *); |
| 4271 | extern void unshare_all_rtl_in_chain (rtx_insn *); |
| 4272 | extern void verify_rtl_sharing (void); |
| 4273 | extern void add_insn (rtx_insn *); |
| 4274 | extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block); |
| 4275 | extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block); |
| 4276 | extern void remove_insn (rtx_insn *); |
| 4277 | extern rtx_insn *emit (rtx, bool = true); |
| 4278 | extern void emit_insn_at_entry (rtx); |
| 4279 | extern rtx gen_lowpart_SUBREG (machine_mode, rtx); |
| 4280 | extern rtx gen_const_mem (machine_mode, rtx); |
| 4281 | extern rtx gen_frame_mem (machine_mode, rtx); |
| 4282 | extern rtx gen_tmp_stack_mem (machine_mode, rtx); |
| 4283 | extern bool validate_subreg (machine_mode, machine_mode, |
| 4284 | const_rtx, poly_uint64); |
| 4285 | |
| 4286 | /* In combine.cc */ |
| 4287 | extern unsigned int extended_count (const_rtx, machine_mode, bool); |
| 4288 | extern rtx remove_death (unsigned int, rtx_insn *); |
| 4289 | extern rtx make_compound_operation (rtx, enum rtx_code); |
| 4290 | |
| 4291 | /* In sched-rgn.cc. */ |
| 4292 | extern void schedule_insns (void); |
| 4293 | |
| 4294 | /* In sched-ebb.cc. */ |
| 4295 | extern void schedule_ebbs (void); |
| 4296 | |
| 4297 | /* In sel-sched-dump.cc. */ |
| 4298 | extern void sel_sched_fix_param (const char *param, const char *val); |
| 4299 | |
| 4300 | /* In print-rtl.cc */ |
| 4301 | extern const char *print_rtx_head; |
| 4302 | extern void debug (const rtx_def &ref); |
| 4303 | extern void debug (const rtx_def *ptr); |
| 4304 | extern void debug_rtx (const_rtx); |
| 4305 | extern void debug_rtx_list (const rtx_insn *, int); |
| 4306 | extern void debug_rtx_range (const rtx_insn *, const rtx_insn *); |
| 4307 | extern const rtx_insn *debug_rtx_find (const rtx_insn *, int); |
| 4308 | extern void print_mem_expr (FILE *, const_tree); |
| 4309 | extern void print_rtl (FILE *, const_rtx); |
| 4310 | extern void print_simple_rtl (FILE *, const_rtx); |
| 4311 | extern void print_rtl_single (FILE *, const_rtx); |
| 4312 | extern void print_rtl_single_with_indent (FILE *, const_rtx, int); |
| 4313 | extern void print_inline_rtx (FILE *, const_rtx, int); |
| 4314 | |
| 4315 | /* In stmt.cc */ |
| 4316 | extern void expand_null_return (void); |
| 4317 | extern void expand_naked_return (void); |
| 4318 | extern void emit_jump (rtx); |
| 4319 | |
| 4320 | /* Memory operation built-ins differ by return value. Mapping |
| 4321 | of the enum values is following: |
| 4322 | - RETURN_BEGIN - return destination, e.g. memcpy |
| 4323 | - RETURN_END - return destination + n, e.g. mempcpy |
| 4324 | - RETURN_END_MINUS_ONE - return a pointer to the terminating |
| 4325 | null byte of the string, e.g. strcpy |
| 4326 | */ |
| 4327 | |
| 4328 | enum memop_ret |
| 4329 | { |
| 4330 | RETURN_BEGIN, |
| 4331 | RETURN_END, |
| 4332 | RETURN_END_MINUS_ONE |
| 4333 | }; |
| 4334 | |
| 4335 | /* In expr.cc */ |
| 4336 | extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT, |
| 4337 | unsigned int, memop_ret); |
| 4338 | extern poly_int64 find_args_size_adjust (rtx_insn *); |
| 4339 | extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64); |
| 4340 | |
| 4341 | /* In expmed.cc */ |
| 4342 | extern void init_expmed (void); |
| 4343 | extern void expand_inc (rtx, rtx); |
| 4344 | extern void expand_dec (rtx, rtx); |
| 4345 | |
| 4346 | /* In lower-subreg.cc */ |
| 4347 | extern void init_lower_subreg (void); |
| 4348 | |
| 4349 | /* In gcse.cc */ |
| 4350 | extern bool can_copy_p (machine_mode); |
| 4351 | extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode); |
| 4352 | extern rtx_insn *prepare_copy_insn (rtx, rtx); |
| 4353 | |
| 4354 | /* In cprop.cc */ |
| 4355 | extern rtx fis_get_condition (rtx_insn *); |
| 4356 | |
| 4357 | /* In ira.cc */ |
| 4358 | extern HARD_REG_SET eliminable_regset; |
| 4359 | extern void mark_elimination (int, int); |
| 4360 | |
| 4361 | /* In reginfo.cc */ |
| 4362 | extern bool reg_classes_intersect_p (reg_class_t, reg_class_t); |
| 4363 | extern bool reg_class_subset_p (reg_class_t, reg_class_t); |
| 4364 | extern void globalize_reg (tree, int); |
| 4365 | extern void init_reg_modes_target (void); |
| 4366 | extern void init_regs (void); |
| 4367 | extern void reinit_regs (void); |
| 4368 | extern void init_fake_stack_mems (void); |
| 4369 | extern void save_register_info (void); |
| 4370 | extern void init_reg_sets (void); |
| 4371 | extern void regclass (rtx, int); |
| 4372 | extern void reg_scan (rtx_insn *, unsigned int); |
| 4373 | extern void fix_register (const char *, int, int); |
| 4374 | extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int); |
| 4375 | |
| 4376 | /* In reload1.cc */ |
| 4377 | extern bool function_invariant_p (const_rtx); |
| 4378 | |
| 4379 | /* In calls.cc */ |
| 4380 | enum libcall_type |
| 4381 | { |
| 4382 | LCT_NORMAL = 0, |
| 4383 | LCT_CONST = 1, |
| 4384 | LCT_PURE = 2, |
| 4385 | LCT_NORETURN = 3, |
| 4386 | LCT_THROW = 4, |
| 4387 | LCT_RETURNS_TWICE = 5 |
| 4388 | }; |
| 4389 | |
| 4390 | extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type, |
| 4391 | machine_mode, int, rtx_mode_t *); |
| 4392 | |
| 4393 | /* Output a library call and discard the returned value. FUN is the |
| 4394 | address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode |
| 4395 | of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal' |
| 4396 | calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or |
| 4397 | another LCT_ value for other types of library calls. |
| 4398 | |
| 4399 | There are different overloads of this function for different numbers |
| 4400 | of arguments. In each case the argument value is followed by its mode. */ |
| 4401 | |
| 4402 | inline void |
| 4403 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode) |
| 4404 | { |
| 4405 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL); |
| 4406 | } |
| 4407 | |
| 4408 | inline void |
| 4409 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
| 4410 | rtx arg1, machine_mode arg1_mode) |
| 4411 | { |
| 4412 | rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) }; |
| 4413 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args); |
| 4414 | } |
| 4415 | |
| 4416 | inline void |
| 4417 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
| 4418 | rtx arg1, machine_mode arg1_mode, |
| 4419 | rtx arg2, machine_mode arg2_mode) |
| 4420 | { |
| 4421 | rtx_mode_t args[] = { |
| 4422 | rtx_mode_t (arg1, arg1_mode), |
| 4423 | rtx_mode_t (arg2, arg2_mode) |
| 4424 | }; |
| 4425 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args); |
| 4426 | } |
| 4427 | |
| 4428 | inline void |
| 4429 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
| 4430 | rtx arg1, machine_mode arg1_mode, |
| 4431 | rtx arg2, machine_mode arg2_mode, |
| 4432 | rtx arg3, machine_mode arg3_mode) |
| 4433 | { |
| 4434 | rtx_mode_t args[] = { |
| 4435 | rtx_mode_t (arg1, arg1_mode), |
| 4436 | rtx_mode_t (arg2, arg2_mode), |
| 4437 | rtx_mode_t (arg3, arg3_mode) |
| 4438 | }; |
| 4439 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args); |
| 4440 | } |
| 4441 | |
| 4442 | inline void |
| 4443 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
| 4444 | rtx arg1, machine_mode arg1_mode, |
| 4445 | rtx arg2, machine_mode arg2_mode, |
| 4446 | rtx arg3, machine_mode arg3_mode, |
| 4447 | rtx arg4, machine_mode arg4_mode) |
| 4448 | { |
| 4449 | rtx_mode_t args[] = { |
| 4450 | rtx_mode_t (arg1, arg1_mode), |
| 4451 | rtx_mode_t (arg2, arg2_mode), |
| 4452 | rtx_mode_t (arg3, arg3_mode), |
| 4453 | rtx_mode_t (arg4, arg4_mode) |
| 4454 | }; |
| 4455 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args); |
| 4456 | } |
| 4457 | |
| 4458 | /* Like emit_library_call, but return the value produced by the call. |
| 4459 | Use VALUE to store the result if it is nonnull, otherwise pick a |
| 4460 | convenient location. */ |
| 4461 | |
| 4462 | inline rtx |
| 4463 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
| 4464 | machine_mode outmode) |
| 4465 | { |
| 4466 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL); |
| 4467 | } |
| 4468 | |
| 4469 | inline rtx |
| 4470 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
| 4471 | machine_mode outmode, |
| 4472 | rtx arg1, machine_mode arg1_mode) |
| 4473 | { |
| 4474 | rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) }; |
| 4475 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args); |
| 4476 | } |
| 4477 | |
| 4478 | inline rtx |
| 4479 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
| 4480 | machine_mode outmode, |
| 4481 | rtx arg1, machine_mode arg1_mode, |
| 4482 | rtx arg2, machine_mode arg2_mode) |
| 4483 | { |
| 4484 | rtx_mode_t args[] = { |
| 4485 | rtx_mode_t (arg1, arg1_mode), |
| 4486 | rtx_mode_t (arg2, arg2_mode) |
| 4487 | }; |
| 4488 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args); |
| 4489 | } |
| 4490 | |
| 4491 | inline rtx |
| 4492 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
| 4493 | machine_mode outmode, |
| 4494 | rtx arg1, machine_mode arg1_mode, |
| 4495 | rtx arg2, machine_mode arg2_mode, |
| 4496 | rtx arg3, machine_mode arg3_mode) |
| 4497 | { |
| 4498 | rtx_mode_t args[] = { |
| 4499 | rtx_mode_t (arg1, arg1_mode), |
| 4500 | rtx_mode_t (arg2, arg2_mode), |
| 4501 | rtx_mode_t (arg3, arg3_mode) |
| 4502 | }; |
| 4503 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args); |
| 4504 | } |
| 4505 | |
| 4506 | inline rtx |
| 4507 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
| 4508 | machine_mode outmode, |
| 4509 | rtx arg1, machine_mode arg1_mode, |
| 4510 | rtx arg2, machine_mode arg2_mode, |
| 4511 | rtx arg3, machine_mode arg3_mode, |
| 4512 | rtx arg4, machine_mode arg4_mode) |
| 4513 | { |
| 4514 | rtx_mode_t args[] = { |
| 4515 | rtx_mode_t (arg1, arg1_mode), |
| 4516 | rtx_mode_t (arg2, arg2_mode), |
| 4517 | rtx_mode_t (arg3, arg3_mode), |
| 4518 | rtx_mode_t (arg4, arg4_mode) |
| 4519 | }; |
| 4520 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args); |
| 4521 | } |
| 4522 | |
| 4523 | /* In varasm.cc */ |
| 4524 | extern void init_varasm_once (void); |
| 4525 | |
| 4526 | extern rtx make_debug_expr_from_rtl (const_rtx); |
| 4527 | |
| 4528 | /* In read-rtl.cc */ |
| 4529 | #ifdef GENERATOR_FILE |
| 4530 | extern bool read_rtx (const char *, vec<rtx> *); |
| 4531 | #endif |
| 4532 | |
| 4533 | /* In alias.cc */ |
| 4534 | extern rtx canon_rtx (rtx); |
| 4535 | extern rtx get_addr (rtx); |
| 4536 | extern bool read_dependence (const_rtx, const_rtx); |
| 4537 | extern bool true_dependence (const_rtx, machine_mode, const_rtx); |
| 4538 | extern bool canon_true_dependence (const_rtx, machine_mode, rtx, |
| 4539 | const_rtx, rtx); |
| 4540 | extern bool anti_dependence (const_rtx, const_rtx); |
| 4541 | extern bool canon_anti_dependence (const_rtx, bool, |
| 4542 | const_rtx, machine_mode, rtx); |
| 4543 | extern bool output_dependence (const_rtx, const_rtx); |
| 4544 | extern bool canon_output_dependence (const_rtx, bool, |
| 4545 | const_rtx, machine_mode, rtx); |
| 4546 | extern bool may_alias_p (const_rtx, const_rtx); |
| 4547 | extern void init_alias_target (void); |
| 4548 | extern void init_alias_analysis (void); |
| 4549 | extern void end_alias_analysis (void); |
| 4550 | extern void vt_equate_reg_base_value (const_rtx, const_rtx); |
| 4551 | extern bool memory_modified_in_insn_p (const_rtx, const_rtx); |
| 4552 | extern bool may_be_sp_based_p (rtx); |
| 4553 | extern rtx gen_hard_reg_clobber (machine_mode, unsigned int); |
| 4554 | extern rtx get_reg_known_value (unsigned int); |
| 4555 | extern bool get_reg_known_equiv_p (unsigned int); |
| 4556 | extern rtx get_reg_base_value (unsigned int); |
| 4557 | extern rtx extract_mem_from_operand (rtx); |
| 4558 | |
| 4559 | #ifdef STACK_REGS |
| 4560 | extern bool stack_regs_mentioned (const_rtx insn); |
| 4561 | #endif |
| 4562 | |
| 4563 | /* In toplev.cc */ |
| 4564 | extern GTY(()) rtx stack_limit_rtx; |
| 4565 | |
| 4566 | /* In var-tracking.cc */ |
| 4567 | extern unsigned int variable_tracking_main (void); |
| 4568 | extern void delete_vta_debug_insns (bool); |
| 4569 | |
| 4570 | /* In stor-layout.cc. */ |
| 4571 | extern void get_mode_bounds (scalar_int_mode, int, |
| 4572 | scalar_int_mode, rtx *, rtx *); |
| 4573 | |
| 4574 | /* In loop-iv.cc */ |
| 4575 | extern rtx canon_condition (rtx); |
| 4576 | extern void simplify_using_condition (rtx, rtx *, bitmap); |
| 4577 | |
| 4578 | /* In final.cc */ |
| 4579 | extern void compute_alignments (void); |
| 4580 | extern void update_alignments (vec<rtx> &); |
| 4581 | extern int asm_str_count (const char *templ); |
| 4582 | extern rtx get_call_rtx_from (const rtx_insn *); |
| 4583 | |
| 4584 | struct rtl_hooks |
| 4585 | { |
| 4586 | rtx (*gen_lowpart) (machine_mode, rtx); |
| 4587 | rtx (*gen_lowpart_no_emit) (machine_mode, rtx); |
| 4588 | rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode, |
| 4589 | unsigned HOST_WIDE_INT *); |
| 4590 | rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode, |
| 4591 | unsigned int *); |
| 4592 | bool (*reg_truncated_to_mode) (machine_mode, const_rtx); |
| 4593 | |
| 4594 | /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */ |
| 4595 | }; |
| 4596 | |
| 4597 | /* Each pass can provide its own. */ |
| 4598 | extern struct rtl_hooks rtl_hooks; |
| 4599 | |
| 4600 | /* ... but then it has to restore these. */ |
| 4601 | extern const struct rtl_hooks general_rtl_hooks; |
| 4602 | |
| 4603 | /* Keep this for the nonce. */ |
| 4604 | #define gen_lowpart rtl_hooks.gen_lowpart |
| 4605 | |
| 4606 | extern void insn_locations_init (void); |
| 4607 | extern void insn_locations_finalize (void); |
| 4608 | extern void set_curr_insn_location (location_t); |
| 4609 | extern location_t curr_insn_location (void); |
| 4610 | extern void set_insn_locations (rtx_insn *, location_t); |
| 4611 | |
| 4612 | /* rtl-error.cc */ |
| 4613 | extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *) |
| 4614 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 4615 | extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *) |
| 4616 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
| 4617 | |
| 4618 | #define fatal_insn(msgid, insn) \ |
| 4619 | _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__) |
| 4620 | #define fatal_insn_not_found(insn) \ |
| 4621 | _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__) |
| 4622 | |
| 4623 | /* reginfo.cc */ |
| 4624 | extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER]; |
| 4625 | |
| 4626 | /* Information about the function that is propagated by the RTL backend. |
| 4627 | Available only for functions that has been already assembled. */ |
| 4628 | |
| 4629 | struct GTY(()) cgraph_rtl_info { |
| 4630 | unsigned int preferred_incoming_stack_boundary; |
| 4631 | |
| 4632 | /* Which registers the function clobbers, either directly or by |
| 4633 | calling another function. */ |
| 4634 | HARD_REG_SET function_used_regs; |
| 4635 | }; |
| 4636 | |
| 4637 | /* If loads from memories of mode MODE always sign or zero extend, |
| 4638 | return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN |
| 4639 | otherwise. */ |
| 4640 | |
| 4641 | inline rtx_code |
| 4642 | load_extend_op (machine_mode mode) |
| 4643 | { |
| 4644 | scalar_int_mode int_mode; |
| 4645 | if (is_a <scalar_int_mode> (m: mode, result: &int_mode) |
| 4646 | && GET_MODE_PRECISION (mode: int_mode) < BITS_PER_WORD) |
| 4647 | return LOAD_EXTEND_OP (int_mode); |
| 4648 | return UNKNOWN; |
| 4649 | } |
| 4650 | |
| 4651 | /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET |
| 4652 | and return the base. Return X otherwise. */ |
| 4653 | |
| 4654 | inline rtx |
| 4655 | strip_offset_and_add (rtx x, poly_int64 *offset) |
| 4656 | { |
| 4657 | if (GET_CODE (x) == PLUS) |
| 4658 | { |
| 4659 | poly_int64 suboffset; |
| 4660 | x = strip_offset (x, &suboffset); |
| 4661 | *offset = poly_uint64 (*offset) + suboffset; |
| 4662 | } |
| 4663 | return x; |
| 4664 | } |
| 4665 | |
| 4666 | /* Return true if X is an operation that always operates on the full |
| 4667 | registers for WORD_REGISTER_OPERATIONS architectures. */ |
| 4668 | |
| 4669 | inline bool |
| 4670 | word_register_operation_p (const_rtx x) |
| 4671 | { |
| 4672 | switch (GET_CODE (x)) |
| 4673 | { |
| 4674 | case CONST_INT: |
| 4675 | case ROTATE: |
| 4676 | case ROTATERT: |
| 4677 | case SIGN_EXTRACT: |
| 4678 | case ZERO_EXTRACT: |
| 4679 | return false; |
| 4680 | |
| 4681 | default: |
| 4682 | return true; |
| 4683 | } |
| 4684 | } |
| 4685 | |
| 4686 | /* Holds an rtx comparison to simplify passing many parameters pertaining to a |
| 4687 | single comparison. */ |
| 4688 | |
| 4689 | struct rtx_comparison { |
| 4690 | rtx_code code; |
| 4691 | rtx op0, op1; |
| 4692 | machine_mode mode; |
| 4693 | }; |
| 4694 | |
| 4695 | /* gtype-desc.cc. */ |
| 4696 | extern void gt_ggc_mx (rtx &); |
| 4697 | extern void gt_pch_nx (rtx &); |
| 4698 | extern void gt_pch_nx (rtx &, gt_pointer_operator, void *); |
| 4699 | |
| 4700 | #endif /* ! GCC_RTL_H */ |
| 4701 | |