1/* Register Transfer Language (RTL) definitions for GCC
2 Copyright (C) 1987-2025 Free Software Foundation, Inc.
3
4This file is part of GCC.
5
6GCC is free software; you can redistribute it and/or modify it under
7the terms of the GNU General Public License as published by the Free
8Software Foundation; either version 3, or (at your option) any later
9version.
10
11GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12WARRANTY; without even the implied warranty of MERCHANTABILITY or
13FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14for more details.
15
16You should have received a copy of the GNU General Public License
17along with GCC; see the file COPYING3. If not see
18<http://www.gnu.org/licenses/>. */
19
20#ifndef GCC_RTL_H
21#define GCC_RTL_H
22
23/* This file is occasionally included by generator files which expect
24 machmode.h and other files to exist and would not normally have been
25 included by coretypes.h. */
26#ifdef GENERATOR_FILE
27#include "real.h"
28#include "fixed-value.h"
29#include "statistics.h"
30#include "vec.h"
31#include "hash-table.h"
32#include "hash-set.h"
33#include "input.h"
34#include "is-a.h"
35#endif /* GENERATOR_FILE */
36
37#include "hard-reg-set.h"
38
39class predefined_function_abi;
40
41/* Value used by some passes to "recognize" noop moves as valid
42 instructions. */
43#define NOOP_MOVE_INSN_CODE INT_MAX
44
45/* Register Transfer Language EXPRESSIONS CODES */
46
47#define RTX_CODE enum rtx_code
48enum rtx_code : unsigned {
49
50#define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM ,
51#include "rtl.def" /* rtl expressions are documented here */
52#undef DEF_RTL_EXPR
53
54 LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for
55 NUM_RTX_CODE.
56 Assumes default enum value assignment. */
57
58/* The cast here, saves many elsewhere. */
59#define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE)
60
61/* Similar, but since generator files get more entries... */
62#ifdef GENERATOR_FILE
63# define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND)
64#endif
65
66#define RTX_CODE_BITSIZE 8
67
68/* Register Transfer Language EXPRESSIONS CODE CLASSES */
69
70enum rtx_class {
71 /* We check bit 0-1 of some rtx class codes in the predicates below. */
72
73 /* Bit 0 = comparison if 0, arithmetic is 1
74 Bit 1 = 1 if commutative. */
75 RTX_COMPARE, /* 0 */
76 RTX_COMM_COMPARE,
77 RTX_BIN_ARITH,
78 RTX_COMM_ARITH,
79
80 /* Must follow the four preceding values. */
81 RTX_UNARY, /* 4 */
82
83 RTX_EXTRA,
84 RTX_MATCH,
85 RTX_INSN,
86
87 /* Bit 0 = 1 if constant. */
88 RTX_OBJ, /* 8 */
89 RTX_CONST_OBJ,
90
91 RTX_TERNARY,
92 RTX_BITFIELD_OPS,
93 RTX_AUTOINC
94};
95
96#define RTX_OBJ_MASK (~1)
97#define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK)
98#define RTX_COMPARE_MASK (~1)
99#define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK)
100#define RTX_ARITHMETIC_MASK (~1)
101#define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK)
102#define RTX_BINARY_MASK (~3)
103#define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK)
104#define RTX_COMMUTATIVE_MASK (~2)
105#define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK)
106#define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK)
107
108extern const unsigned char rtx_length[NUM_RTX_CODE];
109#define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)])
110
111extern const char * const rtx_name[NUM_RTX_CODE];
112#define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)])
113
114extern const char * const rtx_format[NUM_RTX_CODE];
115#define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)])
116
117extern const enum rtx_class rtx_class[NUM_RTX_CODE];
118#define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)])
119
120/* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN
121 and NEXT_INSN fields). */
122#define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE)
123
124extern const unsigned char rtx_code_size[NUM_RTX_CODE];
125extern const unsigned char rtx_next[NUM_RTX_CODE];
126
127/* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label
128 relative to which the offsets are calculated, as explained in rtl.def. */
129struct addr_diff_vec_flags
130{
131 /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */
132 unsigned min_align: 8;
133 /* Flags: */
134 unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */
135 unsigned min_after_vec: 1; /* minimum address target label is
136 after the ADDR_DIFF_VEC. */
137 unsigned max_after_vec: 1; /* maximum address target label is
138 after the ADDR_DIFF_VEC. */
139 unsigned min_after_base: 1; /* minimum address target label is
140 after BASE. */
141 unsigned max_after_base: 1; /* maximum address target label is
142 after BASE. */
143 /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */
144 unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */
145 unsigned : 2;
146 unsigned scale : 8;
147};
148
149/* Structure used to describe the attributes of a MEM. These are hashed
150 so MEMs that the same attributes share a data structure. This means
151 they cannot be modified in place. */
152class GTY(()) mem_attrs
153{
154public:
155 mem_attrs ();
156
157 /* The expression that the MEM accesses, or null if not known.
158 This expression might be larger than the memory reference itself.
159 (In other words, the MEM might access only part of the object.) */
160 tree expr;
161
162 /* The offset of the memory reference from the start of EXPR.
163 Only valid if OFFSET_KNOWN_P. */
164 poly_int64 offset;
165
166 /* The size of the memory reference in bytes. Only valid if
167 SIZE_KNOWN_P. */
168 poly_int64 size;
169
170 /* The alias set of the memory reference. */
171 alias_set_type alias;
172
173 /* The alignment of the reference in bits. Always a multiple of
174 BITS_PER_UNIT. Note that EXPR may have a stricter alignment
175 than the memory reference itself. */
176 unsigned int align;
177
178 /* The address space that the memory reference uses. */
179 unsigned char addrspace;
180
181 /* True if OFFSET is known. */
182 bool offset_known_p;
183
184 /* True if SIZE is known. */
185 bool size_known_p;
186};
187
188/* Structure used to describe the attributes of a REG in similar way as
189 mem_attrs does for MEM above. Note that the OFFSET field is calculated
190 in the same way as for mem_attrs, rather than in the same way as a
191 SUBREG_BYTE. For example, if a big-endian target stores a byte
192 object in the low part of a 4-byte register, the OFFSET field
193 will be -3 rather than 0. */
194
195class GTY((for_user)) reg_attrs {
196public:
197 tree decl; /* decl corresponding to REG. */
198 poly_int64 offset; /* Offset from start of DECL. */
199};
200
201/* Common union for an element of an rtx. */
202
203union rtunion
204{
205 int rt_int;
206 unsigned int rt_uint;
207 location_t rt_loc;
208 poly_uint16 rt_subreg;
209 const char *rt_str;
210 rtx rt_rtx;
211 rtvec rt_rtvec;
212 machine_mode rt_type;
213 addr_diff_vec_flags rt_addr_diff_vec_flags;
214 struct cselib_val *rt_cselib;
215 tree rt_tree;
216 basic_block rt_bb;
217 mem_attrs *rt_mem;
218 class constant_descriptor_rtx *rt_constant;
219 struct dw_cfi_node *rt_cfi;
220};
221
222/* Describes the properties of a REG. */
223struct GTY(()) reg_info {
224 /* The value of REGNO. */
225 unsigned int regno;
226
227 /* The value of REG_NREGS. */
228 unsigned int nregs : 8;
229 unsigned int unused : 24;
230
231 /* The value of REG_ATTRS. */
232 reg_attrs *attrs;
233};
234
235/* This structure remembers the position of a SYMBOL_REF within an
236 object_block structure. A SYMBOL_REF only provides this information
237 if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */
238struct GTY(()) block_symbol {
239 /* The usual SYMBOL_REF fields. */
240 rtunion GTY ((skip)) fld[2];
241
242 /* The block that contains this object. */
243 struct object_block *block;
244
245 /* The offset of this object from the start of its block. It is negative
246 if the symbol has not yet been assigned an offset. */
247 HOST_WIDE_INT offset;
248};
249
250/* Describes a group of objects that are to be placed together in such
251 a way that their relative positions are known. */
252struct GTY((for_user)) object_block {
253 /* The section in which these objects should be placed. */
254 section *sect;
255
256 /* The alignment of the first object, measured in bits. */
257 unsigned int alignment;
258
259 /* The total size of the objects, measured in bytes. */
260 HOST_WIDE_INT size;
261
262 /* The SYMBOL_REFs for each object. The vector is sorted in
263 order of increasing offset and the following conditions will
264 hold for each element X:
265
266 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
267 !SYMBOL_REF_ANCHOR_P (X)
268 SYMBOL_REF_BLOCK (X) == [address of this structure]
269 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
270 vec<rtx, va_gc> *objects;
271
272 /* All the anchor SYMBOL_REFs used to address these objects, sorted
273 in order of increasing offset, and then increasing TLS model.
274 The following conditions will hold for each element X in this vector:
275
276 SYMBOL_REF_HAS_BLOCK_INFO_P (X)
277 SYMBOL_REF_ANCHOR_P (X)
278 SYMBOL_REF_BLOCK (X) == [address of this structure]
279 SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */
280 vec<rtx, va_gc> *anchors;
281};
282
283struct GTY((variable_size)) hwivec_def {
284 HOST_WIDE_INT elem[1];
285};
286
287/* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */
288#define CWI_GET_NUM_ELEM(RTX) \
289 ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem)
290#define CWI_PUT_NUM_ELEM(RTX, NUM) \
291 (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM))
292
293struct GTY((variable_size)) const_poly_int_def {
294 trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs;
295};
296
297/* RTL expression ("rtx"). */
298
299/* The GTY "desc" and "tag" options below are a kludge: we need a desc
300 field for gengtype to recognize that inheritance is occurring,
301 so that all subclasses are redirected to the traversal hook for the
302 base class.
303 However, all of the fields are in the base class, and special-casing
304 is at work. Hence we use desc and tag of 0, generating a switch
305 statement of the form:
306 switch (0)
307 {
308 case 0: // all the work happens here
309 }
310 in order to work with the existing special-casing in gengtype. */
311
312struct GTY((desc("0"), tag("0"),
313 chain_next ("RTX_NEXT (&%h)"),
314 chain_prev ("RTX_PREV (&%h)"))) rtx_def {
315 /* The kind of value the expression has. */
316 ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE;
317
318 /* The kind of expression this is. */
319 ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE;
320
321 /* 1 in a MEM if we should keep the alias set for this mem unchanged
322 when we access a component.
323 1 in a JUMP_INSN if it is a crossing jump.
324 1 in a CALL_INSN if it is a sibling call.
325 1 in a SET that is for a return.
326 In a CODE_LABEL, part of the two-bit alternate entry field.
327 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc.
328 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc.
329 1 in a SUBREG generated by LRA for reload insns.
330 1 in a REG if this is a static chain register.
331 Dumped as "/j" in RTL dumps. */
332 unsigned int jump : 1;
333 /* In a CODE_LABEL, part of the two-bit alternate entry field.
334 1 in a MEM if it cannot trap.
335 1 in a CALL_INSN logically equivalent to
336 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P.
337 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc.
338 Dumped as "/c" in RTL dumps. */
339 unsigned int call : 1;
340 /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere.
341 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
342 1 in a SYMBOL_REF if it addresses something in the per-function
343 constants pool.
344 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY.
345 1 in a NOTE, or EXPR_LIST for a const call.
346 1 in a JUMP_INSN of an annulling branch.
347 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc.
348 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc.
349 1 in a clobber temporarily created for LRA.
350 Dumped as "/u" in RTL dumps. */
351 unsigned int unchanging : 1;
352 /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile.
353 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE
354 if it has been deleted.
355 1 in a REG expression if corresponds to a variable declared by the user,
356 0 for an internally generated temporary.
357 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P.
358 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a
359 non-local label.
360 In a SYMBOL_REF, this flag is used for machine-specific purposes.
361 In a PREFETCH, this flag indicates that it should be considered a
362 scheduling barrier.
363 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc.
364 Dumped as "/v" in RTL dumps. */
365 unsigned int volatil : 1;
366 /* 1 in a REG if the register is used only in exit code a loop.
367 1 in a SUBREG expression if was generated from a variable with a
368 promoted mode.
369 1 in a CODE_LABEL if the label is used for nonlocal gotos
370 and must not be deleted even if its count is zero.
371 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled
372 together with the preceding insn. Valid only within sched.
373 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and
374 from the target of a branch. Valid from reorg until end of compilation;
375 cleared before used.
376
377 The name of the field is historical. It used to be used in MEMs
378 to record whether the MEM accessed part of a structure.
379 Dumped as "/s" in RTL dumps. */
380 unsigned int in_struct : 1;
381 /* At the end of RTL generation, 1 if this rtx is used. This is used for
382 copying shared structure. See `unshare_all_rtl'.
383 In a REG, this is not needed for that purpose, and used instead
384 in `leaf_renumber_regs_insn'.
385 1 in a SYMBOL_REF, means that emit_library_call
386 has used it as the function.
387 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc.
388 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */
389 unsigned int used : 1;
390 /* 1 in an INSN or a SET if this rtx is related to the call frame,
391 either changing how we compute the frame address or saving and
392 restoring registers in the prologue and epilogue.
393 1 in a REG or MEM if it is a pointer.
394 1 in a SYMBOL_REF if it addresses something in the per-function
395 constant string pool.
396 1 in a VALUE is VALUE_CHANGED in var-tracking.cc.
397 Dumped as "/f" in RTL dumps. */
398 unsigned frame_related : 1;
399 /* 1 in a REG or PARALLEL that is the current function's return value.
400 1 in a SYMBOL_REF for a weak symbol.
401 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P.
402 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc.
403 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc.
404 Dumped as "/i" in RTL dumps. */
405 unsigned return_val : 1;
406
407 union {
408 /* The final union field is aligned to 64 bits on LP64 hosts,
409 giving a 32-bit gap after the fields above. We optimize the
410 layout for that case and use the gap for extra code-specific
411 information. */
412
413 /* The ORIGINAL_REGNO of a REG. */
414 unsigned int original_regno;
415
416 /* The INSN_UID of an RTX_INSN-class code. */
417 int insn_uid;
418
419 /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */
420 unsigned int symbol_ref_flags;
421
422 /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */
423 enum var_init_status var_location_status;
424
425 /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of
426 HOST_WIDE_INTs in the hwivec_def. */
427 unsigned int num_elem;
428
429 /* Information about a CONST_VECTOR. */
430 struct
431 {
432 /* The value of CONST_VECTOR_NPATTERNS. */
433 unsigned int npatterns : 16;
434
435 /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */
436 unsigned int nelts_per_pattern : 8;
437
438 /* For future expansion. */
439 unsigned int unused : 8;
440 } const_vector;
441 } GTY ((skip)) u2;
442
443 /* The first element of the operands of this rtx.
444 The number of operands and their types are controlled
445 by the `code' field, according to rtl.def. */
446 union u {
447 rtunion fld[1];
448 HOST_WIDE_INT hwint[1];
449 struct reg_info reg;
450 struct block_symbol block_sym;
451 struct real_value rv;
452 struct fixed_value fv;
453 struct hwivec_def hwiv;
454 struct const_poly_int_def cpi;
455 } GTY ((special ("rtx_def"), desc ("GET_CODE (&%0)"))) u;
456};
457
458/* A node for constructing singly-linked lists of rtx. */
459
460struct GTY(()) rtx_expr_list : public rtx_def
461{
462private:
463 /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */
464
465public:
466 /* Get next in list. */
467 rtx_expr_list *next () const;
468
469 /* Get at the underlying rtx. */
470 rtx element () const;
471};
472
473template <>
474template <>
475inline bool
476is_a_helper <rtx_expr_list *>::test (rtx rt)
477{
478 return rt->code == EXPR_LIST;
479}
480
481struct GTY(()) rtx_insn_list : public rtx_def
482{
483private:
484 /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST).
485
486 This is an instance of:
487
488 DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA)
489
490 i.e. a node for constructing singly-linked lists of rtx_insn *, where
491 the list is "external" to the insn (as opposed to the doubly-linked
492 list embedded within rtx_insn itself). */
493
494public:
495 /* Get next in list. */
496 rtx_insn_list *next () const;
497
498 /* Get at the underlying instruction. */
499 rtx_insn *insn () const;
500
501};
502
503template <>
504template <>
505inline bool
506is_a_helper <rtx_insn_list *>::test (rtx rt)
507{
508 return rt->code == INSN_LIST;
509}
510
511/* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx,
512 typically (but not always) of rtx_insn *, used in the late passes. */
513
514struct GTY(()) rtx_sequence : public rtx_def
515{
516private:
517 /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */
518
519public:
520 /* Get number of elements in sequence. */
521 int len () const;
522
523 /* Get i-th element of the sequence. */
524 rtx element (int index) const;
525
526 /* Get i-th element of the sequence, with a checked cast to
527 rtx_insn *. */
528 rtx_insn *insn (int index) const;
529};
530
531template <>
532template <>
533inline bool
534is_a_helper <rtx_sequence *>::test (rtx rt)
535{
536 return rt->code == SEQUENCE;
537}
538
539template <>
540template <>
541inline bool
542is_a_helper <const rtx_sequence *>::test (const_rtx rt)
543{
544 return rt->code == SEQUENCE;
545}
546
547struct GTY(()) rtx_insn : public rtx_def
548{
549public:
550 /* No extra fields, but adds the invariant:
551
552 (INSN_P (X)
553 || NOTE_P (X)
554 || JUMP_TABLE_DATA_P (X)
555 || BARRIER_P (X)
556 || LABEL_P (X))
557
558 i.e. that we must be able to use the following:
559 INSN_UID ()
560 NEXT_INSN ()
561 PREV_INSN ()
562 i.e. we have an rtx that has an INSN_UID field and can be part of
563 a linked list of insns.
564 */
565
566 /* Returns true if this insn has been deleted. */
567
568 bool deleted () const { return volatil; }
569
570 /* Mark this insn as deleted. */
571
572 void set_deleted () { volatil = true; }
573
574 /* Mark this insn as not deleted. */
575
576 void set_undeleted () { volatil = false; }
577};
578
579/* Subclasses of rtx_insn. */
580
581struct GTY(()) rtx_debug_insn : public rtx_insn
582{
583 /* No extra fields, but adds the invariant:
584 DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN)
585 i.e. an annotation for tracking variable assignments.
586
587 This is an instance of:
588 DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeLie", RTX_INSN)
589 from rtl.def. */
590};
591
592struct GTY(()) rtx_nonjump_insn : public rtx_insn
593{
594 /* No extra fields, but adds the invariant:
595 NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN)
596 i.e an instruction that cannot jump.
597
598 This is an instance of:
599 DEF_RTL_EXPR(INSN, "insn", "uuBeLie", RTX_INSN)
600 from rtl.def. */
601};
602
603struct GTY(()) rtx_jump_insn : public rtx_insn
604{
605public:
606 /* No extra fields, but adds the invariant:
607 JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN)
608 i.e. an instruction that can possibly jump.
609
610 This is an instance of:
611 DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeLie0", RTX_INSN)
612 from rtl.def. */
613
614 /* Returns jump target of this instruction. The returned value is not
615 necessarily a code label: it may also be a RETURN or SIMPLE_RETURN
616 expression. Also, when the code label is marked "deleted", it is
617 replaced by a NOTE. In some cases the value is NULL_RTX. */
618
619 inline rtx jump_label () const;
620
621 /* Returns jump target cast to rtx_code_label *. */
622
623 inline rtx_code_label *jump_target () const;
624
625 /* Set jump target. */
626
627 inline void set_jump_target (rtx_code_label *);
628};
629
630struct GTY(()) rtx_call_insn : public rtx_insn
631{
632 /* No extra fields, but adds the invariant:
633 CALL_P (X) aka (GET_CODE (X) == CALL_INSN)
634 i.e. an instruction that can possibly call a subroutine
635 but which will not change which instruction comes next
636 in the current function.
637
638 This is an instance of:
639 DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeLiee", RTX_INSN)
640 from rtl.def. */
641};
642
643struct GTY(()) rtx_jump_table_data : public rtx_insn
644{
645 /* No extra fields, but adds the invariant:
646 JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA)
647 i.e. a data for a jump table, considered an instruction for
648 historical reasons.
649
650 This is an instance of:
651 DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN)
652 from rtl.def. */
653
654 /* This can be either:
655
656 (a) a table of absolute jumps, in which case PATTERN (this) is an
657 ADDR_VEC with arg 0 a vector of labels, or
658
659 (b) a table of relative jumps (e.g. for -fPIC), in which case
660 PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and
661 arg 1 the vector of labels.
662
663 This method gets the underlying vec. */
664
665 inline rtvec get_labels () const;
666 inline scalar_int_mode get_data_mode () const;
667};
668
669struct GTY(()) rtx_barrier : public rtx_insn
670{
671 /* No extra fields, but adds the invariant:
672 BARRIER_P (X) aka (GET_CODE (X) == BARRIER)
673 i.e. a marker that indicates that control will not flow through.
674
675 This is an instance of:
676 DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA)
677 from rtl.def. */
678};
679
680struct GTY(()) rtx_code_label : public rtx_insn
681{
682 /* No extra fields, but adds the invariant:
683 LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL)
684 i.e. a label in the assembler.
685
686 This is an instance of:
687 DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA)
688 from rtl.def. */
689};
690
691struct GTY(()) rtx_note : public rtx_insn
692{
693 /* No extra fields, but adds the invariant:
694 NOTE_P(X) aka (GET_CODE (X) == NOTE)
695 i.e. a note about the corresponding source code.
696
697 This is an instance of:
698 DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA)
699 from rtl.def. */
700};
701
702/* The size in bytes of an rtx header (code, mode and flags). */
703#define RTX_HDR_SIZE offsetof (struct rtx_def, u)
704
705/* The size in bytes of an rtx with code CODE. */
706#define RTX_CODE_SIZE(CODE) rtx_code_size[CODE]
707
708#define NULL_RTX (rtx) 0
709
710/* The "next" and "previous" RTX, relative to this one. */
711
712#define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \
713 : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)]))
714
715/* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed.
716 */
717#define RTX_PREV(X) ((INSN_P (X) \
718 || NOTE_P (X) \
719 || JUMP_TABLE_DATA_P (X) \
720 || BARRIER_P (X) \
721 || LABEL_P (X)) \
722 && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \
723 && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \
724 ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL)
725
726/* Define macros to access the `code' field of the rtx. */
727
728#define GET_CODE(RTX) ((enum rtx_code) (RTX)->code)
729#define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE))
730
731#define GET_MODE(RTX) ((machine_mode) (RTX)->mode)
732#define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE))
733
734/* RTL vector. These appear inside RTX's when there is a need
735 for a variable number of things. The principle use is inside
736 PARALLEL expressions. */
737
738struct GTY(()) rtvec_def {
739 int num_elem; /* number of elements */
740 rtx GTY ((length ("%h.num_elem"))) elem[1];
741};
742
743#define NULL_RTVEC (rtvec) 0
744
745#define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem)
746#define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM))
747
748/* Predicate yielding nonzero iff X is an rtx for a register. */
749#define REG_P(X) (GET_CODE (X) == REG)
750
751/* Predicate yielding nonzero iff X is an rtx for a memory location. */
752#define MEM_P(X) (GET_CODE (X) == MEM)
753
754#if TARGET_SUPPORTS_WIDE_INT
755
756/* Match CONST_*s that can represent compile-time constant integers. */
757#define CASE_CONST_SCALAR_INT \
758 case CONST_INT: \
759 case CONST_WIDE_INT
760
761/* Match CONST_*s for which pointer equality corresponds to value
762 equality. */
763#define CASE_CONST_UNIQUE \
764 case CONST_INT: \
765 case CONST_WIDE_INT: \
766 case CONST_POLY_INT: \
767 case CONST_DOUBLE: \
768 case CONST_FIXED
769
770/* Match all CONST_* rtxes. */
771#define CASE_CONST_ANY \
772 case CONST_INT: \
773 case CONST_WIDE_INT: \
774 case CONST_POLY_INT: \
775 case CONST_DOUBLE: \
776 case CONST_FIXED: \
777 case CONST_VECTOR
778
779#else
780
781/* Match CONST_*s that can represent compile-time constant integers. */
782#define CASE_CONST_SCALAR_INT \
783 case CONST_INT: \
784 case CONST_DOUBLE
785
786/* Match CONST_*s for which pointer equality corresponds to value
787 equality. */
788#define CASE_CONST_UNIQUE \
789 case CONST_INT: \
790 case CONST_DOUBLE: \
791 case CONST_FIXED
792
793/* Match all CONST_* rtxes. */
794#define CASE_CONST_ANY \
795 case CONST_INT: \
796 case CONST_DOUBLE: \
797 case CONST_FIXED: \
798 case CONST_VECTOR
799#endif
800
801/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
802#define CONST_INT_P(X) (GET_CODE (X) == CONST_INT)
803
804/* Predicate yielding nonzero iff X is an rtx for a constant integer. */
805#define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT)
806
807/* Predicate yielding nonzero iff X is an rtx for a polynomial constant
808 integer. */
809#define CONST_POLY_INT_P(X) \
810 (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT)
811
812/* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */
813#define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED)
814
815/* Predicate yielding true iff X is an rtx for a double-int
816 or floating point constant. */
817#define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE)
818
819/* Predicate yielding true iff X is an rtx for a double-int. */
820#define CONST_DOUBLE_AS_INT_P(X) \
821 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode)
822
823/* Predicate yielding true iff X is an rtx for a integer const. */
824#if TARGET_SUPPORTS_WIDE_INT
825#define CONST_SCALAR_INT_P(X) \
826 (CONST_INT_P (X) || CONST_WIDE_INT_P (X))
827#else
828#define CONST_SCALAR_INT_P(X) \
829 (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X))
830#endif
831
832/* Predicate yielding true iff X is an rtx for a double-int. */
833#define CONST_DOUBLE_AS_FLOAT_P(X) \
834 (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode)
835
836/* Predicate yielding nonzero iff X is an rtx for a constant vector. */
837#define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR)
838
839/* Predicate yielding nonzero iff X is a label insn. */
840#define LABEL_P(X) (GET_CODE (X) == CODE_LABEL)
841
842/* Predicate yielding nonzero iff X is a jump insn. */
843#define JUMP_P(X) (GET_CODE (X) == JUMP_INSN)
844
845/* Predicate yielding nonzero iff X is a call insn. */
846#define CALL_P(X) (GET_CODE (X) == CALL_INSN)
847
848/* 1 if RTX is a call_insn for a fake call.
849 CALL_INSN use "used" flag to indicate it's a fake call. */
850#define FAKE_CALL_P(RTX) \
851 (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used)
852
853/* Predicate yielding nonzero iff X is an insn that cannot jump. */
854#define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN)
855
856/* Predicate yielding nonzero iff X is a debug note/insn. */
857#define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN)
858
859/* Predicate yielding nonzero iff X is an insn that is not a debug insn. */
860#define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X))
861
862/* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */
863#define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p
864/* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */
865#define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments
866/* Nonzero if DEBUG_INSN_P may possibly hold. */
867#define MAY_HAVE_DEBUG_INSNS \
868 (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS)
869
870/* Predicate yielding nonzero iff X is a real insn. */
871#define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X))
872
873/* Predicate yielding nonzero iff X is a note insn. */
874#define NOTE_P(X) (GET_CODE (X) == NOTE)
875
876/* Predicate yielding nonzero iff X is a barrier insn. */
877#define BARRIER_P(X) (GET_CODE (X) == BARRIER)
878
879/* Predicate yielding nonzero iff X is a data for a jump table. */
880#define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA)
881
882/* Predicate yielding nonzero iff RTX is a subreg. */
883#define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG)
884
885/* Predicate yielding true iff RTX is a symbol ref. */
886#define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF)
887
888template <>
889template <>
890inline bool
891is_a_helper <rtx_insn *>::test (rtx rt)
892{
893 return (INSN_P (rt)
894 || NOTE_P (rt)
895 || JUMP_TABLE_DATA_P (rt)
896 || BARRIER_P (rt)
897 || LABEL_P (rt));
898}
899
900template <>
901template <>
902inline bool
903is_a_helper <const rtx_insn *>::test (const_rtx rt)
904{
905 return (INSN_P (rt)
906 || NOTE_P (rt)
907 || JUMP_TABLE_DATA_P (rt)
908 || BARRIER_P (rt)
909 || LABEL_P (rt));
910}
911
912template <>
913template <>
914inline bool
915is_a_helper <rtx_debug_insn *>::test (rtx rt)
916{
917 return DEBUG_INSN_P (rt);
918}
919
920template <>
921template <>
922inline bool
923is_a_helper <rtx_nonjump_insn *>::test (rtx rt)
924{
925 return NONJUMP_INSN_P (rt);
926}
927
928template <>
929template <>
930inline bool
931is_a_helper <rtx_jump_insn *>::test (rtx rt)
932{
933 return JUMP_P (rt);
934}
935
936template <>
937template <>
938inline bool
939is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn)
940{
941 return JUMP_P (insn);
942}
943
944template <>
945template <>
946inline bool
947is_a_helper <rtx_call_insn *>::test (rtx rt)
948{
949 return CALL_P (rt);
950}
951
952template <>
953template <>
954inline bool
955is_a_helper <rtx_call_insn *>::test (rtx_insn *insn)
956{
957 return CALL_P (insn);
958}
959
960template <>
961template <>
962inline bool
963is_a_helper <const rtx_call_insn *>::test (const rtx_insn *insn)
964{
965 return CALL_P (insn);
966}
967
968template <>
969template <>
970inline bool
971is_a_helper <rtx_jump_table_data *>::test (rtx rt)
972{
973 return JUMP_TABLE_DATA_P (rt);
974}
975
976template <>
977template <>
978inline bool
979is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn)
980{
981 return JUMP_TABLE_DATA_P (insn);
982}
983
984template <>
985template <>
986inline bool
987is_a_helper <rtx_barrier *>::test (rtx rt)
988{
989 return BARRIER_P (rt);
990}
991
992template <>
993template <>
994inline bool
995is_a_helper <rtx_code_label *>::test (rtx rt)
996{
997 return LABEL_P (rt);
998}
999
1000template <>
1001template <>
1002inline bool
1003is_a_helper <rtx_code_label *>::test (rtx_insn *insn)
1004{
1005 return LABEL_P (insn);
1006}
1007
1008template <>
1009template <>
1010inline bool
1011is_a_helper <rtx_note *>::test (rtx rt)
1012{
1013 return NOTE_P (rt);
1014}
1015
1016template <>
1017template <>
1018inline bool
1019is_a_helper <rtx_note *>::test (rtx_insn *insn)
1020{
1021 return NOTE_P (insn);
1022}
1023
1024/* Predicate yielding nonzero iff X is a return or simple_return. */
1025#define ANY_RETURN_P(X) \
1026 (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN)
1027
1028/* 1 if X is a unary operator. */
1029
1030#define UNARY_P(X) \
1031 (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY)
1032
1033/* 1 if X is a binary operator. */
1034
1035#define BINARY_P(X) \
1036 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT)
1037
1038/* 1 if X is an arithmetic operator. */
1039
1040#define ARITHMETIC_P(X) \
1041 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \
1042 == RTX_ARITHMETIC_RESULT)
1043
1044/* 1 if X is an arithmetic operator. */
1045
1046#define COMMUTATIVE_ARITH_P(X) \
1047 (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH)
1048
1049/* 1 if X is a commutative arithmetic operator or a comparison operator.
1050 These two are sometimes selected together because it is possible to
1051 swap the two operands. */
1052
1053#define SWAPPABLE_OPERANDS_P(X) \
1054 ((1 << GET_RTX_CLASS (GET_CODE (X))) \
1055 & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \
1056 | (1 << RTX_COMPARE)))
1057
1058/* 1 if X is a non-commutative operator. */
1059
1060#define NON_COMMUTATIVE_P(X) \
1061 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1062 == RTX_NON_COMMUTATIVE_RESULT)
1063
1064/* 1 if X is a commutative operator on integers. */
1065
1066#define COMMUTATIVE_P(X) \
1067 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \
1068 == RTX_COMMUTATIVE_RESULT)
1069
1070/* 1 if X is a relational operator. */
1071
1072#define COMPARISON_P(X) \
1073 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT)
1074
1075/* 1 if X is a constant value that is an integer. */
1076
1077#define CONSTANT_P(X) \
1078 (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ)
1079
1080/* 1 if X is a LABEL_REF. */
1081#define LABEL_REF_P(X) \
1082 (GET_CODE (X) == LABEL_REF)
1083
1084/* 1 if X can be used to represent an object. */
1085#define OBJECT_P(X) \
1086 ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT)
1087
1088/* General accessor macros for accessing the fields of an rtx. */
1089
1090#if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007)
1091/* The bit with a star outside the statement expr and an & inside is
1092 so that N can be evaluated only once. */
1093#define RTL_CHECK1(RTX, N, C1) __extension__ \
1094(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1095 const enum rtx_code _code = GET_CODE (_rtx); \
1096 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1097 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1098 __FUNCTION__); \
1099 if (GET_RTX_FORMAT (_code)[_n] != C1) \
1100 rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \
1101 __FUNCTION__); \
1102 &_rtx->u.fld[_n]; }))
1103
1104#define RTL_CHECK2(RTX, N, C1, C2) __extension__ \
1105(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1106 const enum rtx_code _code = GET_CODE (_rtx); \
1107 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1108 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1109 __FUNCTION__); \
1110 if (GET_RTX_FORMAT (_code)[_n] != C1 \
1111 && GET_RTX_FORMAT (_code)[_n] != C2) \
1112 rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \
1113 __FUNCTION__); \
1114 &_rtx->u.fld[_n]; }))
1115
1116#define RTL_CHECKC1(RTX, N, C) __extension__ \
1117(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1118 if (GET_CODE (_rtx) != (C)) \
1119 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1120 __FUNCTION__); \
1121 &_rtx->u.fld[_n]; }))
1122
1123#define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \
1124(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1125 const enum rtx_code _code = GET_CODE (_rtx); \
1126 if (_code != (C1) && _code != (C2)) \
1127 rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \
1128 __FUNCTION__); \
1129 &_rtx->u.fld[_n]; }))
1130
1131#define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \
1132(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1133 const enum rtx_code _code = GET_CODE (_rtx); \
1134 if (_code != (C1) && _code != (C2) && _code != (C3)) \
1135 rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \
1136 __LINE__, __FUNCTION__); \
1137 &_rtx->u.fld[_n]; }))
1138
1139#define RTVEC_ELT(RTVEC, I) __extension__ \
1140(*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \
1141 if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \
1142 rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \
1143 __FUNCTION__); \
1144 &_rtvec->elem[_i]; }))
1145
1146#define XWINT(RTX, N) __extension__ \
1147(*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \
1148 const enum rtx_code _code = GET_CODE (_rtx); \
1149 if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \
1150 rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \
1151 __FUNCTION__); \
1152 if (GET_RTX_FORMAT (_code)[_n] != 'w') \
1153 rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \
1154 __FUNCTION__); \
1155 &_rtx->u.hwint[_n]; }))
1156
1157#define CWI_ELT(RTX, I) __extension__ \
1158(*({ __typeof (RTX) const _cwi = (RTX); \
1159 int _max = CWI_GET_NUM_ELEM (_cwi); \
1160 const int _i = (I); \
1161 if (_i < 0 || _i >= _max) \
1162 cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \
1163 __FUNCTION__); \
1164 &_cwi->u.hwiv.elem[_i]; }))
1165
1166#define XCWINT(RTX, N, C) __extension__ \
1167(*({ __typeof (RTX) const _rtx = (RTX); \
1168 if (GET_CODE (_rtx) != (C)) \
1169 rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \
1170 __FUNCTION__); \
1171 &_rtx->u.hwint[N]; }))
1172
1173#define XCMWINT(RTX, N, C, M) __extension__ \
1174(*({ __typeof (RTX) const _rtx = (RTX); \
1175 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \
1176 rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \
1177 __LINE__, __FUNCTION__); \
1178 &_rtx->u.hwint[N]; }))
1179
1180#define XCNMPRV(RTX, C, M) __extension__ \
1181({ __typeof (RTX) const _rtx = (RTX); \
1182 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1183 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1184 __LINE__, __FUNCTION__); \
1185 &_rtx->u.rv; })
1186
1187#define XCNMPFV(RTX, C, M) __extension__ \
1188({ __typeof (RTX) const _rtx = (RTX); \
1189 if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \
1190 rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \
1191 __LINE__, __FUNCTION__); \
1192 &_rtx->u.fv; })
1193
1194#define REG_CHECK(RTX) __extension__ \
1195({ __typeof (RTX) const _rtx = (RTX); \
1196 if (GET_CODE (_rtx) != REG) \
1197 rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \
1198 __FUNCTION__); \
1199 &_rtx->u.reg; })
1200
1201#define BLOCK_SYMBOL_CHECK(RTX) __extension__ \
1202({ __typeof (RTX) const _symbol = (RTX); \
1203 const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \
1204 if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \
1205 rtl_check_failed_block_symbol (__FILE__, __LINE__, \
1206 __FUNCTION__); \
1207 &_symbol->u.block_sym; })
1208
1209#define HWIVEC_CHECK(RTX,C) __extension__ \
1210({ __typeof (RTX) const _symbol = (RTX); \
1211 RTL_CHECKC1 (_symbol, 0, C); \
1212 &_symbol->u.hwiv; })
1213
1214extern void rtl_check_failed_bounds (const_rtx, int, const char *, int,
1215 const char *)
1216 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1217extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int,
1218 const char *)
1219 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1220extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *,
1221 int, const char *)
1222 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1223extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *,
1224 int, const char *)
1225 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1226extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code,
1227 const char *, int, const char *)
1228 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1229extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code,
1230 enum rtx_code, const char *, int,
1231 const char *)
1232 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1233extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode,
1234 bool, const char *, int, const char *)
1235 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1236extern void rtl_check_failed_block_symbol (const char *, int, const char *)
1237 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1238extern void cwi_check_failed_bounds (const_rtx, int, const char *, int,
1239 const char *)
1240 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1241extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int,
1242 const char *)
1243 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
1244
1245#else /* not ENABLE_RTL_CHECKING */
1246
1247#define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N])
1248#define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1249#define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N])
1250#define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N])
1251#define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N])
1252#define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I])
1253#define XWINT(RTX, N) ((RTX)->u.hwint[N])
1254#define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I])
1255#define XCWINT(RTX, N, C) ((RTX)->u.hwint[N])
1256#define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1257#define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N])
1258#define XCNMPRV(RTX, C, M) (&(RTX)->u.rv)
1259#define XCNMPFV(RTX, C, M) (&(RTX)->u.fv)
1260#define REG_CHECK(RTX) (&(RTX)->u.reg)
1261#define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym)
1262#define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv)
1263
1264#endif
1265
1266/* General accessor macros for accessing the flags of an rtx. */
1267
1268/* Access an individual rtx flag, with no checking of any kind. */
1269#define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG)
1270
1271#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007)
1272#define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \
1273({ __typeof (RTX) const _rtx = (RTX); \
1274 if (GET_CODE (_rtx) != C1) \
1275 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1276 __FUNCTION__); \
1277 _rtx; })
1278
1279#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \
1280({ __typeof (RTX) const _rtx = (RTX); \
1281 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \
1282 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1283 __FUNCTION__); \
1284 _rtx; })
1285
1286#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \
1287({ __typeof (RTX) const _rtx = (RTX); \
1288 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1289 && GET_CODE (_rtx) != C3) \
1290 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1291 __FUNCTION__); \
1292 _rtx; })
1293
1294#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \
1295({ __typeof (RTX) const _rtx = (RTX); \
1296 if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \
1297 && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \
1298 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1299 __FUNCTION__); \
1300 _rtx; })
1301
1302#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \
1303({ __typeof (RTX) const _rtx = (RTX); \
1304 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1305 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1306 && GET_CODE (_rtx) != C5) \
1307 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1308 __FUNCTION__); \
1309 _rtx; })
1310
1311#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \
1312 __extension__ \
1313({ __typeof (RTX) const _rtx = (RTX); \
1314 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1315 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1316 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \
1317 rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \
1318 __FUNCTION__); \
1319 _rtx; })
1320
1321#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \
1322 __extension__ \
1323({ __typeof (RTX) const _rtx = (RTX); \
1324 if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \
1325 && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \
1326 && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \
1327 && GET_CODE (_rtx) != C7) \
1328 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1329 __FUNCTION__); \
1330 _rtx; })
1331
1332#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \
1333 __extension__ \
1334({ __typeof (RTX) const _rtx = (RTX); \
1335 if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \
1336 rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \
1337 __FUNCTION__); \
1338 _rtx; })
1339
1340extern void rtl_check_failed_flag (const char *, const_rtx, const char *,
1341 int, const char *)
1342 ATTRIBUTE_NORETURN ATTRIBUTE_COLD
1343 ;
1344
1345#else /* not ENABLE_RTL_FLAG_CHECKING */
1346
1347#define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX)
1348#define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX)
1349#define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX)
1350#define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX)
1351#define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX)
1352#define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX)
1353#define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX)
1354#define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX)
1355#endif
1356
1357#define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int)
1358#define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint)
1359#define XLOC(RTX, N) (RTL_CHECK1 (RTX, N, 'L').rt_loc)
1360#define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str)
1361#define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx)
1362#define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec)
1363#define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type)
1364#define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree)
1365#define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb)
1366#define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str)
1367#define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi)
1368
1369#define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M)
1370#define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N))
1371
1372/* These are like XINT, etc. except that they expect a '0' field instead
1373 of the normal type code. */
1374
1375#define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int)
1376#define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint)
1377#define X0LOC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_loc)
1378#define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str)
1379#define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx)
1380#define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec)
1381#define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type)
1382#define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree)
1383#define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb)
1384#define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags)
1385#define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib)
1386#define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem)
1387#define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant)
1388
1389/* Access a '0' field with any type. */
1390#define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0')
1391
1392#define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int)
1393#define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint)
1394#define XCLOC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_loc)
1395#define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg)
1396#define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str)
1397#define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx)
1398#define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec)
1399#define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type)
1400#define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree)
1401#define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb)
1402#define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi)
1403#define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib)
1404
1405#define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M)
1406#define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C))
1407
1408#define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx)
1409#define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx)
1410
1411
1412/* Methods of rtx_expr_list. */
1413
1414inline rtx_expr_list *rtx_expr_list::next () const
1415{
1416 rtx tmp = XEXP (this, 1);
1417 return safe_as_a <rtx_expr_list *> (p: tmp);
1418}
1419
1420inline rtx rtx_expr_list::element () const
1421{
1422 return XEXP (this, 0);
1423}
1424
1425/* Methods of rtx_insn_list. */
1426
1427inline rtx_insn_list *rtx_insn_list::next () const
1428{
1429 rtx tmp = XEXP (this, 1);
1430 return safe_as_a <rtx_insn_list *> (p: tmp);
1431}
1432
1433inline rtx_insn *rtx_insn_list::insn () const
1434{
1435 rtx tmp = XEXP (this, 0);
1436 return safe_as_a <rtx_insn *> (p: tmp);
1437}
1438
1439/* Methods of rtx_sequence. */
1440
1441inline int rtx_sequence::len () const
1442{
1443 return XVECLEN (this, 0);
1444}
1445
1446inline rtx rtx_sequence::element (int index) const
1447{
1448 return XVECEXP (this, 0, index);
1449}
1450
1451inline rtx_insn *rtx_sequence::insn (int index) const
1452{
1453 return as_a <rtx_insn *> (XVECEXP (this, 0, index));
1454}
1455
1456/* ACCESS MACROS for particular fields of insns. */
1457
1458/* Holds a unique number for each insn.
1459 These are not necessarily sequentially increasing. */
1460inline int INSN_UID (const_rtx insn)
1461{
1462 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1463 (insn))->u2.insn_uid;
1464}
1465inline int& INSN_UID (rtx insn)
1466{
1467 return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID",
1468 (insn))->u2.insn_uid;
1469}
1470
1471/* Chain insns together in sequence. */
1472
1473/* For now these are split in two: an rvalue form:
1474 PREV_INSN/NEXT_INSN
1475 and an lvalue form:
1476 SET_NEXT_INSN/SET_PREV_INSN. */
1477
1478inline rtx_insn *PREV_INSN (const rtx_insn *insn)
1479{
1480 rtx prev = XEXP (insn, 0);
1481 return safe_as_a <rtx_insn *> (p: prev);
1482}
1483
1484inline rtx& SET_PREV_INSN (rtx_insn *insn)
1485{
1486 return XEXP (insn, 0);
1487}
1488
1489inline rtx_insn *NEXT_INSN (const rtx_insn *insn)
1490{
1491 rtx next = XEXP (insn, 1);
1492 return safe_as_a <rtx_insn *> (p: next);
1493}
1494
1495inline rtx& SET_NEXT_INSN (rtx_insn *insn)
1496{
1497 return XEXP (insn, 1);
1498}
1499
1500inline basic_block BLOCK_FOR_INSN (const_rtx insn)
1501{
1502 return XBBDEF (insn, 2);
1503}
1504
1505inline basic_block& BLOCK_FOR_INSN (rtx insn)
1506{
1507 return XBBDEF (insn, 2);
1508}
1509
1510inline void set_block_for_insn (rtx_insn *insn, basic_block bb)
1511{
1512 BLOCK_FOR_INSN (insn) = bb;
1513}
1514
1515/* The body of an insn. */
1516inline rtx PATTERN (const_rtx insn)
1517{
1518 return XEXP (insn, 3);
1519}
1520
1521inline rtx& PATTERN (rtx insn)
1522{
1523 return XEXP (insn, 3);
1524}
1525
1526inline location_t INSN_LOCATION (const rtx_insn *insn)
1527{
1528 return XLOC (insn, 4);
1529}
1530
1531inline location_t& INSN_LOCATION (rtx_insn *insn)
1532{
1533 return XLOC (insn, 4);
1534}
1535
1536inline bool INSN_HAS_LOCATION (const rtx_insn *insn)
1537{
1538 return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION;
1539}
1540
1541/* LOCATION of an RTX if relevant. */
1542#define RTL_LOCATION(X) (INSN_P (X) ? \
1543 INSN_LOCATION (as_a <rtx_insn *> (X)) \
1544 : UNKNOWN_LOCATION)
1545
1546/* Code number of instruction, from when it was recognized.
1547 -1 means this instruction has not been recognized yet. */
1548#define INSN_CODE(INSN) XINT (INSN, 5)
1549
1550inline rtvec rtx_jump_table_data::get_labels () const
1551{
1552 rtx pat = PATTERN (insn: this);
1553 if (GET_CODE (pat) == ADDR_VEC)
1554 return XVEC (pat, 0);
1555 else
1556 return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */
1557}
1558
1559/* Return the mode of the data in the table, which is always a scalar
1560 integer. */
1561
1562inline scalar_int_mode
1563rtx_jump_table_data::get_data_mode () const
1564{
1565 return as_a <scalar_int_mode> (GET_MODE (PATTERN (this)));
1566}
1567
1568/* If LABEL is followed by a jump table, return the table, otherwise
1569 return null. */
1570
1571inline rtx_jump_table_data *
1572jump_table_for_label (const rtx_code_label *label)
1573{
1574 return safe_dyn_cast <rtx_jump_table_data *> (p: NEXT_INSN (insn: label));
1575}
1576
1577#define RTX_FRAME_RELATED_P(RTX) \
1578 (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \
1579 CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related)
1580
1581/* 1 if JUMP RTX is a crossing jump. */
1582#define CROSSING_JUMP_P(RTX) \
1583 (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump)
1584
1585/* 1 if RTX is a call to a const function. Built from ECF_CONST and
1586 TREE_READONLY. */
1587#define RTL_CONST_CALL_P(RTX) \
1588 (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging)
1589
1590/* 1 if RTX is a call to a pure function. Built from ECF_PURE and
1591 DECL_PURE_P. */
1592#define RTL_PURE_CALL_P(RTX) \
1593 (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val)
1594
1595/* 1 if RTX is a call to a const or pure function. */
1596#define RTL_CONST_OR_PURE_CALL_P(RTX) \
1597 (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX))
1598
1599/* 1 if RTX is a call to a looping const or pure function. Built from
1600 ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */
1601#define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \
1602 (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call)
1603
1604/* 1 if RTX is a call_insn for a sibling call. */
1605#define SIBLING_CALL_P(RTX) \
1606 (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump)
1607
1608/* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */
1609#define INSN_ANNULLED_BRANCH_P(RTX) \
1610 (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging)
1611
1612/* 1 if RTX is an insn in a delay slot and is from the target of the branch.
1613 If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be
1614 executed if the branch is taken. For annulled branches with this bit
1615 clear, the insn should be executed only if the branch is not taken. */
1616#define INSN_FROM_TARGET_P(RTX) \
1617 (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \
1618 CALL_INSN)->in_struct)
1619
1620/* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening.
1621 See the comments for ADDR_DIFF_VEC in rtl.def. */
1622#define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4)
1623
1624/* In a VALUE, the value cselib has assigned to RTX.
1625 This is a "struct cselib_val", see cselib.h. */
1626#define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0)
1627
1628/* Holds a list of notes on what this insn does to various REGs.
1629 It is a chain of EXPR_LIST rtx's, where the second operand is the
1630 chain pointer and the first operand is the REG being described.
1631 The mode field of the EXPR_LIST contains not a real machine mode
1632 but a value from enum reg_note. */
1633#define REG_NOTES(INSN) XEXP(INSN, 6)
1634
1635/* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in
1636 question. */
1637#define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx)
1638
1639enum reg_note
1640{
1641#define DEF_REG_NOTE(NAME) NAME,
1642#include "reg-notes.def"
1643#undef DEF_REG_NOTE
1644 REG_NOTE_MAX
1645};
1646
1647/* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */
1648#define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK))
1649#define PUT_REG_NOTE_KIND(LINK, KIND) \
1650 PUT_MODE_RAW (LINK, (machine_mode) (KIND))
1651
1652/* Names for REG_NOTE's in EXPR_LIST insn's. */
1653
1654extern const char * const reg_note_name[];
1655#define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)])
1656
1657/* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of
1658 USE, CLOBBER and SET expressions.
1659 USE expressions list the registers filled with arguments that
1660 are passed to the function.
1661 CLOBBER expressions document the registers explicitly clobbered
1662 by this CALL_INSN.
1663 SET expressions say that the return value of the call (the SET_DEST)
1664 is equivalent to a value available before the call (the SET_SRC).
1665 This kind of SET is used when the return value is predictable in
1666 advance. It is purely an optimisation hint; unlike USEs and CLOBBERs,
1667 it does not affect register liveness.
1668
1669 Pseudo registers cannot be mentioned in this list. */
1670#define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7)
1671
1672/* The label-number of a code-label. The assembler label
1673 is made from `L' and the label-number printed in decimal.
1674 Label numbers are unique in a compilation. */
1675#define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5)
1676
1677/* In a NOTE that is a line number, this is a string for the file name that the
1678 line is in. We use the same field to record block numbers temporarily in
1679 NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts
1680 between ints and pointers if we use a different macro for the block number.)
1681 */
1682
1683/* Opaque data. */
1684#define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE)
1685#define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE)
1686#define SET_INSN_DELETED(INSN) set_insn_deleted (INSN);
1687#define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE)
1688#define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE)
1689#define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE)
1690#define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE)
1691#define NOTE_MARKER_LOCATION(INSN) XCLOC (INSN, 3, NOTE)
1692#define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE)
1693#define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE)
1694
1695/* In a NOTE that is a line number, this is the line number.
1696 Other kinds of NOTEs are identified by negative numbers here. */
1697#define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE)
1698
1699/* Nonzero if INSN is a note marking the beginning of a basic block. */
1700#define NOTE_INSN_BASIC_BLOCK_P(INSN) \
1701 (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK)
1702
1703/* Nonzero if INSN is a debug nonbind marker note,
1704 for which NOTE_MARKER_LOCATION can be used. */
1705#define NOTE_MARKER_P(INSN) \
1706 (NOTE_P (INSN) && \
1707 (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \
1708 || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY))
1709
1710/* Variable declaration and the location of a variable. */
1711#define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION))
1712#define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION))
1713
1714/* Initialization status of the variable in the location. Status
1715 can be unknown, uninitialized or initialized. See enumeration
1716 type below. */
1717#define PAT_VAR_LOCATION_STATUS(PAT) \
1718 (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \
1719 ->u2.var_location_status)
1720
1721/* Accessors for a NOTE_INSN_VAR_LOCATION. */
1722#define NOTE_VAR_LOCATION_DECL(NOTE) \
1723 PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE))
1724#define NOTE_VAR_LOCATION_LOC(NOTE) \
1725 PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE))
1726#define NOTE_VAR_LOCATION_STATUS(NOTE) \
1727 PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE))
1728
1729/* Evaluate to TRUE if INSN is a debug insn that denotes a variable
1730 location/value tracking annotation. */
1731#define DEBUG_BIND_INSN_P(INSN) \
1732 (DEBUG_INSN_P (INSN) \
1733 && (GET_CODE (PATTERN (INSN)) \
1734 == VAR_LOCATION))
1735/* Evaluate to TRUE if INSN is a debug insn that denotes a program
1736 source location marker. */
1737#define DEBUG_MARKER_INSN_P(INSN) \
1738 (DEBUG_INSN_P (INSN) \
1739 && (GET_CODE (PATTERN (INSN)) \
1740 != VAR_LOCATION))
1741/* Evaluate to the marker kind. */
1742#define INSN_DEBUG_MARKER_KIND(INSN) \
1743 (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \
1744 ? (GET_MODE (PATTERN (INSN)) == VOIDmode \
1745 ? NOTE_INSN_BEGIN_STMT \
1746 : GET_MODE (PATTERN (INSN)) == BLKmode \
1747 ? NOTE_INSN_INLINE_ENTRY \
1748 : (enum insn_note)-1) \
1749 : (enum insn_note)-1)
1750/* Create patterns for debug markers. These and the above abstract
1751 the representation, so that it's easier to get rid of the abuse of
1752 the mode to hold the marker kind. Other marker types are
1753 envisioned, so a single bit flag won't do; maybe separate RTL codes
1754 wouldn't be a problem. */
1755#define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \
1756 gen_rtx_DEBUG_MARKER (VOIDmode)
1757#define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \
1758 gen_rtx_DEBUG_MARKER (BLKmode)
1759
1760/* The VAR_LOCATION rtx in a DEBUG_INSN. */
1761#define INSN_VAR_LOCATION(INSN) \
1762 (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION))
1763/* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */
1764#define INSN_VAR_LOCATION_PTR(INSN) \
1765 (&PATTERN (INSN))
1766
1767/* Accessors for a tree-expanded var location debug insn. */
1768#define INSN_VAR_LOCATION_DECL(INSN) \
1769 PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN))
1770#define INSN_VAR_LOCATION_LOC(INSN) \
1771 PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN))
1772#define INSN_VAR_LOCATION_STATUS(INSN) \
1773 PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN))
1774
1775/* Expand to the RTL that denotes an unknown variable location in a
1776 DEBUG_INSN. */
1777#define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx))
1778
1779/* Determine whether X is such an unknown location. */
1780#define VAR_LOC_UNKNOWN_P(X) \
1781 (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx)
1782
1783/* 1 if RTX is emitted after a call, but it should take effect before
1784 the call returns. */
1785#define NOTE_DURING_CALL_P(RTX) \
1786 (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call)
1787
1788/* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */
1789#define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR)
1790
1791/* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */
1792#define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR)
1793
1794/* PARM_DECL DEBUG_PARAMETER_REF references. */
1795#define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF)
1796
1797/* Codes that appear in the NOTE_KIND field for kinds of notes
1798 that are not line numbers. These codes are all negative.
1799
1800 Notice that we do not try to use zero here for any of
1801 the special note codes because sometimes the source line
1802 actually can be zero! This happens (for example) when we
1803 are generating code for the per-translation-unit constructor
1804 and destructor routines for some C++ translation unit. */
1805
1806enum insn_note
1807{
1808#define DEF_INSN_NOTE(NAME) NAME,
1809#include "insn-notes.def"
1810#undef DEF_INSN_NOTE
1811
1812 NOTE_INSN_MAX
1813};
1814
1815/* Names for NOTE insn's other than line numbers. */
1816
1817extern const char * const note_insn_name[NOTE_INSN_MAX];
1818#define GET_NOTE_INSN_NAME(NOTE_CODE) \
1819 (note_insn_name[(NOTE_CODE)])
1820
1821/* The name of a label, in case it corresponds to an explicit label
1822 in the input source code. */
1823#define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL)
1824
1825/* In jump.cc, each label contains a count of the number
1826 of LABEL_REFs that point at it, so unused labels can be deleted. */
1827#define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL)
1828
1829/* Labels carry a two-bit field composed of the ->jump and ->call
1830 bits. This field indicates whether the label is an alternate
1831 entry point, and if so, what kind. */
1832enum label_kind
1833{
1834 LABEL_NORMAL = 0, /* ordinary label */
1835 LABEL_STATIC_ENTRY, /* alternate entry point, not exported */
1836 LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */
1837 LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */
1838};
1839
1840#if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007)
1841
1842/* Retrieve the kind of LABEL. */
1843#define LABEL_KIND(LABEL) __extension__ \
1844({ __typeof (LABEL) const _label = (LABEL); \
1845 if (! LABEL_P (_label)) \
1846 rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \
1847 __FUNCTION__); \
1848 (enum label_kind) ((_label->jump << 1) | _label->call); })
1849
1850/* Set the kind of LABEL. */
1851#define SET_LABEL_KIND(LABEL, KIND) do { \
1852 __typeof (LABEL) const _label = (LABEL); \
1853 const unsigned int _kind = (KIND); \
1854 if (! LABEL_P (_label)) \
1855 rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \
1856 __FUNCTION__); \
1857 _label->jump = ((_kind >> 1) & 1); \
1858 _label->call = (_kind & 1); \
1859} while (0)
1860
1861#else
1862
1863/* Retrieve the kind of LABEL. */
1864#define LABEL_KIND(LABEL) \
1865 ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call))
1866
1867/* Set the kind of LABEL. */
1868#define SET_LABEL_KIND(LABEL, KIND) do { \
1869 rtx const _label = (LABEL); \
1870 const unsigned int _kind = (KIND); \
1871 _label->jump = ((_kind >> 1) & 1); \
1872 _label->call = (_kind & 1); \
1873} while (0)
1874
1875#endif /* rtl flag checking */
1876
1877#define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL)
1878
1879/* In jump.cc, each JUMP_INSN can point to a label that it can jump to,
1880 so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can
1881 be decremented and possibly the label can be deleted. */
1882#define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN)
1883
1884inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn)
1885{
1886 return safe_as_a <rtx_insn *> (JUMP_LABEL (insn));
1887}
1888
1889/* Methods of rtx_jump_insn. */
1890
1891inline rtx rtx_jump_insn::jump_label () const
1892{
1893 return JUMP_LABEL (this);
1894}
1895
1896inline rtx_code_label *rtx_jump_insn::jump_target () const
1897{
1898 return safe_as_a <rtx_code_label *> (JUMP_LABEL (this));
1899}
1900
1901inline void rtx_jump_insn::set_jump_target (rtx_code_label *target)
1902{
1903 JUMP_LABEL (this) = target;
1904}
1905
1906/* Once basic blocks are found, each CODE_LABEL starts a chain that
1907 goes through all the LABEL_REFs that jump to that label. The chain
1908 eventually winds up at the CODE_LABEL: it is circular. */
1909#define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL)
1910
1911/* Get the label that a LABEL_REF references. */
1912inline rtx_insn *
1913label_ref_label (const_rtx ref)
1914{
1915 return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF));
1916}
1917
1918/* Set the label that LABEL_REF ref refers to. */
1919
1920inline void
1921set_label_ref_label (rtx ref, rtx_insn *label)
1922{
1923 XCEXP (ref, 0, LABEL_REF) = label;
1924}
1925
1926/* For a REG rtx, REGNO extracts the register number. REGNO can only
1927 be used on RHS. Use SET_REGNO to change the value. */
1928#define REGNO(RTX) (rhs_regno(RTX))
1929#define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N))
1930
1931/* Return the number of consecutive registers in a REG. This is always
1932 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for
1933 hard registers. */
1934#define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs)
1935
1936/* ORIGINAL_REGNO holds the number the register originally had; for a
1937 pseudo register turned into a hard reg this will hold the old pseudo
1938 register number. */
1939#define ORIGINAL_REGNO(RTX) \
1940 (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno)
1941
1942/* Force the REGNO macro to only be used on the lhs. */
1943inline unsigned int
1944rhs_regno (const_rtx x)
1945{
1946 return REG_CHECK (x)->regno;
1947}
1948
1949/* Return the final register in REG X plus one. */
1950inline unsigned int
1951END_REGNO (const_rtx x)
1952{
1953 return REGNO (x) + REG_NREGS (x);
1954}
1955
1956/* Change the REGNO and REG_NREGS of REG X to the specified values,
1957 bypassing the df machinery. */
1958inline void
1959set_regno_raw (rtx x, unsigned int regno, unsigned int nregs)
1960{
1961 reg_info *reg = REG_CHECK (x);
1962 reg->regno = regno;
1963 reg->nregs = nregs;
1964}
1965
1966/* 1 if RTX is a reg or parallel that is the current function's return
1967 value. */
1968#define REG_FUNCTION_VALUE_P(RTX) \
1969 (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val)
1970
1971/* 1 if RTX is a reg that corresponds to a variable declared by the user. */
1972#define REG_USERVAR_P(RTX) \
1973 (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil)
1974
1975/* 1 if RTX is a reg that holds a pointer value. */
1976#define REG_POINTER(RTX) \
1977 (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related)
1978
1979/* 1 if RTX is a mem that holds a pointer value. */
1980#define MEM_POINTER(RTX) \
1981 (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related)
1982
1983/* 1 if the given register REG corresponds to a hard register. */
1984#define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG))
1985
1986/* 1 if the given register number REG_NO corresponds to a hard register. */
1987#define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER)
1988
1989/* 1 if the given register REG corresponds to a virtual register. */
1990#define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG))
1991
1992/* 1 if the given register number REG_NO corresponds to a virtual register. */
1993#define VIRTUAL_REGISTER_NUM_P(REG_NO) \
1994 IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER)
1995
1996/* For a CONST_INT rtx, INTVAL extracts the integer. */
1997#define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT)
1998#define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX))
1999
2000/* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of
2001 elements actually needed to represent the constant.
2002 CONST_WIDE_INT_ELT gets one of the elements. 0 is the least
2003 significant HOST_WIDE_INT. */
2004#define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT)
2005#define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX)
2006#define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N)
2007
2008/* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the
2009 individual coefficients, in the form of a trailing_wide_ints structure. */
2010#define CONST_POLY_INT_COEFFS(RTX) \
2011 (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \
2012 CONST_POLY_INT)->u.cpi.coeffs)
2013
2014/* For a CONST_DOUBLE:
2015#if TARGET_SUPPORTS_WIDE_INT == 0
2016 For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the
2017 low-order word and ..._HIGH the high-order.
2018#endif
2019 For a float, there is a REAL_VALUE_TYPE structure, and
2020 CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */
2021#define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode)
2022#define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode)
2023#define CONST_DOUBLE_REAL_VALUE(r) \
2024 ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode))
2025
2026#define CONST_FIXED_VALUE(r) \
2027 ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode))
2028#define CONST_FIXED_VALUE_HIGH(r) \
2029 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high))
2030#define CONST_FIXED_VALUE_LOW(r) \
2031 ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low))
2032
2033/* For a CONST_VECTOR, return element #n. */
2034#define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N)
2035
2036/* See rtl.texi for a description of these macros. */
2037#define CONST_VECTOR_NPATTERNS(RTX) \
2038 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \
2039 ->u2.const_vector.npatterns)
2040
2041#define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \
2042 (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \
2043 ->u2.const_vector.nelts_per_pattern)
2044
2045#define CONST_VECTOR_DUPLICATE_P(RTX) \
2046 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1)
2047
2048#define CONST_VECTOR_STEPPED_P(RTX) \
2049 (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3)
2050
2051#define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR)
2052
2053/* Return the number of elements encoded directly in a CONST_VECTOR. */
2054
2055inline unsigned int
2056const_vector_encoded_nelts (const_rtx x)
2057{
2058 return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x);
2059}
2060
2061/* For a CONST_VECTOR, return the number of elements in a vector. */
2062#define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX))
2063
2064/* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of.
2065 SUBREG_BYTE extracts the byte-number. */
2066
2067#define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG)
2068#define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG)
2069
2070/* in rtlanal.cc */
2071/* Return the right cost to give to an operation
2072 to make the cost of the corresponding register-to-register instruction
2073 N times that of a fast register-to-register instruction. */
2074#define COSTS_N_INSNS(N) ((N) * 4)
2075
2076/* Maximum cost of an rtl expression. This value has the special meaning
2077 not to use an rtx with this cost under any circumstances. */
2078#define MAX_COST INT_MAX
2079
2080/* Return true if CODE always has VOIDmode. */
2081
2082inline bool
2083always_void_p (enum rtx_code code)
2084{
2085 switch (code)
2086 {
2087 case SET:
2088 case PC:
2089 case RETURN:
2090 case SIMPLE_RETURN:
2091 return true;
2092
2093 default:
2094 return false;
2095 }
2096}
2097
2098/* A structure to hold all available cost information about an rtl
2099 expression. */
2100struct full_rtx_costs
2101{
2102 int speed;
2103 int size;
2104};
2105
2106/* Initialize a full_rtx_costs structure C to the maximum cost. */
2107inline void
2108init_costs_to_max (struct full_rtx_costs *c)
2109{
2110 c->speed = MAX_COST;
2111 c->size = MAX_COST;
2112}
2113
2114/* Initialize a full_rtx_costs structure C to zero cost. */
2115inline void
2116init_costs_to_zero (struct full_rtx_costs *c)
2117{
2118 c->speed = 0;
2119 c->size = 0;
2120}
2121
2122/* Compare two full_rtx_costs structures A and B, returning true
2123 if A < B when optimizing for speed. */
2124inline bool
2125costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b,
2126 bool speed)
2127{
2128 if (speed)
2129 return (a->speed < b->speed
2130 || (a->speed == b->speed && a->size < b->size));
2131 else
2132 return (a->size < b->size
2133 || (a->size == b->size && a->speed < b->speed));
2134}
2135
2136/* Increase both members of the full_rtx_costs structure C by the
2137 cost of N insns. */
2138inline void
2139costs_add_n_insns (struct full_rtx_costs *c, int n)
2140{
2141 c->speed += COSTS_N_INSNS (n);
2142 c->size += COSTS_N_INSNS (n);
2143}
2144
2145/* Describes the shape of a subreg:
2146
2147 inner_mode == the mode of the SUBREG_REG
2148 offset == the SUBREG_BYTE
2149 outer_mode == the mode of the SUBREG itself. */
2150class subreg_shape {
2151public:
2152 subreg_shape (machine_mode, poly_uint16, machine_mode);
2153 bool operator == (const subreg_shape &) const;
2154 bool operator != (const subreg_shape &) const;
2155 unsigned HOST_WIDE_INT unique_id () const;
2156
2157 machine_mode inner_mode;
2158 poly_uint16 offset;
2159 machine_mode outer_mode;
2160};
2161
2162inline
2163subreg_shape::subreg_shape (machine_mode inner_mode_in,
2164 poly_uint16 offset_in,
2165 machine_mode outer_mode_in)
2166 : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in)
2167{}
2168
2169inline bool
2170subreg_shape::operator == (const subreg_shape &other) const
2171{
2172 return (inner_mode == other.inner_mode
2173 && known_eq (offset, other.offset)
2174 && outer_mode == other.outer_mode);
2175}
2176
2177inline bool
2178subreg_shape::operator != (const subreg_shape &other) const
2179{
2180 return !operator == (other);
2181}
2182
2183/* Return an integer that uniquely identifies this shape. Structures
2184 like rtx_def assume that a mode can fit in an 8-bit bitfield and no
2185 current mode is anywhere near being 65536 bytes in size, so the
2186 id comfortably fits in an int. */
2187
2188inline unsigned HOST_WIDE_INT
2189subreg_shape::unique_id () const
2190{
2191 { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); }
2192 { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); }
2193 { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); }
2194 int res = (int) inner_mode + ((int) outer_mode << 8);
2195 for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2196 res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16);
2197 return res;
2198}
2199
2200/* Return the shape of a SUBREG rtx. */
2201
2202inline subreg_shape
2203shape_of_subreg (const_rtx x)
2204{
2205 return subreg_shape (GET_MODE (SUBREG_REG (x)),
2206 SUBREG_BYTE (x), GET_MODE (x));
2207}
2208
2209/* Information about an address. This structure is supposed to be able
2210 to represent all supported target addresses. Please extend it if it
2211 is not yet general enough. */
2212struct address_info {
2213 /* The mode of the value being addressed, or VOIDmode if this is
2214 a load-address operation with no known address mode. */
2215 machine_mode mode;
2216
2217 /* The address space. */
2218 addr_space_t as;
2219
2220 /* True if this is an RTX_AUTOINC address. */
2221 bool autoinc_p;
2222
2223 /* A pointer to the top-level address. */
2224 rtx *outer;
2225
2226 /* A pointer to the inner address, after all address mutations
2227 have been stripped from the top-level address. It can be one
2228 of the following:
2229
2230 - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null.
2231
2232 - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP
2233 points to the step value, depending on whether the step is variable
2234 or constant respectively. SEGMENT is null.
2235
2236 - A plain sum of the form SEGMENT + BASE + INDEX + DISP,
2237 with null fields evaluating to 0. */
2238 rtx *inner;
2239
2240 /* Components that make up *INNER. Each one may be null or nonnull.
2241 When nonnull, their meanings are as follows:
2242
2243 - *SEGMENT is the "segment" of memory to which the address refers.
2244 This value is entirely target-specific and is only called a "segment"
2245 because that's its most typical use. It contains exactly one UNSPEC,
2246 pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need
2247 reloading.
2248
2249 - *BASE is a variable expression representing a base address.
2250 It contains exactly one "term", pointed to by BASE_TERM.
2251 This term can be one of the following:
2252
2253 (1) a REG, or a SUBREG of a REG
2254 (2) an eliminated REG (a PLUS of (1) and a constant)
2255 (3) a MEM, or a SUBREG of a MEM
2256 (4) a SCRATCH
2257
2258 This term is the one that base_reg_class constrains.
2259
2260 - *INDEX is a variable expression representing an index value.
2261 It may be a scaled expression, such as a MULT. It has exactly
2262 one "term", pointed to by INDEX_TERM. The possible terms are
2263 the same as for BASE. This term is the one that index_reg_class
2264 constrains.
2265
2266 - *DISP is a constant, possibly mutated. DISP_TERM points to the
2267 unmutated RTX_CONST_OBJ. */
2268 rtx *segment;
2269 rtx *base;
2270 rtx *index;
2271 rtx *disp;
2272
2273 rtx *segment_term;
2274 rtx *base_term;
2275 rtx *index_term;
2276 rtx *disp_term;
2277
2278 /* In a {PRE,POST}_MODIFY address, this points to a second copy
2279 of BASE_TERM, otherwise it is null. */
2280 rtx *base_term2;
2281
2282 /* ADDRESS if this structure describes an address operand, MEM if
2283 it describes a MEM address. */
2284 enum rtx_code addr_outer_code;
2285
2286 /* If BASE is nonnull, this is the code of the rtx that contains it. */
2287 enum rtx_code base_outer_code;
2288};
2289
2290/* This is used to bundle an rtx and a mode together so that the pair
2291 can be used with the wi:: routines. If we ever put modes into rtx
2292 integer constants, this should go away and then just pass an rtx in. */
2293typedef std::pair <rtx, machine_mode> rtx_mode_t;
2294
2295namespace wi
2296{
2297 template <>
2298 struct int_traits <rtx_mode_t>
2299 {
2300 static const enum precision_type precision_type = VAR_PRECISION;
2301 static const bool host_dependent_precision = false;
2302 /* This ought to be true, except for the special case that BImode
2303 is canonicalized to STORE_FLAG_VALUE, which might be 1. */
2304 static const bool is_sign_extended = false;
2305 static const bool needs_write_val_arg = false;
2306 static unsigned int get_precision (const rtx_mode_t &);
2307 static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int,
2308 const rtx_mode_t &);
2309 };
2310}
2311
2312inline unsigned int
2313wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x)
2314{
2315 return GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: x.second));
2316}
2317
2318inline wi::storage_ref
2319wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *,
2320 unsigned int precision,
2321 const rtx_mode_t &x)
2322{
2323 gcc_checking_assert (precision == get_precision (x));
2324 switch (GET_CODE (x.first))
2325 {
2326 case CONST_INT:
2327 if (precision < HOST_BITS_PER_WIDE_INT)
2328 /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many
2329 targets is 1 rather than -1. */
2330 gcc_checking_assert (INTVAL (x.first)
2331 == sext_hwi (INTVAL (x.first), precision)
2332 || (x.second == BImode && INTVAL (x.first) == 1));
2333
2334 return wi::storage_ref (&INTVAL (x.first), 1, precision);
2335
2336 case CONST_WIDE_INT:
2337 return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0),
2338 CONST_WIDE_INT_NUNITS (x.first), precision);
2339
2340#if TARGET_SUPPORTS_WIDE_INT == 0
2341 case CONST_DOUBLE:
2342 return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision);
2343#endif
2344
2345 default:
2346 gcc_unreachable ();
2347 }
2348}
2349
2350namespace wi
2351{
2352 hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode);
2353 wide_int min_value (machine_mode, signop);
2354 wide_int max_value (machine_mode, signop);
2355}
2356
2357inline wi::hwi_with_prec
2358wi::shwi (HOST_WIDE_INT val, machine_mode mode)
2359{
2360 return shwi (val, precision: GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)));
2361}
2362
2363/* Produce the smallest number that is represented in MODE. The precision
2364 is taken from MODE and the sign from SGN. */
2365inline wide_int
2366wi::min_value (machine_mode mode, signop sgn)
2367{
2368 return min_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn);
2369}
2370
2371/* Produce the largest number that is represented in MODE. The precision
2372 is taken from MODE and the sign from SGN. */
2373inline wide_int
2374wi::max_value (machine_mode mode, signop sgn)
2375{
2376 return max_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn);
2377}
2378
2379namespace wi
2380{
2381 typedef poly_int<NUM_POLY_INT_COEFFS,
2382 generic_wide_int <wide_int_ref_storage <false, false> > >
2383 rtx_to_poly_wide_ref;
2384 rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode);
2385}
2386
2387/* Return the value of a CONST_POLY_INT in its native precision. */
2388
2389inline wi::rtx_to_poly_wide_ref
2390const_poly_int_value (const_rtx x)
2391{
2392 poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res;
2393 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2394 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i];
2395 return res;
2396}
2397
2398/* Return true if X is a scalar integer or a CONST_POLY_INT. The value
2399 can then be extracted using wi::to_poly_wide. */
2400
2401inline bool
2402poly_int_rtx_p (const_rtx x)
2403{
2404 return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x);
2405}
2406
2407/* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int.
2408 MODE is the mode of X. */
2409
2410inline wi::rtx_to_poly_wide_ref
2411wi::to_poly_wide (const_rtx x, machine_mode mode)
2412{
2413 if (CONST_POLY_INT_P (x))
2414 return const_poly_int_value (x);
2415 return rtx_mode_t (const_cast<rtx> (x), mode);
2416}
2417
2418/* Return the value of X as a poly_int64. */
2419
2420inline poly_int64
2421rtx_to_poly_int64 (const_rtx x)
2422{
2423 if (CONST_POLY_INT_P (x))
2424 {
2425 poly_int64 res;
2426 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2427 res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2428 return res;
2429 }
2430 return INTVAL (x);
2431}
2432
2433/* Return true if arbitrary value X is an integer constant that can
2434 be represented as a poly_int64. Store the value in *RES if so,
2435 otherwise leave it unmodified. */
2436
2437inline bool
2438poly_int_rtx_p (const_rtx x, poly_int64 *res)
2439{
2440 if (CONST_INT_P (x))
2441 {
2442 *res = INTVAL (x);
2443 return true;
2444 }
2445 if (CONST_POLY_INT_P (x))
2446 {
2447 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2448 if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i]))
2449 return false;
2450 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
2451 res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi ();
2452 return true;
2453 }
2454 return false;
2455}
2456
2457extern void init_rtlanal (void);
2458extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool);
2459extern int address_cost (rtx, machine_mode, addr_space_t, bool);
2460extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int,
2461 struct full_rtx_costs *);
2462extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &,
2463 unsigned int, unsigned int);
2464extern wide_int native_decode_int (const vec<target_unit> &, unsigned int,
2465 unsigned int, unsigned int);
2466extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &,
2467 unsigned int);
2468extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &,
2469 unsigned int, unsigned int, unsigned int);
2470extern poly_uint64 subreg_lsb (const_rtx);
2471extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64);
2472extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64,
2473 poly_uint64);
2474extern bool read_modify_subreg_p (const_rtx);
2475
2476/* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the
2477 bit offset at which the subreg begins (counting from the least significant
2478 bit of the operand). */
2479
2480inline poly_uint64
2481subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode,
2482 poly_uint64 subreg_byte)
2483{
2484 return subreg_size_lsb (GET_MODE_SIZE (mode: outer_mode),
2485 GET_MODE_SIZE (mode: inner_mode), subreg_byte);
2486}
2487
2488/* Return the subreg byte offset for a subreg whose outer mode is
2489 OUTER_MODE, whose inner mode is INNER_MODE, and where there are
2490 LSB_SHIFT *bits* between the lsb of the outer value and the lsb of
2491 the inner value. This is the inverse of subreg_lsb_1 (which converts
2492 byte offsets to bit shifts). */
2493
2494inline poly_uint64
2495subreg_offset_from_lsb (machine_mode outer_mode,
2496 machine_mode inner_mode,
2497 poly_uint64 lsb_shift)
2498{
2499 return subreg_size_offset_from_lsb (GET_MODE_SIZE (mode: outer_mode),
2500 GET_MODE_SIZE (mode: inner_mode), lsb_shift);
2501}
2502
2503extern unsigned int subreg_regno_offset (unsigned int, machine_mode,
2504 poly_uint64, machine_mode);
2505extern bool subreg_offset_representable_p (unsigned int, machine_mode,
2506 poly_uint64, machine_mode);
2507extern unsigned int subreg_regno (const_rtx);
2508extern int simplify_subreg_regno (unsigned int, machine_mode,
2509 poly_uint64, machine_mode);
2510extern int lowpart_subreg_regno (unsigned int, machine_mode,
2511 machine_mode);
2512extern unsigned int subreg_nregs (const_rtx);
2513extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx);
2514extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode);
2515extern unsigned int num_sign_bit_copies (const_rtx, machine_mode);
2516extern bool constant_pool_constant_p (rtx);
2517extern bool truncated_to_mode (machine_mode, const_rtx);
2518extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT);
2519extern void split_double (rtx, rtx *, rtx *);
2520extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0);
2521extern void decompose_address (struct address_info *, rtx *,
2522 machine_mode, addr_space_t, enum rtx_code);
2523extern void decompose_lea_address (struct address_info *, rtx *);
2524extern void decompose_mem_address (struct address_info *, rtx);
2525extern void update_address (struct address_info *);
2526extern HOST_WIDE_INT get_index_scale (const struct address_info *);
2527extern enum rtx_code get_index_code (const struct address_info *);
2528
2529/* 1 if RTX is a subreg containing a reg that is already known to be
2530 sign- or zero-extended from the mode of the subreg to the mode of
2531 the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the
2532 extension.
2533
2534 When used as a LHS, is means that this extension must be done
2535 when assigning to SUBREG_REG. */
2536
2537#define SUBREG_PROMOTED_VAR_P(RTX) \
2538 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct)
2539
2540/* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case
2541 this gives the necessary extensions:
2542 0 - signed (SPR_SIGNED)
2543 1 - normal unsigned (SPR_UNSIGNED)
2544 2 - value is both sign and unsign extended for mode
2545 (SPR_SIGNED_AND_UNSIGNED).
2546 -1 - pointer unsigned, which most often can be handled like unsigned
2547 extension, except for generating instructions where we need to
2548 emit special code (ptr_extend insns) on some architectures
2549 (SPR_POINTER). */
2550
2551const int SRP_POINTER = -1;
2552const int SRP_SIGNED = 0;
2553const int SRP_UNSIGNED = 1;
2554const int SRP_SIGNED_AND_UNSIGNED = 2;
2555
2556/* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */
2557#define SUBREG_PROMOTED_SET(RTX, VAL) \
2558do { \
2559 rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \
2560 (RTX), SUBREG); \
2561 switch (VAL) \
2562 { \
2563 case SRP_POINTER: \
2564 _rtx->volatil = 0; \
2565 _rtx->unchanging = 0; \
2566 break; \
2567 case SRP_SIGNED: \
2568 _rtx->volatil = 0; \
2569 _rtx->unchanging = 1; \
2570 break; \
2571 case SRP_UNSIGNED: \
2572 _rtx->volatil = 1; \
2573 _rtx->unchanging = 0; \
2574 break; \
2575 case SRP_SIGNED_AND_UNSIGNED: \
2576 _rtx->volatil = 1; \
2577 _rtx->unchanging = 1; \
2578 break; \
2579 } \
2580} while (0)
2581
2582/* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(),
2583 including SRP_SIGNED_AND_UNSIGNED if promoted for
2584 both signed and unsigned. */
2585#define SUBREG_PROMOTED_GET(RTX) \
2586 (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\
2587 + (RTX)->unchanging - 1)
2588
2589/* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */
2590#define SUBREG_PROMOTED_SIGN(RTX) \
2591 ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\
2592 : (RTX)->unchanging - 1)
2593
2594/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2595 for SIGNED type. */
2596#define SUBREG_PROMOTED_SIGNED_P(RTX) \
2597 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging)
2598
2599/* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted
2600 for UNSIGNED type. */
2601#define SUBREG_PROMOTED_UNSIGNED_P(RTX) \
2602 (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil)
2603
2604/* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */
2605#define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \
2606((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \
2607 : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \
2608 : SUBREG_PROMOTED_UNSIGNED_P (RTX))
2609
2610/* True if the REG is the static chain register for some CALL_INSN. */
2611#define STATIC_CHAIN_REG_P(RTX) \
2612 (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump)
2613
2614/* True if the subreg was generated by LRA for reload insns. Such
2615 subregs are valid only during LRA. */
2616#define LRA_SUBREG_P(RTX) \
2617 (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump)
2618
2619/* Access various components of an ASM_OPERANDS rtx. */
2620
2621#define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS)
2622#define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS)
2623#define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS)
2624#define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS)
2625#define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS)
2626#define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS)
2627#define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS)
2628#define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \
2629 XCVECEXP (RTX, 4, N, ASM_OPERANDS)
2630#define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \
2631 XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0)
2632#define ASM_OPERANDS_INPUT_MODE(RTX, N) \
2633 GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS))
2634#define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS)
2635#define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS)
2636#define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS)
2637#define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCLOC (RTX, 6, ASM_OPERANDS)
2638#define ASM_INPUT_SOURCE_LOCATION(RTX) XCLOC (RTX, 1, ASM_INPUT)
2639
2640/* 1 if RTX is a mem that is statically allocated in read-only memory. */
2641#define MEM_READONLY_P(RTX) \
2642 (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging)
2643
2644/* 1 if RTX is a mem and we should keep the alias set for this mem
2645 unchanged when we access a component. Set to 1, or example, when we
2646 are already in a non-addressable component of an aggregate. */
2647#define MEM_KEEP_ALIAS_SET_P(RTX) \
2648 (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump)
2649
2650/* 1 if RTX is a mem or asm_operand for a volatile reference. */
2651#define MEM_VOLATILE_P(RTX) \
2652 (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \
2653 ASM_INPUT)->volatil)
2654
2655/* 1 if RTX is a mem that cannot trap. */
2656#define MEM_NOTRAP_P(RTX) \
2657 (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call)
2658
2659/* The memory attribute block. We provide access macros for each value
2660 in the block and provide defaults if none specified. */
2661#define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1)
2662
2663/* The register attribute block. We provide access macros for each value
2664 in the block and provide defaults if none specified. */
2665#define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs)
2666
2667#ifndef GENERATOR_FILE
2668/* For a MEM rtx, the alias set. If 0, this MEM is not in any alias
2669 set, and may alias anything. Otherwise, the MEM can only alias
2670 MEMs in a conflicting alias set. This value is set in a
2671 language-dependent manner in the front-end, and should not be
2672 altered in the back-end. These set numbers are tested with
2673 alias_sets_conflict_p. */
2674#define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias)
2675
2676/* For a MEM rtx, the decl it is known to refer to, if it is known to
2677 refer to part of a DECL. It may also be a COMPONENT_REF. */
2678#define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr)
2679
2680/* For a MEM rtx, true if its MEM_OFFSET is known. */
2681#define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p)
2682
2683/* For a MEM rtx, the offset from the start of MEM_EXPR. */
2684#define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset)
2685
2686/* For a MEM rtx, the address space. */
2687#define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace)
2688
2689/* For a MEM rtx, true if its MEM_SIZE is known. */
2690#define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p)
2691
2692/* For a MEM rtx, the size in bytes of the MEM. */
2693#define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size)
2694
2695/* For a MEM rtx, the alignment in bits. We can use the alignment of the
2696 mode as a default when STRICT_ALIGNMENT, but not if not. */
2697#define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align)
2698#else
2699#define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC
2700#endif
2701
2702/* For a REG rtx, the decl it is known to refer to, if it is known to
2703 refer to part of a DECL. */
2704#define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl)
2705
2706/* For a REG rtx, the offset from the start of REG_EXPR, if known, as an
2707 HOST_WIDE_INT. */
2708#define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset)
2709
2710/* Copy the attributes that apply to memory locations from RHS to LHS. */
2711#define MEM_COPY_ATTRIBUTES(LHS, RHS) \
2712 (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \
2713 MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \
2714 MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \
2715 MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \
2716 MEM_POINTER (LHS) = MEM_POINTER (RHS), \
2717 MEM_ATTRS (LHS) = MEM_ATTRS (RHS))
2718
2719/* 1 if RTX is a label_ref for a nonlocal label. */
2720/* Likewise in an expr_list for a REG_LABEL_OPERAND or
2721 REG_LABEL_TARGET note. */
2722#define LABEL_REF_NONLOCAL_P(RTX) \
2723 (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil)
2724
2725/* 1 if RTX is a code_label that should always be considered to be needed. */
2726#define LABEL_PRESERVE_P(RTX) \
2727 (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct)
2728
2729/* During sched, 1 if RTX is an insn that must be scheduled together
2730 with the preceding insn. */
2731#define SCHED_GROUP_P(RTX) \
2732 (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \
2733 JUMP_INSN, CALL_INSN)->in_struct)
2734
2735/* For a SET rtx, SET_DEST is the place that is set
2736 and SET_SRC is the value it is set to. */
2737#define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER)
2738#define SET_SRC(RTX) XCEXP (RTX, 1, SET)
2739#define SET_IS_RETURN_P(RTX) \
2740 (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump)
2741
2742/* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */
2743#define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF)
2744#define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF)
2745
2746/* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base
2747 conditionally executing the code on, COND_EXEC_CODE is the code
2748 to execute if the condition is true. */
2749#define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC)
2750#define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC)
2751
2752/* 1 if RTX is a symbol_ref that addresses this function's rtl
2753 constants pool. */
2754#define CONSTANT_POOL_ADDRESS_P(RTX) \
2755 (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging)
2756
2757/* 1 if RTX is a symbol_ref that addresses a value in the file's
2758 tree constant pool. This information is private to varasm.cc. */
2759#define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \
2760 (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \
2761 (RTX), SYMBOL_REF)->frame_related)
2762
2763/* Used if RTX is a symbol_ref, for machine-specific purposes. */
2764#define SYMBOL_REF_FLAG(RTX) \
2765 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil)
2766
2767/* 1 if RTX is a symbol_ref that has been the library function in
2768 emit_library_call. */
2769#define SYMBOL_REF_USED(RTX) \
2770 (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used)
2771
2772/* 1 if RTX is a symbol_ref for a weak symbol. */
2773#define SYMBOL_REF_WEAK(RTX) \
2774 (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val)
2775
2776/* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or
2777 SYMBOL_REF_CONSTANT. */
2778#define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1)
2779
2780/* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant
2781 pool symbol. */
2782#define SET_SYMBOL_REF_DECL(RTX, DECL) \
2783 (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL))
2784
2785/* The tree (decl or constant) associated with the symbol, or null. */
2786#define SYMBOL_REF_DECL(RTX) \
2787 (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1))
2788
2789/* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */
2790#define SET_SYMBOL_REF_CONSTANT(RTX, C) \
2791 (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C))
2792
2793/* The rtx constant pool entry for a symbol, or null. */
2794#define SYMBOL_REF_CONSTANT(RTX) \
2795 (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL)
2796
2797/* A set of flags on a symbol_ref that are, in some respects, redundant with
2798 information derivable from the tree decl associated with this symbol.
2799 Except that we build a *lot* of SYMBOL_REFs that aren't associated with a
2800 decl. In some cases this is a bug. But beyond that, it's nice to cache
2801 this information to avoid recomputing it. Finally, this allows space for
2802 the target to store more than one bit of information, as with
2803 SYMBOL_REF_FLAG. */
2804#define SYMBOL_REF_FLAGS(RTX) \
2805 (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \
2806 ->u2.symbol_ref_flags)
2807
2808/* These flags are common enough to be defined for all targets. They
2809 are computed by the default version of targetm.encode_section_info. */
2810
2811/* Set if this symbol is a function. */
2812#define SYMBOL_FLAG_FUNCTION (1 << 0)
2813#define SYMBOL_REF_FUNCTION_P(RTX) \
2814 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0)
2815/* Set if targetm.binds_local_p is true. */
2816#define SYMBOL_FLAG_LOCAL (1 << 1)
2817#define SYMBOL_REF_LOCAL_P(RTX) \
2818 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0)
2819/* Set if targetm.in_small_data_p is true. */
2820#define SYMBOL_FLAG_SMALL (1 << 2)
2821#define SYMBOL_REF_SMALL_P(RTX) \
2822 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0)
2823/* The three-bit field at [5:3] is true for TLS variables; use
2824 SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */
2825#define SYMBOL_FLAG_TLS_SHIFT 3
2826#define SYMBOL_REF_TLS_MODEL(RTX) \
2827 ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7))
2828/* Set if this symbol is not defined in this translation unit. */
2829#define SYMBOL_FLAG_EXTERNAL (1 << 6)
2830#define SYMBOL_REF_EXTERNAL_P(RTX) \
2831 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0)
2832/* Set if this symbol has a block_symbol structure associated with it. */
2833#define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7)
2834#define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \
2835 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0)
2836/* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies
2837 SYMBOL_REF_HAS_BLOCK_INFO_P. */
2838#define SYMBOL_FLAG_ANCHOR (1 << 8)
2839#define SYMBOL_REF_ANCHOR_P(RTX) \
2840 ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0)
2841
2842/* Subsequent bits are available for the target to use. */
2843#define SYMBOL_FLAG_MACH_DEP_SHIFT 9
2844#define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT)
2845
2846/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block
2847 structure to which the symbol belongs, or NULL if it has not been
2848 assigned a block. */
2849#define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block)
2850
2851/* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from
2852 the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if
2853 RTX has not yet been assigned to a block, or it has not been given an
2854 offset within that block. */
2855#define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset)
2856
2857/* True if RTX is flagged to be a scheduling barrier. */
2858#define PREFETCH_SCHEDULE_BARRIER_P(RTX) \
2859 (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil)
2860
2861/* Indicate whether the machine has any sort of auto increment addressing.
2862 If not, we can avoid checking for REG_INC notes. */
2863
2864#if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \
2865 || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \
2866 || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \
2867 || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG))
2868#define AUTO_INC_DEC 1
2869#else
2870#define AUTO_INC_DEC 0
2871#endif
2872
2873/* Define a macro to look for REG_INC notes,
2874 but save time on machines where they never exist. */
2875
2876#if AUTO_INC_DEC
2877#define FIND_REG_INC_NOTE(INSN, REG) \
2878 ((REG) != NULL_RTX && REG_P ((REG)) \
2879 ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \
2880 : find_reg_note ((INSN), REG_INC, (REG)))
2881#else
2882#define FIND_REG_INC_NOTE(INSN, REG) 0
2883#endif
2884
2885#ifndef HAVE_PRE_INCREMENT
2886#define HAVE_PRE_INCREMENT 0
2887#endif
2888
2889#ifndef HAVE_PRE_DECREMENT
2890#define HAVE_PRE_DECREMENT 0
2891#endif
2892
2893#ifndef HAVE_POST_INCREMENT
2894#define HAVE_POST_INCREMENT 0
2895#endif
2896
2897#ifndef HAVE_POST_DECREMENT
2898#define HAVE_POST_DECREMENT 0
2899#endif
2900
2901#ifndef HAVE_POST_MODIFY_DISP
2902#define HAVE_POST_MODIFY_DISP 0
2903#endif
2904
2905#ifndef HAVE_POST_MODIFY_REG
2906#define HAVE_POST_MODIFY_REG 0
2907#endif
2908
2909#ifndef HAVE_PRE_MODIFY_DISP
2910#define HAVE_PRE_MODIFY_DISP 0
2911#endif
2912
2913#ifndef HAVE_PRE_MODIFY_REG
2914#define HAVE_PRE_MODIFY_REG 0
2915#endif
2916
2917
2918/* Some architectures do not have complete pre/post increment/decrement
2919 instruction sets, or only move some modes efficiently. These macros
2920 allow us to tune autoincrement generation. */
2921
2922#ifndef USE_LOAD_POST_INCREMENT
2923#define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2924#endif
2925
2926#ifndef USE_LOAD_POST_DECREMENT
2927#define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2928#endif
2929
2930#ifndef USE_LOAD_PRE_INCREMENT
2931#define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2932#endif
2933
2934#ifndef USE_LOAD_PRE_DECREMENT
2935#define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2936#endif
2937
2938#ifndef USE_STORE_POST_INCREMENT
2939#define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT
2940#endif
2941
2942#ifndef USE_STORE_POST_DECREMENT
2943#define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT
2944#endif
2945
2946#ifndef USE_STORE_PRE_INCREMENT
2947#define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT
2948#endif
2949
2950#ifndef USE_STORE_PRE_DECREMENT
2951#define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT
2952#endif
2953
2954/* Nonzero when we are generating CONCATs. */
2955extern int generating_concat_p;
2956
2957/* Nonzero when we are expanding trees to RTL. */
2958extern int currently_expanding_to_rtl;
2959
2960/* Generally useful functions. */
2961
2962#ifndef GENERATOR_FILE
2963/* Return the cost of SET X. SPEED_P is true if optimizing for speed
2964 rather than size. */
2965
2966inline int
2967set_rtx_cost (rtx x, bool speed_p)
2968{
2969 return rtx_cost (x, VOIDmode, INSN, 4, speed_p);
2970}
2971
2972/* Like set_rtx_cost, but return both the speed and size costs in C. */
2973
2974inline void
2975get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c)
2976{
2977 get_full_rtx_cost (x, VOIDmode, INSN, 4, c);
2978}
2979
2980/* Return the cost of moving X into a register, relative to the cost
2981 of a register move. SPEED_P is true if optimizing for speed rather
2982 than size. */
2983
2984inline int
2985set_src_cost (rtx x, machine_mode mode, bool speed_p)
2986{
2987 return rtx_cost (x, mode, SET, 1, speed_p);
2988}
2989
2990/* Like set_src_cost, but return both the speed and size costs in C. */
2991
2992inline void
2993get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c)
2994{
2995 get_full_rtx_cost (x, mode, SET, 1, c);
2996}
2997#endif
2998
2999/* A convenience macro to validate the arguments of a zero_extract
3000 expression. It determines whether SIZE lies inclusively within
3001 [1, RANGE], POS lies inclusively within between [0, RANGE - 1]
3002 and the sum lies inclusively within [1, RANGE]. RANGE must be
3003 >= 1, but SIZE and POS may be negative. */
3004#define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \
3005 (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \
3006 && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \
3007 - (unsigned HOST_WIDE_INT)(POS)))
3008
3009/* In explow.cc */
3010extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode);
3011extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode);
3012extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false);
3013extern HOST_WIDE_INT get_stack_check_protect (void);
3014
3015/* In rtl.cc */
3016extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO);
3017inline rtx
3018rtx_init (rtx rt, RTX_CODE code)
3019{
3020 memset (s: rt, c: 0, RTX_HDR_SIZE);
3021 PUT_CODE (rt, code);
3022 return rt;
3023}
3024#define rtx_alloca(code) \
3025 rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code))
3026extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int);
3027#define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ)
3028#define const_wide_int_alloc(NWORDS) \
3029 rtx_alloc_v (CONST_WIDE_INT, \
3030 (sizeof (struct hwivec_def) \
3031 + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \
3032
3033extern rtvec rtvec_alloc (size_t);
3034extern rtvec shallow_copy_rtvec (rtvec);
3035extern bool shared_const_p (const_rtx);
3036extern rtx copy_rtx (rtx);
3037extern enum rtx_code classify_insn (rtx);
3038extern void dump_rtx_statistics (void);
3039
3040/* In emit-rtl.cc */
3041
3042/* Opcodes used in the bytecode generated by genemit.cc. */
3043enum class expand_opcode {
3044 /* NULL_RTX. */
3045 NO_RTX,
3046
3047 /* A (match_operand N) or (match_dup N). Followed by the operand number. */
3048 MATCH_OPERAND,
3049
3050 /* A (match_operator N) or (match_op_dup N) that preserves the original mode.
3051 Followed by the operand number. */
3052 MATCH_OPERATOR,
3053
3054 /* A (match_operator N) or (match_op_dup N) that overrides the original mode.
3055 Followed by the new mode and by the operand number. */
3056 MATCH_OPERATOR_WITH_MODE,
3057
3058 /* A (match_parallel N) or (match_par_dup N). Followed by the operand
3059 number. */
3060 MATCH_PARALLEL,
3061
3062 /* A (clobber (reg:M R)). Followed by M and R. */
3063 CLOBBER_REG,
3064
3065 /* FIRST_CODE + X represents a normal rtx with code X. */
3066 FIRST_CODE
3067};
3068
3069extern rtx expand_rtx (const uint8_t *, rtx *);
3070extern rtx_insn *complete_seq (const uint8_t *, rtx *);
3071extern rtx copy_rtx_if_shared (rtx);
3072
3073/* In rtl.cc */
3074extern unsigned int rtx_size (const_rtx);
3075extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO);
3076
3077typedef bool (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *,
3078 rtx *, rtx *);
3079extern bool rtx_equal_p (const_rtx, const_rtx,
3080 rtx_equal_p_callback_function = NULL);
3081
3082extern bool rtvec_all_equal_p (const_rtvec);
3083extern bool rtvec_series_p (rtvec, int);
3084
3085/* Return true if X is a vector constant with a duplicated element value. */
3086
3087inline bool
3088const_vec_duplicate_p (const_rtx x)
3089{
3090 return (GET_CODE (x) == CONST_VECTOR
3091 && CONST_VECTOR_NPATTERNS (x) == 1
3092 && CONST_VECTOR_DUPLICATE_P (x));
3093}
3094
3095/* Return true if X is a vector constant with a duplicated element value.
3096 Store the duplicated element in *ELT if so. */
3097
3098template <typename T>
3099inline bool
3100const_vec_duplicate_p (T x, T *elt)
3101{
3102 if (const_vec_duplicate_p (x))
3103 {
3104 *elt = CONST_VECTOR_ENCODED_ELT (x, 0);
3105 return true;
3106 }
3107 return false;
3108}
3109
3110/* Return true if X is a vector with a duplicated element value, either
3111 constant or nonconstant. Store the duplicated element in *ELT if so. */
3112
3113template <typename T>
3114inline bool
3115vec_duplicate_p (T x, T *elt)
3116{
3117 if (GET_CODE (x) == VEC_DUPLICATE
3118 && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0))))
3119 {
3120 *elt = XEXP (x, 0);
3121 return true;
3122 }
3123 return const_vec_duplicate_p (x, elt);
3124}
3125
3126/* If X is a vector constant with a duplicated element value, return that
3127 element value, otherwise return X. */
3128
3129template <typename T>
3130inline T
3131unwrap_const_vec_duplicate (T x)
3132{
3133 if (const_vec_duplicate_p (x))
3134 x = CONST_VECTOR_ELT (x, 0);
3135 return x;
3136}
3137
3138/* In emit-rtl.cc. */
3139extern wide_int const_vector_int_elt (const_rtx, unsigned int);
3140extern rtx const_vector_elt (const_rtx, unsigned int);
3141extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *);
3142
3143/* Return true if X is an integer constant vector that contains a linear
3144 series of the form:
3145
3146 { B, B + S, B + 2 * S, B + 3 * S, ... }
3147
3148 for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */
3149
3150inline bool
3151const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3152{
3153 if (GET_CODE (x) == CONST_VECTOR
3154 && CONST_VECTOR_NPATTERNS (x) == 1
3155 && !CONST_VECTOR_DUPLICATE_P (x))
3156 return const_vec_series_p_1 (x, base_out, step_out);
3157 return false;
3158}
3159
3160/* Return true if X is a vector that contains a linear series of the
3161 form:
3162
3163 { B, B + S, B + 2 * S, B + 3 * S, ... }
3164
3165 where B and S are constant or nonconstant. Store B and S in
3166 *BASE_OUT and *STEP_OUT on sucess. */
3167
3168inline bool
3169vec_series_p (const_rtx x, rtx *base_out, rtx *step_out)
3170{
3171 if (GET_CODE (x) == VEC_SERIES)
3172 {
3173 *base_out = XEXP (x, 0);
3174 *step_out = XEXP (x, 1);
3175 return true;
3176 }
3177 return const_vec_series_p (x, base_out, step_out);
3178}
3179
3180/* Return true if CONST_VECTORs X and Y, which are known to have the same mode,
3181 also have the same encoding. This means that they are equal whenever their
3182 operands are equal. */
3183
3184inline bool
3185same_vector_encodings_p (const_rtx x, const_rtx y)
3186{
3187 /* Don't be fussy about the encoding of constant-length vectors,
3188 since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */
3189 if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ())
3190 return true;
3191
3192 return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y)
3193 && (CONST_VECTOR_NELTS_PER_PATTERN (x)
3194 == CONST_VECTOR_NELTS_PER_PATTERN (y)));
3195}
3196
3197/* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3198
3199inline scalar_int_mode
3200subreg_unpromoted_mode (rtx x)
3201{
3202 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3203 return as_a <scalar_int_mode> (GET_MODE (x));
3204}
3205
3206/* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */
3207
3208inline scalar_int_mode
3209subreg_promoted_mode (rtx x)
3210{
3211 gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x));
3212 return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)));
3213}
3214
3215/* In emit-rtl.cc */
3216extern rtvec gen_rtvec_v (int, rtx *);
3217extern rtvec gen_rtvec_v (int, rtx_insn **);
3218extern rtx gen_reg_rtx (machine_mode);
3219extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64);
3220extern rtx gen_reg_rtx_offset (rtx, machine_mode, int);
3221extern rtx gen_reg_rtx_and_attrs (rtx);
3222extern rtx_code_label *gen_label_rtx (void);
3223extern rtx gen_lowpart_common (machine_mode, rtx);
3224
3225/* In cse.cc */
3226extern rtx gen_lowpart_if_possible (machine_mode, rtx);
3227
3228/* In emit-rtl.cc */
3229extern rtx gen_highpart (machine_mode, rtx);
3230extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx);
3231extern rtx operand_subword (rtx, poly_uint64, int, machine_mode);
3232
3233/* In emit-rtl.cc */
3234extern rtx operand_subword_force (rtx, poly_uint64, machine_mode);
3235extern bool subreg_lowpart_p (const_rtx);
3236extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64);
3237
3238/* Return true if a subreg of mode OUTERMODE would only access part of
3239 an inner register with mode INNERMODE. The other bits of the inner
3240 register would then be "don't care" on read. The behavior for writes
3241 depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d
3242 chunk would be clobbered but other bits would be preserved. */
3243
3244inline bool
3245partial_subreg_p (machine_mode outermode, machine_mode innermode)
3246{
3247 /* Modes involved in a subreg must be ordered. In particular, we must
3248 always know at compile time whether the subreg is paradoxical. */
3249 poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode);
3250 poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode);
3251 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3252 return maybe_lt (a: outer_prec, b: inner_prec);
3253}
3254
3255/* Likewise return true if X is a subreg that is smaller than the inner
3256 register. Use read_modify_subreg_p to test whether writing to such
3257 a subreg preserves any part of the inner register. */
3258
3259inline bool
3260partial_subreg_p (const_rtx x)
3261{
3262 if (GET_CODE (x) != SUBREG)
3263 return false;
3264 return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3265}
3266
3267/* Return true if a subreg with the given outer and inner modes is
3268 paradoxical. */
3269
3270inline bool
3271paradoxical_subreg_p (machine_mode outermode, machine_mode innermode)
3272{
3273 /* Modes involved in a subreg must be ordered. In particular, we must
3274 always know at compile time whether the subreg is paradoxical. */
3275 poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode);
3276 poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode);
3277 gcc_checking_assert (ordered_p (outer_prec, inner_prec));
3278 return maybe_gt (outer_prec, inner_prec);
3279}
3280
3281/* Return true if X is a paradoxical subreg, false otherwise. */
3282
3283inline bool
3284paradoxical_subreg_p (const_rtx x)
3285{
3286 if (GET_CODE (x) != SUBREG)
3287 return false;
3288 return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3289}
3290
3291/* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */
3292
3293inline poly_uint64
3294subreg_lowpart_offset (machine_mode outermode, machine_mode innermode)
3295{
3296 return subreg_size_lowpart_offset (GET_MODE_SIZE (mode: outermode),
3297 GET_MODE_SIZE (mode: innermode));
3298}
3299
3300/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3301 return the smaller of the two modes if they are different sizes,
3302 otherwise return the outer mode. */
3303
3304inline machine_mode
3305narrower_subreg_mode (machine_mode outermode, machine_mode innermode)
3306{
3307 return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode;
3308}
3309
3310/* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE,
3311 return the mode that is big enough to hold both the outer and inner
3312 values. Prefer the outer mode in the event of a tie. */
3313
3314inline machine_mode
3315wider_subreg_mode (machine_mode outermode, machine_mode innermode)
3316{
3317 return partial_subreg_p (outermode, innermode) ? innermode : outermode;
3318}
3319
3320/* Likewise for subreg X. */
3321
3322inline machine_mode
3323wider_subreg_mode (const_rtx x)
3324{
3325 return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x)));
3326}
3327
3328extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64);
3329
3330/* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */
3331
3332inline poly_uint64
3333subreg_highpart_offset (machine_mode outermode, machine_mode innermode)
3334{
3335 return subreg_size_highpart_offset (GET_MODE_SIZE (mode: outermode),
3336 GET_MODE_SIZE (mode: innermode));
3337}
3338
3339extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode);
3340extern poly_int64 subreg_memory_offset (machine_mode, machine_mode,
3341 poly_uint64);
3342extern poly_int64 subreg_memory_offset (const_rtx);
3343extern rtx make_safe_from (rtx, rtx);
3344extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx,
3345 addr_space_t, bool, bool);
3346extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx,
3347 addr_space_t);
3348#define convert_memory_address(to_mode,x) \
3349 convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC)
3350extern const char *get_insn_name (int);
3351extern rtx_insn *get_last_insn_anywhere (void);
3352extern rtx_insn *get_first_nonnote_insn (void);
3353extern rtx_insn *get_last_nonnote_insn (void);
3354extern void start_sequence (void);
3355extern void push_to_sequence (rtx_insn *);
3356extern void push_to_sequence2 (rtx_insn *, rtx_insn *);
3357extern rtx_insn *end_sequence (void);
3358#if TARGET_SUPPORTS_WIDE_INT == 0
3359extern double_int rtx_to_double_int (const_rtx);
3360#endif
3361extern void cwi_output_hex (FILE *, const_rtx);
3362#if TARGET_SUPPORTS_WIDE_INT == 0
3363extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT,
3364 machine_mode);
3365#endif
3366extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode);
3367
3368/* In varasm.cc */
3369extern rtx force_const_mem (machine_mode, rtx);
3370
3371/* In varasm.cc */
3372
3373struct function;
3374extern rtx get_pool_constant (const_rtx);
3375extern rtx get_pool_constant_mark (rtx, bool *);
3376extern fixed_size_mode get_pool_mode (const_rtx);
3377extern rtx simplify_subtraction (rtx);
3378extern void decide_function_section (tree);
3379
3380/* In emit-rtl.cc */
3381extern rtx_insn *emit_insn_before (rtx, rtx_insn *);
3382extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block);
3383extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t);
3384extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *);
3385extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *);
3386extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *,
3387 location_t);
3388extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *);
3389extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *);
3390extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t);
3391extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *);
3392extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *);
3393extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t);
3394extern rtx_barrier *emit_barrier_before (rtx_insn *);
3395extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *);
3396extern rtx_note *emit_note_before (enum insn_note, rtx_insn *);
3397extern rtx_insn *emit_insn_after (rtx, rtx_insn *);
3398extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block);
3399extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t);
3400extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *);
3401extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *);
3402extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t);
3403extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *);
3404extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *);
3405extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t);
3406extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *);
3407extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *);
3408extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t);
3409extern rtx_barrier *emit_barrier_after (rtx_insn *);
3410extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *);
3411extern rtx_note *emit_note_after (enum insn_note, rtx_insn *);
3412extern rtx_insn *emit_insn (rtx);
3413extern rtx_insn *emit_debug_insn (rtx);
3414extern rtx_insn *emit_jump_insn (rtx);
3415extern rtx_insn *emit_likely_jump_insn (rtx);
3416extern rtx_insn *emit_unlikely_jump_insn (rtx);
3417extern rtx_insn *emit_call_insn (rtx);
3418extern rtx_code_label *emit_label (rtx);
3419extern rtx_jump_table_data *emit_jump_table_data (rtx);
3420extern rtx_barrier *emit_barrier (void);
3421extern rtx_note *emit_note (enum insn_note);
3422extern rtx_note *emit_note_copy (rtx_note *);
3423extern rtx_insn *gen_clobber (rtx);
3424extern rtx_insn *emit_clobber (rtx);
3425extern rtx_insn *gen_use (rtx);
3426extern rtx_insn *emit_use (rtx);
3427extern rtx_insn *make_insn_raw (rtx);
3428extern void add_function_usage_to (rtx, rtx);
3429extern rtx_call_insn *last_call_insn (void);
3430extern rtx_insn *previous_insn (rtx_insn *);
3431extern rtx_insn *next_insn (rtx_insn *);
3432extern rtx_insn *prev_nonnote_insn (rtx_insn *);
3433extern rtx_insn *next_nonnote_insn (rtx_insn *);
3434extern rtx_insn *prev_nondebug_insn (rtx_insn *);
3435extern rtx_insn *next_nondebug_insn (rtx_insn *);
3436extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *);
3437extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *);
3438extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *);
3439extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *);
3440extern rtx_insn *prev_real_insn (rtx_insn *);
3441extern rtx_insn *next_real_insn (rtx_insn *);
3442extern rtx_insn *prev_real_nondebug_insn (rtx_insn *);
3443extern rtx_insn *next_real_nondebug_insn (rtx);
3444extern rtx_insn *prev_active_insn (rtx_insn *);
3445extern rtx_insn *next_active_insn (rtx_insn *);
3446extern bool active_insn_p (const rtx_insn *);
3447
3448/* In emit-rtl.cc */
3449extern int insn_line (const rtx_insn *);
3450extern const char * insn_file (const rtx_insn *);
3451extern tree insn_scope (const rtx_insn *);
3452extern expanded_location insn_location (const rtx_insn *);
3453extern int insn_discriminator (const rtx_insn *);
3454extern location_t prologue_location, epilogue_location;
3455
3456/* In jump.cc */
3457extern enum rtx_code reverse_condition (enum rtx_code);
3458extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code);
3459extern enum rtx_code swap_condition (enum rtx_code);
3460extern enum rtx_code unsigned_condition (enum rtx_code);
3461extern enum rtx_code signed_condition (enum rtx_code);
3462extern void mark_jump_label (rtx, rtx_insn *, int);
3463
3464/* Return true if integer comparison operator CODE interprets its operands
3465 as unsigned. */
3466
3467inline bool
3468unsigned_condition_p (enum rtx_code code)
3469{
3470 return unsigned_condition (code) == code;
3471}
3472
3473/* In jump.cc */
3474extern rtx_insn *delete_related_insns (rtx);
3475
3476/* In recog.cc */
3477extern rtx *find_constant_term_loc (rtx *);
3478
3479/* In emit-rtl.cc */
3480extern rtx_insn *try_split (rtx, rtx_insn *, int);
3481
3482/* In insn-recog.cc (generated by genrecog). */
3483extern rtx_insn *split_insns (rtx, rtx_insn *);
3484
3485/* In simplify-rtx.cc */
3486
3487/* A class that records the context in which a simplification
3488 is being mode. */
3489class simplify_context
3490{
3491public:
3492 rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode);
3493 rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx);
3494 rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode,
3495 rtx, rtx, rtx);
3496 rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode,
3497 rtx, rtx);
3498 rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3499
3500 rtx lowpart_subreg (machine_mode, rtx, machine_mode);
3501
3502 rtx simplify_merge_mask (rtx, rtx, int);
3503
3504 rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode);
3505 rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx);
3506 rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode,
3507 rtx, rtx, rtx);
3508 rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx);
3509 rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64);
3510 rtx simplify_gen_vec_select (rtx, unsigned int);
3511
3512 /* Tracks the level of MEM nesting for the value being simplified:
3513 0 means the value is not in a MEM, >0 means it is. This is needed
3514 because the canonical representation of multiplication is different
3515 inside a MEM than outside. */
3516 unsigned int mem_depth = 0;
3517
3518 /* Tracks number of simplify_associative_operation calls performed during
3519 outermost simplify* call. */
3520 unsigned int assoc_count = 0;
3521
3522 /* Limit for the above number, return NULL from
3523 simplify_associative_operation after we reach that assoc_count. */
3524 static const unsigned int max_assoc_count = 64;
3525
3526private:
3527 rtx simplify_truncation (machine_mode, rtx, machine_mode);
3528 rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx);
3529 rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx);
3530 rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx);
3531 rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx,
3532 bool = false);
3533 rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx);
3534 rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx);
3535 rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int);
3536 rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx);
3537 rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx);
3538
3539 rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx);
3540 rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx);
3541 rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode,
3542 rtx, rtx, rtx);
3543 rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode,
3544 rtx, rtx);
3545};
3546
3547inline rtx
3548simplify_unary_operation (rtx_code code, machine_mode mode, rtx op,
3549 machine_mode op_mode)
3550{
3551 return simplify_context ().simplify_unary_operation (code, mode, op,
3552 op_mode);
3553}
3554
3555inline rtx
3556simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3557{
3558 return simplify_context ().simplify_binary_operation (code, mode, op0, op1);
3559}
3560
3561inline rtx
3562simplify_ternary_operation (rtx_code code, machine_mode mode,
3563 machine_mode op0_mode, rtx op0, rtx op1, rtx op2)
3564{
3565 return simplify_context ().simplify_ternary_operation (code, mode, op0_mode,
3566 op0, op1, op2);
3567}
3568
3569inline rtx
3570simplify_relational_operation (rtx_code code, machine_mode mode,
3571 machine_mode op_mode, rtx op0, rtx op1)
3572{
3573 return simplify_context ().simplify_relational_operation (code, mode,
3574 op_mode, op0, op1);
3575}
3576
3577inline rtx
3578simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3579 poly_uint64 byte)
3580{
3581 return simplify_context ().simplify_subreg (outermode, op, innermode, byte);
3582}
3583
3584inline rtx
3585simplify_gen_unary (rtx_code code, machine_mode mode, rtx op,
3586 machine_mode op_mode)
3587{
3588 return simplify_context ().simplify_gen_unary (code, mode, op, op_mode);
3589}
3590
3591inline rtx
3592simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1)
3593{
3594 return simplify_context ().simplify_gen_binary (code, mode, op0, op1);
3595}
3596
3597inline rtx
3598simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode,
3599 rtx op0, rtx op1, rtx op2)
3600{
3601 return simplify_context ().simplify_gen_ternary (code, mode, op0_mode,
3602 op0, op1, op2);
3603}
3604
3605inline rtx
3606simplify_gen_relational (rtx_code code, machine_mode mode,
3607 machine_mode op_mode, rtx op0, rtx op1)
3608{
3609 return simplify_context ().simplify_gen_relational (code, mode, op_mode,
3610 op0, op1);
3611}
3612
3613inline rtx
3614simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode,
3615 poly_uint64 byte)
3616{
3617 return simplify_context ().simplify_gen_subreg (outermode, op,
3618 innermode, byte);
3619}
3620
3621inline rtx
3622simplify_gen_vec_select (rtx op, unsigned int index)
3623{
3624 return simplify_context ().simplify_gen_vec_select (op, index);
3625}
3626
3627inline rtx
3628lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode)
3629{
3630 return simplify_context ().lowpart_subreg (outermode, op, innermode);
3631}
3632
3633extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode,
3634 rtx, machine_mode);
3635extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode,
3636 rtx, rtx);
3637extern rtx simplify_const_relational_operation (enum rtx_code,
3638 machine_mode, rtx, rtx);
3639extern rtx simplify_replace_fn_rtx (rtx, const_rtx,
3640 rtx (*fn) (rtx, const_rtx, void *), void *);
3641extern rtx simplify_replace_rtx (rtx, const_rtx, rtx);
3642extern rtx simplify_rtx (const_rtx);
3643extern rtx avoid_constant_pool_reference (rtx);
3644extern rtx delegitimize_mem_from_attrs (rtx);
3645extern bool mode_signbit_p (machine_mode, const_rtx);
3646extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT);
3647extern bool val_signbit_known_set_p (machine_mode,
3648 unsigned HOST_WIDE_INT);
3649extern bool val_signbit_known_clear_p (machine_mode,
3650 unsigned HOST_WIDE_INT);
3651extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx);
3652
3653/* In reginfo.cc */
3654extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int,
3655 const predefined_function_abi *);
3656extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &);
3657
3658/* In emit-rtl.cc */
3659extern rtx set_for_reg_notes (rtx);
3660extern rtx set_unique_reg_note (rtx, enum reg_note, rtx);
3661extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx);
3662extern void set_insn_deleted (rtx_insn *);
3663
3664/* Functions in rtlanal.cc */
3665
3666extern rtx single_set_2 (const rtx_insn *, const_rtx);
3667extern rtx simple_regno_set (rtx, unsigned int);
3668extern bool contains_symbol_ref_p (const_rtx);
3669extern bool contains_symbolic_reference_p (const_rtx);
3670extern bool contains_constant_pool_address_p (const_rtx);
3671extern void add_auto_inc_notes (rtx_insn *, rtx);
3672
3673/* Handle the cheap and common cases inline for performance. */
3674
3675inline rtx single_set (const rtx_insn *insn)
3676{
3677 if (!INSN_P (insn))
3678 return NULL_RTX;
3679
3680 if (GET_CODE (PATTERN (insn)) == SET)
3681 return PATTERN (insn);
3682
3683 /* Defer to the more expensive case. */
3684 return single_set_2 (insn, PATTERN (insn));
3685}
3686
3687extern scalar_int_mode get_address_mode (rtx mem);
3688extern bool rtx_addr_can_trap_p (const_rtx);
3689extern bool nonzero_address_p (const_rtx);
3690extern bool rtx_unstable_p (const_rtx);
3691extern bool rtx_varies_p (const_rtx, bool);
3692extern bool rtx_addr_varies_p (const_rtx, bool);
3693extern tree get_call_fndecl (const rtx_insn *);
3694extern HOST_WIDE_INT get_integer_term (const_rtx);
3695extern rtx get_related_value (const_rtx);
3696extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT);
3697extern void split_const (rtx, rtx *, rtx *);
3698extern rtx strip_offset (rtx, poly_int64 *);
3699extern poly_int64 get_args_size (const_rtx);
3700extern bool unsigned_reg_p (rtx);
3701extern bool reg_mentioned_p (const_rtx, const_rtx);
3702extern int count_occurrences (const_rtx, const_rtx, int);
3703extern bool reg_referenced_p (const_rtx, const_rtx);
3704extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3705extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3706extern int commutative_operand_precedence (rtx);
3707extern bool swap_commutative_operands_p (rtx, rtx);
3708extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *);
3709extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *);
3710extern bool modified_in_p (const_rtx, const_rtx);
3711extern bool reg_set_p (const_rtx, const_rtx);
3712extern bool multiple_sets (const_rtx);
3713extern bool set_noop_p (const_rtx);
3714extern bool noop_move_p (const rtx_insn *);
3715extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *);
3716extern bool reg_overlap_mentioned_p (const_rtx, const_rtx);
3717extern const_rtx set_of (const_rtx, const_rtx);
3718extern void record_hard_reg_sets (rtx, const_rtx, void *);
3719extern void record_hard_reg_uses (rtx *, void *);
3720extern void find_all_hard_regs (const_rtx, HARD_REG_SET *);
3721extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool);
3722extern void note_pattern_stores (const_rtx,
3723 void (*) (rtx, const_rtx, void *), void *);
3724extern void note_stores (const rtx_insn *,
3725 void (*) (rtx, const_rtx, void *), void *);
3726extern void note_uses (rtx *, void (*) (rtx *, void *), void *);
3727extern bool dead_or_set_p (const rtx_insn *, const_rtx);
3728extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int);
3729extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx);
3730extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int);
3731extern rtx find_reg_equal_equiv_note (const_rtx);
3732extern rtx find_constant_src (const rtx_insn *);
3733extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx);
3734extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int);
3735extern rtx alloc_reg_note (enum reg_note, rtx, rtx);
3736extern void add_reg_note (rtx, enum reg_note, rtx);
3737extern void add_int_reg_note (rtx_insn *, enum reg_note, int);
3738extern void add_args_size_note (rtx_insn *, poly_int64);
3739extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx);
3740extern rtx duplicate_reg_note (rtx);
3741extern void remove_note (rtx_insn *, const_rtx);
3742extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false);
3743extern void remove_reg_equal_equiv_notes_for_regno (unsigned int);
3744extern bool side_effects_p (const_rtx);
3745extern bool volatile_refs_p (const_rtx);
3746extern bool volatile_insn_p (const_rtx);
3747extern bool may_trap_p_1 (const_rtx, unsigned);
3748extern bool may_trap_p (const_rtx);
3749extern bool may_trap_or_fault_p (const_rtx);
3750extern bool can_throw_internal (const_rtx);
3751extern bool can_throw_external (const_rtx);
3752extern bool insn_could_throw_p (const_rtx);
3753extern bool insn_nothrow_p (const_rtx);
3754extern bool can_nonlocal_goto (const rtx_insn *);
3755extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx);
3756extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx);
3757extern rtx replace_rtx (rtx, rtx, rtx, bool = false);
3758extern void replace_label (rtx *, rtx, rtx, bool);
3759extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool);
3760extern bool rtx_referenced_p (const_rtx, const_rtx);
3761extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **);
3762extern rtx tablejump_casesi_pattern (const rtx_insn *insn);
3763extern bool computed_jump_p (const rtx_insn *);
3764extern bool tls_referenced_p (const_rtx);
3765extern bool contains_mem_rtx_p (rtx x);
3766extern bool register_asm_p (const_rtx);
3767
3768/* Overload for refers_to_regno_p for checking a single register. */
3769inline bool
3770refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL)
3771{
3772 return refers_to_regno_p (regnum, regnum + 1, x, loc);
3773}
3774
3775/* Callback for for_each_inc_dec, to process the autoinc operation OP
3776 within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is
3777 NULL. The callback is passed the same opaque ARG passed to
3778 for_each_inc_dec. Return zero to continue looking for other
3779 autoinc operations or any other value to interrupt the traversal and
3780 return that value to the caller of for_each_inc_dec. */
3781typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src,
3782 rtx srcoff, void *arg);
3783extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg);
3784
3785extern rtx regno_use_in (unsigned int, rtx);
3786extern bool auto_inc_p (const_rtx);
3787extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *);
3788extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **);
3789extern bool loc_mentioned_in_p (rtx *, const_rtx);
3790extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *);
3791extern bool keep_with_call_p (const rtx_insn *);
3792extern bool label_is_jump_target_p (const_rtx, const rtx_insn *);
3793extern int pattern_cost (rtx, bool);
3794extern int insn_cost (rtx_insn *, bool);
3795extern unsigned seq_cost (const rtx_insn *, bool);
3796
3797/* Given an insn and condition, return a canonical description of
3798 the test being made. */
3799extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx,
3800 int, int);
3801
3802/* Given a JUMP_INSN, return a canonical description of the test
3803 being made. */
3804extern rtx get_condition (rtx_insn *, rtx_insn **, int, int);
3805
3806/* Information about a subreg of a hard register. */
3807struct subreg_info
3808{
3809 /* Offset of first hard register involved in the subreg. */
3810 int offset;
3811 /* Number of hard registers involved in the subreg. In the case of
3812 a paradoxical subreg, this is the number of registers that would
3813 be modified by writing to the subreg; some of them may be don't-care
3814 when reading from the subreg. */
3815 int nregs;
3816 /* Whether this subreg can be represented as a hard reg with the new
3817 mode (by adding OFFSET to the original hard register). */
3818 bool representable_p;
3819};
3820
3821extern void subreg_get_info (unsigned int, machine_mode,
3822 poly_uint64, machine_mode,
3823 struct subreg_info *);
3824
3825/* lists.cc */
3826
3827extern void free_EXPR_LIST_list (rtx_expr_list **);
3828extern void free_INSN_LIST_list (rtx_insn_list **);
3829extern void free_EXPR_LIST_node (rtx);
3830extern void free_INSN_LIST_node (rtx);
3831extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx);
3832extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *);
3833extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *);
3834extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx);
3835extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **);
3836extern rtx remove_list_elem (rtx, rtx *);
3837extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **);
3838extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **);
3839
3840
3841/* reginfo.cc */
3842
3843/* Resize reg info. */
3844extern bool resize_reg_info (void);
3845/* Free up register info memory. */
3846extern void free_reg_info (void);
3847extern void init_subregs_of_mode (void);
3848extern void finish_subregs_of_mode (void);
3849extern void reginfo_cc_finalize (void);
3850
3851/* recog.cc */
3852extern rtx extract_asm_operands (rtx);
3853extern int asm_noperands (const_rtx);
3854extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **,
3855 machine_mode *, location_t *);
3856extern void get_referenced_operands (const char *, bool *, unsigned int);
3857
3858extern enum reg_class reg_preferred_class (int);
3859extern enum reg_class reg_alternate_class (int);
3860extern enum reg_class reg_allocno_class (int);
3861extern void setup_reg_classes (int, enum reg_class, enum reg_class,
3862 enum reg_class);
3863
3864extern void split_all_insns (void);
3865extern void split_all_insns_noflow (void);
3866
3867#define MAX_SAVED_CONST_INT 64
3868extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1];
3869
3870#define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT])
3871#define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1])
3872#define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2])
3873#define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1])
3874extern GTY(()) rtx const_true_rtx;
3875
3876extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE];
3877
3878/* Returns a constant 0 rtx in mode MODE. Integer modes are treated the
3879 same as VOIDmode. */
3880
3881#define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)])
3882
3883/* Likewise, for the constants 1 and 2 and -1. */
3884
3885#define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)])
3886#define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)])
3887#define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)])
3888
3889extern GTY(()) rtx pc_rtx;
3890extern GTY(()) rtx ret_rtx;
3891extern GTY(()) rtx simple_return_rtx;
3892extern GTY(()) rtx_insn *invalid_insn_rtx;
3893
3894/* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg
3895 is used to represent the frame pointer. This is because the
3896 hard frame pointer and the automatic variables are separated by an amount
3897 that cannot be determined until after register allocation. We can assume
3898 that in this case ELIMINABLE_REGS will be defined, one action of which
3899 will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */
3900#ifndef HARD_FRAME_POINTER_REGNUM
3901#define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM
3902#endif
3903
3904#ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER
3905#define HARD_FRAME_POINTER_IS_FRAME_POINTER \
3906 (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM)
3907#endif
3908
3909#ifndef HARD_FRAME_POINTER_IS_ARG_POINTER
3910#define HARD_FRAME_POINTER_IS_ARG_POINTER \
3911 (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM)
3912#endif
3913
3914/* Index labels for global_rtl. */
3915enum global_rtl_index
3916{
3917 GR_STACK_POINTER,
3918 GR_FRAME_POINTER,
3919/* For register elimination to work properly these hard_frame_pointer_rtx,
3920 frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to
3921 the same register. */
3922#if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
3923 GR_ARG_POINTER = GR_FRAME_POINTER,
3924#endif
3925#if HARD_FRAME_POINTER_IS_FRAME_POINTER
3926 GR_HARD_FRAME_POINTER = GR_FRAME_POINTER,
3927#else
3928 GR_HARD_FRAME_POINTER,
3929#endif
3930#if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3931#if HARD_FRAME_POINTER_IS_ARG_POINTER
3932 GR_ARG_POINTER = GR_HARD_FRAME_POINTER,
3933#else
3934 GR_ARG_POINTER,
3935#endif
3936#endif
3937 GR_VIRTUAL_INCOMING_ARGS,
3938 GR_VIRTUAL_STACK_ARGS,
3939 GR_VIRTUAL_STACK_DYNAMIC,
3940 GR_VIRTUAL_OUTGOING_ARGS,
3941 GR_VIRTUAL_CFA,
3942 GR_VIRTUAL_PREFERRED_STACK_BOUNDARY,
3943
3944 GR_MAX
3945};
3946
3947/* Target-dependent globals. */
3948struct GTY(()) target_rtl {
3949 /* All references to the hard registers in global_rtl_index go through
3950 these unique rtl objects. On machines where the frame-pointer and
3951 arg-pointer are the same register, they use the same unique object.
3952
3953 After register allocation, other rtl objects which used to be pseudo-regs
3954 may be clobbered to refer to the frame-pointer register.
3955 But references that were originally to the frame-pointer can be
3956 distinguished from the others because they contain frame_pointer_rtx.
3957
3958 When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little
3959 tricky: until register elimination has taken place hard_frame_pointer_rtx
3960 should be used if it is being set, and frame_pointer_rtx otherwise. After
3961 register elimination hard_frame_pointer_rtx should always be used.
3962 On machines where the two registers are same (most) then these are the
3963 same. */
3964 rtx x_global_rtl[GR_MAX];
3965
3966 /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */
3967 rtx x_pic_offset_table_rtx;
3968
3969 /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM).
3970 This is used to implement __builtin_return_address for some machines;
3971 see for instance the MIPS port. */
3972 rtx x_return_address_pointer_rtx;
3973
3974 /* Commonly used RTL for hard registers. These objects are not
3975 necessarily unique, so we allocate them separately from global_rtl.
3976 They are initialized once per compilation unit, then copied into
3977 regno_reg_rtx at the beginning of each function. */
3978 rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3979
3980 /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */
3981 rtx x_top_of_stack[MAX_MACHINE_MODE];
3982
3983 /* Static hunks of RTL used by the aliasing code; these are treated
3984 as persistent to avoid unnecessary RTL allocations. */
3985 rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER];
3986
3987 /* The default memory attributes for each mode. */
3988 class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE];
3989
3990 /* Track if RTL has been initialized. */
3991 bool target_specific_initialized;
3992};
3993
3994extern GTY(()) struct target_rtl default_target_rtl;
3995#if SWITCHABLE_TARGET
3996extern struct target_rtl *this_target_rtl;
3997#else
3998#define this_target_rtl (&default_target_rtl)
3999#endif
4000
4001#define global_rtl \
4002 (this_target_rtl->x_global_rtl)
4003#define pic_offset_table_rtx \
4004 (this_target_rtl->x_pic_offset_table_rtx)
4005#define return_address_pointer_rtx \
4006 (this_target_rtl->x_return_address_pointer_rtx)
4007#define top_of_stack \
4008 (this_target_rtl->x_top_of_stack)
4009#define mode_mem_attrs \
4010 (this_target_rtl->x_mode_mem_attrs)
4011
4012/* All references to certain hard regs, except those created
4013 by allocating pseudo regs into them (when that's possible),
4014 go through these unique rtx objects. */
4015#define stack_pointer_rtx (global_rtl[GR_STACK_POINTER])
4016#define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER])
4017#define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER])
4018#define arg_pointer_rtx (global_rtl[GR_ARG_POINTER])
4019
4020#ifndef GENERATOR_FILE
4021/* Return the attributes of a MEM rtx. */
4022inline const class mem_attrs *
4023get_mem_attrs (const_rtx x)
4024{
4025 class mem_attrs *attrs;
4026
4027 attrs = MEM_ATTRS (x);
4028 if (!attrs)
4029 attrs = mode_mem_attrs[(int) GET_MODE (x)];
4030 return attrs;
4031}
4032#endif
4033
4034/* Include the RTL generation functions. */
4035
4036#ifndef GENERATOR_FILE
4037#include "genrtl.h"
4038#undef gen_rtx_ASM_INPUT
4039#define gen_rtx_ASM_INPUT(MODE, ARG0) \
4040 gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), 0)
4041#define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \
4042 gen_rtx_fmt_sL (ASM_INPUT, (MODE), (ARG0), (LOC))
4043#endif
4044
4045/* There are some RTL codes that require special attention; the
4046 generation functions included above do the raw handling. If you
4047 add to this list, modify special_rtx in gengenrtl.cc as well. */
4048
4049extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx);
4050extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx);
4051extern rtx_insn *
4052gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn,
4053 basic_block bb, rtx pattern, location_t location, int code,
4054 rtx reg_notes);
4055extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT);
4056extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec);
4057extern void set_mode_and_regno (rtx, machine_mode, unsigned int);
4058extern rtx init_raw_REG (rtx, machine_mode, unsigned int);
4059extern rtx gen_raw_REG (machine_mode, unsigned int);
4060#define alloca_raw_REG(mode, regno) \
4061 init_raw_REG (rtx_alloca (REG), (mode), (regno))
4062extern rtx gen_rtx_REG (machine_mode, unsigned int);
4063extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64);
4064extern rtx gen_rtx_MEM (machine_mode, rtx);
4065extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx,
4066 enum var_init_status);
4067
4068#ifdef GENERATOR_FILE
4069#define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE)
4070#else
4071inline void
4072PUT_MODE (rtx x, machine_mode mode)
4073{
4074 if (REG_P (x))
4075 set_mode_and_regno (x, mode, REGNO (x));
4076 else
4077 PUT_MODE_RAW (x, mode);
4078}
4079#endif
4080
4081#define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N))
4082
4083/* Virtual registers are used during RTL generation to refer to locations into
4084 the stack frame when the actual location isn't known until RTL generation
4085 is complete. The routine instantiate_virtual_regs replaces these with
4086 the proper value, which is normally {frame,arg,stack}_pointer_rtx plus
4087 a constant. */
4088
4089#define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER)
4090
4091/* This points to the first word of the incoming arguments passed on the stack,
4092 either by the caller or by the callee when pretending it was passed by the
4093 caller. */
4094
4095#define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS])
4096
4097#define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER)
4098
4099/* If FRAME_GROWS_DOWNWARD, this points to immediately above the first
4100 variable on the stack. Otherwise, it points to the first variable on
4101 the stack. */
4102
4103#define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS])
4104
4105#define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1)
4106
4107/* This points to the location of dynamically-allocated memory on the stack
4108 immediately after the stack pointer has been adjusted by the amount
4109 desired. */
4110
4111#define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC])
4112
4113#define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2)
4114
4115/* This points to the location in the stack at which outgoing arguments should
4116 be written when the stack is pre-pushed (arguments pushed using push
4117 insns always use sp). */
4118
4119#define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS])
4120
4121#define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3)
4122
4123/* This points to the Canonical Frame Address of the function. This
4124 should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET,
4125 but is calculated relative to the arg pointer for simplicity; the
4126 frame pointer nor stack pointer are necessarily fixed relative to
4127 the CFA until after reload. */
4128
4129#define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA])
4130
4131#define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4)
4132
4133#define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4)
4134
4135/* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT
4136 when finalized. */
4137
4138#define virtual_preferred_stack_boundary_rtx \
4139 (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY])
4140
4141#define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \
4142 ((FIRST_VIRTUAL_REGISTER) + 5)
4143
4144#define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5)
4145
4146/* Nonzero if REGNUM is a pointer into the stack frame. */
4147#define REGNO_PTR_FRAME_P(REGNUM) \
4148 ((REGNUM) == STACK_POINTER_REGNUM \
4149 || (REGNUM) == FRAME_POINTER_REGNUM \
4150 || (REGNUM) == HARD_FRAME_POINTER_REGNUM \
4151 || (REGNUM) == ARG_POINTER_REGNUM \
4152 || VIRTUAL_REGISTER_NUM_P (REGNUM))
4153
4154/* REGNUM never really appearing in the INSN stream. */
4155#define INVALID_REGNUM (~(unsigned int) 0)
4156
4157/* REGNUM for which no debug information can be generated. */
4158#define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1)
4159
4160extern rtx output_constant_def (tree, int);
4161extern rtx lookup_constant_def (tree);
4162
4163/* Nonzero after end of reload pass.
4164 Set to 1 or 0 by reload1.cc. */
4165
4166extern int reload_completed;
4167
4168/* Nonzero after thread_prologue_and_epilogue_insns has run. */
4169extern int epilogue_completed;
4170
4171/* Set to 1 while reload_as_needed is operating.
4172 Required by some machines to handle any generated moves differently. */
4173
4174extern int reload_in_progress;
4175
4176/* Set to true while in IRA. */
4177extern bool ira_in_progress;
4178
4179/* Set to true while in LRA. */
4180extern bool lra_in_progress;
4181
4182/* This macro indicates whether you may create a new
4183 pseudo-register. */
4184
4185#define can_create_pseudo_p() (!reload_in_progress && !reload_completed)
4186
4187#ifdef STACK_REGS
4188/* Nonzero after end of regstack pass.
4189 Set to 1 or 0 by reg-stack.cc. */
4190extern int regstack_completed;
4191#endif
4192
4193/* If this is nonzero, we do not bother generating VOLATILE
4194 around volatile memory references, and we are willing to
4195 output indirect addresses. If cse is to follow, we reject
4196 indirect addresses so a useful potential cse is generated;
4197 if it is used only once, instruction combination will produce
4198 the same indirect address eventually. */
4199extern int cse_not_expected;
4200
4201/* Translates rtx code to tree code, for those codes needed by
4202 real_arithmetic. The function returns an int because the caller may not
4203 know what `enum tree_code' means. */
4204
4205extern int rtx_to_tree_code (enum rtx_code);
4206
4207/* In cse.cc */
4208extern int delete_trivially_dead_insns (rtx_insn *, int);
4209extern bool exp_equiv_p (const_rtx, const_rtx, int, bool);
4210
4211typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *,
4212 machine_mode *);
4213extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *,
4214 bool, hash_rtx_callback_function = NULL);
4215
4216/* In dse.cc */
4217extern bool check_for_inc_dec (rtx_insn *insn);
4218
4219/* In jump.cc */
4220extern bool comparison_dominates_p (enum rtx_code, enum rtx_code);
4221extern bool jump_to_label_p (const rtx_insn *);
4222extern bool condjump_p (const rtx_insn *);
4223extern bool any_condjump_p (const rtx_insn *);
4224extern bool any_uncondjump_p (const rtx_insn *);
4225extern rtx pc_set (const rtx_insn *);
4226extern rtx condjump_label (const rtx_insn *);
4227extern bool simplejump_p (const rtx_insn *);
4228extern bool returnjump_p (const rtx_insn *);
4229extern bool eh_returnjump_p (rtx_insn *);
4230extern bool onlyjump_p (const rtx_insn *);
4231extern bool invert_jump_1 (rtx_jump_insn *, rtx);
4232extern bool invert_jump (rtx_jump_insn *, rtx, int);
4233extern bool rtx_renumbered_equal_p (const_rtx, const_rtx);
4234extern int true_regnum (const_rtx);
4235extern unsigned int reg_or_subregno (const_rtx);
4236extern bool redirect_jump_1 (rtx_insn *, rtx);
4237extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int);
4238extern bool redirect_jump (rtx_jump_insn *, rtx, int);
4239extern void rebuild_jump_labels (rtx_insn *);
4240extern void rebuild_jump_labels_chain (rtx_insn *);
4241extern rtx reversed_comparison (const_rtx, machine_mode);
4242extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *);
4243extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx,
4244 const_rtx, const rtx_insn *);
4245extern void delete_for_peephole (rtx_insn *, rtx_insn *);
4246extern bool condjump_in_parallel_p (const rtx_insn *);
4247
4248/* In emit-rtl.cc. */
4249extern int max_reg_num (void);
4250extern int max_label_num (void);
4251extern int get_first_label_num (void);
4252extern void maybe_set_first_label_num (rtx_code_label *);
4253extern void delete_insns_since (rtx_insn *);
4254extern void mark_reg_pointer (rtx, int);
4255extern void mark_user_reg (rtx);
4256extern void reset_used_flags (rtx);
4257extern void set_used_flags (rtx);
4258extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *);
4259extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *);
4260extern int get_max_insn_count (void);
4261extern bool in_sequence_p (void);
4262extern void init_emit (void);
4263extern void init_emit_regs (void);
4264extern void init_derived_machine_modes (void);
4265extern void init_emit_once (void);
4266extern void push_topmost_sequence (void);
4267extern void pop_topmost_sequence (void);
4268extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *);
4269extern void unshare_all_rtl (void);
4270extern void unshare_all_rtl_again (rtx_insn *);
4271extern void unshare_all_rtl_in_chain (rtx_insn *);
4272extern void verify_rtl_sharing (void);
4273extern void add_insn (rtx_insn *);
4274extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block);
4275extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block);
4276extern void remove_insn (rtx_insn *);
4277extern rtx_insn *emit (rtx, bool = true);
4278extern void emit_insn_at_entry (rtx);
4279extern rtx gen_lowpart_SUBREG (machine_mode, rtx);
4280extern rtx gen_const_mem (machine_mode, rtx);
4281extern rtx gen_frame_mem (machine_mode, rtx);
4282extern rtx gen_tmp_stack_mem (machine_mode, rtx);
4283extern bool validate_subreg (machine_mode, machine_mode,
4284 const_rtx, poly_uint64);
4285
4286/* In combine.cc */
4287extern unsigned int extended_count (const_rtx, machine_mode, bool);
4288extern rtx remove_death (unsigned int, rtx_insn *);
4289extern rtx make_compound_operation (rtx, enum rtx_code);
4290
4291/* In sched-rgn.cc. */
4292extern void schedule_insns (void);
4293
4294/* In sched-ebb.cc. */
4295extern void schedule_ebbs (void);
4296
4297/* In sel-sched-dump.cc. */
4298extern void sel_sched_fix_param (const char *param, const char *val);
4299
4300/* In print-rtl.cc */
4301extern const char *print_rtx_head;
4302extern void debug (const rtx_def &ref);
4303extern void debug (const rtx_def *ptr);
4304extern void debug_rtx (const_rtx);
4305extern void debug_rtx_list (const rtx_insn *, int);
4306extern void debug_rtx_range (const rtx_insn *, const rtx_insn *);
4307extern const rtx_insn *debug_rtx_find (const rtx_insn *, int);
4308extern void print_mem_expr (FILE *, const_tree);
4309extern void print_rtl (FILE *, const_rtx);
4310extern void print_simple_rtl (FILE *, const_rtx);
4311extern void print_rtl_single (FILE *, const_rtx);
4312extern void print_rtl_single_with_indent (FILE *, const_rtx, int);
4313extern void print_inline_rtx (FILE *, const_rtx, int);
4314
4315/* In stmt.cc */
4316extern void expand_null_return (void);
4317extern void expand_naked_return (void);
4318extern void emit_jump (rtx);
4319
4320/* Memory operation built-ins differ by return value. Mapping
4321 of the enum values is following:
4322 - RETURN_BEGIN - return destination, e.g. memcpy
4323 - RETURN_END - return destination + n, e.g. mempcpy
4324 - RETURN_END_MINUS_ONE - return a pointer to the terminating
4325 null byte of the string, e.g. strcpy
4326*/
4327
4328enum memop_ret
4329{
4330 RETURN_BEGIN,
4331 RETURN_END,
4332 RETURN_END_MINUS_ONE
4333};
4334
4335/* In expr.cc */
4336extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT,
4337 unsigned int, memop_ret);
4338extern poly_int64 find_args_size_adjust (rtx_insn *);
4339extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64);
4340
4341/* In expmed.cc */
4342extern void init_expmed (void);
4343extern void expand_inc (rtx, rtx);
4344extern void expand_dec (rtx, rtx);
4345
4346/* In lower-subreg.cc */
4347extern void init_lower_subreg (void);
4348
4349/* In gcse.cc */
4350extern bool can_copy_p (machine_mode);
4351extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode);
4352extern rtx_insn *prepare_copy_insn (rtx, rtx);
4353
4354/* In cprop.cc */
4355extern rtx fis_get_condition (rtx_insn *);
4356
4357/* In ira.cc */
4358extern HARD_REG_SET eliminable_regset;
4359extern void mark_elimination (int, int);
4360
4361/* In reginfo.cc */
4362extern bool reg_classes_intersect_p (reg_class_t, reg_class_t);
4363extern bool reg_class_subset_p (reg_class_t, reg_class_t);
4364extern void globalize_reg (tree, int);
4365extern void init_reg_modes_target (void);
4366extern void init_regs (void);
4367extern void reinit_regs (void);
4368extern void init_fake_stack_mems (void);
4369extern void save_register_info (void);
4370extern void init_reg_sets (void);
4371extern void regclass (rtx, int);
4372extern void reg_scan (rtx_insn *, unsigned int);
4373extern void fix_register (const char *, int, int);
4374extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int);
4375
4376/* In reload1.cc */
4377extern bool function_invariant_p (const_rtx);
4378
4379/* In calls.cc */
4380enum libcall_type
4381{
4382 LCT_NORMAL = 0,
4383 LCT_CONST = 1,
4384 LCT_PURE = 2,
4385 LCT_NORETURN = 3,
4386 LCT_THROW = 4,
4387 LCT_RETURNS_TWICE = 5
4388};
4389
4390extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
4391 machine_mode, int, rtx_mode_t *);
4392
4393/* Output a library call and discard the returned value. FUN is the
4394 address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode
4395 of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal'
4396 calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or
4397 another LCT_ value for other types of library calls.
4398
4399 There are different overloads of this function for different numbers
4400 of arguments. In each case the argument value is followed by its mode. */
4401
4402inline void
4403emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode)
4404{
4405 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL);
4406}
4407
4408inline void
4409emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4410 rtx arg1, machine_mode arg1_mode)
4411{
4412 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4413 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args);
4414}
4415
4416inline void
4417emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4418 rtx arg1, machine_mode arg1_mode,
4419 rtx arg2, machine_mode arg2_mode)
4420{
4421 rtx_mode_t args[] = {
4422 rtx_mode_t (arg1, arg1_mode),
4423 rtx_mode_t (arg2, arg2_mode)
4424 };
4425 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args);
4426}
4427
4428inline void
4429emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4430 rtx arg1, machine_mode arg1_mode,
4431 rtx arg2, machine_mode arg2_mode,
4432 rtx arg3, machine_mode arg3_mode)
4433{
4434 rtx_mode_t args[] = {
4435 rtx_mode_t (arg1, arg1_mode),
4436 rtx_mode_t (arg2, arg2_mode),
4437 rtx_mode_t (arg3, arg3_mode)
4438 };
4439 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args);
4440}
4441
4442inline void
4443emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode,
4444 rtx arg1, machine_mode arg1_mode,
4445 rtx arg2, machine_mode arg2_mode,
4446 rtx arg3, machine_mode arg3_mode,
4447 rtx arg4, machine_mode arg4_mode)
4448{
4449 rtx_mode_t args[] = {
4450 rtx_mode_t (arg1, arg1_mode),
4451 rtx_mode_t (arg2, arg2_mode),
4452 rtx_mode_t (arg3, arg3_mode),
4453 rtx_mode_t (arg4, arg4_mode)
4454 };
4455 emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args);
4456}
4457
4458/* Like emit_library_call, but return the value produced by the call.
4459 Use VALUE to store the result if it is nonnull, otherwise pick a
4460 convenient location. */
4461
4462inline rtx
4463emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4464 machine_mode outmode)
4465{
4466 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL);
4467}
4468
4469inline rtx
4470emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4471 machine_mode outmode,
4472 rtx arg1, machine_mode arg1_mode)
4473{
4474 rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) };
4475 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args);
4476}
4477
4478inline rtx
4479emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4480 machine_mode outmode,
4481 rtx arg1, machine_mode arg1_mode,
4482 rtx arg2, machine_mode arg2_mode)
4483{
4484 rtx_mode_t args[] = {
4485 rtx_mode_t (arg1, arg1_mode),
4486 rtx_mode_t (arg2, arg2_mode)
4487 };
4488 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args);
4489}
4490
4491inline rtx
4492emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4493 machine_mode outmode,
4494 rtx arg1, machine_mode arg1_mode,
4495 rtx arg2, machine_mode arg2_mode,
4496 rtx arg3, machine_mode arg3_mode)
4497{
4498 rtx_mode_t args[] = {
4499 rtx_mode_t (arg1, arg1_mode),
4500 rtx_mode_t (arg2, arg2_mode),
4501 rtx_mode_t (arg3, arg3_mode)
4502 };
4503 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args);
4504}
4505
4506inline rtx
4507emit_library_call_value (rtx fun, rtx value, libcall_type fn_type,
4508 machine_mode outmode,
4509 rtx arg1, machine_mode arg1_mode,
4510 rtx arg2, machine_mode arg2_mode,
4511 rtx arg3, machine_mode arg3_mode,
4512 rtx arg4, machine_mode arg4_mode)
4513{
4514 rtx_mode_t args[] = {
4515 rtx_mode_t (arg1, arg1_mode),
4516 rtx_mode_t (arg2, arg2_mode),
4517 rtx_mode_t (arg3, arg3_mode),
4518 rtx_mode_t (arg4, arg4_mode)
4519 };
4520 return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args);
4521}
4522
4523/* In varasm.cc */
4524extern void init_varasm_once (void);
4525
4526extern rtx make_debug_expr_from_rtl (const_rtx);
4527
4528/* In read-rtl.cc */
4529#ifdef GENERATOR_FILE
4530extern bool read_rtx (const char *, vec<rtx> *);
4531#endif
4532
4533/* In alias.cc */
4534extern rtx canon_rtx (rtx);
4535extern rtx get_addr (rtx);
4536extern bool read_dependence (const_rtx, const_rtx);
4537extern bool true_dependence (const_rtx, machine_mode, const_rtx);
4538extern bool canon_true_dependence (const_rtx, machine_mode, rtx,
4539 const_rtx, rtx);
4540extern bool anti_dependence (const_rtx, const_rtx);
4541extern bool canon_anti_dependence (const_rtx, bool,
4542 const_rtx, machine_mode, rtx);
4543extern bool output_dependence (const_rtx, const_rtx);
4544extern bool canon_output_dependence (const_rtx, bool,
4545 const_rtx, machine_mode, rtx);
4546extern bool may_alias_p (const_rtx, const_rtx);
4547extern void init_alias_target (void);
4548extern void init_alias_analysis (void);
4549extern void end_alias_analysis (void);
4550extern void vt_equate_reg_base_value (const_rtx, const_rtx);
4551extern bool memory_modified_in_insn_p (const_rtx, const_rtx);
4552extern bool may_be_sp_based_p (rtx);
4553extern rtx gen_hard_reg_clobber (machine_mode, unsigned int);
4554extern rtx get_reg_known_value (unsigned int);
4555extern bool get_reg_known_equiv_p (unsigned int);
4556extern rtx get_reg_base_value (unsigned int);
4557extern rtx extract_mem_from_operand (rtx);
4558
4559#ifdef STACK_REGS
4560extern bool stack_regs_mentioned (const_rtx insn);
4561#endif
4562
4563/* In toplev.cc */
4564extern GTY(()) rtx stack_limit_rtx;
4565
4566/* In var-tracking.cc */
4567extern unsigned int variable_tracking_main (void);
4568extern void delete_vta_debug_insns (bool);
4569
4570/* In stor-layout.cc. */
4571extern void get_mode_bounds (scalar_int_mode, int,
4572 scalar_int_mode, rtx *, rtx *);
4573
4574/* In loop-iv.cc */
4575extern rtx canon_condition (rtx);
4576extern void simplify_using_condition (rtx, rtx *, bitmap);
4577
4578/* In final.cc */
4579extern void compute_alignments (void);
4580extern void update_alignments (vec<rtx> &);
4581extern int asm_str_count (const char *templ);
4582extern rtx get_call_rtx_from (const rtx_insn *);
4583
4584struct rtl_hooks
4585{
4586 rtx (*gen_lowpart) (machine_mode, rtx);
4587 rtx (*gen_lowpart_no_emit) (machine_mode, rtx);
4588 rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode,
4589 unsigned HOST_WIDE_INT *);
4590 rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode,
4591 unsigned int *);
4592 bool (*reg_truncated_to_mode) (machine_mode, const_rtx);
4593
4594 /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */
4595};
4596
4597/* Each pass can provide its own. */
4598extern struct rtl_hooks rtl_hooks;
4599
4600/* ... but then it has to restore these. */
4601extern const struct rtl_hooks general_rtl_hooks;
4602
4603/* Keep this for the nonce. */
4604#define gen_lowpart rtl_hooks.gen_lowpart
4605
4606extern void insn_locations_init (void);
4607extern void insn_locations_finalize (void);
4608extern void set_curr_insn_location (location_t);
4609extern location_t curr_insn_location (void);
4610extern void set_insn_locations (rtx_insn *, location_t);
4611
4612/* rtl-error.cc */
4613extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *)
4614 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4615extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *)
4616 ATTRIBUTE_NORETURN ATTRIBUTE_COLD;
4617
4618#define fatal_insn(msgid, insn) \
4619 _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__)
4620#define fatal_insn_not_found(insn) \
4621 _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__)
4622
4623/* reginfo.cc */
4624extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER];
4625
4626/* Information about the function that is propagated by the RTL backend.
4627 Available only for functions that has been already assembled. */
4628
4629struct GTY(()) cgraph_rtl_info {
4630 unsigned int preferred_incoming_stack_boundary;
4631
4632 /* Which registers the function clobbers, either directly or by
4633 calling another function. */
4634 HARD_REG_SET function_used_regs;
4635};
4636
4637/* If loads from memories of mode MODE always sign or zero extend,
4638 return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN
4639 otherwise. */
4640
4641inline rtx_code
4642load_extend_op (machine_mode mode)
4643{
4644 scalar_int_mode int_mode;
4645 if (is_a <scalar_int_mode> (m: mode, result: &int_mode)
4646 && GET_MODE_PRECISION (mode: int_mode) < BITS_PER_WORD)
4647 return LOAD_EXTEND_OP (int_mode);
4648 return UNKNOWN;
4649}
4650
4651/* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET
4652 and return the base. Return X otherwise. */
4653
4654inline rtx
4655strip_offset_and_add (rtx x, poly_int64 *offset)
4656{
4657 if (GET_CODE (x) == PLUS)
4658 {
4659 poly_int64 suboffset;
4660 x = strip_offset (x, &suboffset);
4661 *offset = poly_uint64 (*offset) + suboffset;
4662 }
4663 return x;
4664}
4665
4666/* Return true if X is an operation that always operates on the full
4667 registers for WORD_REGISTER_OPERATIONS architectures. */
4668
4669inline bool
4670word_register_operation_p (const_rtx x)
4671{
4672 switch (GET_CODE (x))
4673 {
4674 case CONST_INT:
4675 case ROTATE:
4676 case ROTATERT:
4677 case SIGN_EXTRACT:
4678 case ZERO_EXTRACT:
4679 return false;
4680
4681 default:
4682 return true;
4683 }
4684}
4685
4686/* Holds an rtx comparison to simplify passing many parameters pertaining to a
4687 single comparison. */
4688
4689struct rtx_comparison {
4690 rtx_code code;
4691 rtx op0, op1;
4692 machine_mode mode;
4693};
4694
4695/* gtype-desc.cc. */
4696extern void gt_ggc_mx (rtx &);
4697extern void gt_pch_nx (rtx &);
4698extern void gt_pch_nx (rtx &, gt_pointer_operator, void *);
4699
4700#endif /* ! GCC_RTL_H */
4701

source code of gcc/rtl.h