1 | /* Register Transfer Language (RTL) definitions for GCC |
---|---|
2 | Copyright (C) 1987-2024 Free Software Foundation, Inc. |
3 | |
4 | This file is part of GCC. |
5 | |
6 | GCC is free software; you can redistribute it and/or modify it under |
7 | the terms of the GNU General Public License as published by the Free |
8 | Software Foundation; either version 3, or (at your option) any later |
9 | version. |
10 | |
11 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
12 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
14 | for more details. |
15 | |
16 | You should have received a copy of the GNU General Public License |
17 | along with GCC; see the file COPYING3. If not see |
18 | <http://www.gnu.org/licenses/>. */ |
19 | |
20 | #ifndef GCC_RTL_H |
21 | #define GCC_RTL_H |
22 | |
23 | /* This file is occasionally included by generator files which expect |
24 | machmode.h and other files to exist and would not normally have been |
25 | included by coretypes.h. */ |
26 | #ifdef GENERATOR_FILE |
27 | #include "real.h" |
28 | #include "fixed-value.h" |
29 | #include "statistics.h" |
30 | #include "vec.h" |
31 | #include "hash-table.h" |
32 | #include "hash-set.h" |
33 | #include "input.h" |
34 | #include "is-a.h" |
35 | #endif /* GENERATOR_FILE */ |
36 | |
37 | #include "hard-reg-set.h" |
38 | |
39 | class predefined_function_abi; |
40 | |
41 | /* Value used by some passes to "recognize" noop moves as valid |
42 | instructions. */ |
43 | #define NOOP_MOVE_INSN_CODE INT_MAX |
44 | |
45 | /* Register Transfer Language EXPRESSIONS CODES */ |
46 | |
47 | #define RTX_CODE enum rtx_code |
48 | enum rtx_code : unsigned { |
49 | |
50 | #define DEF_RTL_EXPR(ENUM, NAME, FORMAT, CLASS) ENUM , |
51 | #include "rtl.def" /* rtl expressions are documented here */ |
52 | #undef DEF_RTL_EXPR |
53 | |
54 | LAST_AND_UNUSED_RTX_CODE}; /* A convenient way to get a value for |
55 | NUM_RTX_CODE. |
56 | Assumes default enum value assignment. */ |
57 | |
58 | /* The cast here, saves many elsewhere. */ |
59 | #define NUM_RTX_CODE ((int) LAST_AND_UNUSED_RTX_CODE) |
60 | |
61 | /* Similar, but since generator files get more entries... */ |
62 | #ifdef GENERATOR_FILE |
63 | # define NON_GENERATOR_NUM_RTX_CODE ((int) MATCH_OPERAND) |
64 | #endif |
65 | |
66 | #define RTX_CODE_BITSIZE 8 |
67 | |
68 | /* Register Transfer Language EXPRESSIONS CODE CLASSES */ |
69 | |
70 | enum rtx_class { |
71 | /* We check bit 0-1 of some rtx class codes in the predicates below. */ |
72 | |
73 | /* Bit 0 = comparison if 0, arithmetic is 1 |
74 | Bit 1 = 1 if commutative. */ |
75 | RTX_COMPARE, /* 0 */ |
76 | RTX_COMM_COMPARE, |
77 | RTX_BIN_ARITH, |
78 | RTX_COMM_ARITH, |
79 | |
80 | /* Must follow the four preceding values. */ |
81 | RTX_UNARY, /* 4 */ |
82 | |
83 | RTX_EXTRA, |
84 | RTX_MATCH, |
85 | RTX_INSN, |
86 | |
87 | /* Bit 0 = 1 if constant. */ |
88 | RTX_OBJ, /* 8 */ |
89 | RTX_CONST_OBJ, |
90 | |
91 | RTX_TERNARY, |
92 | RTX_BITFIELD_OPS, |
93 | RTX_AUTOINC |
94 | }; |
95 | |
96 | #define RTX_OBJ_MASK (~1) |
97 | #define RTX_OBJ_RESULT (RTX_OBJ & RTX_OBJ_MASK) |
98 | #define RTX_COMPARE_MASK (~1) |
99 | #define RTX_COMPARE_RESULT (RTX_COMPARE & RTX_COMPARE_MASK) |
100 | #define RTX_ARITHMETIC_MASK (~1) |
101 | #define RTX_ARITHMETIC_RESULT (RTX_COMM_ARITH & RTX_ARITHMETIC_MASK) |
102 | #define RTX_BINARY_MASK (~3) |
103 | #define RTX_BINARY_RESULT (RTX_COMPARE & RTX_BINARY_MASK) |
104 | #define RTX_COMMUTATIVE_MASK (~2) |
105 | #define RTX_COMMUTATIVE_RESULT (RTX_COMM_COMPARE & RTX_COMMUTATIVE_MASK) |
106 | #define RTX_NON_COMMUTATIVE_RESULT (RTX_COMPARE & RTX_COMMUTATIVE_MASK) |
107 | |
108 | extern const unsigned char rtx_length[NUM_RTX_CODE]; |
109 | #define GET_RTX_LENGTH(CODE) (rtx_length[(int) (CODE)]) |
110 | |
111 | extern const char * const rtx_name[NUM_RTX_CODE]; |
112 | #define GET_RTX_NAME(CODE) (rtx_name[(int) (CODE)]) |
113 | |
114 | extern const char * const rtx_format[NUM_RTX_CODE]; |
115 | #define GET_RTX_FORMAT(CODE) (rtx_format[(int) (CODE)]) |
116 | |
117 | extern const enum rtx_class rtx_class[NUM_RTX_CODE]; |
118 | #define GET_RTX_CLASS(CODE) (rtx_class[(int) (CODE)]) |
119 | |
120 | /* True if CODE is part of the insn chain (i.e. has INSN_UID, PREV_INSN |
121 | and NEXT_INSN fields). */ |
122 | #define INSN_CHAIN_CODE_P(CODE) IN_RANGE (CODE, DEBUG_INSN, NOTE) |
123 | |
124 | extern const unsigned char rtx_code_size[NUM_RTX_CODE]; |
125 | extern const unsigned char rtx_next[NUM_RTX_CODE]; |
126 | |
127 | /* The flags and bitfields of an ADDR_DIFF_VEC. BASE is the base label |
128 | relative to which the offsets are calculated, as explained in rtl.def. */ |
129 | struct addr_diff_vec_flags |
130 | { |
131 | /* Set at the start of shorten_branches - ONLY WHEN OPTIMIZING - : */ |
132 | unsigned min_align: 8; |
133 | /* Flags: */ |
134 | unsigned base_after_vec: 1; /* BASE is after the ADDR_DIFF_VEC. */ |
135 | unsigned min_after_vec: 1; /* minimum address target label is |
136 | after the ADDR_DIFF_VEC. */ |
137 | unsigned max_after_vec: 1; /* maximum address target label is |
138 | after the ADDR_DIFF_VEC. */ |
139 | unsigned min_after_base: 1; /* minimum address target label is |
140 | after BASE. */ |
141 | unsigned max_after_base: 1; /* maximum address target label is |
142 | after BASE. */ |
143 | /* Set by the actual branch shortening process - ONLY WHEN OPTIMIZING - : */ |
144 | unsigned offset_unsigned: 1; /* offsets have to be treated as unsigned. */ |
145 | unsigned : 2; |
146 | unsigned scale : 8; |
147 | }; |
148 | |
149 | /* Structure used to describe the attributes of a MEM. These are hashed |
150 | so MEMs that the same attributes share a data structure. This means |
151 | they cannot be modified in place. */ |
152 | class GTY(()) mem_attrs |
153 | { |
154 | public: |
155 | mem_attrs (); |
156 | |
157 | /* The expression that the MEM accesses, or null if not known. |
158 | This expression might be larger than the memory reference itself. |
159 | (In other words, the MEM might access only part of the object.) */ |
160 | tree expr; |
161 | |
162 | /* The offset of the memory reference from the start of EXPR. |
163 | Only valid if OFFSET_KNOWN_P. */ |
164 | poly_int64 offset; |
165 | |
166 | /* The size of the memory reference in bytes. Only valid if |
167 | SIZE_KNOWN_P. */ |
168 | poly_int64 size; |
169 | |
170 | /* The alias set of the memory reference. */ |
171 | alias_set_type alias; |
172 | |
173 | /* The alignment of the reference in bits. Always a multiple of |
174 | BITS_PER_UNIT. Note that EXPR may have a stricter alignment |
175 | than the memory reference itself. */ |
176 | unsigned int align; |
177 | |
178 | /* The address space that the memory reference uses. */ |
179 | unsigned char addrspace; |
180 | |
181 | /* True if OFFSET is known. */ |
182 | bool offset_known_p; |
183 | |
184 | /* True if SIZE is known. */ |
185 | bool size_known_p; |
186 | }; |
187 | |
188 | /* Structure used to describe the attributes of a REG in similar way as |
189 | mem_attrs does for MEM above. Note that the OFFSET field is calculated |
190 | in the same way as for mem_attrs, rather than in the same way as a |
191 | SUBREG_BYTE. For example, if a big-endian target stores a byte |
192 | object in the low part of a 4-byte register, the OFFSET field |
193 | will be -3 rather than 0. */ |
194 | |
195 | class GTY((for_user)) reg_attrs { |
196 | public: |
197 | tree decl; /* decl corresponding to REG. */ |
198 | poly_int64 offset; /* Offset from start of DECL. */ |
199 | }; |
200 | |
201 | /* Common union for an element of an rtx. */ |
202 | |
203 | union rtunion |
204 | { |
205 | int rt_int; |
206 | unsigned int rt_uint; |
207 | poly_uint16 rt_subreg; |
208 | const char *rt_str; |
209 | rtx rt_rtx; |
210 | rtvec rt_rtvec; |
211 | machine_mode rt_type; |
212 | addr_diff_vec_flags rt_addr_diff_vec_flags; |
213 | struct cselib_val *rt_cselib; |
214 | tree rt_tree; |
215 | basic_block rt_bb; |
216 | mem_attrs *rt_mem; |
217 | class constant_descriptor_rtx *rt_constant; |
218 | struct dw_cfi_node *rt_cfi; |
219 | }; |
220 | |
221 | /* Describes the properties of a REG. */ |
222 | struct GTY(()) reg_info { |
223 | /* The value of REGNO. */ |
224 | unsigned int regno; |
225 | |
226 | /* The value of REG_NREGS. */ |
227 | unsigned int nregs : 8; |
228 | unsigned int unused : 24; |
229 | |
230 | /* The value of REG_ATTRS. */ |
231 | reg_attrs *attrs; |
232 | }; |
233 | |
234 | /* This structure remembers the position of a SYMBOL_REF within an |
235 | object_block structure. A SYMBOL_REF only provides this information |
236 | if SYMBOL_REF_HAS_BLOCK_INFO_P is true. */ |
237 | struct GTY(()) block_symbol { |
238 | /* The usual SYMBOL_REF fields. */ |
239 | rtunion GTY ((skip)) fld[2]; |
240 | |
241 | /* The block that contains this object. */ |
242 | struct object_block *block; |
243 | |
244 | /* The offset of this object from the start of its block. It is negative |
245 | if the symbol has not yet been assigned an offset. */ |
246 | HOST_WIDE_INT offset; |
247 | }; |
248 | |
249 | /* Describes a group of objects that are to be placed together in such |
250 | a way that their relative positions are known. */ |
251 | struct GTY((for_user)) object_block { |
252 | /* The section in which these objects should be placed. */ |
253 | section *sect; |
254 | |
255 | /* The alignment of the first object, measured in bits. */ |
256 | unsigned int alignment; |
257 | |
258 | /* The total size of the objects, measured in bytes. */ |
259 | HOST_WIDE_INT size; |
260 | |
261 | /* The SYMBOL_REFs for each object. The vector is sorted in |
262 | order of increasing offset and the following conditions will |
263 | hold for each element X: |
264 | |
265 | SYMBOL_REF_HAS_BLOCK_INFO_P (X) |
266 | !SYMBOL_REF_ANCHOR_P (X) |
267 | SYMBOL_REF_BLOCK (X) == [address of this structure] |
268 | SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */ |
269 | vec<rtx, va_gc> *objects; |
270 | |
271 | /* All the anchor SYMBOL_REFs used to address these objects, sorted |
272 | in order of increasing offset, and then increasing TLS model. |
273 | The following conditions will hold for each element X in this vector: |
274 | |
275 | SYMBOL_REF_HAS_BLOCK_INFO_P (X) |
276 | SYMBOL_REF_ANCHOR_P (X) |
277 | SYMBOL_REF_BLOCK (X) == [address of this structure] |
278 | SYMBOL_REF_BLOCK_OFFSET (X) >= 0. */ |
279 | vec<rtx, va_gc> *anchors; |
280 | }; |
281 | |
282 | struct GTY((variable_size)) hwivec_def { |
283 | HOST_WIDE_INT elem[1]; |
284 | }; |
285 | |
286 | /* Number of elements of the HWIVEC if RTX is a CONST_WIDE_INT. */ |
287 | #define CWI_GET_NUM_ELEM(RTX) \ |
288 | ((int)RTL_FLAG_CHECK1("CWI_GET_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem) |
289 | #define CWI_PUT_NUM_ELEM(RTX, NUM) \ |
290 | (RTL_FLAG_CHECK1("CWI_PUT_NUM_ELEM", (RTX), CONST_WIDE_INT)->u2.num_elem = (NUM)) |
291 | |
292 | struct GTY((variable_size)) const_poly_int_def { |
293 | trailing_wide_ints<NUM_POLY_INT_COEFFS> coeffs; |
294 | }; |
295 | |
296 | /* RTL expression ("rtx"). */ |
297 | |
298 | /* The GTY "desc" and "tag" options below are a kludge: we need a desc |
299 | field for gengtype to recognize that inheritance is occurring, |
300 | so that all subclasses are redirected to the traversal hook for the |
301 | base class. |
302 | However, all of the fields are in the base class, and special-casing |
303 | is at work. Hence we use desc and tag of 0, generating a switch |
304 | statement of the form: |
305 | switch (0) |
306 | { |
307 | case 0: // all the work happens here |
308 | } |
309 | in order to work with the existing special-casing in gengtype. */ |
310 | |
311 | struct GTY((desc("0"), tag( "0"), |
312 | chain_next ("RTX_NEXT (&%h)"), |
313 | chain_prev ("RTX_PREV (&%h)"))) rtx_def { |
314 | /* The kind of value the expression has. */ |
315 | ENUM_BITFIELD(machine_mode) mode : MACHINE_MODE_BITSIZE; |
316 | |
317 | /* The kind of expression this is. */ |
318 | ENUM_BITFIELD(rtx_code) code: RTX_CODE_BITSIZE; |
319 | |
320 | /* 1 in a MEM if we should keep the alias set for this mem unchanged |
321 | when we access a component. |
322 | 1 in a JUMP_INSN if it is a crossing jump. |
323 | 1 in a CALL_INSN if it is a sibling call. |
324 | 1 in a SET that is for a return. |
325 | In a CODE_LABEL, part of the two-bit alternate entry field. |
326 | 1 in a CONCAT is VAL_EXPR_IS_COPIED in var-tracking.cc. |
327 | 1 in a VALUE is SP_BASED_VALUE_P in cselib.cc. |
328 | 1 in a SUBREG generated by LRA for reload insns. |
329 | 1 in a REG if this is a static chain register. |
330 | Dumped as "/j" in RTL dumps. */ |
331 | unsigned int jump : 1; |
332 | /* In a CODE_LABEL, part of the two-bit alternate entry field. |
333 | 1 in a MEM if it cannot trap. |
334 | 1 in a CALL_INSN logically equivalent to |
335 | ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. |
336 | 1 in a VALUE is SP_DERIVED_VALUE_P in cselib.cc. |
337 | Dumped as "/c" in RTL dumps. */ |
338 | unsigned int call : 1; |
339 | /* 1 in a REG, MEM, or CONCAT if the value is set at most once, anywhere. |
340 | 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P. |
341 | 1 in a SYMBOL_REF if it addresses something in the per-function |
342 | constants pool. |
343 | 1 in a CALL_INSN logically equivalent to ECF_CONST and TREE_READONLY. |
344 | 1 in a NOTE, or EXPR_LIST for a const call. |
345 | 1 in a JUMP_INSN of an annulling branch. |
346 | 1 in a CONCAT is VAL_EXPR_IS_CLOBBERED in var-tracking.cc. |
347 | 1 in a preserved VALUE is PRESERVED_VALUE_P in cselib.cc. |
348 | 1 in a clobber temporarily created for LRA. |
349 | Dumped as "/u" in RTL dumps. */ |
350 | unsigned int unchanging : 1; |
351 | /* 1 in a MEM or ASM_OPERANDS expression if the memory reference is volatile. |
352 | 1 in an INSN, CALL_INSN, JUMP_INSN, CODE_LABEL, BARRIER, or NOTE |
353 | if it has been deleted. |
354 | 1 in a REG expression if corresponds to a variable declared by the user, |
355 | 0 for an internally generated temporary. |
356 | 1 in a SUBREG used for SUBREG_PROMOTED_UNSIGNED_P. |
357 | 1 in a LABEL_REF, REG_LABEL_TARGET or REG_LABEL_OPERAND note for a |
358 | non-local label. |
359 | In a SYMBOL_REF, this flag is used for machine-specific purposes. |
360 | In a PREFETCH, this flag indicates that it should be considered a |
361 | scheduling barrier. |
362 | 1 in a CONCAT is VAL_NEEDS_RESOLUTION in var-tracking.cc. |
363 | Dumped as "/v" in RTL dumps. */ |
364 | unsigned int volatil : 1; |
365 | /* 1 in a REG if the register is used only in exit code a loop. |
366 | 1 in a SUBREG expression if was generated from a variable with a |
367 | promoted mode. |
368 | 1 in a CODE_LABEL if the label is used for nonlocal gotos |
369 | and must not be deleted even if its count is zero. |
370 | 1 in an INSN, JUMP_INSN or CALL_INSN if this insn must be scheduled |
371 | together with the preceding insn. Valid only within sched. |
372 | 1 in an INSN, JUMP_INSN, or CALL_INSN if insn is in a delay slot and |
373 | from the target of a branch. Valid from reorg until end of compilation; |
374 | cleared before used. |
375 | |
376 | The name of the field is historical. It used to be used in MEMs |
377 | to record whether the MEM accessed part of a structure. |
378 | Dumped as "/s" in RTL dumps. */ |
379 | unsigned int in_struct : 1; |
380 | /* At the end of RTL generation, 1 if this rtx is used. This is used for |
381 | copying shared structure. See `unshare_all_rtl'. |
382 | In a REG, this is not needed for that purpose, and used instead |
383 | in `leaf_renumber_regs_insn'. |
384 | 1 in a SYMBOL_REF, means that emit_library_call |
385 | has used it as the function. |
386 | 1 in a CONCAT is VAL_HOLDS_TRACK_EXPR in var-tracking.cc. |
387 | 1 in a VALUE or DEBUG_EXPR is VALUE_RECURSED_INTO in var-tracking.cc. */ |
388 | unsigned int used : 1; |
389 | /* 1 in an INSN or a SET if this rtx is related to the call frame, |
390 | either changing how we compute the frame address or saving and |
391 | restoring registers in the prologue and epilogue. |
392 | 1 in a REG or MEM if it is a pointer. |
393 | 1 in a SYMBOL_REF if it addresses something in the per-function |
394 | constant string pool. |
395 | 1 in a VALUE is VALUE_CHANGED in var-tracking.cc. |
396 | Dumped as "/f" in RTL dumps. */ |
397 | unsigned frame_related : 1; |
398 | /* 1 in a REG or PARALLEL that is the current function's return value. |
399 | 1 in a SYMBOL_REF for a weak symbol. |
400 | 1 in a CALL_INSN logically equivalent to ECF_PURE and DECL_PURE_P. |
401 | 1 in a CONCAT is VAL_EXPR_HAS_REVERSE in var-tracking.cc. |
402 | 1 in a VALUE or DEBUG_EXPR is NO_LOC_P in var-tracking.cc. |
403 | Dumped as "/i" in RTL dumps. */ |
404 | unsigned return_val : 1; |
405 | |
406 | union { |
407 | /* The final union field is aligned to 64 bits on LP64 hosts, |
408 | giving a 32-bit gap after the fields above. We optimize the |
409 | layout for that case and use the gap for extra code-specific |
410 | information. */ |
411 | |
412 | /* The ORIGINAL_REGNO of a REG. */ |
413 | unsigned int original_regno; |
414 | |
415 | /* The INSN_UID of an RTX_INSN-class code. */ |
416 | int insn_uid; |
417 | |
418 | /* The SYMBOL_REF_FLAGS of a SYMBOL_REF. */ |
419 | unsigned int symbol_ref_flags; |
420 | |
421 | /* The PAT_VAR_LOCATION_STATUS of a VAR_LOCATION. */ |
422 | enum var_init_status var_location_status; |
423 | |
424 | /* In a CONST_WIDE_INT (aka hwivec_def), this is the number of |
425 | HOST_WIDE_INTs in the hwivec_def. */ |
426 | unsigned int num_elem; |
427 | |
428 | /* Information about a CONST_VECTOR. */ |
429 | struct |
430 | { |
431 | /* The value of CONST_VECTOR_NPATTERNS. */ |
432 | unsigned int npatterns : 16; |
433 | |
434 | /* The value of CONST_VECTOR_NELTS_PER_PATTERN. */ |
435 | unsigned int nelts_per_pattern : 8; |
436 | |
437 | /* For future expansion. */ |
438 | unsigned int unused : 8; |
439 | } const_vector; |
440 | } GTY ((skip)) u2; |
441 | |
442 | /* The first element of the operands of this rtx. |
443 | The number of operands and their types are controlled |
444 | by the `code' field, according to rtl.def. */ |
445 | union u { |
446 | rtunion fld[1]; |
447 | HOST_WIDE_INT hwint[1]; |
448 | struct reg_info reg; |
449 | struct block_symbol block_sym; |
450 | struct real_value rv; |
451 | struct fixed_value fv; |
452 | struct hwivec_def hwiv; |
453 | struct const_poly_int_def cpi; |
454 | } GTY ((special ("rtx_def"), desc ( "GET_CODE (&%0)"))) u; |
455 | }; |
456 | |
457 | /* A node for constructing singly-linked lists of rtx. */ |
458 | |
459 | struct GTY(()) rtx_expr_list : public rtx_def |
460 | { |
461 | private: |
462 | /* No extra fields, but adds invariant: (GET_CODE (X) == EXPR_LIST). */ |
463 | |
464 | public: |
465 | /* Get next in list. */ |
466 | rtx_expr_list *next () const; |
467 | |
468 | /* Get at the underlying rtx. */ |
469 | rtx element () const; |
470 | }; |
471 | |
472 | template <> |
473 | template <> |
474 | inline bool |
475 | is_a_helper <rtx_expr_list *>::test (rtx rt) |
476 | { |
477 | return rt->code == EXPR_LIST; |
478 | } |
479 | |
480 | struct GTY(()) rtx_insn_list : public rtx_def |
481 | { |
482 | private: |
483 | /* No extra fields, but adds invariant: (GET_CODE (X) == INSN_LIST). |
484 | |
485 | This is an instance of: |
486 | |
487 | DEF_RTL_EXPR(INSN_LIST, "insn_list", "ue", RTX_EXTRA) |
488 | |
489 | i.e. a node for constructing singly-linked lists of rtx_insn *, where |
490 | the list is "external" to the insn (as opposed to the doubly-linked |
491 | list embedded within rtx_insn itself). */ |
492 | |
493 | public: |
494 | /* Get next in list. */ |
495 | rtx_insn_list *next () const; |
496 | |
497 | /* Get at the underlying instruction. */ |
498 | rtx_insn *insn () const; |
499 | |
500 | }; |
501 | |
502 | template <> |
503 | template <> |
504 | inline bool |
505 | is_a_helper <rtx_insn_list *>::test (rtx rt) |
506 | { |
507 | return rt->code == INSN_LIST; |
508 | } |
509 | |
510 | /* A node with invariant GET_CODE (X) == SEQUENCE i.e. a vector of rtx, |
511 | typically (but not always) of rtx_insn *, used in the late passes. */ |
512 | |
513 | struct GTY(()) rtx_sequence : public rtx_def |
514 | { |
515 | private: |
516 | /* No extra fields, but adds invariant: (GET_CODE (X) == SEQUENCE). */ |
517 | |
518 | public: |
519 | /* Get number of elements in sequence. */ |
520 | int len () const; |
521 | |
522 | /* Get i-th element of the sequence. */ |
523 | rtx element (int index) const; |
524 | |
525 | /* Get i-th element of the sequence, with a checked cast to |
526 | rtx_insn *. */ |
527 | rtx_insn *insn (int index) const; |
528 | }; |
529 | |
530 | template <> |
531 | template <> |
532 | inline bool |
533 | is_a_helper <rtx_sequence *>::test (rtx rt) |
534 | { |
535 | return rt->code == SEQUENCE; |
536 | } |
537 | |
538 | template <> |
539 | template <> |
540 | inline bool |
541 | is_a_helper <const rtx_sequence *>::test (const_rtx rt) |
542 | { |
543 | return rt->code == SEQUENCE; |
544 | } |
545 | |
546 | struct GTY(()) rtx_insn : public rtx_def |
547 | { |
548 | public: |
549 | /* No extra fields, but adds the invariant: |
550 | |
551 | (INSN_P (X) |
552 | || NOTE_P (X) |
553 | || JUMP_TABLE_DATA_P (X) |
554 | || BARRIER_P (X) |
555 | || LABEL_P (X)) |
556 | |
557 | i.e. that we must be able to use the following: |
558 | INSN_UID () |
559 | NEXT_INSN () |
560 | PREV_INSN () |
561 | i.e. we have an rtx that has an INSN_UID field and can be part of |
562 | a linked list of insns. |
563 | */ |
564 | |
565 | /* Returns true if this insn has been deleted. */ |
566 | |
567 | bool deleted () const { return volatil; } |
568 | |
569 | /* Mark this insn as deleted. */ |
570 | |
571 | void set_deleted () { volatil = true; } |
572 | |
573 | /* Mark this insn as not deleted. */ |
574 | |
575 | void set_undeleted () { volatil = false; } |
576 | }; |
577 | |
578 | /* Subclasses of rtx_insn. */ |
579 | |
580 | struct GTY(()) rtx_debug_insn : public rtx_insn |
581 | { |
582 | /* No extra fields, but adds the invariant: |
583 | DEBUG_INSN_P (X) aka (GET_CODE (X) == DEBUG_INSN) |
584 | i.e. an annotation for tracking variable assignments. |
585 | |
586 | This is an instance of: |
587 | DEF_RTL_EXPR(DEBUG_INSN, "debug_insn", "uuBeiie", RTX_INSN) |
588 | from rtl.def. */ |
589 | }; |
590 | |
591 | struct GTY(()) rtx_nonjump_insn : public rtx_insn |
592 | { |
593 | /* No extra fields, but adds the invariant: |
594 | NONJUMP_INSN_P (X) aka (GET_CODE (X) == INSN) |
595 | i.e an instruction that cannot jump. |
596 | |
597 | This is an instance of: |
598 | DEF_RTL_EXPR(INSN, "insn", "uuBeiie", RTX_INSN) |
599 | from rtl.def. */ |
600 | }; |
601 | |
602 | struct GTY(()) rtx_jump_insn : public rtx_insn |
603 | { |
604 | public: |
605 | /* No extra fields, but adds the invariant: |
606 | JUMP_P (X) aka (GET_CODE (X) == JUMP_INSN) |
607 | i.e. an instruction that can possibly jump. |
608 | |
609 | This is an instance of: |
610 | DEF_RTL_EXPR(JUMP_INSN, "jump_insn", "uuBeiie0", RTX_INSN) |
611 | from rtl.def. */ |
612 | |
613 | /* Returns jump target of this instruction. The returned value is not |
614 | necessarily a code label: it may also be a RETURN or SIMPLE_RETURN |
615 | expression. Also, when the code label is marked "deleted", it is |
616 | replaced by a NOTE. In some cases the value is NULL_RTX. */ |
617 | |
618 | inline rtx jump_label () const; |
619 | |
620 | /* Returns jump target cast to rtx_code_label *. */ |
621 | |
622 | inline rtx_code_label *jump_target () const; |
623 | |
624 | /* Set jump target. */ |
625 | |
626 | inline void set_jump_target (rtx_code_label *); |
627 | }; |
628 | |
629 | struct GTY(()) rtx_call_insn : public rtx_insn |
630 | { |
631 | /* No extra fields, but adds the invariant: |
632 | CALL_P (X) aka (GET_CODE (X) == CALL_INSN) |
633 | i.e. an instruction that can possibly call a subroutine |
634 | but which will not change which instruction comes next |
635 | in the current function. |
636 | |
637 | This is an instance of: |
638 | DEF_RTL_EXPR(CALL_INSN, "call_insn", "uuBeiiee", RTX_INSN) |
639 | from rtl.def. */ |
640 | }; |
641 | |
642 | struct GTY(()) rtx_jump_table_data : public rtx_insn |
643 | { |
644 | /* No extra fields, but adds the invariant: |
645 | JUMP_TABLE_DATA_P (X) aka (GET_CODE (INSN) == JUMP_TABLE_DATA) |
646 | i.e. a data for a jump table, considered an instruction for |
647 | historical reasons. |
648 | |
649 | This is an instance of: |
650 | DEF_RTL_EXPR(JUMP_TABLE_DATA, "jump_table_data", "uuBe0000", RTX_INSN) |
651 | from rtl.def. */ |
652 | |
653 | /* This can be either: |
654 | |
655 | (a) a table of absolute jumps, in which case PATTERN (this) is an |
656 | ADDR_VEC with arg 0 a vector of labels, or |
657 | |
658 | (b) a table of relative jumps (e.g. for -fPIC), in which case |
659 | PATTERN (this) is an ADDR_DIFF_VEC, with arg 0 a LABEL_REF and |
660 | arg 1 the vector of labels. |
661 | |
662 | This method gets the underlying vec. */ |
663 | |
664 | inline rtvec get_labels () const; |
665 | inline scalar_int_mode get_data_mode () const; |
666 | }; |
667 | |
668 | struct GTY(()) rtx_barrier : public rtx_insn |
669 | { |
670 | /* No extra fields, but adds the invariant: |
671 | BARRIER_P (X) aka (GET_CODE (X) == BARRIER) |
672 | i.e. a marker that indicates that control will not flow through. |
673 | |
674 | This is an instance of: |
675 | DEF_RTL_EXPR(BARRIER, "barrier", "uu00000", RTX_EXTRA) |
676 | from rtl.def. */ |
677 | }; |
678 | |
679 | struct GTY(()) rtx_code_label : public rtx_insn |
680 | { |
681 | /* No extra fields, but adds the invariant: |
682 | LABEL_P (X) aka (GET_CODE (X) == CODE_LABEL) |
683 | i.e. a label in the assembler. |
684 | |
685 | This is an instance of: |
686 | DEF_RTL_EXPR(CODE_LABEL, "code_label", "uuB00is", RTX_EXTRA) |
687 | from rtl.def. */ |
688 | }; |
689 | |
690 | struct GTY(()) rtx_note : public rtx_insn |
691 | { |
692 | /* No extra fields, but adds the invariant: |
693 | NOTE_P(X) aka (GET_CODE (X) == NOTE) |
694 | i.e. a note about the corresponding source code. |
695 | |
696 | This is an instance of: |
697 | DEF_RTL_EXPR(NOTE, "note", "uuB0ni", RTX_EXTRA) |
698 | from rtl.def. */ |
699 | }; |
700 | |
701 | /* The size in bytes of an rtx header (code, mode and flags). */ |
702 | #define RTX_HDR_SIZE offsetof (struct rtx_def, u) |
703 | |
704 | /* The size in bytes of an rtx with code CODE. */ |
705 | #define RTX_CODE_SIZE(CODE) rtx_code_size[CODE] |
706 | |
707 | #define NULL_RTX (rtx) 0 |
708 | |
709 | /* The "next" and "previous" RTX, relative to this one. */ |
710 | |
711 | #define RTX_NEXT(X) (rtx_next[GET_CODE (X)] == 0 ? NULL \ |
712 | : *(rtx *)(((char *)X) + rtx_next[GET_CODE (X)])) |
713 | |
714 | /* FIXME: the "NEXT_INSN (PREV_INSN (X)) == X" condition shouldn't be needed. |
715 | */ |
716 | #define RTX_PREV(X) ((INSN_P (X) \ |
717 | || NOTE_P (X) \ |
718 | || JUMP_TABLE_DATA_P (X) \ |
719 | || BARRIER_P (X) \ |
720 | || LABEL_P (X)) \ |
721 | && PREV_INSN (as_a <rtx_insn *> (X)) != NULL \ |
722 | && NEXT_INSN (PREV_INSN (as_a <rtx_insn *> (X))) == X \ |
723 | ? PREV_INSN (as_a <rtx_insn *> (X)) : NULL) |
724 | |
725 | /* Define macros to access the `code' field of the rtx. */ |
726 | |
727 | #define GET_CODE(RTX) ((enum rtx_code) (RTX)->code) |
728 | #define PUT_CODE(RTX, CODE) ((RTX)->code = (CODE)) |
729 | |
730 | #define GET_MODE(RTX) ((machine_mode) (RTX)->mode) |
731 | #define PUT_MODE_RAW(RTX, MODE) ((RTX)->mode = (MODE)) |
732 | |
733 | /* RTL vector. These appear inside RTX's when there is a need |
734 | for a variable number of things. The principle use is inside |
735 | PARALLEL expressions. */ |
736 | |
737 | struct GTY(()) rtvec_def { |
738 | int num_elem; /* number of elements */ |
739 | rtx GTY ((length ("%h.num_elem"))) elem[1]; |
740 | }; |
741 | |
742 | #define NULL_RTVEC (rtvec) 0 |
743 | |
744 | #define GET_NUM_ELEM(RTVEC) ((RTVEC)->num_elem) |
745 | #define PUT_NUM_ELEM(RTVEC, NUM) ((RTVEC)->num_elem = (NUM)) |
746 | |
747 | /* Predicate yielding nonzero iff X is an rtx for a register. */ |
748 | #define REG_P(X) (GET_CODE (X) == REG) |
749 | |
750 | /* Predicate yielding nonzero iff X is an rtx for a memory location. */ |
751 | #define MEM_P(X) (GET_CODE (X) == MEM) |
752 | |
753 | #if TARGET_SUPPORTS_WIDE_INT |
754 | |
755 | /* Match CONST_*s that can represent compile-time constant integers. */ |
756 | #define CASE_CONST_SCALAR_INT \ |
757 | case CONST_INT: \ |
758 | case CONST_WIDE_INT |
759 | |
760 | /* Match CONST_*s for which pointer equality corresponds to value |
761 | equality. */ |
762 | #define CASE_CONST_UNIQUE \ |
763 | case CONST_INT: \ |
764 | case CONST_WIDE_INT: \ |
765 | case CONST_POLY_INT: \ |
766 | case CONST_DOUBLE: \ |
767 | case CONST_FIXED |
768 | |
769 | /* Match all CONST_* rtxes. */ |
770 | #define CASE_CONST_ANY \ |
771 | case CONST_INT: \ |
772 | case CONST_WIDE_INT: \ |
773 | case CONST_POLY_INT: \ |
774 | case CONST_DOUBLE: \ |
775 | case CONST_FIXED: \ |
776 | case CONST_VECTOR |
777 | |
778 | #else |
779 | |
780 | /* Match CONST_*s that can represent compile-time constant integers. */ |
781 | #define CASE_CONST_SCALAR_INT \ |
782 | case CONST_INT: \ |
783 | case CONST_DOUBLE |
784 | |
785 | /* Match CONST_*s for which pointer equality corresponds to value |
786 | equality. */ |
787 | #define CASE_CONST_UNIQUE \ |
788 | case CONST_INT: \ |
789 | case CONST_DOUBLE: \ |
790 | case CONST_FIXED |
791 | |
792 | /* Match all CONST_* rtxes. */ |
793 | #define CASE_CONST_ANY \ |
794 | case CONST_INT: \ |
795 | case CONST_DOUBLE: \ |
796 | case CONST_FIXED: \ |
797 | case CONST_VECTOR |
798 | #endif |
799 | |
800 | /* Predicate yielding nonzero iff X is an rtx for a constant integer. */ |
801 | #define CONST_INT_P(X) (GET_CODE (X) == CONST_INT) |
802 | |
803 | /* Predicate yielding nonzero iff X is an rtx for a constant integer. */ |
804 | #define CONST_WIDE_INT_P(X) (GET_CODE (X) == CONST_WIDE_INT) |
805 | |
806 | /* Predicate yielding nonzero iff X is an rtx for a polynomial constant |
807 | integer. */ |
808 | #define CONST_POLY_INT_P(X) \ |
809 | (NUM_POLY_INT_COEFFS > 1 && GET_CODE (X) == CONST_POLY_INT) |
810 | |
811 | /* Predicate yielding nonzero iff X is an rtx for a constant fixed-point. */ |
812 | #define CONST_FIXED_P(X) (GET_CODE (X) == CONST_FIXED) |
813 | |
814 | /* Predicate yielding true iff X is an rtx for a double-int |
815 | or floating point constant. */ |
816 | #define CONST_DOUBLE_P(X) (GET_CODE (X) == CONST_DOUBLE) |
817 | |
818 | /* Predicate yielding true iff X is an rtx for a double-int. */ |
819 | #define CONST_DOUBLE_AS_INT_P(X) \ |
820 | (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) == VOIDmode) |
821 | |
822 | /* Predicate yielding true iff X is an rtx for a integer const. */ |
823 | #if TARGET_SUPPORTS_WIDE_INT |
824 | #define CONST_SCALAR_INT_P(X) \ |
825 | (CONST_INT_P (X) || CONST_WIDE_INT_P (X)) |
826 | #else |
827 | #define CONST_SCALAR_INT_P(X) \ |
828 | (CONST_INT_P (X) || CONST_DOUBLE_AS_INT_P (X)) |
829 | #endif |
830 | |
831 | /* Predicate yielding true iff X is an rtx for a double-int. */ |
832 | #define CONST_DOUBLE_AS_FLOAT_P(X) \ |
833 | (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != VOIDmode) |
834 | |
835 | /* Predicate yielding nonzero iff X is an rtx for a constant vector. */ |
836 | #define CONST_VECTOR_P(X) (GET_CODE (X) == CONST_VECTOR) |
837 | |
838 | /* Predicate yielding nonzero iff X is a label insn. */ |
839 | #define LABEL_P(X) (GET_CODE (X) == CODE_LABEL) |
840 | |
841 | /* Predicate yielding nonzero iff X is a jump insn. */ |
842 | #define JUMP_P(X) (GET_CODE (X) == JUMP_INSN) |
843 | |
844 | /* Predicate yielding nonzero iff X is a call insn. */ |
845 | #define CALL_P(X) (GET_CODE (X) == CALL_INSN) |
846 | |
847 | /* 1 if RTX is a call_insn for a fake call. |
848 | CALL_INSN use "used" flag to indicate it's a fake call. */ |
849 | #define FAKE_CALL_P(RTX) \ |
850 | (RTL_FLAG_CHECK1 ("FAKE_CALL_P", (RTX), CALL_INSN)->used) |
851 | |
852 | /* Predicate yielding nonzero iff X is an insn that cannot jump. */ |
853 | #define NONJUMP_INSN_P(X) (GET_CODE (X) == INSN) |
854 | |
855 | /* Predicate yielding nonzero iff X is a debug note/insn. */ |
856 | #define DEBUG_INSN_P(X) (GET_CODE (X) == DEBUG_INSN) |
857 | |
858 | /* Predicate yielding nonzero iff X is an insn that is not a debug insn. */ |
859 | #define NONDEBUG_INSN_P(X) (NONJUMP_INSN_P (X) || JUMP_P (X) || CALL_P (X)) |
860 | |
861 | /* Nonzero if DEBUG_MARKER_INSN_P may possibly hold. */ |
862 | #define MAY_HAVE_DEBUG_MARKER_INSNS debug_nonbind_markers_p |
863 | /* Nonzero if DEBUG_BIND_INSN_P may possibly hold. */ |
864 | #define MAY_HAVE_DEBUG_BIND_INSNS flag_var_tracking_assignments |
865 | /* Nonzero if DEBUG_INSN_P may possibly hold. */ |
866 | #define MAY_HAVE_DEBUG_INSNS \ |
867 | (MAY_HAVE_DEBUG_MARKER_INSNS || MAY_HAVE_DEBUG_BIND_INSNS) |
868 | |
869 | /* Predicate yielding nonzero iff X is a real insn. */ |
870 | #define INSN_P(X) (NONDEBUG_INSN_P (X) || DEBUG_INSN_P (X)) |
871 | |
872 | /* Predicate yielding nonzero iff X is a note insn. */ |
873 | #define NOTE_P(X) (GET_CODE (X) == NOTE) |
874 | |
875 | /* Predicate yielding nonzero iff X is a barrier insn. */ |
876 | #define BARRIER_P(X) (GET_CODE (X) == BARRIER) |
877 | |
878 | /* Predicate yielding nonzero iff X is a data for a jump table. */ |
879 | #define JUMP_TABLE_DATA_P(INSN) (GET_CODE (INSN) == JUMP_TABLE_DATA) |
880 | |
881 | /* Predicate yielding nonzero iff RTX is a subreg. */ |
882 | #define SUBREG_P(RTX) (GET_CODE (RTX) == SUBREG) |
883 | |
884 | /* Predicate yielding true iff RTX is a symbol ref. */ |
885 | #define SYMBOL_REF_P(RTX) (GET_CODE (RTX) == SYMBOL_REF) |
886 | |
887 | template <> |
888 | template <> |
889 | inline bool |
890 | is_a_helper <rtx_insn *>::test (rtx rt) |
891 | { |
892 | return (INSN_P (rt) |
893 | || NOTE_P (rt) |
894 | || JUMP_TABLE_DATA_P (rt) |
895 | || BARRIER_P (rt) |
896 | || LABEL_P (rt)); |
897 | } |
898 | |
899 | template <> |
900 | template <> |
901 | inline bool |
902 | is_a_helper <const rtx_insn *>::test (const_rtx rt) |
903 | { |
904 | return (INSN_P (rt) |
905 | || NOTE_P (rt) |
906 | || JUMP_TABLE_DATA_P (rt) |
907 | || BARRIER_P (rt) |
908 | || LABEL_P (rt)); |
909 | } |
910 | |
911 | template <> |
912 | template <> |
913 | inline bool |
914 | is_a_helper <rtx_debug_insn *>::test (rtx rt) |
915 | { |
916 | return DEBUG_INSN_P (rt); |
917 | } |
918 | |
919 | template <> |
920 | template <> |
921 | inline bool |
922 | is_a_helper <rtx_nonjump_insn *>::test (rtx rt) |
923 | { |
924 | return NONJUMP_INSN_P (rt); |
925 | } |
926 | |
927 | template <> |
928 | template <> |
929 | inline bool |
930 | is_a_helper <rtx_jump_insn *>::test (rtx rt) |
931 | { |
932 | return JUMP_P (rt); |
933 | } |
934 | |
935 | template <> |
936 | template <> |
937 | inline bool |
938 | is_a_helper <rtx_jump_insn *>::test (rtx_insn *insn) |
939 | { |
940 | return JUMP_P (insn); |
941 | } |
942 | |
943 | template <> |
944 | template <> |
945 | inline bool |
946 | is_a_helper <rtx_call_insn *>::test (rtx rt) |
947 | { |
948 | return CALL_P (rt); |
949 | } |
950 | |
951 | template <> |
952 | template <> |
953 | inline bool |
954 | is_a_helper <rtx_call_insn *>::test (rtx_insn *insn) |
955 | { |
956 | return CALL_P (insn); |
957 | } |
958 | |
959 | template <> |
960 | template <> |
961 | inline bool |
962 | is_a_helper <rtx_jump_table_data *>::test (rtx rt) |
963 | { |
964 | return JUMP_TABLE_DATA_P (rt); |
965 | } |
966 | |
967 | template <> |
968 | template <> |
969 | inline bool |
970 | is_a_helper <rtx_jump_table_data *>::test (rtx_insn *insn) |
971 | { |
972 | return JUMP_TABLE_DATA_P (insn); |
973 | } |
974 | |
975 | template <> |
976 | template <> |
977 | inline bool |
978 | is_a_helper <rtx_barrier *>::test (rtx rt) |
979 | { |
980 | return BARRIER_P (rt); |
981 | } |
982 | |
983 | template <> |
984 | template <> |
985 | inline bool |
986 | is_a_helper <rtx_code_label *>::test (rtx rt) |
987 | { |
988 | return LABEL_P (rt); |
989 | } |
990 | |
991 | template <> |
992 | template <> |
993 | inline bool |
994 | is_a_helper <rtx_code_label *>::test (rtx_insn *insn) |
995 | { |
996 | return LABEL_P (insn); |
997 | } |
998 | |
999 | template <> |
1000 | template <> |
1001 | inline bool |
1002 | is_a_helper <rtx_note *>::test (rtx rt) |
1003 | { |
1004 | return NOTE_P (rt); |
1005 | } |
1006 | |
1007 | template <> |
1008 | template <> |
1009 | inline bool |
1010 | is_a_helper <rtx_note *>::test (rtx_insn *insn) |
1011 | { |
1012 | return NOTE_P (insn); |
1013 | } |
1014 | |
1015 | /* Predicate yielding nonzero iff X is a return or simple_return. */ |
1016 | #define ANY_RETURN_P(X) \ |
1017 | (GET_CODE (X) == RETURN || GET_CODE (X) == SIMPLE_RETURN) |
1018 | |
1019 | /* 1 if X is a unary operator. */ |
1020 | |
1021 | #define UNARY_P(X) \ |
1022 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_UNARY) |
1023 | |
1024 | /* 1 if X is a binary operator. */ |
1025 | |
1026 | #define BINARY_P(X) \ |
1027 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_BINARY_MASK) == RTX_BINARY_RESULT) |
1028 | |
1029 | /* 1 if X is an arithmetic operator. */ |
1030 | |
1031 | #define ARITHMETIC_P(X) \ |
1032 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_ARITHMETIC_MASK) \ |
1033 | == RTX_ARITHMETIC_RESULT) |
1034 | |
1035 | /* 1 if X is an arithmetic operator. */ |
1036 | |
1037 | #define COMMUTATIVE_ARITH_P(X) \ |
1038 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_COMM_ARITH) |
1039 | |
1040 | /* 1 if X is a commutative arithmetic operator or a comparison operator. |
1041 | These two are sometimes selected together because it is possible to |
1042 | swap the two operands. */ |
1043 | |
1044 | #define SWAPPABLE_OPERANDS_P(X) \ |
1045 | ((1 << GET_RTX_CLASS (GET_CODE (X))) \ |
1046 | & ((1 << RTX_COMM_ARITH) | (1 << RTX_COMM_COMPARE) \ |
1047 | | (1 << RTX_COMPARE))) |
1048 | |
1049 | /* 1 if X is a non-commutative operator. */ |
1050 | |
1051 | #define NON_COMMUTATIVE_P(X) \ |
1052 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \ |
1053 | == RTX_NON_COMMUTATIVE_RESULT) |
1054 | |
1055 | /* 1 if X is a commutative operator on integers. */ |
1056 | |
1057 | #define COMMUTATIVE_P(X) \ |
1058 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMMUTATIVE_MASK) \ |
1059 | == RTX_COMMUTATIVE_RESULT) |
1060 | |
1061 | /* 1 if X is a relational operator. */ |
1062 | |
1063 | #define COMPARISON_P(X) \ |
1064 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_COMPARE_MASK) == RTX_COMPARE_RESULT) |
1065 | |
1066 | /* 1 if X is a constant value that is an integer. */ |
1067 | |
1068 | #define CONSTANT_P(X) \ |
1069 | (GET_RTX_CLASS (GET_CODE (X)) == RTX_CONST_OBJ) |
1070 | |
1071 | /* 1 if X is a LABEL_REF. */ |
1072 | #define LABEL_REF_P(X) \ |
1073 | (GET_CODE (X) == LABEL_REF) |
1074 | |
1075 | /* 1 if X can be used to represent an object. */ |
1076 | #define OBJECT_P(X) \ |
1077 | ((GET_RTX_CLASS (GET_CODE (X)) & RTX_OBJ_MASK) == RTX_OBJ_RESULT) |
1078 | |
1079 | /* General accessor macros for accessing the fields of an rtx. */ |
1080 | |
1081 | #if defined ENABLE_RTL_CHECKING && (GCC_VERSION >= 2007) |
1082 | /* The bit with a star outside the statement expr and an & inside is |
1083 | so that N can be evaluated only once. */ |
1084 | #define RTL_CHECK1(RTX, N, C1) __extension__ \ |
1085 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1086 | const enum rtx_code _code = GET_CODE (_rtx); \ |
1087 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
1088 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
1089 | __FUNCTION__); \ |
1090 | if (GET_RTX_FORMAT (_code)[_n] != C1) \ |
1091 | rtl_check_failed_type1 (_rtx, _n, C1, __FILE__, __LINE__, \ |
1092 | __FUNCTION__); \ |
1093 | &_rtx->u.fld[_n]; })) |
1094 | |
1095 | #define RTL_CHECK2(RTX, N, C1, C2) __extension__ \ |
1096 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1097 | const enum rtx_code _code = GET_CODE (_rtx); \ |
1098 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
1099 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
1100 | __FUNCTION__); \ |
1101 | if (GET_RTX_FORMAT (_code)[_n] != C1 \ |
1102 | && GET_RTX_FORMAT (_code)[_n] != C2) \ |
1103 | rtl_check_failed_type2 (_rtx, _n, C1, C2, __FILE__, __LINE__, \ |
1104 | __FUNCTION__); \ |
1105 | &_rtx->u.fld[_n]; })) |
1106 | |
1107 | #define RTL_CHECKC1(RTX, N, C) __extension__ \ |
1108 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1109 | if (GET_CODE (_rtx) != (C)) \ |
1110 | rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ |
1111 | __FUNCTION__); \ |
1112 | &_rtx->u.fld[_n]; })) |
1113 | |
1114 | #define RTL_CHECKC2(RTX, N, C1, C2) __extension__ \ |
1115 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1116 | const enum rtx_code _code = GET_CODE (_rtx); \ |
1117 | if (_code != (C1) && _code != (C2)) \ |
1118 | rtl_check_failed_code2 (_rtx, (C1), (C2), __FILE__, __LINE__, \ |
1119 | __FUNCTION__); \ |
1120 | &_rtx->u.fld[_n]; })) |
1121 | |
1122 | #define RTL_CHECKC3(RTX, N, C1, C2, C3) __extension__ \ |
1123 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1124 | const enum rtx_code _code = GET_CODE (_rtx); \ |
1125 | if (_code != (C1) && _code != (C2) && _code != (C3)) \ |
1126 | rtl_check_failed_code3 (_rtx, (C1), (C2), (C3), __FILE__, \ |
1127 | __LINE__, __FUNCTION__); \ |
1128 | &_rtx->u.fld[_n]; })) |
1129 | |
1130 | #define RTVEC_ELT(RTVEC, I) __extension__ \ |
1131 | (*({ __typeof (RTVEC) const _rtvec = (RTVEC); const int _i = (I); \ |
1132 | if (_i < 0 || _i >= GET_NUM_ELEM (_rtvec)) \ |
1133 | rtvec_check_failed_bounds (_rtvec, _i, __FILE__, __LINE__, \ |
1134 | __FUNCTION__); \ |
1135 | &_rtvec->elem[_i]; })) |
1136 | |
1137 | #define XWINT(RTX, N) __extension__ \ |
1138 | (*({ __typeof (RTX) const _rtx = (RTX); const int _n = (N); \ |
1139 | const enum rtx_code _code = GET_CODE (_rtx); \ |
1140 | if (_n < 0 || _n >= GET_RTX_LENGTH (_code)) \ |
1141 | rtl_check_failed_bounds (_rtx, _n, __FILE__, __LINE__, \ |
1142 | __FUNCTION__); \ |
1143 | if (GET_RTX_FORMAT (_code)[_n] != 'w') \ |
1144 | rtl_check_failed_type1 (_rtx, _n, 'w', __FILE__, __LINE__, \ |
1145 | __FUNCTION__); \ |
1146 | &_rtx->u.hwint[_n]; })) |
1147 | |
1148 | #define CWI_ELT(RTX, I) __extension__ \ |
1149 | (*({ __typeof (RTX) const _cwi = (RTX); \ |
1150 | int _max = CWI_GET_NUM_ELEM (_cwi); \ |
1151 | const int _i = (I); \ |
1152 | if (_i < 0 || _i >= _max) \ |
1153 | cwi_check_failed_bounds (_cwi, _i, __FILE__, __LINE__, \ |
1154 | __FUNCTION__); \ |
1155 | &_cwi->u.hwiv.elem[_i]; })) |
1156 | |
1157 | #define XCWINT(RTX, N, C) __extension__ \ |
1158 | (*({ __typeof (RTX) const _rtx = (RTX); \ |
1159 | if (GET_CODE (_rtx) != (C)) \ |
1160 | rtl_check_failed_code1 (_rtx, (C), __FILE__, __LINE__, \ |
1161 | __FUNCTION__); \ |
1162 | &_rtx->u.hwint[N]; })) |
1163 | |
1164 | #define XCMWINT(RTX, N, C, M) __extension__ \ |
1165 | (*({ __typeof (RTX) const _rtx = (RTX); \ |
1166 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) != (M)) \ |
1167 | rtl_check_failed_code_mode (_rtx, (C), (M), false, __FILE__, \ |
1168 | __LINE__, __FUNCTION__); \ |
1169 | &_rtx->u.hwint[N]; })) |
1170 | |
1171 | #define XCNMPRV(RTX, C, M) __extension__ \ |
1172 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1173 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \ |
1174 | rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \ |
1175 | __LINE__, __FUNCTION__); \ |
1176 | &_rtx->u.rv; }) |
1177 | |
1178 | #define XCNMPFV(RTX, C, M) __extension__ \ |
1179 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1180 | if (GET_CODE (_rtx) != (C) || GET_MODE (_rtx) == (M)) \ |
1181 | rtl_check_failed_code_mode (_rtx, (C), (M), true, __FILE__, \ |
1182 | __LINE__, __FUNCTION__); \ |
1183 | &_rtx->u.fv; }) |
1184 | |
1185 | #define REG_CHECK(RTX) __extension__ \ |
1186 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1187 | if (GET_CODE (_rtx) != REG) \ |
1188 | rtl_check_failed_code1 (_rtx, REG, __FILE__, __LINE__, \ |
1189 | __FUNCTION__); \ |
1190 | &_rtx->u.reg; }) |
1191 | |
1192 | #define BLOCK_SYMBOL_CHECK(RTX) __extension__ \ |
1193 | ({ __typeof (RTX) const _symbol = (RTX); \ |
1194 | const unsigned int flags = SYMBOL_REF_FLAGS (_symbol); \ |
1195 | if ((flags & SYMBOL_FLAG_HAS_BLOCK_INFO) == 0) \ |
1196 | rtl_check_failed_block_symbol (__FILE__, __LINE__, \ |
1197 | __FUNCTION__); \ |
1198 | &_symbol->u.block_sym; }) |
1199 | |
1200 | #define HWIVEC_CHECK(RTX,C) __extension__ \ |
1201 | ({ __typeof (RTX) const _symbol = (RTX); \ |
1202 | RTL_CHECKC1 (_symbol, 0, C); \ |
1203 | &_symbol->u.hwiv; }) |
1204 | |
1205 | extern void rtl_check_failed_bounds (const_rtx, int, const char *, int, |
1206 | const char *) |
1207 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1208 | extern void rtl_check_failed_type1 (const_rtx, int, int, const char *, int, |
1209 | const char *) |
1210 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1211 | extern void rtl_check_failed_type2 (const_rtx, int, int, int, const char *, |
1212 | int, const char *) |
1213 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1214 | extern void rtl_check_failed_code1 (const_rtx, enum rtx_code, const char *, |
1215 | int, const char *) |
1216 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1217 | extern void rtl_check_failed_code2 (const_rtx, enum rtx_code, enum rtx_code, |
1218 | const char *, int, const char *) |
1219 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1220 | extern void rtl_check_failed_code3 (const_rtx, enum rtx_code, enum rtx_code, |
1221 | enum rtx_code, const char *, int, |
1222 | const char *) |
1223 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1224 | extern void rtl_check_failed_code_mode (const_rtx, enum rtx_code, machine_mode, |
1225 | bool, const char *, int, const char *) |
1226 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1227 | extern void rtl_check_failed_block_symbol (const char *, int, const char *) |
1228 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1229 | extern void cwi_check_failed_bounds (const_rtx, int, const char *, int, |
1230 | const char *) |
1231 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1232 | extern void rtvec_check_failed_bounds (const_rtvec, int, const char *, int, |
1233 | const char *) |
1234 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
1235 | |
1236 | #else /* not ENABLE_RTL_CHECKING */ |
1237 | |
1238 | #define RTL_CHECK1(RTX, N, C1) ((RTX)->u.fld[N]) |
1239 | #define RTL_CHECK2(RTX, N, C1, C2) ((RTX)->u.fld[N]) |
1240 | #define RTL_CHECKC1(RTX, N, C) ((RTX)->u.fld[N]) |
1241 | #define RTL_CHECKC2(RTX, N, C1, C2) ((RTX)->u.fld[N]) |
1242 | #define RTL_CHECKC3(RTX, N, C1, C2, C3) ((RTX)->u.fld[N]) |
1243 | #define RTVEC_ELT(RTVEC, I) ((RTVEC)->elem[I]) |
1244 | #define XWINT(RTX, N) ((RTX)->u.hwint[N]) |
1245 | #define CWI_ELT(RTX, I) ((RTX)->u.hwiv.elem[I]) |
1246 | #define XCWINT(RTX, N, C) ((RTX)->u.hwint[N]) |
1247 | #define XCMWINT(RTX, N, C, M) ((RTX)->u.hwint[N]) |
1248 | #define XCNMWINT(RTX, N, C, M) ((RTX)->u.hwint[N]) |
1249 | #define XCNMPRV(RTX, C, M) (&(RTX)->u.rv) |
1250 | #define XCNMPFV(RTX, C, M) (&(RTX)->u.fv) |
1251 | #define REG_CHECK(RTX) (&(RTX)->u.reg) |
1252 | #define BLOCK_SYMBOL_CHECK(RTX) (&(RTX)->u.block_sym) |
1253 | #define HWIVEC_CHECK(RTX,C) (&(RTX)->u.hwiv) |
1254 | |
1255 | #endif |
1256 | |
1257 | /* General accessor macros for accessing the flags of an rtx. */ |
1258 | |
1259 | /* Access an individual rtx flag, with no checking of any kind. */ |
1260 | #define RTX_FLAG(RTX, FLAG) ((RTX)->FLAG) |
1261 | |
1262 | #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION >= 2007) |
1263 | #define RTL_FLAG_CHECK1(NAME, RTX, C1) __extension__ \ |
1264 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1265 | if (GET_CODE (_rtx) != C1) \ |
1266 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1267 | __FUNCTION__); \ |
1268 | _rtx; }) |
1269 | |
1270 | #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) __extension__ \ |
1271 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1272 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2) \ |
1273 | rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ |
1274 | __FUNCTION__); \ |
1275 | _rtx; }) |
1276 | |
1277 | #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) __extension__ \ |
1278 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1279 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \ |
1280 | && GET_CODE (_rtx) != C3) \ |
1281 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1282 | __FUNCTION__); \ |
1283 | _rtx; }) |
1284 | |
1285 | #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) __extension__ \ |
1286 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1287 | if (GET_CODE (_rtx) != C1 && GET_CODE(_rtx) != C2 \ |
1288 | && GET_CODE (_rtx) != C3 && GET_CODE(_rtx) != C4) \ |
1289 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1290 | __FUNCTION__); \ |
1291 | _rtx; }) |
1292 | |
1293 | #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) __extension__ \ |
1294 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1295 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
1296 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
1297 | && GET_CODE (_rtx) != C5) \ |
1298 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1299 | __FUNCTION__); \ |
1300 | _rtx; }) |
1301 | |
1302 | #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) \ |
1303 | __extension__ \ |
1304 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1305 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
1306 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
1307 | && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6) \ |
1308 | rtl_check_failed_flag (NAME,_rtx, __FILE__, __LINE__, \ |
1309 | __FUNCTION__); \ |
1310 | _rtx; }) |
1311 | |
1312 | #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) \ |
1313 | __extension__ \ |
1314 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1315 | if (GET_CODE (_rtx) != C1 && GET_CODE (_rtx) != C2 \ |
1316 | && GET_CODE (_rtx) != C3 && GET_CODE (_rtx) != C4 \ |
1317 | && GET_CODE (_rtx) != C5 && GET_CODE (_rtx) != C6 \ |
1318 | && GET_CODE (_rtx) != C7) \ |
1319 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1320 | __FUNCTION__); \ |
1321 | _rtx; }) |
1322 | |
1323 | #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) \ |
1324 | __extension__ \ |
1325 | ({ __typeof (RTX) const _rtx = (RTX); \ |
1326 | if (!INSN_CHAIN_CODE_P (GET_CODE (_rtx))) \ |
1327 | rtl_check_failed_flag (NAME, _rtx, __FILE__, __LINE__, \ |
1328 | __FUNCTION__); \ |
1329 | _rtx; }) |
1330 | |
1331 | extern void rtl_check_failed_flag (const char *, const_rtx, const char *, |
1332 | int, const char *) |
1333 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD |
1334 | ; |
1335 | |
1336 | #else /* not ENABLE_RTL_FLAG_CHECKING */ |
1337 | |
1338 | #define RTL_FLAG_CHECK1(NAME, RTX, C1) (RTX) |
1339 | #define RTL_FLAG_CHECK2(NAME, RTX, C1, C2) (RTX) |
1340 | #define RTL_FLAG_CHECK3(NAME, RTX, C1, C2, C3) (RTX) |
1341 | #define RTL_FLAG_CHECK4(NAME, RTX, C1, C2, C3, C4) (RTX) |
1342 | #define RTL_FLAG_CHECK5(NAME, RTX, C1, C2, C3, C4, C5) (RTX) |
1343 | #define RTL_FLAG_CHECK6(NAME, RTX, C1, C2, C3, C4, C5, C6) (RTX) |
1344 | #define RTL_FLAG_CHECK7(NAME, RTX, C1, C2, C3, C4, C5, C6, C7) (RTX) |
1345 | #define RTL_INSN_CHAIN_FLAG_CHECK(NAME, RTX) (RTX) |
1346 | #endif |
1347 | |
1348 | #define XINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_int) |
1349 | #define XUINT(RTX, N) (RTL_CHECK2 (RTX, N, 'i', 'n').rt_uint) |
1350 | #define XSTR(RTX, N) (RTL_CHECK2 (RTX, N, 's', 'S').rt_str) |
1351 | #define XEXP(RTX, N) (RTL_CHECK2 (RTX, N, 'e', 'u').rt_rtx) |
1352 | #define XVEC(RTX, N) (RTL_CHECK2 (RTX, N, 'E', 'V').rt_rtvec) |
1353 | #define XMODE(RTX, N) (RTL_CHECK1 (RTX, N, 'M').rt_type) |
1354 | #define XTREE(RTX, N) (RTL_CHECK1 (RTX, N, 't').rt_tree) |
1355 | #define XBBDEF(RTX, N) (RTL_CHECK1 (RTX, N, 'B').rt_bb) |
1356 | #define XTMPL(RTX, N) (RTL_CHECK1 (RTX, N, 'T').rt_str) |
1357 | #define XCFI(RTX, N) (RTL_CHECK1 (RTX, N, 'C').rt_cfi) |
1358 | |
1359 | #define XVECEXP(RTX, N, M) RTVEC_ELT (XVEC (RTX, N), M) |
1360 | #define XVECLEN(RTX, N) GET_NUM_ELEM (XVEC (RTX, N)) |
1361 | |
1362 | /* These are like XINT, etc. except that they expect a '0' field instead |
1363 | of the normal type code. */ |
1364 | |
1365 | #define X0INT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_int) |
1366 | #define X0UINT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_uint) |
1367 | #define X0STR(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_str) |
1368 | #define X0EXP(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtx) |
1369 | #define X0VEC(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_rtvec) |
1370 | #define X0MODE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_type) |
1371 | #define X0TREE(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_tree) |
1372 | #define X0BBDEF(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_bb) |
1373 | #define X0ADVFLAGS(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_addr_diff_vec_flags) |
1374 | #define X0CSELIB(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_cselib) |
1375 | #define X0MEMATTR(RTX, N) (RTL_CHECKC1 (RTX, N, MEM).rt_mem) |
1376 | #define X0CONSTANT(RTX, N) (RTL_CHECK1 (RTX, N, '0').rt_constant) |
1377 | |
1378 | /* Access a '0' field with any type. */ |
1379 | #define X0ANY(RTX, N) RTL_CHECK1 (RTX, N, '0') |
1380 | |
1381 | #define XCINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_int) |
1382 | #define XCUINT(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_uint) |
1383 | #define XCSUBREG(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_subreg) |
1384 | #define XCSTR(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_str) |
1385 | #define XCEXP(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtx) |
1386 | #define XCVEC(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_rtvec) |
1387 | #define XCMODE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_type) |
1388 | #define XCTREE(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_tree) |
1389 | #define XCBBDEF(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_bb) |
1390 | #define XCCFI(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cfi) |
1391 | #define XCCSELIB(RTX, N, C) (RTL_CHECKC1 (RTX, N, C).rt_cselib) |
1392 | |
1393 | #define XCVECEXP(RTX, N, M, C) RTVEC_ELT (XCVEC (RTX, N, C), M) |
1394 | #define XCVECLEN(RTX, N, C) GET_NUM_ELEM (XCVEC (RTX, N, C)) |
1395 | |
1396 | #define XC2EXP(RTX, N, C1, C2) (RTL_CHECKC2 (RTX, N, C1, C2).rt_rtx) |
1397 | #define XC3EXP(RTX, N, C1, C2, C3) (RTL_CHECKC3 (RTX, N, C1, C2, C3).rt_rtx) |
1398 | |
1399 | |
1400 | /* Methods of rtx_expr_list. */ |
1401 | |
1402 | inline rtx_expr_list *rtx_expr_list::next () const |
1403 | { |
1404 | rtx tmp = XEXP (this, 1); |
1405 | return safe_as_a <rtx_expr_list *> (p: tmp); |
1406 | } |
1407 | |
1408 | inline rtx rtx_expr_list::element () const |
1409 | { |
1410 | return XEXP (this, 0); |
1411 | } |
1412 | |
1413 | /* Methods of rtx_insn_list. */ |
1414 | |
1415 | inline rtx_insn_list *rtx_insn_list::next () const |
1416 | { |
1417 | rtx tmp = XEXP (this, 1); |
1418 | return safe_as_a <rtx_insn_list *> (p: tmp); |
1419 | } |
1420 | |
1421 | inline rtx_insn *rtx_insn_list::insn () const |
1422 | { |
1423 | rtx tmp = XEXP (this, 0); |
1424 | return safe_as_a <rtx_insn *> (p: tmp); |
1425 | } |
1426 | |
1427 | /* Methods of rtx_sequence. */ |
1428 | |
1429 | inline int rtx_sequence::len () const |
1430 | { |
1431 | return XVECLEN (this, 0); |
1432 | } |
1433 | |
1434 | inline rtx rtx_sequence::element (int index) const |
1435 | { |
1436 | return XVECEXP (this, 0, index); |
1437 | } |
1438 | |
1439 | inline rtx_insn *rtx_sequence::insn (int index) const |
1440 | { |
1441 | return as_a <rtx_insn *> (XVECEXP (this, 0, index)); |
1442 | } |
1443 | |
1444 | /* ACCESS MACROS for particular fields of insns. */ |
1445 | |
1446 | /* Holds a unique number for each insn. |
1447 | These are not necessarily sequentially increasing. */ |
1448 | inline int INSN_UID (const_rtx insn) |
1449 | { |
1450 | return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID", |
1451 | (insn))->u2.insn_uid; |
1452 | } |
1453 | inline int& INSN_UID (rtx insn) |
1454 | { |
1455 | return RTL_INSN_CHAIN_FLAG_CHECK ("INSN_UID", |
1456 | (insn))->u2.insn_uid; |
1457 | } |
1458 | |
1459 | /* Chain insns together in sequence. */ |
1460 | |
1461 | /* For now these are split in two: an rvalue form: |
1462 | PREV_INSN/NEXT_INSN |
1463 | and an lvalue form: |
1464 | SET_NEXT_INSN/SET_PREV_INSN. */ |
1465 | |
1466 | inline rtx_insn *PREV_INSN (const rtx_insn *insn) |
1467 | { |
1468 | rtx prev = XEXP (insn, 0); |
1469 | return safe_as_a <rtx_insn *> (p: prev); |
1470 | } |
1471 | |
1472 | inline rtx& SET_PREV_INSN (rtx_insn *insn) |
1473 | { |
1474 | return XEXP (insn, 0); |
1475 | } |
1476 | |
1477 | inline rtx_insn *NEXT_INSN (const rtx_insn *insn) |
1478 | { |
1479 | rtx next = XEXP (insn, 1); |
1480 | return safe_as_a <rtx_insn *> (p: next); |
1481 | } |
1482 | |
1483 | inline rtx& SET_NEXT_INSN (rtx_insn *insn) |
1484 | { |
1485 | return XEXP (insn, 1); |
1486 | } |
1487 | |
1488 | inline basic_block BLOCK_FOR_INSN (const_rtx insn) |
1489 | { |
1490 | return XBBDEF (insn, 2); |
1491 | } |
1492 | |
1493 | inline basic_block& BLOCK_FOR_INSN (rtx insn) |
1494 | { |
1495 | return XBBDEF (insn, 2); |
1496 | } |
1497 | |
1498 | inline void set_block_for_insn (rtx_insn *insn, basic_block bb) |
1499 | { |
1500 | BLOCK_FOR_INSN (insn) = bb; |
1501 | } |
1502 | |
1503 | /* The body of an insn. */ |
1504 | inline rtx PATTERN (const_rtx insn) |
1505 | { |
1506 | return XEXP (insn, 3); |
1507 | } |
1508 | |
1509 | inline rtx& PATTERN (rtx insn) |
1510 | { |
1511 | return XEXP (insn, 3); |
1512 | } |
1513 | |
1514 | inline unsigned int INSN_LOCATION (const rtx_insn *insn) |
1515 | { |
1516 | return XUINT (insn, 4); |
1517 | } |
1518 | |
1519 | inline unsigned int& INSN_LOCATION (rtx_insn *insn) |
1520 | { |
1521 | return XUINT (insn, 4); |
1522 | } |
1523 | |
1524 | inline bool INSN_HAS_LOCATION (const rtx_insn *insn) |
1525 | { |
1526 | return LOCATION_LOCUS (INSN_LOCATION (insn)) != UNKNOWN_LOCATION; |
1527 | } |
1528 | |
1529 | /* LOCATION of an RTX if relevant. */ |
1530 | #define RTL_LOCATION(X) (INSN_P (X) ? \ |
1531 | INSN_LOCATION (as_a <rtx_insn *> (X)) \ |
1532 | : UNKNOWN_LOCATION) |
1533 | |
1534 | /* Code number of instruction, from when it was recognized. |
1535 | -1 means this instruction has not been recognized yet. */ |
1536 | #define INSN_CODE(INSN) XINT (INSN, 5) |
1537 | |
1538 | inline rtvec rtx_jump_table_data::get_labels () const |
1539 | { |
1540 | rtx pat = PATTERN (insn: this); |
1541 | if (GET_CODE (pat) == ADDR_VEC) |
1542 | return XVEC (pat, 0); |
1543 | else |
1544 | return XVEC (pat, 1); /* presumably an ADDR_DIFF_VEC */ |
1545 | } |
1546 | |
1547 | /* Return the mode of the data in the table, which is always a scalar |
1548 | integer. */ |
1549 | |
1550 | inline scalar_int_mode |
1551 | rtx_jump_table_data::get_data_mode () const |
1552 | { |
1553 | return as_a <scalar_int_mode> (GET_MODE (PATTERN (this))); |
1554 | } |
1555 | |
1556 | /* If LABEL is followed by a jump table, return the table, otherwise |
1557 | return null. */ |
1558 | |
1559 | inline rtx_jump_table_data * |
1560 | jump_table_for_label (const rtx_code_label *label) |
1561 | { |
1562 | return safe_dyn_cast <rtx_jump_table_data *> (p: NEXT_INSN (insn: label)); |
1563 | } |
1564 | |
1565 | #define RTX_FRAME_RELATED_P(RTX) \ |
1566 | (RTL_FLAG_CHECK6 ("RTX_FRAME_RELATED_P", (RTX), DEBUG_INSN, INSN, \ |
1567 | CALL_INSN, JUMP_INSN, BARRIER, SET)->frame_related) |
1568 | |
1569 | /* 1 if JUMP RTX is a crossing jump. */ |
1570 | #define CROSSING_JUMP_P(RTX) \ |
1571 | (RTL_FLAG_CHECK1 ("CROSSING_JUMP_P", (RTX), JUMP_INSN)->jump) |
1572 | |
1573 | /* 1 if RTX is a call to a const function. Built from ECF_CONST and |
1574 | TREE_READONLY. */ |
1575 | #define RTL_CONST_CALL_P(RTX) \ |
1576 | (RTL_FLAG_CHECK1 ("RTL_CONST_CALL_P", (RTX), CALL_INSN)->unchanging) |
1577 | |
1578 | /* 1 if RTX is a call to a pure function. Built from ECF_PURE and |
1579 | DECL_PURE_P. */ |
1580 | #define RTL_PURE_CALL_P(RTX) \ |
1581 | (RTL_FLAG_CHECK1 ("RTL_PURE_CALL_P", (RTX), CALL_INSN)->return_val) |
1582 | |
1583 | /* 1 if RTX is a call to a const or pure function. */ |
1584 | #define RTL_CONST_OR_PURE_CALL_P(RTX) \ |
1585 | (RTL_CONST_CALL_P (RTX) || RTL_PURE_CALL_P (RTX)) |
1586 | |
1587 | /* 1 if RTX is a call to a looping const or pure function. Built from |
1588 | ECF_LOOPING_CONST_OR_PURE and DECL_LOOPING_CONST_OR_PURE_P. */ |
1589 | #define RTL_LOOPING_CONST_OR_PURE_CALL_P(RTX) \ |
1590 | (RTL_FLAG_CHECK1 ("CONST_OR_PURE_CALL_P", (RTX), CALL_INSN)->call) |
1591 | |
1592 | /* 1 if RTX is a call_insn for a sibling call. */ |
1593 | #define SIBLING_CALL_P(RTX) \ |
1594 | (RTL_FLAG_CHECK1 ("SIBLING_CALL_P", (RTX), CALL_INSN)->jump) |
1595 | |
1596 | /* 1 if RTX is a jump_insn, call_insn, or insn that is an annulling branch. */ |
1597 | #define INSN_ANNULLED_BRANCH_P(RTX) \ |
1598 | (RTL_FLAG_CHECK1 ("INSN_ANNULLED_BRANCH_P", (RTX), JUMP_INSN)->unchanging) |
1599 | |
1600 | /* 1 if RTX is an insn in a delay slot and is from the target of the branch. |
1601 | If the branch insn has INSN_ANNULLED_BRANCH_P set, this insn should only be |
1602 | executed if the branch is taken. For annulled branches with this bit |
1603 | clear, the insn should be executed only if the branch is not taken. */ |
1604 | #define INSN_FROM_TARGET_P(RTX) \ |
1605 | (RTL_FLAG_CHECK3 ("INSN_FROM_TARGET_P", (RTX), INSN, JUMP_INSN, \ |
1606 | CALL_INSN)->in_struct) |
1607 | |
1608 | /* In an ADDR_DIFF_VEC, the flags for RTX for use by branch shortening. |
1609 | See the comments for ADDR_DIFF_VEC in rtl.def. */ |
1610 | #define ADDR_DIFF_VEC_FLAGS(RTX) X0ADVFLAGS (RTX, 4) |
1611 | |
1612 | /* In a VALUE, the value cselib has assigned to RTX. |
1613 | This is a "struct cselib_val", see cselib.h. */ |
1614 | #define CSELIB_VAL_PTR(RTX) X0CSELIB (RTX, 0) |
1615 | |
1616 | /* Holds a list of notes on what this insn does to various REGs. |
1617 | It is a chain of EXPR_LIST rtx's, where the second operand is the |
1618 | chain pointer and the first operand is the REG being described. |
1619 | The mode field of the EXPR_LIST contains not a real machine mode |
1620 | but a value from enum reg_note. */ |
1621 | #define REG_NOTES(INSN) XEXP(INSN, 6) |
1622 | |
1623 | /* In an ENTRY_VALUE this is the DECL_INCOMING_RTL of the argument in |
1624 | question. */ |
1625 | #define ENTRY_VALUE_EXP(RTX) (RTL_CHECKC1 (RTX, 0, ENTRY_VALUE).rt_rtx) |
1626 | |
1627 | enum reg_note |
1628 | { |
1629 | #define DEF_REG_NOTE(NAME) NAME, |
1630 | #include "reg-notes.def" |
1631 | #undef DEF_REG_NOTE |
1632 | REG_NOTE_MAX |
1633 | }; |
1634 | |
1635 | /* Define macros to extract and insert the reg-note kind in an EXPR_LIST. */ |
1636 | #define REG_NOTE_KIND(LINK) ((enum reg_note) GET_MODE (LINK)) |
1637 | #define PUT_REG_NOTE_KIND(LINK, KIND) \ |
1638 | PUT_MODE_RAW (LINK, (machine_mode) (KIND)) |
1639 | |
1640 | /* Names for REG_NOTE's in EXPR_LIST insn's. */ |
1641 | |
1642 | extern const char * const reg_note_name[]; |
1643 | #define GET_REG_NOTE_NAME(MODE) (reg_note_name[(int) (MODE)]) |
1644 | |
1645 | /* This field is only present on CALL_INSNs. It holds a chain of EXPR_LIST of |
1646 | USE, CLOBBER and SET expressions. |
1647 | USE expressions list the registers filled with arguments that |
1648 | are passed to the function. |
1649 | CLOBBER expressions document the registers explicitly clobbered |
1650 | by this CALL_INSN. |
1651 | SET expressions say that the return value of the call (the SET_DEST) |
1652 | is equivalent to a value available before the call (the SET_SRC). |
1653 | This kind of SET is used when the return value is predictable in |
1654 | advance. It is purely an optimisation hint; unlike USEs and CLOBBERs, |
1655 | it does not affect register liveness. |
1656 | |
1657 | Pseudo registers cannot be mentioned in this list. */ |
1658 | #define CALL_INSN_FUNCTION_USAGE(INSN) XEXP(INSN, 7) |
1659 | |
1660 | /* The label-number of a code-label. The assembler label |
1661 | is made from `L' and the label-number printed in decimal. |
1662 | Label numbers are unique in a compilation. */ |
1663 | #define CODE_LABEL_NUMBER(INSN) XINT (INSN, 5) |
1664 | |
1665 | /* In a NOTE that is a line number, this is a string for the file name that the |
1666 | line is in. We use the same field to record block numbers temporarily in |
1667 | NOTE_INSN_BLOCK_BEG and NOTE_INSN_BLOCK_END notes. (We avoid lots of casts |
1668 | between ints and pointers if we use a different macro for the block number.) |
1669 | */ |
1670 | |
1671 | /* Opaque data. */ |
1672 | #define NOTE_DATA(INSN) RTL_CHECKC1 (INSN, 3, NOTE) |
1673 | #define NOTE_DELETED_LABEL_NAME(INSN) XCSTR (INSN, 3, NOTE) |
1674 | #define SET_INSN_DELETED(INSN) set_insn_deleted (INSN); |
1675 | #define NOTE_BLOCK(INSN) XCTREE (INSN, 3, NOTE) |
1676 | #define NOTE_EH_HANDLER(INSN) XCINT (INSN, 3, NOTE) |
1677 | #define NOTE_BASIC_BLOCK(INSN) XCBBDEF (INSN, 3, NOTE) |
1678 | #define NOTE_VAR_LOCATION(INSN) XCEXP (INSN, 3, NOTE) |
1679 | #define NOTE_MARKER_LOCATION(INSN) XCUINT (INSN, 3, NOTE) |
1680 | #define NOTE_CFI(INSN) XCCFI (INSN, 3, NOTE) |
1681 | #define NOTE_LABEL_NUMBER(INSN) XCINT (INSN, 3, NOTE) |
1682 | |
1683 | /* In a NOTE that is a line number, this is the line number. |
1684 | Other kinds of NOTEs are identified by negative numbers here. */ |
1685 | #define NOTE_KIND(INSN) XCINT (INSN, 4, NOTE) |
1686 | |
1687 | /* Nonzero if INSN is a note marking the beginning of a basic block. */ |
1688 | #define NOTE_INSN_BASIC_BLOCK_P(INSN) \ |
1689 | (NOTE_P (INSN) && NOTE_KIND (INSN) == NOTE_INSN_BASIC_BLOCK) |
1690 | |
1691 | /* Nonzero if INSN is a debug nonbind marker note, |
1692 | for which NOTE_MARKER_LOCATION can be used. */ |
1693 | #define NOTE_MARKER_P(INSN) \ |
1694 | (NOTE_P (INSN) && \ |
1695 | (NOTE_KIND (INSN) == NOTE_INSN_BEGIN_STMT \ |
1696 | || NOTE_KIND (INSN) == NOTE_INSN_INLINE_ENTRY)) |
1697 | |
1698 | /* Variable declaration and the location of a variable. */ |
1699 | #define PAT_VAR_LOCATION_DECL(PAT) (XCTREE ((PAT), 0, VAR_LOCATION)) |
1700 | #define PAT_VAR_LOCATION_LOC(PAT) (XCEXP ((PAT), 1, VAR_LOCATION)) |
1701 | |
1702 | /* Initialization status of the variable in the location. Status |
1703 | can be unknown, uninitialized or initialized. See enumeration |
1704 | type below. */ |
1705 | #define PAT_VAR_LOCATION_STATUS(PAT) \ |
1706 | (RTL_FLAG_CHECK1 ("PAT_VAR_LOCATION_STATUS", PAT, VAR_LOCATION) \ |
1707 | ->u2.var_location_status) |
1708 | |
1709 | /* Accessors for a NOTE_INSN_VAR_LOCATION. */ |
1710 | #define NOTE_VAR_LOCATION_DECL(NOTE) \ |
1711 | PAT_VAR_LOCATION_DECL (NOTE_VAR_LOCATION (NOTE)) |
1712 | #define NOTE_VAR_LOCATION_LOC(NOTE) \ |
1713 | PAT_VAR_LOCATION_LOC (NOTE_VAR_LOCATION (NOTE)) |
1714 | #define NOTE_VAR_LOCATION_STATUS(NOTE) \ |
1715 | PAT_VAR_LOCATION_STATUS (NOTE_VAR_LOCATION (NOTE)) |
1716 | |
1717 | /* Evaluate to TRUE if INSN is a debug insn that denotes a variable |
1718 | location/value tracking annotation. */ |
1719 | #define DEBUG_BIND_INSN_P(INSN) \ |
1720 | (DEBUG_INSN_P (INSN) \ |
1721 | && (GET_CODE (PATTERN (INSN)) \ |
1722 | == VAR_LOCATION)) |
1723 | /* Evaluate to TRUE if INSN is a debug insn that denotes a program |
1724 | source location marker. */ |
1725 | #define DEBUG_MARKER_INSN_P(INSN) \ |
1726 | (DEBUG_INSN_P (INSN) \ |
1727 | && (GET_CODE (PATTERN (INSN)) \ |
1728 | != VAR_LOCATION)) |
1729 | /* Evaluate to the marker kind. */ |
1730 | #define INSN_DEBUG_MARKER_KIND(INSN) \ |
1731 | (GET_CODE (PATTERN (INSN)) == DEBUG_MARKER \ |
1732 | ? (GET_MODE (PATTERN (INSN)) == VOIDmode \ |
1733 | ? NOTE_INSN_BEGIN_STMT \ |
1734 | : GET_MODE (PATTERN (INSN)) == BLKmode \ |
1735 | ? NOTE_INSN_INLINE_ENTRY \ |
1736 | : (enum insn_note)-1) \ |
1737 | : (enum insn_note)-1) |
1738 | /* Create patterns for debug markers. These and the above abstract |
1739 | the representation, so that it's easier to get rid of the abuse of |
1740 | the mode to hold the marker kind. Other marker types are |
1741 | envisioned, so a single bit flag won't do; maybe separate RTL codes |
1742 | wouldn't be a problem. */ |
1743 | #define GEN_RTX_DEBUG_MARKER_BEGIN_STMT_PAT() \ |
1744 | gen_rtx_DEBUG_MARKER (VOIDmode) |
1745 | #define GEN_RTX_DEBUG_MARKER_INLINE_ENTRY_PAT() \ |
1746 | gen_rtx_DEBUG_MARKER (BLKmode) |
1747 | |
1748 | /* The VAR_LOCATION rtx in a DEBUG_INSN. */ |
1749 | #define INSN_VAR_LOCATION(INSN) \ |
1750 | (RTL_FLAG_CHECK1 ("INSN_VAR_LOCATION", PATTERN (INSN), VAR_LOCATION)) |
1751 | /* A pointer to the VAR_LOCATION rtx in a DEBUG_INSN. */ |
1752 | #define INSN_VAR_LOCATION_PTR(INSN) \ |
1753 | (&PATTERN (INSN)) |
1754 | |
1755 | /* Accessors for a tree-expanded var location debug insn. */ |
1756 | #define INSN_VAR_LOCATION_DECL(INSN) \ |
1757 | PAT_VAR_LOCATION_DECL (INSN_VAR_LOCATION (INSN)) |
1758 | #define INSN_VAR_LOCATION_LOC(INSN) \ |
1759 | PAT_VAR_LOCATION_LOC (INSN_VAR_LOCATION (INSN)) |
1760 | #define INSN_VAR_LOCATION_STATUS(INSN) \ |
1761 | PAT_VAR_LOCATION_STATUS (INSN_VAR_LOCATION (INSN)) |
1762 | |
1763 | /* Expand to the RTL that denotes an unknown variable location in a |
1764 | DEBUG_INSN. */ |
1765 | #define gen_rtx_UNKNOWN_VAR_LOC() (gen_rtx_CLOBBER (VOIDmode, const0_rtx)) |
1766 | |
1767 | /* Determine whether X is such an unknown location. */ |
1768 | #define VAR_LOC_UNKNOWN_P(X) \ |
1769 | (GET_CODE (X) == CLOBBER && XEXP ((X), 0) == const0_rtx) |
1770 | |
1771 | /* 1 if RTX is emitted after a call, but it should take effect before |
1772 | the call returns. */ |
1773 | #define NOTE_DURING_CALL_P(RTX) \ |
1774 | (RTL_FLAG_CHECK1 ("NOTE_VAR_LOCATION_DURING_CALL_P", (RTX), NOTE)->call) |
1775 | |
1776 | /* DEBUG_EXPR_DECL corresponding to a DEBUG_EXPR RTX. */ |
1777 | #define DEBUG_EXPR_TREE_DECL(RTX) XCTREE (RTX, 0, DEBUG_EXPR) |
1778 | |
1779 | /* VAR_DECL/PARM_DECL DEBUG_IMPLICIT_PTR takes address of. */ |
1780 | #define DEBUG_IMPLICIT_PTR_DECL(RTX) XCTREE (RTX, 0, DEBUG_IMPLICIT_PTR) |
1781 | |
1782 | /* PARM_DECL DEBUG_PARAMETER_REF references. */ |
1783 | #define DEBUG_PARAMETER_REF_DECL(RTX) XCTREE (RTX, 0, DEBUG_PARAMETER_REF) |
1784 | |
1785 | /* Codes that appear in the NOTE_KIND field for kinds of notes |
1786 | that are not line numbers. These codes are all negative. |
1787 | |
1788 | Notice that we do not try to use zero here for any of |
1789 | the special note codes because sometimes the source line |
1790 | actually can be zero! This happens (for example) when we |
1791 | are generating code for the per-translation-unit constructor |
1792 | and destructor routines for some C++ translation unit. */ |
1793 | |
1794 | enum insn_note |
1795 | { |
1796 | #define DEF_INSN_NOTE(NAME) NAME, |
1797 | #include "insn-notes.def" |
1798 | #undef DEF_INSN_NOTE |
1799 | |
1800 | NOTE_INSN_MAX |
1801 | }; |
1802 | |
1803 | /* Names for NOTE insn's other than line numbers. */ |
1804 | |
1805 | extern const char * const note_insn_name[NOTE_INSN_MAX]; |
1806 | #define GET_NOTE_INSN_NAME(NOTE_CODE) \ |
1807 | (note_insn_name[(NOTE_CODE)]) |
1808 | |
1809 | /* The name of a label, in case it corresponds to an explicit label |
1810 | in the input source code. */ |
1811 | #define LABEL_NAME(RTX) XCSTR (RTX, 6, CODE_LABEL) |
1812 | |
1813 | /* In jump.cc, each label contains a count of the number |
1814 | of LABEL_REFs that point at it, so unused labels can be deleted. */ |
1815 | #define LABEL_NUSES(RTX) XCINT (RTX, 4, CODE_LABEL) |
1816 | |
1817 | /* Labels carry a two-bit field composed of the ->jump and ->call |
1818 | bits. This field indicates whether the label is an alternate |
1819 | entry point, and if so, what kind. */ |
1820 | enum label_kind |
1821 | { |
1822 | LABEL_NORMAL = 0, /* ordinary label */ |
1823 | LABEL_STATIC_ENTRY, /* alternate entry point, not exported */ |
1824 | LABEL_GLOBAL_ENTRY, /* alternate entry point, exported */ |
1825 | LABEL_WEAK_ENTRY /* alternate entry point, exported as weak symbol */ |
1826 | }; |
1827 | |
1828 | #if defined ENABLE_RTL_FLAG_CHECKING && (GCC_VERSION > 2007) |
1829 | |
1830 | /* Retrieve the kind of LABEL. */ |
1831 | #define LABEL_KIND(LABEL) __extension__ \ |
1832 | ({ __typeof (LABEL) const _label = (LABEL); \ |
1833 | if (! LABEL_P (_label)) \ |
1834 | rtl_check_failed_flag ("LABEL_KIND", _label, __FILE__, __LINE__, \ |
1835 | __FUNCTION__); \ |
1836 | (enum label_kind) ((_label->jump << 1) | _label->call); }) |
1837 | |
1838 | /* Set the kind of LABEL. */ |
1839 | #define SET_LABEL_KIND(LABEL, KIND) do { \ |
1840 | __typeof (LABEL) const _label = (LABEL); \ |
1841 | const unsigned int _kind = (KIND); \ |
1842 | if (! LABEL_P (_label)) \ |
1843 | rtl_check_failed_flag ("SET_LABEL_KIND", _label, __FILE__, __LINE__, \ |
1844 | __FUNCTION__); \ |
1845 | _label->jump = ((_kind >> 1) & 1); \ |
1846 | _label->call = (_kind & 1); \ |
1847 | } while (0) |
1848 | |
1849 | #else |
1850 | |
1851 | /* Retrieve the kind of LABEL. */ |
1852 | #define LABEL_KIND(LABEL) \ |
1853 | ((enum label_kind) (((LABEL)->jump << 1) | (LABEL)->call)) |
1854 | |
1855 | /* Set the kind of LABEL. */ |
1856 | #define SET_LABEL_KIND(LABEL, KIND) do { \ |
1857 | rtx const _label = (LABEL); \ |
1858 | const unsigned int _kind = (KIND); \ |
1859 | _label->jump = ((_kind >> 1) & 1); \ |
1860 | _label->call = (_kind & 1); \ |
1861 | } while (0) |
1862 | |
1863 | #endif /* rtl flag checking */ |
1864 | |
1865 | #define LABEL_ALT_ENTRY_P(LABEL) (LABEL_KIND (LABEL) != LABEL_NORMAL) |
1866 | |
1867 | /* In jump.cc, each JUMP_INSN can point to a label that it can jump to, |
1868 | so that if the JUMP_INSN is deleted, the label's LABEL_NUSES can |
1869 | be decremented and possibly the label can be deleted. */ |
1870 | #define JUMP_LABEL(INSN) XCEXP (INSN, 7, JUMP_INSN) |
1871 | |
1872 | inline rtx_insn *JUMP_LABEL_AS_INSN (const rtx_insn *insn) |
1873 | { |
1874 | return safe_as_a <rtx_insn *> (JUMP_LABEL (insn)); |
1875 | } |
1876 | |
1877 | /* Methods of rtx_jump_insn. */ |
1878 | |
1879 | inline rtx rtx_jump_insn::jump_label () const |
1880 | { |
1881 | return JUMP_LABEL (this); |
1882 | } |
1883 | |
1884 | inline rtx_code_label *rtx_jump_insn::jump_target () const |
1885 | { |
1886 | return safe_as_a <rtx_code_label *> (JUMP_LABEL (this)); |
1887 | } |
1888 | |
1889 | inline void rtx_jump_insn::set_jump_target (rtx_code_label *target) |
1890 | { |
1891 | JUMP_LABEL (this) = target; |
1892 | } |
1893 | |
1894 | /* Once basic blocks are found, each CODE_LABEL starts a chain that |
1895 | goes through all the LABEL_REFs that jump to that label. The chain |
1896 | eventually winds up at the CODE_LABEL: it is circular. */ |
1897 | #define LABEL_REFS(LABEL) XCEXP (LABEL, 3, CODE_LABEL) |
1898 | |
1899 | /* Get the label that a LABEL_REF references. */ |
1900 | inline rtx_insn * |
1901 | label_ref_label (const_rtx ref) |
1902 | { |
1903 | return as_a<rtx_insn *> (XCEXP (ref, 0, LABEL_REF)); |
1904 | } |
1905 | |
1906 | /* Set the label that LABEL_REF ref refers to. */ |
1907 | |
1908 | inline void |
1909 | set_label_ref_label (rtx ref, rtx_insn *label) |
1910 | { |
1911 | XCEXP (ref, 0, LABEL_REF) = label; |
1912 | } |
1913 | |
1914 | /* For a REG rtx, REGNO extracts the register number. REGNO can only |
1915 | be used on RHS. Use SET_REGNO to change the value. */ |
1916 | #define REGNO(RTX) (rhs_regno(RTX)) |
1917 | #define SET_REGNO(RTX, N) (df_ref_change_reg_with_loc (RTX, N)) |
1918 | |
1919 | /* Return the number of consecutive registers in a REG. This is always |
1920 | 1 for pseudo registers and is determined by TARGET_HARD_REGNO_NREGS for |
1921 | hard registers. */ |
1922 | #define REG_NREGS(RTX) (REG_CHECK (RTX)->nregs) |
1923 | |
1924 | /* ORIGINAL_REGNO holds the number the register originally had; for a |
1925 | pseudo register turned into a hard reg this will hold the old pseudo |
1926 | register number. */ |
1927 | #define ORIGINAL_REGNO(RTX) \ |
1928 | (RTL_FLAG_CHECK1 ("ORIGINAL_REGNO", (RTX), REG)->u2.original_regno) |
1929 | |
1930 | /* Force the REGNO macro to only be used on the lhs. */ |
1931 | inline unsigned int |
1932 | rhs_regno (const_rtx x) |
1933 | { |
1934 | return REG_CHECK (x)->regno; |
1935 | } |
1936 | |
1937 | /* Return the final register in REG X plus one. */ |
1938 | inline unsigned int |
1939 | END_REGNO (const_rtx x) |
1940 | { |
1941 | return REGNO (x) + REG_NREGS (x); |
1942 | } |
1943 | |
1944 | /* Change the REGNO and REG_NREGS of REG X to the specified values, |
1945 | bypassing the df machinery. */ |
1946 | inline void |
1947 | set_regno_raw (rtx x, unsigned int regno, unsigned int nregs) |
1948 | { |
1949 | reg_info *reg = REG_CHECK (x); |
1950 | reg->regno = regno; |
1951 | reg->nregs = nregs; |
1952 | } |
1953 | |
1954 | /* 1 if RTX is a reg or parallel that is the current function's return |
1955 | value. */ |
1956 | #define REG_FUNCTION_VALUE_P(RTX) \ |
1957 | (RTL_FLAG_CHECK2 ("REG_FUNCTION_VALUE_P", (RTX), REG, PARALLEL)->return_val) |
1958 | |
1959 | /* 1 if RTX is a reg that corresponds to a variable declared by the user. */ |
1960 | #define REG_USERVAR_P(RTX) \ |
1961 | (RTL_FLAG_CHECK1 ("REG_USERVAR_P", (RTX), REG)->volatil) |
1962 | |
1963 | /* 1 if RTX is a reg that holds a pointer value. */ |
1964 | #define REG_POINTER(RTX) \ |
1965 | (RTL_FLAG_CHECK1 ("REG_POINTER", (RTX), REG)->frame_related) |
1966 | |
1967 | /* 1 if RTX is a mem that holds a pointer value. */ |
1968 | #define MEM_POINTER(RTX) \ |
1969 | (RTL_FLAG_CHECK1 ("MEM_POINTER", (RTX), MEM)->frame_related) |
1970 | |
1971 | /* 1 if the given register REG corresponds to a hard register. */ |
1972 | #define HARD_REGISTER_P(REG) HARD_REGISTER_NUM_P (REGNO (REG)) |
1973 | |
1974 | /* 1 if the given register number REG_NO corresponds to a hard register. */ |
1975 | #define HARD_REGISTER_NUM_P(REG_NO) ((REG_NO) < FIRST_PSEUDO_REGISTER) |
1976 | |
1977 | /* 1 if the given register REG corresponds to a virtual register. */ |
1978 | #define VIRTUAL_REGISTER_P(REG) VIRTUAL_REGISTER_NUM_P (REGNO (REG)) |
1979 | |
1980 | /* 1 if the given register number REG_NO corresponds to a virtual register. */ |
1981 | #define VIRTUAL_REGISTER_NUM_P(REG_NO) \ |
1982 | IN_RANGE (REG_NO, FIRST_VIRTUAL_REGISTER, LAST_VIRTUAL_REGISTER) |
1983 | |
1984 | /* For a CONST_INT rtx, INTVAL extracts the integer. */ |
1985 | #define INTVAL(RTX) XCWINT (RTX, 0, CONST_INT) |
1986 | #define UINTVAL(RTX) ((unsigned HOST_WIDE_INT) INTVAL (RTX)) |
1987 | |
1988 | /* For a CONST_WIDE_INT, CONST_WIDE_INT_NUNITS is the number of |
1989 | elements actually needed to represent the constant. |
1990 | CONST_WIDE_INT_ELT gets one of the elements. 0 is the least |
1991 | significant HOST_WIDE_INT. */ |
1992 | #define CONST_WIDE_INT_VEC(RTX) HWIVEC_CHECK (RTX, CONST_WIDE_INT) |
1993 | #define CONST_WIDE_INT_NUNITS(RTX) CWI_GET_NUM_ELEM (RTX) |
1994 | #define CONST_WIDE_INT_ELT(RTX, N) CWI_ELT (RTX, N) |
1995 | |
1996 | /* For a CONST_POLY_INT, CONST_POLY_INT_COEFFS gives access to the |
1997 | individual coefficients, in the form of a trailing_wide_ints structure. */ |
1998 | #define CONST_POLY_INT_COEFFS(RTX) \ |
1999 | (RTL_FLAG_CHECK1("CONST_POLY_INT_COEFFS", (RTX), \ |
2000 | CONST_POLY_INT)->u.cpi.coeffs) |
2001 | |
2002 | /* For a CONST_DOUBLE: |
2003 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
2004 | For a VOIDmode, there are two integers CONST_DOUBLE_LOW is the |
2005 | low-order word and ..._HIGH the high-order. |
2006 | #endif |
2007 | For a float, there is a REAL_VALUE_TYPE structure, and |
2008 | CONST_DOUBLE_REAL_VALUE(r) is a pointer to it. */ |
2009 | #define CONST_DOUBLE_LOW(r) XCMWINT (r, 0, CONST_DOUBLE, VOIDmode) |
2010 | #define CONST_DOUBLE_HIGH(r) XCMWINT (r, 1, CONST_DOUBLE, VOIDmode) |
2011 | #define CONST_DOUBLE_REAL_VALUE(r) \ |
2012 | ((const struct real_value *) XCNMPRV (r, CONST_DOUBLE, VOIDmode)) |
2013 | |
2014 | #define CONST_FIXED_VALUE(r) \ |
2015 | ((const struct fixed_value *) XCNMPFV (r, CONST_FIXED, VOIDmode)) |
2016 | #define CONST_FIXED_VALUE_HIGH(r) \ |
2017 | ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.high)) |
2018 | #define CONST_FIXED_VALUE_LOW(r) \ |
2019 | ((HOST_WIDE_INT) (CONST_FIXED_VALUE (r)->data.low)) |
2020 | |
2021 | /* For a CONST_VECTOR, return element #n. */ |
2022 | #define CONST_VECTOR_ELT(RTX, N) const_vector_elt (RTX, N) |
2023 | |
2024 | /* See rtl.texi for a description of these macros. */ |
2025 | #define CONST_VECTOR_NPATTERNS(RTX) \ |
2026 | (RTL_FLAG_CHECK1 ("CONST_VECTOR_NPATTERNS", (RTX), CONST_VECTOR) \ |
2027 | ->u2.const_vector.npatterns) |
2028 | |
2029 | #define CONST_VECTOR_NELTS_PER_PATTERN(RTX) \ |
2030 | (RTL_FLAG_CHECK1 ("CONST_VECTOR_NELTS_PER_PATTERN", (RTX), CONST_VECTOR) \ |
2031 | ->u2.const_vector.nelts_per_pattern) |
2032 | |
2033 | #define CONST_VECTOR_DUPLICATE_P(RTX) \ |
2034 | (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 1) |
2035 | |
2036 | #define CONST_VECTOR_STEPPED_P(RTX) \ |
2037 | (CONST_VECTOR_NELTS_PER_PATTERN (RTX) == 3) |
2038 | |
2039 | #define CONST_VECTOR_ENCODED_ELT(RTX, N) XCVECEXP (RTX, 0, N, CONST_VECTOR) |
2040 | |
2041 | /* Return the number of elements encoded directly in a CONST_VECTOR. */ |
2042 | |
2043 | inline unsigned int |
2044 | const_vector_encoded_nelts (const_rtx x) |
2045 | { |
2046 | return CONST_VECTOR_NPATTERNS (x) * CONST_VECTOR_NELTS_PER_PATTERN (x); |
2047 | } |
2048 | |
2049 | /* For a CONST_VECTOR, return the number of elements in a vector. */ |
2050 | #define CONST_VECTOR_NUNITS(RTX) GET_MODE_NUNITS (GET_MODE (RTX)) |
2051 | |
2052 | /* For a SUBREG rtx, SUBREG_REG extracts the value we want a subreg of. |
2053 | SUBREG_BYTE extracts the byte-number. */ |
2054 | |
2055 | #define SUBREG_REG(RTX) XCEXP (RTX, 0, SUBREG) |
2056 | #define SUBREG_BYTE(RTX) XCSUBREG (RTX, 1, SUBREG) |
2057 | |
2058 | /* in rtlanal.cc */ |
2059 | /* Return the right cost to give to an operation |
2060 | to make the cost of the corresponding register-to-register instruction |
2061 | N times that of a fast register-to-register instruction. */ |
2062 | #define COSTS_N_INSNS(N) ((N) * 4) |
2063 | |
2064 | /* Maximum cost of an rtl expression. This value has the special meaning |
2065 | not to use an rtx with this cost under any circumstances. */ |
2066 | #define MAX_COST INT_MAX |
2067 | |
2068 | /* Return true if CODE always has VOIDmode. */ |
2069 | |
2070 | inline bool |
2071 | always_void_p (enum rtx_code code) |
2072 | { |
2073 | return code == SET; |
2074 | } |
2075 | |
2076 | /* A structure to hold all available cost information about an rtl |
2077 | expression. */ |
2078 | struct full_rtx_costs |
2079 | { |
2080 | int speed; |
2081 | int size; |
2082 | }; |
2083 | |
2084 | /* Initialize a full_rtx_costs structure C to the maximum cost. */ |
2085 | inline void |
2086 | init_costs_to_max (struct full_rtx_costs *c) |
2087 | { |
2088 | c->speed = MAX_COST; |
2089 | c->size = MAX_COST; |
2090 | } |
2091 | |
2092 | /* Initialize a full_rtx_costs structure C to zero cost. */ |
2093 | inline void |
2094 | init_costs_to_zero (struct full_rtx_costs *c) |
2095 | { |
2096 | c->speed = 0; |
2097 | c->size = 0; |
2098 | } |
2099 | |
2100 | /* Compare two full_rtx_costs structures A and B, returning true |
2101 | if A < B when optimizing for speed. */ |
2102 | inline bool |
2103 | costs_lt_p (struct full_rtx_costs *a, struct full_rtx_costs *b, |
2104 | bool speed) |
2105 | { |
2106 | if (speed) |
2107 | return (a->speed < b->speed |
2108 | || (a->speed == b->speed && a->size < b->size)); |
2109 | else |
2110 | return (a->size < b->size |
2111 | || (a->size == b->size && a->speed < b->speed)); |
2112 | } |
2113 | |
2114 | /* Increase both members of the full_rtx_costs structure C by the |
2115 | cost of N insns. */ |
2116 | inline void |
2117 | costs_add_n_insns (struct full_rtx_costs *c, int n) |
2118 | { |
2119 | c->speed += COSTS_N_INSNS (n); |
2120 | c->size += COSTS_N_INSNS (n); |
2121 | } |
2122 | |
2123 | /* Describes the shape of a subreg: |
2124 | |
2125 | inner_mode == the mode of the SUBREG_REG |
2126 | offset == the SUBREG_BYTE |
2127 | outer_mode == the mode of the SUBREG itself. */ |
2128 | class subreg_shape { |
2129 | public: |
2130 | subreg_shape (machine_mode, poly_uint16, machine_mode); |
2131 | bool operator == (const subreg_shape &) const; |
2132 | bool operator != (const subreg_shape &) const; |
2133 | unsigned HOST_WIDE_INT unique_id () const; |
2134 | |
2135 | machine_mode inner_mode; |
2136 | poly_uint16 offset; |
2137 | machine_mode outer_mode; |
2138 | }; |
2139 | |
2140 | inline |
2141 | subreg_shape::subreg_shape (machine_mode inner_mode_in, |
2142 | poly_uint16 offset_in, |
2143 | machine_mode outer_mode_in) |
2144 | : inner_mode (inner_mode_in), offset (offset_in), outer_mode (outer_mode_in) |
2145 | {} |
2146 | |
2147 | inline bool |
2148 | subreg_shape::operator == (const subreg_shape &other) const |
2149 | { |
2150 | return (inner_mode == other.inner_mode |
2151 | && known_eq (offset, other.offset) |
2152 | && outer_mode == other.outer_mode); |
2153 | } |
2154 | |
2155 | inline bool |
2156 | subreg_shape::operator != (const subreg_shape &other) const |
2157 | { |
2158 | return !operator == (other); |
2159 | } |
2160 | |
2161 | /* Return an integer that uniquely identifies this shape. Structures |
2162 | like rtx_def assume that a mode can fit in an 8-bit bitfield and no |
2163 | current mode is anywhere near being 65536 bytes in size, so the |
2164 | id comfortably fits in an int. */ |
2165 | |
2166 | inline unsigned HOST_WIDE_INT |
2167 | subreg_shape::unique_id () const |
2168 | { |
2169 | { STATIC_ASSERT (MAX_MACHINE_MODE <= (1 << MACHINE_MODE_BITSIZE)); } |
2170 | { STATIC_ASSERT (NUM_POLY_INT_COEFFS <= 3); } |
2171 | { STATIC_ASSERT (sizeof (offset.coeffs[0]) <= 2); } |
2172 | int res = (int) inner_mode + ((int) outer_mode << 8); |
2173 | for (int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
2174 | res += (HOST_WIDE_INT) offset.coeffs[i] << ((1 + i) * 16); |
2175 | return res; |
2176 | } |
2177 | |
2178 | /* Return the shape of a SUBREG rtx. */ |
2179 | |
2180 | inline subreg_shape |
2181 | shape_of_subreg (const_rtx x) |
2182 | { |
2183 | return subreg_shape (GET_MODE (SUBREG_REG (x)), |
2184 | SUBREG_BYTE (x), GET_MODE (x)); |
2185 | } |
2186 | |
2187 | /* Information about an address. This structure is supposed to be able |
2188 | to represent all supported target addresses. Please extend it if it |
2189 | is not yet general enough. */ |
2190 | struct address_info { |
2191 | /* The mode of the value being addressed, or VOIDmode if this is |
2192 | a load-address operation with no known address mode. */ |
2193 | machine_mode mode; |
2194 | |
2195 | /* The address space. */ |
2196 | addr_space_t as; |
2197 | |
2198 | /* True if this is an RTX_AUTOINC address. */ |
2199 | bool autoinc_p; |
2200 | |
2201 | /* A pointer to the top-level address. */ |
2202 | rtx *outer; |
2203 | |
2204 | /* A pointer to the inner address, after all address mutations |
2205 | have been stripped from the top-level address. It can be one |
2206 | of the following: |
2207 | |
2208 | - A {PRE,POST}_{INC,DEC} of *BASE. SEGMENT, INDEX and DISP are null. |
2209 | |
2210 | - A {PRE,POST}_MODIFY of *BASE. In this case either INDEX or DISP |
2211 | points to the step value, depending on whether the step is variable |
2212 | or constant respectively. SEGMENT is null. |
2213 | |
2214 | - A plain sum of the form SEGMENT + BASE + INDEX + DISP, |
2215 | with null fields evaluating to 0. */ |
2216 | rtx *inner; |
2217 | |
2218 | /* Components that make up *INNER. Each one may be null or nonnull. |
2219 | When nonnull, their meanings are as follows: |
2220 | |
2221 | - *SEGMENT is the "segment" of memory to which the address refers. |
2222 | This value is entirely target-specific and is only called a "segment" |
2223 | because that's its most typical use. It contains exactly one UNSPEC, |
2224 | pointed to by SEGMENT_TERM. The contents of *SEGMENT do not need |
2225 | reloading. |
2226 | |
2227 | - *BASE is a variable expression representing a base address. |
2228 | It contains exactly one REG, SUBREG or MEM, pointed to by BASE_TERM. |
2229 | |
2230 | - *INDEX is a variable expression representing an index value. |
2231 | It may be a scaled expression, such as a MULT. It has exactly |
2232 | one REG, SUBREG or MEM, pointed to by INDEX_TERM. |
2233 | |
2234 | - *DISP is a constant, possibly mutated. DISP_TERM points to the |
2235 | unmutated RTX_CONST_OBJ. */ |
2236 | rtx *segment; |
2237 | rtx *base; |
2238 | rtx *index; |
2239 | rtx *disp; |
2240 | |
2241 | rtx *segment_term; |
2242 | rtx *base_term; |
2243 | rtx *index_term; |
2244 | rtx *disp_term; |
2245 | |
2246 | /* In a {PRE,POST}_MODIFY address, this points to a second copy |
2247 | of BASE_TERM, otherwise it is null. */ |
2248 | rtx *base_term2; |
2249 | |
2250 | /* ADDRESS if this structure describes an address operand, MEM if |
2251 | it describes a MEM address. */ |
2252 | enum rtx_code addr_outer_code; |
2253 | |
2254 | /* If BASE is nonnull, this is the code of the rtx that contains it. */ |
2255 | enum rtx_code base_outer_code; |
2256 | }; |
2257 | |
2258 | /* This is used to bundle an rtx and a mode together so that the pair |
2259 | can be used with the wi:: routines. If we ever put modes into rtx |
2260 | integer constants, this should go away and then just pass an rtx in. */ |
2261 | typedef std::pair <rtx, machine_mode> rtx_mode_t; |
2262 | |
2263 | namespace wi |
2264 | { |
2265 | template <> |
2266 | struct int_traits <rtx_mode_t> |
2267 | { |
2268 | static const enum precision_type precision_type = VAR_PRECISION; |
2269 | static const bool host_dependent_precision = false; |
2270 | /* This ought to be true, except for the special case that BImode |
2271 | is canonicalized to STORE_FLAG_VALUE, which might be 1. */ |
2272 | static const bool is_sign_extended = false; |
2273 | static const bool needs_write_val_arg = false; |
2274 | static unsigned int get_precision (const rtx_mode_t &); |
2275 | static wi::storage_ref decompose (HOST_WIDE_INT *, unsigned int, |
2276 | const rtx_mode_t &); |
2277 | }; |
2278 | } |
2279 | |
2280 | inline unsigned int |
2281 | wi::int_traits <rtx_mode_t>::get_precision (const rtx_mode_t &x) |
2282 | { |
2283 | return GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: x.second)); |
2284 | } |
2285 | |
2286 | inline wi::storage_ref |
2287 | wi::int_traits <rtx_mode_t>::decompose (HOST_WIDE_INT *, |
2288 | unsigned int precision, |
2289 | const rtx_mode_t &x) |
2290 | { |
2291 | gcc_checking_assert (precision == get_precision (x)); |
2292 | switch (GET_CODE (x.first)) |
2293 | { |
2294 | case CONST_INT: |
2295 | if (precision < HOST_BITS_PER_WIDE_INT) |
2296 | /* Nonzero BImodes are stored as STORE_FLAG_VALUE, which on many |
2297 | targets is 1 rather than -1. */ |
2298 | gcc_checking_assert (INTVAL (x.first) |
2299 | == sext_hwi (INTVAL (x.first), precision) |
2300 | || (x.second == BImode && INTVAL (x.first) == 1)); |
2301 | |
2302 | return wi::storage_ref (&INTVAL (x.first), 1, precision); |
2303 | |
2304 | case CONST_WIDE_INT: |
2305 | return wi::storage_ref (&CONST_WIDE_INT_ELT (x.first, 0), |
2306 | CONST_WIDE_INT_NUNITS (x.first), precision); |
2307 | |
2308 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
2309 | case CONST_DOUBLE: |
2310 | return wi::storage_ref (&CONST_DOUBLE_LOW (x.first), 2, precision); |
2311 | #endif |
2312 | |
2313 | default: |
2314 | gcc_unreachable (); |
2315 | } |
2316 | } |
2317 | |
2318 | namespace wi |
2319 | { |
2320 | hwi_with_prec shwi (HOST_WIDE_INT, machine_mode mode); |
2321 | wide_int min_value (machine_mode, signop); |
2322 | wide_int max_value (machine_mode, signop); |
2323 | } |
2324 | |
2325 | inline wi::hwi_with_prec |
2326 | wi::shwi (HOST_WIDE_INT val, machine_mode mode) |
2327 | { |
2328 | return shwi (val, precision: GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode))); |
2329 | } |
2330 | |
2331 | /* Produce the smallest number that is represented in MODE. The precision |
2332 | is taken from MODE and the sign from SGN. */ |
2333 | inline wide_int |
2334 | wi::min_value (machine_mode mode, signop sgn) |
2335 | { |
2336 | return min_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn); |
2337 | } |
2338 | |
2339 | /* Produce the largest number that is represented in MODE. The precision |
2340 | is taken from MODE and the sign from SGN. */ |
2341 | inline wide_int |
2342 | wi::max_value (machine_mode mode, signop sgn) |
2343 | { |
2344 | return max_value (GET_MODE_PRECISION (mode: as_a <scalar_mode> (m: mode)), sgn); |
2345 | } |
2346 | |
2347 | namespace wi |
2348 | { |
2349 | typedef poly_int<NUM_POLY_INT_COEFFS, |
2350 | generic_wide_int <wide_int_ref_storage <false, false> > > |
2351 | rtx_to_poly_wide_ref; |
2352 | rtx_to_poly_wide_ref to_poly_wide (const_rtx, machine_mode); |
2353 | } |
2354 | |
2355 | /* Return the value of a CONST_POLY_INT in its native precision. */ |
2356 | |
2357 | inline wi::rtx_to_poly_wide_ref |
2358 | const_poly_int_value (const_rtx x) |
2359 | { |
2360 | poly_int<NUM_POLY_INT_COEFFS, WIDE_INT_REF_FOR (wide_int)> res; |
2361 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
2362 | res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i]; |
2363 | return res; |
2364 | } |
2365 | |
2366 | /* Return true if X is a scalar integer or a CONST_POLY_INT. The value |
2367 | can then be extracted using wi::to_poly_wide. */ |
2368 | |
2369 | inline bool |
2370 | poly_int_rtx_p (const_rtx x) |
2371 | { |
2372 | return CONST_SCALAR_INT_P (x) || CONST_POLY_INT_P (x); |
2373 | } |
2374 | |
2375 | /* Access X (which satisfies poly_int_rtx_p) as a poly_wide_int. |
2376 | MODE is the mode of X. */ |
2377 | |
2378 | inline wi::rtx_to_poly_wide_ref |
2379 | wi::to_poly_wide (const_rtx x, machine_mode mode) |
2380 | { |
2381 | if (CONST_POLY_INT_P (x)) |
2382 | return const_poly_int_value (x); |
2383 | return rtx_mode_t (const_cast<rtx> (x), mode); |
2384 | } |
2385 | |
2386 | /* Return the value of X as a poly_int64. */ |
2387 | |
2388 | inline poly_int64 |
2389 | rtx_to_poly_int64 (const_rtx x) |
2390 | { |
2391 | if (CONST_POLY_INT_P (x)) |
2392 | { |
2393 | poly_int64 res; |
2394 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
2395 | res.coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi (); |
2396 | return res; |
2397 | } |
2398 | return INTVAL (x); |
2399 | } |
2400 | |
2401 | /* Return true if arbitrary value X is an integer constant that can |
2402 | be represented as a poly_int64. Store the value in *RES if so, |
2403 | otherwise leave it unmodified. */ |
2404 | |
2405 | inline bool |
2406 | poly_int_rtx_p (const_rtx x, poly_int64 *res) |
2407 | { |
2408 | if (CONST_INT_P (x)) |
2409 | { |
2410 | *res = INTVAL (x); |
2411 | return true; |
2412 | } |
2413 | if (CONST_POLY_INT_P (x)) |
2414 | { |
2415 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
2416 | if (!wi::fits_shwi_p (CONST_POLY_INT_COEFFS (x)[i])) |
2417 | return false; |
2418 | for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) |
2419 | res->coeffs[i] = CONST_POLY_INT_COEFFS (x)[i].to_shwi (); |
2420 | return true; |
2421 | } |
2422 | return false; |
2423 | } |
2424 | |
2425 | extern void init_rtlanal (void); |
2426 | extern int rtx_cost (rtx, machine_mode, enum rtx_code, int, bool); |
2427 | extern int address_cost (rtx, machine_mode, addr_space_t, bool); |
2428 | extern void get_full_rtx_cost (rtx, machine_mode, enum rtx_code, int, |
2429 | struct full_rtx_costs *); |
2430 | extern bool native_encode_rtx (machine_mode, rtx, vec<target_unit> &, |
2431 | unsigned int, unsigned int); |
2432 | extern rtx native_decode_rtx (machine_mode, const vec<target_unit> &, |
2433 | unsigned int); |
2434 | extern rtx native_decode_vector_rtx (machine_mode, const vec<target_unit> &, |
2435 | unsigned int, unsigned int, unsigned int); |
2436 | extern poly_uint64 subreg_lsb (const_rtx); |
2437 | extern poly_uint64 subreg_size_lsb (poly_uint64, poly_uint64, poly_uint64); |
2438 | extern poly_uint64 subreg_size_offset_from_lsb (poly_uint64, poly_uint64, |
2439 | poly_uint64); |
2440 | extern bool read_modify_subreg_p (const_rtx); |
2441 | |
2442 | /* Given a subreg's OUTER_MODE, INNER_MODE, and SUBREG_BYTE, return the |
2443 | bit offset at which the subreg begins (counting from the least significant |
2444 | bit of the operand). */ |
2445 | |
2446 | inline poly_uint64 |
2447 | subreg_lsb_1 (machine_mode outer_mode, machine_mode inner_mode, |
2448 | poly_uint64 subreg_byte) |
2449 | { |
2450 | return subreg_size_lsb (GET_MODE_SIZE (mode: outer_mode), |
2451 | GET_MODE_SIZE (mode: inner_mode), subreg_byte); |
2452 | } |
2453 | |
2454 | /* Return the subreg byte offset for a subreg whose outer mode is |
2455 | OUTER_MODE, whose inner mode is INNER_MODE, and where there are |
2456 | LSB_SHIFT *bits* between the lsb of the outer value and the lsb of |
2457 | the inner value. This is the inverse of subreg_lsb_1 (which converts |
2458 | byte offsets to bit shifts). */ |
2459 | |
2460 | inline poly_uint64 |
2461 | subreg_offset_from_lsb (machine_mode outer_mode, |
2462 | machine_mode inner_mode, |
2463 | poly_uint64 lsb_shift) |
2464 | { |
2465 | return subreg_size_offset_from_lsb (GET_MODE_SIZE (mode: outer_mode), |
2466 | GET_MODE_SIZE (mode: inner_mode), lsb_shift); |
2467 | } |
2468 | |
2469 | extern unsigned int subreg_regno_offset (unsigned int, machine_mode, |
2470 | poly_uint64, machine_mode); |
2471 | extern bool subreg_offset_representable_p (unsigned int, machine_mode, |
2472 | poly_uint64, machine_mode); |
2473 | extern unsigned int subreg_regno (const_rtx); |
2474 | extern int simplify_subreg_regno (unsigned int, machine_mode, |
2475 | poly_uint64, machine_mode); |
2476 | extern int lowpart_subreg_regno (unsigned int, machine_mode, |
2477 | machine_mode); |
2478 | extern unsigned int subreg_nregs (const_rtx); |
2479 | extern unsigned int subreg_nregs_with_regno (unsigned int, const_rtx); |
2480 | extern unsigned HOST_WIDE_INT nonzero_bits (const_rtx, machine_mode); |
2481 | extern unsigned int num_sign_bit_copies (const_rtx, machine_mode); |
2482 | extern bool constant_pool_constant_p (rtx); |
2483 | extern bool truncated_to_mode (machine_mode, const_rtx); |
2484 | extern int low_bitmask_len (machine_mode, unsigned HOST_WIDE_INT); |
2485 | extern void split_double (rtx, rtx *, rtx *); |
2486 | extern rtx *strip_address_mutations (rtx *, enum rtx_code * = 0); |
2487 | extern void decompose_address (struct address_info *, rtx *, |
2488 | machine_mode, addr_space_t, enum rtx_code); |
2489 | extern void decompose_lea_address (struct address_info *, rtx *); |
2490 | extern void decompose_mem_address (struct address_info *, rtx); |
2491 | extern void update_address (struct address_info *); |
2492 | extern HOST_WIDE_INT get_index_scale (const struct address_info *); |
2493 | extern enum rtx_code get_index_code (const struct address_info *); |
2494 | |
2495 | /* 1 if RTX is a subreg containing a reg that is already known to be |
2496 | sign- or zero-extended from the mode of the subreg to the mode of |
2497 | the reg. SUBREG_PROMOTED_UNSIGNED_P gives the signedness of the |
2498 | extension. |
2499 | |
2500 | When used as a LHS, is means that this extension must be done |
2501 | when assigning to SUBREG_REG. */ |
2502 | |
2503 | #define SUBREG_PROMOTED_VAR_P(RTX) \ |
2504 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED", (RTX), SUBREG)->in_struct) |
2505 | |
2506 | /* Valid for subregs which are SUBREG_PROMOTED_VAR_P(). In that case |
2507 | this gives the necessary extensions: |
2508 | 0 - signed (SPR_SIGNED) |
2509 | 1 - normal unsigned (SPR_UNSIGNED) |
2510 | 2 - value is both sign and unsign extended for mode |
2511 | (SPR_SIGNED_AND_UNSIGNED). |
2512 | -1 - pointer unsigned, which most often can be handled like unsigned |
2513 | extension, except for generating instructions where we need to |
2514 | emit special code (ptr_extend insns) on some architectures |
2515 | (SPR_POINTER). */ |
2516 | |
2517 | const int SRP_POINTER = -1; |
2518 | const int SRP_SIGNED = 0; |
2519 | const int SRP_UNSIGNED = 1; |
2520 | const int SRP_SIGNED_AND_UNSIGNED = 2; |
2521 | |
2522 | /* Sets promoted mode for SUBREG_PROMOTED_VAR_P(). */ |
2523 | #define SUBREG_PROMOTED_SET(RTX, VAL) \ |
2524 | do { \ |
2525 | rtx const _rtx = RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SET", \ |
2526 | (RTX), SUBREG); \ |
2527 | switch (VAL) \ |
2528 | { \ |
2529 | case SRP_POINTER: \ |
2530 | _rtx->volatil = 0; \ |
2531 | _rtx->unchanging = 0; \ |
2532 | break; \ |
2533 | case SRP_SIGNED: \ |
2534 | _rtx->volatil = 0; \ |
2535 | _rtx->unchanging = 1; \ |
2536 | break; \ |
2537 | case SRP_UNSIGNED: \ |
2538 | _rtx->volatil = 1; \ |
2539 | _rtx->unchanging = 0; \ |
2540 | break; \ |
2541 | case SRP_SIGNED_AND_UNSIGNED: \ |
2542 | _rtx->volatil = 1; \ |
2543 | _rtx->unchanging = 1; \ |
2544 | break; \ |
2545 | } \ |
2546 | } while (0) |
2547 | |
2548 | /* Gets the value stored in promoted mode for SUBREG_PROMOTED_VAR_P(), |
2549 | including SRP_SIGNED_AND_UNSIGNED if promoted for |
2550 | both signed and unsigned. */ |
2551 | #define SUBREG_PROMOTED_GET(RTX) \ |
2552 | (2 * (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_GET", (RTX), SUBREG)->volatil)\ |
2553 | + (RTX)->unchanging - 1) |
2554 | |
2555 | /* Returns sign of promoted mode for SUBREG_PROMOTED_VAR_P(). */ |
2556 | #define SUBREG_PROMOTED_SIGN(RTX) \ |
2557 | ((RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGN", (RTX), SUBREG)->volatil) ? 1\ |
2558 | : (RTX)->unchanging - 1) |
2559 | |
2560 | /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted |
2561 | for SIGNED type. */ |
2562 | #define SUBREG_PROMOTED_SIGNED_P(RTX) \ |
2563 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_SIGNED_P", (RTX), SUBREG)->unchanging) |
2564 | |
2565 | /* Predicate to check if RTX of SUBREG_PROMOTED_VAR_P() is promoted |
2566 | for UNSIGNED type. */ |
2567 | #define SUBREG_PROMOTED_UNSIGNED_P(RTX) \ |
2568 | (RTL_FLAG_CHECK1 ("SUBREG_PROMOTED_UNSIGNED_P", (RTX), SUBREG)->volatil) |
2569 | |
2570 | /* Checks if RTX of SUBREG_PROMOTED_VAR_P() is promoted for given SIGN. */ |
2571 | #define SUBREG_CHECK_PROMOTED_SIGN(RTX, SIGN) \ |
2572 | ((SIGN) == SRP_POINTER ? SUBREG_PROMOTED_GET (RTX) == SRP_POINTER \ |
2573 | : (SIGN) == SRP_SIGNED ? SUBREG_PROMOTED_SIGNED_P (RTX) \ |
2574 | : SUBREG_PROMOTED_UNSIGNED_P (RTX)) |
2575 | |
2576 | /* True if the REG is the static chain register for some CALL_INSN. */ |
2577 | #define STATIC_CHAIN_REG_P(RTX) \ |
2578 | (RTL_FLAG_CHECK1 ("STATIC_CHAIN_REG_P", (RTX), REG)->jump) |
2579 | |
2580 | /* True if the subreg was generated by LRA for reload insns. Such |
2581 | subregs are valid only during LRA. */ |
2582 | #define LRA_SUBREG_P(RTX) \ |
2583 | (RTL_FLAG_CHECK1 ("LRA_SUBREG_P", (RTX), SUBREG)->jump) |
2584 | |
2585 | /* Access various components of an ASM_OPERANDS rtx. */ |
2586 | |
2587 | #define ASM_OPERANDS_TEMPLATE(RTX) XCSTR (RTX, 0, ASM_OPERANDS) |
2588 | #define ASM_OPERANDS_OUTPUT_CONSTRAINT(RTX) XCSTR (RTX, 1, ASM_OPERANDS) |
2589 | #define ASM_OPERANDS_OUTPUT_IDX(RTX) XCINT (RTX, 2, ASM_OPERANDS) |
2590 | #define ASM_OPERANDS_INPUT_VEC(RTX) XCVEC (RTX, 3, ASM_OPERANDS) |
2591 | #define ASM_OPERANDS_INPUT_CONSTRAINT_VEC(RTX) XCVEC (RTX, 4, ASM_OPERANDS) |
2592 | #define ASM_OPERANDS_INPUT(RTX, N) XCVECEXP (RTX, 3, N, ASM_OPERANDS) |
2593 | #define ASM_OPERANDS_INPUT_LENGTH(RTX) XCVECLEN (RTX, 3, ASM_OPERANDS) |
2594 | #define ASM_OPERANDS_INPUT_CONSTRAINT_EXP(RTX, N) \ |
2595 | XCVECEXP (RTX, 4, N, ASM_OPERANDS) |
2596 | #define ASM_OPERANDS_INPUT_CONSTRAINT(RTX, N) \ |
2597 | XSTR (XCVECEXP (RTX, 4, N, ASM_OPERANDS), 0) |
2598 | #define ASM_OPERANDS_INPUT_MODE(RTX, N) \ |
2599 | GET_MODE (XCVECEXP (RTX, 4, N, ASM_OPERANDS)) |
2600 | #define ASM_OPERANDS_LABEL_VEC(RTX) XCVEC (RTX, 5, ASM_OPERANDS) |
2601 | #define ASM_OPERANDS_LABEL_LENGTH(RTX) XCVECLEN (RTX, 5, ASM_OPERANDS) |
2602 | #define ASM_OPERANDS_LABEL(RTX, N) XCVECEXP (RTX, 5, N, ASM_OPERANDS) |
2603 | #define ASM_OPERANDS_SOURCE_LOCATION(RTX) XCUINT (RTX, 6, ASM_OPERANDS) |
2604 | #define ASM_INPUT_SOURCE_LOCATION(RTX) XCUINT (RTX, 1, ASM_INPUT) |
2605 | |
2606 | /* 1 if RTX is a mem that is statically allocated in read-only memory. */ |
2607 | #define MEM_READONLY_P(RTX) \ |
2608 | (RTL_FLAG_CHECK1 ("MEM_READONLY_P", (RTX), MEM)->unchanging) |
2609 | |
2610 | /* 1 if RTX is a mem and we should keep the alias set for this mem |
2611 | unchanged when we access a component. Set to 1, or example, when we |
2612 | are already in a non-addressable component of an aggregate. */ |
2613 | #define MEM_KEEP_ALIAS_SET_P(RTX) \ |
2614 | (RTL_FLAG_CHECK1 ("MEM_KEEP_ALIAS_SET_P", (RTX), MEM)->jump) |
2615 | |
2616 | /* 1 if RTX is a mem or asm_operand for a volatile reference. */ |
2617 | #define MEM_VOLATILE_P(RTX) \ |
2618 | (RTL_FLAG_CHECK3 ("MEM_VOLATILE_P", (RTX), MEM, ASM_OPERANDS, \ |
2619 | ASM_INPUT)->volatil) |
2620 | |
2621 | /* 1 if RTX is a mem that cannot trap. */ |
2622 | #define MEM_NOTRAP_P(RTX) \ |
2623 | (RTL_FLAG_CHECK1 ("MEM_NOTRAP_P", (RTX), MEM)->call) |
2624 | |
2625 | /* The memory attribute block. We provide access macros for each value |
2626 | in the block and provide defaults if none specified. */ |
2627 | #define MEM_ATTRS(RTX) X0MEMATTR (RTX, 1) |
2628 | |
2629 | /* The register attribute block. We provide access macros for each value |
2630 | in the block and provide defaults if none specified. */ |
2631 | #define REG_ATTRS(RTX) (REG_CHECK (RTX)->attrs) |
2632 | |
2633 | #ifndef GENERATOR_FILE |
2634 | /* For a MEM rtx, the alias set. If 0, this MEM is not in any alias |
2635 | set, and may alias anything. Otherwise, the MEM can only alias |
2636 | MEMs in a conflicting alias set. This value is set in a |
2637 | language-dependent manner in the front-end, and should not be |
2638 | altered in the back-end. These set numbers are tested with |
2639 | alias_sets_conflict_p. */ |
2640 | #define MEM_ALIAS_SET(RTX) (get_mem_attrs (RTX)->alias) |
2641 | |
2642 | /* For a MEM rtx, the decl it is known to refer to, if it is known to |
2643 | refer to part of a DECL. It may also be a COMPONENT_REF. */ |
2644 | #define MEM_EXPR(RTX) (get_mem_attrs (RTX)->expr) |
2645 | |
2646 | /* For a MEM rtx, true if its MEM_OFFSET is known. */ |
2647 | #define MEM_OFFSET_KNOWN_P(RTX) (get_mem_attrs (RTX)->offset_known_p) |
2648 | |
2649 | /* For a MEM rtx, the offset from the start of MEM_EXPR. */ |
2650 | #define MEM_OFFSET(RTX) (get_mem_attrs (RTX)->offset) |
2651 | |
2652 | /* For a MEM rtx, the address space. */ |
2653 | #define MEM_ADDR_SPACE(RTX) (get_mem_attrs (RTX)->addrspace) |
2654 | |
2655 | /* For a MEM rtx, true if its MEM_SIZE is known. */ |
2656 | #define MEM_SIZE_KNOWN_P(RTX) (get_mem_attrs (RTX)->size_known_p) |
2657 | |
2658 | /* For a MEM rtx, the size in bytes of the MEM. */ |
2659 | #define MEM_SIZE(RTX) (get_mem_attrs (RTX)->size) |
2660 | |
2661 | /* For a MEM rtx, the alignment in bits. We can use the alignment of the |
2662 | mode as a default when STRICT_ALIGNMENT, but not if not. */ |
2663 | #define MEM_ALIGN(RTX) (get_mem_attrs (RTX)->align) |
2664 | #else |
2665 | #define MEM_ADDR_SPACE(RTX) ADDR_SPACE_GENERIC |
2666 | #endif |
2667 | |
2668 | /* For a REG rtx, the decl it is known to refer to, if it is known to |
2669 | refer to part of a DECL. */ |
2670 | #define REG_EXPR(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->decl) |
2671 | |
2672 | /* For a REG rtx, the offset from the start of REG_EXPR, if known, as an |
2673 | HOST_WIDE_INT. */ |
2674 | #define REG_OFFSET(RTX) (REG_ATTRS (RTX) == 0 ? 0 : REG_ATTRS (RTX)->offset) |
2675 | |
2676 | /* Copy the attributes that apply to memory locations from RHS to LHS. */ |
2677 | #define MEM_COPY_ATTRIBUTES(LHS, RHS) \ |
2678 | (MEM_VOLATILE_P (LHS) = MEM_VOLATILE_P (RHS), \ |
2679 | MEM_NOTRAP_P (LHS) = MEM_NOTRAP_P (RHS), \ |
2680 | MEM_READONLY_P (LHS) = MEM_READONLY_P (RHS), \ |
2681 | MEM_KEEP_ALIAS_SET_P (LHS) = MEM_KEEP_ALIAS_SET_P (RHS), \ |
2682 | MEM_POINTER (LHS) = MEM_POINTER (RHS), \ |
2683 | MEM_ATTRS (LHS) = MEM_ATTRS (RHS)) |
2684 | |
2685 | /* 1 if RTX is a label_ref for a nonlocal label. */ |
2686 | /* Likewise in an expr_list for a REG_LABEL_OPERAND or |
2687 | REG_LABEL_TARGET note. */ |
2688 | #define LABEL_REF_NONLOCAL_P(RTX) \ |
2689 | (RTL_FLAG_CHECK1 ("LABEL_REF_NONLOCAL_P", (RTX), LABEL_REF)->volatil) |
2690 | |
2691 | /* 1 if RTX is a code_label that should always be considered to be needed. */ |
2692 | #define LABEL_PRESERVE_P(RTX) \ |
2693 | (RTL_FLAG_CHECK2 ("LABEL_PRESERVE_P", (RTX), CODE_LABEL, NOTE)->in_struct) |
2694 | |
2695 | /* During sched, 1 if RTX is an insn that must be scheduled together |
2696 | with the preceding insn. */ |
2697 | #define SCHED_GROUP_P(RTX) \ |
2698 | (RTL_FLAG_CHECK4 ("SCHED_GROUP_P", (RTX), DEBUG_INSN, INSN, \ |
2699 | JUMP_INSN, CALL_INSN)->in_struct) |
2700 | |
2701 | /* For a SET rtx, SET_DEST is the place that is set |
2702 | and SET_SRC is the value it is set to. */ |
2703 | #define SET_DEST(RTX) XC2EXP (RTX, 0, SET, CLOBBER) |
2704 | #define SET_SRC(RTX) XCEXP (RTX, 1, SET) |
2705 | #define SET_IS_RETURN_P(RTX) \ |
2706 | (RTL_FLAG_CHECK1 ("SET_IS_RETURN_P", (RTX), SET)->jump) |
2707 | |
2708 | /* For a TRAP_IF rtx, TRAP_CONDITION is an expression. */ |
2709 | #define TRAP_CONDITION(RTX) XCEXP (RTX, 0, TRAP_IF) |
2710 | #define TRAP_CODE(RTX) XCEXP (RTX, 1, TRAP_IF) |
2711 | |
2712 | /* For a COND_EXEC rtx, COND_EXEC_TEST is the condition to base |
2713 | conditionally executing the code on, COND_EXEC_CODE is the code |
2714 | to execute if the condition is true. */ |
2715 | #define COND_EXEC_TEST(RTX) XCEXP (RTX, 0, COND_EXEC) |
2716 | #define COND_EXEC_CODE(RTX) XCEXP (RTX, 1, COND_EXEC) |
2717 | |
2718 | /* 1 if RTX is a symbol_ref that addresses this function's rtl |
2719 | constants pool. */ |
2720 | #define CONSTANT_POOL_ADDRESS_P(RTX) \ |
2721 | (RTL_FLAG_CHECK1 ("CONSTANT_POOL_ADDRESS_P", (RTX), SYMBOL_REF)->unchanging) |
2722 | |
2723 | /* 1 if RTX is a symbol_ref that addresses a value in the file's |
2724 | tree constant pool. This information is private to varasm.cc. */ |
2725 | #define TREE_CONSTANT_POOL_ADDRESS_P(RTX) \ |
2726 | (RTL_FLAG_CHECK1 ("TREE_CONSTANT_POOL_ADDRESS_P", \ |
2727 | (RTX), SYMBOL_REF)->frame_related) |
2728 | |
2729 | /* Used if RTX is a symbol_ref, for machine-specific purposes. */ |
2730 | #define SYMBOL_REF_FLAG(RTX) \ |
2731 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAG", (RTX), SYMBOL_REF)->volatil) |
2732 | |
2733 | /* 1 if RTX is a symbol_ref that has been the library function in |
2734 | emit_library_call. */ |
2735 | #define SYMBOL_REF_USED(RTX) \ |
2736 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_USED", (RTX), SYMBOL_REF)->used) |
2737 | |
2738 | /* 1 if RTX is a symbol_ref for a weak symbol. */ |
2739 | #define SYMBOL_REF_WEAK(RTX) \ |
2740 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_WEAK", (RTX), SYMBOL_REF)->return_val) |
2741 | |
2742 | /* A pointer attached to the SYMBOL_REF; either SYMBOL_REF_DECL or |
2743 | SYMBOL_REF_CONSTANT. */ |
2744 | #define SYMBOL_REF_DATA(RTX) X0ANY ((RTX), 1) |
2745 | |
2746 | /* Set RTX's SYMBOL_REF_DECL to DECL. RTX must not be a constant |
2747 | pool symbol. */ |
2748 | #define SET_SYMBOL_REF_DECL(RTX, DECL) \ |
2749 | (gcc_assert (!CONSTANT_POOL_ADDRESS_P (RTX)), X0TREE ((RTX), 1) = (DECL)) |
2750 | |
2751 | /* The tree (decl or constant) associated with the symbol, or null. */ |
2752 | #define SYMBOL_REF_DECL(RTX) \ |
2753 | (CONSTANT_POOL_ADDRESS_P (RTX) ? NULL : X0TREE ((RTX), 1)) |
2754 | |
2755 | /* Set RTX's SYMBOL_REF_CONSTANT to C. RTX must be a constant pool symbol. */ |
2756 | #define SET_SYMBOL_REF_CONSTANT(RTX, C) \ |
2757 | (gcc_assert (CONSTANT_POOL_ADDRESS_P (RTX)), X0CONSTANT ((RTX), 1) = (C)) |
2758 | |
2759 | /* The rtx constant pool entry for a symbol, or null. */ |
2760 | #define SYMBOL_REF_CONSTANT(RTX) \ |
2761 | (CONSTANT_POOL_ADDRESS_P (RTX) ? X0CONSTANT ((RTX), 1) : NULL) |
2762 | |
2763 | /* A set of flags on a symbol_ref that are, in some respects, redundant with |
2764 | information derivable from the tree decl associated with this symbol. |
2765 | Except that we build a *lot* of SYMBOL_REFs that aren't associated with a |
2766 | decl. In some cases this is a bug. But beyond that, it's nice to cache |
2767 | this information to avoid recomputing it. Finally, this allows space for |
2768 | the target to store more than one bit of information, as with |
2769 | SYMBOL_REF_FLAG. */ |
2770 | #define SYMBOL_REF_FLAGS(RTX) \ |
2771 | (RTL_FLAG_CHECK1 ("SYMBOL_REF_FLAGS", (RTX), SYMBOL_REF) \ |
2772 | ->u2.symbol_ref_flags) |
2773 | |
2774 | /* These flags are common enough to be defined for all targets. They |
2775 | are computed by the default version of targetm.encode_section_info. */ |
2776 | |
2777 | /* Set if this symbol is a function. */ |
2778 | #define SYMBOL_FLAG_FUNCTION (1 << 0) |
2779 | #define SYMBOL_REF_FUNCTION_P(RTX) \ |
2780 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_FUNCTION) != 0) |
2781 | /* Set if targetm.binds_local_p is true. */ |
2782 | #define SYMBOL_FLAG_LOCAL (1 << 1) |
2783 | #define SYMBOL_REF_LOCAL_P(RTX) \ |
2784 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_LOCAL) != 0) |
2785 | /* Set if targetm.in_small_data_p is true. */ |
2786 | #define SYMBOL_FLAG_SMALL (1 << 2) |
2787 | #define SYMBOL_REF_SMALL_P(RTX) \ |
2788 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_SMALL) != 0) |
2789 | /* The three-bit field at [5:3] is true for TLS variables; use |
2790 | SYMBOL_REF_TLS_MODEL to extract the field as an enum tls_model. */ |
2791 | #define SYMBOL_FLAG_TLS_SHIFT 3 |
2792 | #define SYMBOL_REF_TLS_MODEL(RTX) \ |
2793 | ((enum tls_model) ((SYMBOL_REF_FLAGS (RTX) >> SYMBOL_FLAG_TLS_SHIFT) & 7)) |
2794 | /* Set if this symbol is not defined in this translation unit. */ |
2795 | #define SYMBOL_FLAG_EXTERNAL (1 << 6) |
2796 | #define SYMBOL_REF_EXTERNAL_P(RTX) \ |
2797 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_EXTERNAL) != 0) |
2798 | /* Set if this symbol has a block_symbol structure associated with it. */ |
2799 | #define SYMBOL_FLAG_HAS_BLOCK_INFO (1 << 7) |
2800 | #define SYMBOL_REF_HAS_BLOCK_INFO_P(RTX) \ |
2801 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_HAS_BLOCK_INFO) != 0) |
2802 | /* Set if this symbol is a section anchor. SYMBOL_REF_ANCHOR_P implies |
2803 | SYMBOL_REF_HAS_BLOCK_INFO_P. */ |
2804 | #define SYMBOL_FLAG_ANCHOR (1 << 8) |
2805 | #define SYMBOL_REF_ANCHOR_P(RTX) \ |
2806 | ((SYMBOL_REF_FLAGS (RTX) & SYMBOL_FLAG_ANCHOR) != 0) |
2807 | |
2808 | /* Subsequent bits are available for the target to use. */ |
2809 | #define SYMBOL_FLAG_MACH_DEP_SHIFT 9 |
2810 | #define SYMBOL_FLAG_MACH_DEP (1 << SYMBOL_FLAG_MACH_DEP_SHIFT) |
2811 | |
2812 | /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the object_block |
2813 | structure to which the symbol belongs, or NULL if it has not been |
2814 | assigned a block. */ |
2815 | #define SYMBOL_REF_BLOCK(RTX) (BLOCK_SYMBOL_CHECK (RTX)->block) |
2816 | |
2817 | /* If SYMBOL_REF_HAS_BLOCK_INFO_P (RTX), this is the offset of RTX from |
2818 | the first object in SYMBOL_REF_BLOCK (RTX). The value is negative if |
2819 | RTX has not yet been assigned to a block, or it has not been given an |
2820 | offset within that block. */ |
2821 | #define SYMBOL_REF_BLOCK_OFFSET(RTX) (BLOCK_SYMBOL_CHECK (RTX)->offset) |
2822 | |
2823 | /* True if RTX is flagged to be a scheduling barrier. */ |
2824 | #define PREFETCH_SCHEDULE_BARRIER_P(RTX) \ |
2825 | (RTL_FLAG_CHECK1 ("PREFETCH_SCHEDULE_BARRIER_P", (RTX), PREFETCH)->volatil) |
2826 | |
2827 | /* Indicate whether the machine has any sort of auto increment addressing. |
2828 | If not, we can avoid checking for REG_INC notes. */ |
2829 | |
2830 | #if (defined (HAVE_PRE_INCREMENT) || defined (HAVE_PRE_DECREMENT) \ |
2831 | || defined (HAVE_POST_INCREMENT) || defined (HAVE_POST_DECREMENT) \ |
2832 | || defined (HAVE_PRE_MODIFY_DISP) || defined (HAVE_POST_MODIFY_DISP) \ |
2833 | || defined (HAVE_PRE_MODIFY_REG) || defined (HAVE_POST_MODIFY_REG)) |
2834 | #define AUTO_INC_DEC 1 |
2835 | #else |
2836 | #define AUTO_INC_DEC 0 |
2837 | #endif |
2838 | |
2839 | /* Define a macro to look for REG_INC notes, |
2840 | but save time on machines where they never exist. */ |
2841 | |
2842 | #if AUTO_INC_DEC |
2843 | #define FIND_REG_INC_NOTE(INSN, REG) \ |
2844 | ((REG) != NULL_RTX && REG_P ((REG)) \ |
2845 | ? find_regno_note ((INSN), REG_INC, REGNO (REG)) \ |
2846 | : find_reg_note ((INSN), REG_INC, (REG))) |
2847 | #else |
2848 | #define FIND_REG_INC_NOTE(INSN, REG) 0 |
2849 | #endif |
2850 | |
2851 | #ifndef HAVE_PRE_INCREMENT |
2852 | #define HAVE_PRE_INCREMENT 0 |
2853 | #endif |
2854 | |
2855 | #ifndef HAVE_PRE_DECREMENT |
2856 | #define HAVE_PRE_DECREMENT 0 |
2857 | #endif |
2858 | |
2859 | #ifndef HAVE_POST_INCREMENT |
2860 | #define HAVE_POST_INCREMENT 0 |
2861 | #endif |
2862 | |
2863 | #ifndef HAVE_POST_DECREMENT |
2864 | #define HAVE_POST_DECREMENT 0 |
2865 | #endif |
2866 | |
2867 | #ifndef HAVE_POST_MODIFY_DISP |
2868 | #define HAVE_POST_MODIFY_DISP 0 |
2869 | #endif |
2870 | |
2871 | #ifndef HAVE_POST_MODIFY_REG |
2872 | #define HAVE_POST_MODIFY_REG 0 |
2873 | #endif |
2874 | |
2875 | #ifndef HAVE_PRE_MODIFY_DISP |
2876 | #define HAVE_PRE_MODIFY_DISP 0 |
2877 | #endif |
2878 | |
2879 | #ifndef HAVE_PRE_MODIFY_REG |
2880 | #define HAVE_PRE_MODIFY_REG 0 |
2881 | #endif |
2882 | |
2883 | |
2884 | /* Some architectures do not have complete pre/post increment/decrement |
2885 | instruction sets, or only move some modes efficiently. These macros |
2886 | allow us to tune autoincrement generation. */ |
2887 | |
2888 | #ifndef USE_LOAD_POST_INCREMENT |
2889 | #define USE_LOAD_POST_INCREMENT(MODE) HAVE_POST_INCREMENT |
2890 | #endif |
2891 | |
2892 | #ifndef USE_LOAD_POST_DECREMENT |
2893 | #define USE_LOAD_POST_DECREMENT(MODE) HAVE_POST_DECREMENT |
2894 | #endif |
2895 | |
2896 | #ifndef USE_LOAD_PRE_INCREMENT |
2897 | #define USE_LOAD_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT |
2898 | #endif |
2899 | |
2900 | #ifndef USE_LOAD_PRE_DECREMENT |
2901 | #define USE_LOAD_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT |
2902 | #endif |
2903 | |
2904 | #ifndef USE_STORE_POST_INCREMENT |
2905 | #define USE_STORE_POST_INCREMENT(MODE) HAVE_POST_INCREMENT |
2906 | #endif |
2907 | |
2908 | #ifndef USE_STORE_POST_DECREMENT |
2909 | #define USE_STORE_POST_DECREMENT(MODE) HAVE_POST_DECREMENT |
2910 | #endif |
2911 | |
2912 | #ifndef USE_STORE_PRE_INCREMENT |
2913 | #define USE_STORE_PRE_INCREMENT(MODE) HAVE_PRE_INCREMENT |
2914 | #endif |
2915 | |
2916 | #ifndef USE_STORE_PRE_DECREMENT |
2917 | #define USE_STORE_PRE_DECREMENT(MODE) HAVE_PRE_DECREMENT |
2918 | #endif |
2919 | |
2920 | /* Nonzero when we are generating CONCATs. */ |
2921 | extern int generating_concat_p; |
2922 | |
2923 | /* Nonzero when we are expanding trees to RTL. */ |
2924 | extern int currently_expanding_to_rtl; |
2925 | |
2926 | /* Generally useful functions. */ |
2927 | |
2928 | #ifndef GENERATOR_FILE |
2929 | /* Return the cost of SET X. SPEED_P is true if optimizing for speed |
2930 | rather than size. */ |
2931 | |
2932 | inline int |
2933 | set_rtx_cost (rtx x, bool speed_p) |
2934 | { |
2935 | return rtx_cost (x, VOIDmode, INSN, 4, speed_p); |
2936 | } |
2937 | |
2938 | /* Like set_rtx_cost, but return both the speed and size costs in C. */ |
2939 | |
2940 | inline void |
2941 | get_full_set_rtx_cost (rtx x, struct full_rtx_costs *c) |
2942 | { |
2943 | get_full_rtx_cost (x, VOIDmode, INSN, 4, c); |
2944 | } |
2945 | |
2946 | /* Return the cost of moving X into a register, relative to the cost |
2947 | of a register move. SPEED_P is true if optimizing for speed rather |
2948 | than size. */ |
2949 | |
2950 | inline int |
2951 | set_src_cost (rtx x, machine_mode mode, bool speed_p) |
2952 | { |
2953 | return rtx_cost (x, mode, SET, 1, speed_p); |
2954 | } |
2955 | |
2956 | /* Like set_src_cost, but return both the speed and size costs in C. */ |
2957 | |
2958 | inline void |
2959 | get_full_set_src_cost (rtx x, machine_mode mode, struct full_rtx_costs *c) |
2960 | { |
2961 | get_full_rtx_cost (x, mode, SET, 1, c); |
2962 | } |
2963 | #endif |
2964 | |
2965 | /* A convenience macro to validate the arguments of a zero_extract |
2966 | expression. It determines whether SIZE lies inclusively within |
2967 | [1, RANGE], POS lies inclusively within between [0, RANGE - 1] |
2968 | and the sum lies inclusively within [1, RANGE]. RANGE must be |
2969 | >= 1, but SIZE and POS may be negative. */ |
2970 | #define EXTRACT_ARGS_IN_RANGE(SIZE, POS, RANGE) \ |
2971 | (IN_RANGE ((POS), 0, (unsigned HOST_WIDE_INT) (RANGE) - 1) \ |
2972 | && IN_RANGE ((SIZE), 1, (unsigned HOST_WIDE_INT) (RANGE) \ |
2973 | - (unsigned HOST_WIDE_INT)(POS))) |
2974 | |
2975 | /* In explow.cc */ |
2976 | extern HOST_WIDE_INT trunc_int_for_mode (HOST_WIDE_INT, machine_mode); |
2977 | extern poly_int64 trunc_int_for_mode (poly_int64, machine_mode); |
2978 | extern rtx plus_constant (machine_mode, rtx, poly_int64, bool = false); |
2979 | extern HOST_WIDE_INT get_stack_check_protect (void); |
2980 | |
2981 | /* In rtl.cc */ |
2982 | extern rtx rtx_alloc (RTX_CODE CXX_MEM_STAT_INFO); |
2983 | inline rtx |
2984 | rtx_init (rtx rt, RTX_CODE code) |
2985 | { |
2986 | memset (s: rt, c: 0, RTX_HDR_SIZE); |
2987 | PUT_CODE (rt, code); |
2988 | return rt; |
2989 | } |
2990 | #define rtx_alloca(code) \ |
2991 | rtx_init ((rtx) alloca (RTX_CODE_SIZE ((code))), (code)) |
2992 | extern rtx rtx_alloc_stat_v (RTX_CODE MEM_STAT_DECL, int); |
2993 | #define rtx_alloc_v(c, SZ) rtx_alloc_stat_v (c MEM_STAT_INFO, SZ) |
2994 | #define const_wide_int_alloc(NWORDS) \ |
2995 | rtx_alloc_v (CONST_WIDE_INT, \ |
2996 | (sizeof (struct hwivec_def) \ |
2997 | + ((NWORDS)-1) * sizeof (HOST_WIDE_INT))) \ |
2998 | |
2999 | extern rtvec rtvec_alloc (size_t); |
3000 | extern rtvec shallow_copy_rtvec (rtvec); |
3001 | extern bool shared_const_p (const_rtx); |
3002 | extern rtx copy_rtx (rtx); |
3003 | extern enum rtx_code classify_insn (rtx); |
3004 | extern void dump_rtx_statistics (void); |
3005 | |
3006 | /* In emit-rtl.cc */ |
3007 | extern rtx copy_rtx_if_shared (rtx); |
3008 | |
3009 | /* In rtl.cc */ |
3010 | extern unsigned int rtx_size (const_rtx); |
3011 | extern rtx shallow_copy_rtx (const_rtx CXX_MEM_STAT_INFO); |
3012 | |
3013 | typedef bool (*rtx_equal_p_callback_function) (const_rtx *, const_rtx *, |
3014 | rtx *, rtx *); |
3015 | extern bool rtx_equal_p (const_rtx, const_rtx, |
3016 | rtx_equal_p_callback_function = NULL); |
3017 | |
3018 | extern bool rtvec_all_equal_p (const_rtvec); |
3019 | extern bool rtvec_series_p (rtvec, int); |
3020 | |
3021 | /* Return true if X is a vector constant with a duplicated element value. */ |
3022 | |
3023 | inline bool |
3024 | const_vec_duplicate_p (const_rtx x) |
3025 | { |
3026 | return (GET_CODE (x) == CONST_VECTOR |
3027 | && CONST_VECTOR_NPATTERNS (x) == 1 |
3028 | && CONST_VECTOR_DUPLICATE_P (x)); |
3029 | } |
3030 | |
3031 | /* Return true if X is a vector constant with a duplicated element value. |
3032 | Store the duplicated element in *ELT if so. */ |
3033 | |
3034 | template <typename T> |
3035 | inline bool |
3036 | const_vec_duplicate_p (T x, T *elt) |
3037 | { |
3038 | if (const_vec_duplicate_p (x)) |
3039 | { |
3040 | *elt = CONST_VECTOR_ENCODED_ELT (x, 0); |
3041 | return true; |
3042 | } |
3043 | return false; |
3044 | } |
3045 | |
3046 | /* Return true if X is a vector with a duplicated element value, either |
3047 | constant or nonconstant. Store the duplicated element in *ELT if so. */ |
3048 | |
3049 | template <typename T> |
3050 | inline bool |
3051 | vec_duplicate_p (T x, T *elt) |
3052 | { |
3053 | if (GET_CODE (x) == VEC_DUPLICATE |
3054 | && !VECTOR_MODE_P (GET_MODE (XEXP (x, 0)))) |
3055 | { |
3056 | *elt = XEXP (x, 0); |
3057 | return true; |
3058 | } |
3059 | return const_vec_duplicate_p (x, elt); |
3060 | } |
3061 | |
3062 | /* If X is a vector constant with a duplicated element value, return that |
3063 | element value, otherwise return X. */ |
3064 | |
3065 | template <typename T> |
3066 | inline T |
3067 | unwrap_const_vec_duplicate (T x) |
3068 | { |
3069 | if (const_vec_duplicate_p (x)) |
3070 | x = CONST_VECTOR_ELT (x, 0); |
3071 | return x; |
3072 | } |
3073 | |
3074 | /* In emit-rtl.cc. */ |
3075 | extern wide_int const_vector_int_elt (const_rtx, unsigned int); |
3076 | extern rtx const_vector_elt (const_rtx, unsigned int); |
3077 | extern bool const_vec_series_p_1 (const_rtx, rtx *, rtx *); |
3078 | |
3079 | /* Return true if X is an integer constant vector that contains a linear |
3080 | series of the form: |
3081 | |
3082 | { B, B + S, B + 2 * S, B + 3 * S, ... } |
3083 | |
3084 | for a nonzero S. Store B and S in *BASE_OUT and *STEP_OUT on sucess. */ |
3085 | |
3086 | inline bool |
3087 | const_vec_series_p (const_rtx x, rtx *base_out, rtx *step_out) |
3088 | { |
3089 | if (GET_CODE (x) == CONST_VECTOR |
3090 | && CONST_VECTOR_NPATTERNS (x) == 1 |
3091 | && !CONST_VECTOR_DUPLICATE_P (x)) |
3092 | return const_vec_series_p_1 (x, base_out, step_out); |
3093 | return false; |
3094 | } |
3095 | |
3096 | /* Return true if X is a vector that contains a linear series of the |
3097 | form: |
3098 | |
3099 | { B, B + S, B + 2 * S, B + 3 * S, ... } |
3100 | |
3101 | where B and S are constant or nonconstant. Store B and S in |
3102 | *BASE_OUT and *STEP_OUT on sucess. */ |
3103 | |
3104 | inline bool |
3105 | vec_series_p (const_rtx x, rtx *base_out, rtx *step_out) |
3106 | { |
3107 | if (GET_CODE (x) == VEC_SERIES) |
3108 | { |
3109 | *base_out = XEXP (x, 0); |
3110 | *step_out = XEXP (x, 1); |
3111 | return true; |
3112 | } |
3113 | return const_vec_series_p (x, base_out, step_out); |
3114 | } |
3115 | |
3116 | /* Return true if CONST_VECTORs X and Y, which are known to have the same mode, |
3117 | also have the same encoding. This means that they are equal whenever their |
3118 | operands are equal. */ |
3119 | |
3120 | inline bool |
3121 | same_vector_encodings_p (const_rtx x, const_rtx y) |
3122 | { |
3123 | /* Don't be fussy about the encoding of constant-length vectors, |
3124 | since XVECEXP (X, 0) and XVECEXP (Y, 0) list all the elements anyway. */ |
3125 | if (poly_uint64 (CONST_VECTOR_NUNITS (x)).is_constant ()) |
3126 | return true; |
3127 | |
3128 | return (CONST_VECTOR_NPATTERNS (x) == CONST_VECTOR_NPATTERNS (y) |
3129 | && (CONST_VECTOR_NELTS_PER_PATTERN (x) |
3130 | == CONST_VECTOR_NELTS_PER_PATTERN (y))); |
3131 | } |
3132 | |
3133 | /* Return the unpromoted (outer) mode of SUBREG_PROMOTED_VAR_P subreg X. */ |
3134 | |
3135 | inline scalar_int_mode |
3136 | subreg_unpromoted_mode (rtx x) |
3137 | { |
3138 | gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x)); |
3139 | return as_a <scalar_int_mode> (GET_MODE (x)); |
3140 | } |
3141 | |
3142 | /* Return the promoted (inner) mode of SUBREG_PROMOTED_VAR_P subreg X. */ |
3143 | |
3144 | inline scalar_int_mode |
3145 | subreg_promoted_mode (rtx x) |
3146 | { |
3147 | gcc_checking_assert (SUBREG_PROMOTED_VAR_P (x)); |
3148 | return as_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x))); |
3149 | } |
3150 | |
3151 | /* In emit-rtl.cc */ |
3152 | extern rtvec gen_rtvec_v (int, rtx *); |
3153 | extern rtvec gen_rtvec_v (int, rtx_insn **); |
3154 | extern rtx gen_reg_rtx (machine_mode); |
3155 | extern rtx gen_rtx_REG_offset (rtx, machine_mode, unsigned int, poly_int64); |
3156 | extern rtx gen_reg_rtx_offset (rtx, machine_mode, int); |
3157 | extern rtx gen_reg_rtx_and_attrs (rtx); |
3158 | extern rtx_code_label *gen_label_rtx (void); |
3159 | extern rtx gen_lowpart_common (machine_mode, rtx); |
3160 | |
3161 | /* In cse.cc */ |
3162 | extern rtx gen_lowpart_if_possible (machine_mode, rtx); |
3163 | |
3164 | /* In emit-rtl.cc */ |
3165 | extern rtx gen_highpart (machine_mode, rtx); |
3166 | extern rtx gen_highpart_mode (machine_mode, machine_mode, rtx); |
3167 | extern rtx operand_subword (rtx, poly_uint64, int, machine_mode); |
3168 | |
3169 | /* In emit-rtl.cc */ |
3170 | extern rtx operand_subword_force (rtx, poly_uint64, machine_mode); |
3171 | extern bool subreg_lowpart_p (const_rtx); |
3172 | extern poly_uint64 subreg_size_lowpart_offset (poly_uint64, poly_uint64); |
3173 | |
3174 | /* Return true if a subreg of mode OUTERMODE would only access part of |
3175 | an inner register with mode INNERMODE. The other bits of the inner |
3176 | register would then be "don't care" on read. The behavior for writes |
3177 | depends on REGMODE_NATURAL_SIZE; bits in the same REGMODE_NATURAL_SIZE-d |
3178 | chunk would be clobbered but other bits would be preserved. */ |
3179 | |
3180 | inline bool |
3181 | partial_subreg_p (machine_mode outermode, machine_mode innermode) |
3182 | { |
3183 | /* Modes involved in a subreg must be ordered. In particular, we must |
3184 | always know at compile time whether the subreg is paradoxical. */ |
3185 | poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode); |
3186 | poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode); |
3187 | gcc_checking_assert (ordered_p (outer_prec, inner_prec)); |
3188 | return maybe_lt (a: outer_prec, b: inner_prec); |
3189 | } |
3190 | |
3191 | /* Likewise return true if X is a subreg that is smaller than the inner |
3192 | register. Use read_modify_subreg_p to test whether writing to such |
3193 | a subreg preserves any part of the inner register. */ |
3194 | |
3195 | inline bool |
3196 | partial_subreg_p (const_rtx x) |
3197 | { |
3198 | if (GET_CODE (x) != SUBREG) |
3199 | return false; |
3200 | return partial_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
3201 | } |
3202 | |
3203 | /* Return true if a subreg with the given outer and inner modes is |
3204 | paradoxical. */ |
3205 | |
3206 | inline bool |
3207 | paradoxical_subreg_p (machine_mode outermode, machine_mode innermode) |
3208 | { |
3209 | /* Modes involved in a subreg must be ordered. In particular, we must |
3210 | always know at compile time whether the subreg is paradoxical. */ |
3211 | poly_int64 outer_prec = GET_MODE_PRECISION (mode: outermode); |
3212 | poly_int64 inner_prec = GET_MODE_PRECISION (mode: innermode); |
3213 | gcc_checking_assert (ordered_p (outer_prec, inner_prec)); |
3214 | return maybe_gt (outer_prec, inner_prec); |
3215 | } |
3216 | |
3217 | /* Return true if X is a paradoxical subreg, false otherwise. */ |
3218 | |
3219 | inline bool |
3220 | paradoxical_subreg_p (const_rtx x) |
3221 | { |
3222 | if (GET_CODE (x) != SUBREG) |
3223 | return false; |
3224 | return paradoxical_subreg_p (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
3225 | } |
3226 | |
3227 | /* Return the SUBREG_BYTE for an OUTERMODE lowpart of an INNERMODE value. */ |
3228 | |
3229 | inline poly_uint64 |
3230 | subreg_lowpart_offset (machine_mode outermode, machine_mode innermode) |
3231 | { |
3232 | return subreg_size_lowpart_offset (GET_MODE_SIZE (mode: outermode), |
3233 | GET_MODE_SIZE (mode: innermode)); |
3234 | } |
3235 | |
3236 | /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE, |
3237 | return the smaller of the two modes if they are different sizes, |
3238 | otherwise return the outer mode. */ |
3239 | |
3240 | inline machine_mode |
3241 | narrower_subreg_mode (machine_mode outermode, machine_mode innermode) |
3242 | { |
3243 | return paradoxical_subreg_p (outermode, innermode) ? innermode : outermode; |
3244 | } |
3245 | |
3246 | /* Given that a subreg has outer mode OUTERMODE and inner mode INNERMODE, |
3247 | return the mode that is big enough to hold both the outer and inner |
3248 | values. Prefer the outer mode in the event of a tie. */ |
3249 | |
3250 | inline machine_mode |
3251 | wider_subreg_mode (machine_mode outermode, machine_mode innermode) |
3252 | { |
3253 | return partial_subreg_p (outermode, innermode) ? innermode : outermode; |
3254 | } |
3255 | |
3256 | /* Likewise for subreg X. */ |
3257 | |
3258 | inline machine_mode |
3259 | wider_subreg_mode (const_rtx x) |
3260 | { |
3261 | return wider_subreg_mode (GET_MODE (x), GET_MODE (SUBREG_REG (x))); |
3262 | } |
3263 | |
3264 | extern poly_uint64 subreg_size_highpart_offset (poly_uint64, poly_uint64); |
3265 | |
3266 | /* Return the SUBREG_BYTE for an OUTERMODE highpart of an INNERMODE value. */ |
3267 | |
3268 | inline poly_uint64 |
3269 | subreg_highpart_offset (machine_mode outermode, machine_mode innermode) |
3270 | { |
3271 | return subreg_size_highpart_offset (GET_MODE_SIZE (mode: outermode), |
3272 | GET_MODE_SIZE (mode: innermode)); |
3273 | } |
3274 | |
3275 | extern poly_int64 byte_lowpart_offset (machine_mode, machine_mode); |
3276 | extern poly_int64 subreg_memory_offset (machine_mode, machine_mode, |
3277 | poly_uint64); |
3278 | extern poly_int64 subreg_memory_offset (const_rtx); |
3279 | extern rtx make_safe_from (rtx, rtx); |
3280 | extern rtx convert_memory_address_addr_space_1 (scalar_int_mode, rtx, |
3281 | addr_space_t, bool, bool); |
3282 | extern rtx convert_memory_address_addr_space (scalar_int_mode, rtx, |
3283 | addr_space_t); |
3284 | #define convert_memory_address(to_mode,x) \ |
3285 | convert_memory_address_addr_space ((to_mode), (x), ADDR_SPACE_GENERIC) |
3286 | extern const char *get_insn_name (int); |
3287 | extern rtx_insn *get_last_insn_anywhere (void); |
3288 | extern rtx_insn *get_first_nonnote_insn (void); |
3289 | extern rtx_insn *get_last_nonnote_insn (void); |
3290 | extern void start_sequence (void); |
3291 | extern void push_to_sequence (rtx_insn *); |
3292 | extern void push_to_sequence2 (rtx_insn *, rtx_insn *); |
3293 | extern void end_sequence (void); |
3294 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
3295 | extern double_int rtx_to_double_int (const_rtx); |
3296 | #endif |
3297 | extern void cwi_output_hex (FILE *, const_rtx); |
3298 | #if TARGET_SUPPORTS_WIDE_INT == 0 |
3299 | extern rtx immed_double_const (HOST_WIDE_INT, HOST_WIDE_INT, |
3300 | machine_mode); |
3301 | #endif |
3302 | extern rtx immed_wide_int_const (const poly_wide_int_ref &, machine_mode); |
3303 | |
3304 | /* In varasm.cc */ |
3305 | extern rtx force_const_mem (machine_mode, rtx); |
3306 | |
3307 | /* In varasm.cc */ |
3308 | |
3309 | struct function; |
3310 | extern rtx get_pool_constant (const_rtx); |
3311 | extern rtx get_pool_constant_mark (rtx, bool *); |
3312 | extern fixed_size_mode get_pool_mode (const_rtx); |
3313 | extern rtx simplify_subtraction (rtx); |
3314 | extern void decide_function_section (tree); |
3315 | |
3316 | /* In emit-rtl.cc */ |
3317 | extern rtx_insn *emit_insn_before (rtx, rtx_insn *); |
3318 | extern rtx_insn *emit_insn_before_noloc (rtx, rtx_insn *, basic_block); |
3319 | extern rtx_insn *emit_insn_before_setloc (rtx, rtx_insn *, location_t); |
3320 | extern rtx_jump_insn *emit_jump_insn_before (rtx, rtx_insn *); |
3321 | extern rtx_jump_insn *emit_jump_insn_before_noloc (rtx, rtx_insn *); |
3322 | extern rtx_jump_insn *emit_jump_insn_before_setloc (rtx, rtx_insn *, |
3323 | location_t); |
3324 | extern rtx_insn *emit_call_insn_before (rtx, rtx_insn *); |
3325 | extern rtx_insn *emit_call_insn_before_noloc (rtx, rtx_insn *); |
3326 | extern rtx_insn *emit_call_insn_before_setloc (rtx, rtx_insn *, location_t); |
3327 | extern rtx_insn *emit_debug_insn_before (rtx, rtx_insn *); |
3328 | extern rtx_insn *emit_debug_insn_before_noloc (rtx, rtx_insn *); |
3329 | extern rtx_insn *emit_debug_insn_before_setloc (rtx, rtx_insn *, location_t); |
3330 | extern rtx_barrier *emit_barrier_before (rtx_insn *); |
3331 | extern rtx_code_label *emit_label_before (rtx_code_label *, rtx_insn *); |
3332 | extern rtx_note *emit_note_before (enum insn_note, rtx_insn *); |
3333 | extern rtx_insn *emit_insn_after (rtx, rtx_insn *); |
3334 | extern rtx_insn *emit_insn_after_noloc (rtx, rtx_insn *, basic_block); |
3335 | extern rtx_insn *emit_insn_after_setloc (rtx, rtx_insn *, location_t); |
3336 | extern rtx_jump_insn *emit_jump_insn_after (rtx, rtx_insn *); |
3337 | extern rtx_jump_insn *emit_jump_insn_after_noloc (rtx, rtx_insn *); |
3338 | extern rtx_jump_insn *emit_jump_insn_after_setloc (rtx, rtx_insn *, location_t); |
3339 | extern rtx_insn *emit_call_insn_after (rtx, rtx_insn *); |
3340 | extern rtx_insn *emit_call_insn_after_noloc (rtx, rtx_insn *); |
3341 | extern rtx_insn *emit_call_insn_after_setloc (rtx, rtx_insn *, location_t); |
3342 | extern rtx_insn *emit_debug_insn_after (rtx, rtx_insn *); |
3343 | extern rtx_insn *emit_debug_insn_after_noloc (rtx, rtx_insn *); |
3344 | extern rtx_insn *emit_debug_insn_after_setloc (rtx, rtx_insn *, location_t); |
3345 | extern rtx_barrier *emit_barrier_after (rtx_insn *); |
3346 | extern rtx_insn *emit_label_after (rtx_insn *, rtx_insn *); |
3347 | extern rtx_note *emit_note_after (enum insn_note, rtx_insn *); |
3348 | extern rtx_insn *emit_insn (rtx); |
3349 | extern rtx_insn *emit_debug_insn (rtx); |
3350 | extern rtx_insn *emit_jump_insn (rtx); |
3351 | extern rtx_insn *emit_likely_jump_insn (rtx); |
3352 | extern rtx_insn *emit_unlikely_jump_insn (rtx); |
3353 | extern rtx_insn *emit_call_insn (rtx); |
3354 | extern rtx_code_label *emit_label (rtx); |
3355 | extern rtx_jump_table_data *emit_jump_table_data (rtx); |
3356 | extern rtx_barrier *emit_barrier (void); |
3357 | extern rtx_note *emit_note (enum insn_note); |
3358 | extern rtx_note *emit_note_copy (rtx_note *); |
3359 | extern rtx_insn *gen_clobber (rtx); |
3360 | extern rtx_insn *emit_clobber (rtx); |
3361 | extern rtx_insn *gen_use (rtx); |
3362 | extern rtx_insn *emit_use (rtx); |
3363 | extern rtx_insn *make_insn_raw (rtx); |
3364 | extern void add_function_usage_to (rtx, rtx); |
3365 | extern rtx_call_insn *last_call_insn (void); |
3366 | extern rtx_insn *previous_insn (rtx_insn *); |
3367 | extern rtx_insn *next_insn (rtx_insn *); |
3368 | extern rtx_insn *prev_nonnote_insn (rtx_insn *); |
3369 | extern rtx_insn *next_nonnote_insn (rtx_insn *); |
3370 | extern rtx_insn *prev_nondebug_insn (rtx_insn *); |
3371 | extern rtx_insn *next_nondebug_insn (rtx_insn *); |
3372 | extern rtx_insn *prev_nonnote_nondebug_insn (rtx_insn *); |
3373 | extern rtx_insn *prev_nonnote_nondebug_insn_bb (rtx_insn *); |
3374 | extern rtx_insn *next_nonnote_nondebug_insn (rtx_insn *); |
3375 | extern rtx_insn *next_nonnote_nondebug_insn_bb (rtx_insn *); |
3376 | extern rtx_insn *prev_real_insn (rtx_insn *); |
3377 | extern rtx_insn *next_real_insn (rtx_insn *); |
3378 | extern rtx_insn *prev_real_nondebug_insn (rtx_insn *); |
3379 | extern rtx_insn *next_real_nondebug_insn (rtx); |
3380 | extern rtx_insn *prev_active_insn (rtx_insn *); |
3381 | extern rtx_insn *next_active_insn (rtx_insn *); |
3382 | extern bool active_insn_p (const rtx_insn *); |
3383 | |
3384 | /* In emit-rtl.cc */ |
3385 | extern int insn_line (const rtx_insn *); |
3386 | extern const char * insn_file (const rtx_insn *); |
3387 | extern tree insn_scope (const rtx_insn *); |
3388 | extern expanded_location insn_location (const rtx_insn *); |
3389 | extern int insn_discriminator (const rtx_insn *); |
3390 | extern location_t prologue_location, epilogue_location; |
3391 | |
3392 | /* In jump.cc */ |
3393 | extern enum rtx_code reverse_condition (enum rtx_code); |
3394 | extern enum rtx_code reverse_condition_maybe_unordered (enum rtx_code); |
3395 | extern enum rtx_code swap_condition (enum rtx_code); |
3396 | extern enum rtx_code unsigned_condition (enum rtx_code); |
3397 | extern enum rtx_code signed_condition (enum rtx_code); |
3398 | extern void mark_jump_label (rtx, rtx_insn *, int); |
3399 | |
3400 | /* Return true if integer comparison operator CODE interprets its operands |
3401 | as unsigned. */ |
3402 | |
3403 | inline bool |
3404 | unsigned_condition_p (enum rtx_code code) |
3405 | { |
3406 | return unsigned_condition (code) == code; |
3407 | } |
3408 | |
3409 | /* In jump.cc */ |
3410 | extern rtx_insn *delete_related_insns (rtx); |
3411 | |
3412 | /* In recog.cc */ |
3413 | extern rtx *find_constant_term_loc (rtx *); |
3414 | |
3415 | /* In emit-rtl.cc */ |
3416 | extern rtx_insn *try_split (rtx, rtx_insn *, int); |
3417 | |
3418 | /* In insn-recog.cc (generated by genrecog). */ |
3419 | extern rtx_insn *split_insns (rtx, rtx_insn *); |
3420 | |
3421 | /* In simplify-rtx.cc */ |
3422 | |
3423 | /* A class that records the context in which a simplification |
3424 | is being mode. */ |
3425 | class simplify_context |
3426 | { |
3427 | public: |
3428 | rtx simplify_unary_operation (rtx_code, machine_mode, rtx, machine_mode); |
3429 | rtx simplify_binary_operation (rtx_code, machine_mode, rtx, rtx); |
3430 | rtx simplify_ternary_operation (rtx_code, machine_mode, machine_mode, |
3431 | rtx, rtx, rtx); |
3432 | rtx simplify_relational_operation (rtx_code, machine_mode, machine_mode, |
3433 | rtx, rtx); |
3434 | rtx simplify_subreg (machine_mode, rtx, machine_mode, poly_uint64); |
3435 | |
3436 | rtx lowpart_subreg (machine_mode, rtx, machine_mode); |
3437 | |
3438 | rtx simplify_merge_mask (rtx, rtx, int); |
3439 | |
3440 | rtx simplify_gen_unary (rtx_code, machine_mode, rtx, machine_mode); |
3441 | rtx simplify_gen_binary (rtx_code, machine_mode, rtx, rtx); |
3442 | rtx simplify_gen_ternary (rtx_code, machine_mode, machine_mode, |
3443 | rtx, rtx, rtx); |
3444 | rtx simplify_gen_relational (rtx_code, machine_mode, machine_mode, rtx, rtx); |
3445 | rtx simplify_gen_subreg (machine_mode, rtx, machine_mode, poly_uint64); |
3446 | rtx simplify_gen_vec_select (rtx, unsigned int); |
3447 | |
3448 | /* Tracks the level of MEM nesting for the value being simplified: |
3449 | 0 means the value is not in a MEM, >0 means it is. This is needed |
3450 | because the canonical representation of multiplication is different |
3451 | inside a MEM than outside. */ |
3452 | unsigned int mem_depth = 0; |
3453 | |
3454 | /* Tracks number of simplify_associative_operation calls performed during |
3455 | outermost simplify* call. */ |
3456 | unsigned int assoc_count = 0; |
3457 | |
3458 | /* Limit for the above number, return NULL from |
3459 | simplify_associative_operation after we reach that assoc_count. */ |
3460 | static const unsigned int max_assoc_count = 64; |
3461 | |
3462 | private: |
3463 | rtx simplify_truncation (machine_mode, rtx, machine_mode); |
3464 | rtx simplify_byte_swapping_operation (rtx_code, machine_mode, rtx, rtx); |
3465 | rtx simplify_associative_operation (rtx_code, machine_mode, rtx, rtx); |
3466 | rtx simplify_distributive_operation (rtx_code, machine_mode, rtx, rtx); |
3467 | rtx simplify_logical_relational_operation (rtx_code, machine_mode, rtx, rtx); |
3468 | rtx simplify_binary_operation_series (rtx_code, machine_mode, rtx, rtx); |
3469 | rtx simplify_distribute_over_subregs (rtx_code, machine_mode, rtx, rtx); |
3470 | rtx simplify_shift_const_int (rtx_code, machine_mode, rtx, unsigned int); |
3471 | rtx simplify_plus_minus (rtx_code, machine_mode, rtx, rtx); |
3472 | rtx simplify_cond_clz_ctz (rtx, rtx_code, rtx, rtx); |
3473 | |
3474 | rtx simplify_unary_operation_1 (rtx_code, machine_mode, rtx); |
3475 | rtx simplify_binary_operation_1 (rtx_code, machine_mode, rtx, rtx, rtx, rtx); |
3476 | rtx simplify_ternary_operation_1 (rtx_code, machine_mode, machine_mode, |
3477 | rtx, rtx, rtx); |
3478 | rtx simplify_relational_operation_1 (rtx_code, machine_mode, machine_mode, |
3479 | rtx, rtx); |
3480 | }; |
3481 | |
3482 | inline rtx |
3483 | simplify_unary_operation (rtx_code code, machine_mode mode, rtx op, |
3484 | machine_mode op_mode) |
3485 | { |
3486 | return simplify_context ().simplify_unary_operation (code, mode, op, |
3487 | op_mode); |
3488 | } |
3489 | |
3490 | inline rtx |
3491 | simplify_binary_operation (rtx_code code, machine_mode mode, rtx op0, rtx op1) |
3492 | { |
3493 | return simplify_context ().simplify_binary_operation (code, mode, op0, op1); |
3494 | } |
3495 | |
3496 | inline rtx |
3497 | simplify_ternary_operation (rtx_code code, machine_mode mode, |
3498 | machine_mode op0_mode, rtx op0, rtx op1, rtx op2) |
3499 | { |
3500 | return simplify_context ().simplify_ternary_operation (code, mode, op0_mode, |
3501 | op0, op1, op2); |
3502 | } |
3503 | |
3504 | inline rtx |
3505 | simplify_relational_operation (rtx_code code, machine_mode mode, |
3506 | machine_mode op_mode, rtx op0, rtx op1) |
3507 | { |
3508 | return simplify_context ().simplify_relational_operation (code, mode, |
3509 | op_mode, op0, op1); |
3510 | } |
3511 | |
3512 | inline rtx |
3513 | simplify_subreg (machine_mode outermode, rtx op, machine_mode innermode, |
3514 | poly_uint64 byte) |
3515 | { |
3516 | return simplify_context ().simplify_subreg (outermode, op, innermode, byte); |
3517 | } |
3518 | |
3519 | inline rtx |
3520 | simplify_gen_unary (rtx_code code, machine_mode mode, rtx op, |
3521 | machine_mode op_mode) |
3522 | { |
3523 | return simplify_context ().simplify_gen_unary (code, mode, op, op_mode); |
3524 | } |
3525 | |
3526 | inline rtx |
3527 | simplify_gen_binary (rtx_code code, machine_mode mode, rtx op0, rtx op1) |
3528 | { |
3529 | return simplify_context ().simplify_gen_binary (code, mode, op0, op1); |
3530 | } |
3531 | |
3532 | inline rtx |
3533 | simplify_gen_ternary (rtx_code code, machine_mode mode, machine_mode op0_mode, |
3534 | rtx op0, rtx op1, rtx op2) |
3535 | { |
3536 | return simplify_context ().simplify_gen_ternary (code, mode, op0_mode, |
3537 | op0, op1, op2); |
3538 | } |
3539 | |
3540 | inline rtx |
3541 | simplify_gen_relational (rtx_code code, machine_mode mode, |
3542 | machine_mode op_mode, rtx op0, rtx op1) |
3543 | { |
3544 | return simplify_context ().simplify_gen_relational (code, mode, op_mode, |
3545 | op0, op1); |
3546 | } |
3547 | |
3548 | inline rtx |
3549 | simplify_gen_subreg (machine_mode outermode, rtx op, machine_mode innermode, |
3550 | poly_uint64 byte) |
3551 | { |
3552 | return simplify_context ().simplify_gen_subreg (outermode, op, |
3553 | innermode, byte); |
3554 | } |
3555 | |
3556 | inline rtx |
3557 | simplify_gen_vec_select (rtx op, unsigned int index) |
3558 | { |
3559 | return simplify_context ().simplify_gen_vec_select (op, index); |
3560 | } |
3561 | |
3562 | inline rtx |
3563 | lowpart_subreg (machine_mode outermode, rtx op, machine_mode innermode) |
3564 | { |
3565 | return simplify_context ().lowpart_subreg (outermode, op, innermode); |
3566 | } |
3567 | |
3568 | extern rtx simplify_const_unary_operation (enum rtx_code, machine_mode, |
3569 | rtx, machine_mode); |
3570 | extern rtx simplify_const_binary_operation (enum rtx_code, machine_mode, |
3571 | rtx, rtx); |
3572 | extern rtx simplify_const_relational_operation (enum rtx_code, |
3573 | machine_mode, rtx, rtx); |
3574 | extern rtx simplify_replace_fn_rtx (rtx, const_rtx, |
3575 | rtx (*fn) (rtx, const_rtx, void *), void *); |
3576 | extern rtx simplify_replace_rtx (rtx, const_rtx, rtx); |
3577 | extern rtx simplify_rtx (const_rtx); |
3578 | extern rtx avoid_constant_pool_reference (rtx); |
3579 | extern rtx delegitimize_mem_from_attrs (rtx); |
3580 | extern bool mode_signbit_p (machine_mode, const_rtx); |
3581 | extern bool val_signbit_p (machine_mode, unsigned HOST_WIDE_INT); |
3582 | extern bool val_signbit_known_set_p (machine_mode, |
3583 | unsigned HOST_WIDE_INT); |
3584 | extern bool val_signbit_known_clear_p (machine_mode, |
3585 | unsigned HOST_WIDE_INT); |
3586 | extern bool reverse_rotate_by_imm_p (machine_mode, unsigned int, rtx); |
3587 | |
3588 | /* In reginfo.cc */ |
3589 | extern machine_mode choose_hard_reg_mode (unsigned int, unsigned int, |
3590 | const predefined_function_abi *); |
3591 | extern const HARD_REG_SET &simplifiable_subregs (const subreg_shape &); |
3592 | |
3593 | /* In emit-rtl.cc */ |
3594 | extern rtx set_for_reg_notes (rtx); |
3595 | extern rtx set_unique_reg_note (rtx, enum reg_note, rtx); |
3596 | extern rtx set_dst_reg_note (rtx, enum reg_note, rtx, rtx); |
3597 | extern void set_insn_deleted (rtx_insn *); |
3598 | |
3599 | /* Functions in rtlanal.cc */ |
3600 | |
3601 | extern rtx single_set_2 (const rtx_insn *, const_rtx); |
3602 | extern rtx simple_regno_set (rtx, unsigned int); |
3603 | extern bool contains_symbol_ref_p (const_rtx); |
3604 | extern bool contains_symbolic_reference_p (const_rtx); |
3605 | extern bool contains_constant_pool_address_p (const_rtx); |
3606 | extern void add_auto_inc_notes (rtx_insn *, rtx); |
3607 | |
3608 | /* Handle the cheap and common cases inline for performance. */ |
3609 | |
3610 | inline rtx single_set (const rtx_insn *insn) |
3611 | { |
3612 | if (!INSN_P (insn)) |
3613 | return NULL_RTX; |
3614 | |
3615 | if (GET_CODE (PATTERN (insn)) == SET) |
3616 | return PATTERN (insn); |
3617 | |
3618 | /* Defer to the more expensive case. */ |
3619 | return single_set_2 (insn, PATTERN (insn)); |
3620 | } |
3621 | |
3622 | extern scalar_int_mode get_address_mode (rtx mem); |
3623 | extern bool rtx_addr_can_trap_p (const_rtx); |
3624 | extern bool nonzero_address_p (const_rtx); |
3625 | extern bool rtx_unstable_p (const_rtx); |
3626 | extern bool rtx_varies_p (const_rtx, bool); |
3627 | extern bool rtx_addr_varies_p (const_rtx, bool); |
3628 | extern rtx get_call_rtx_from (const rtx_insn *); |
3629 | extern tree get_call_fndecl (const rtx_insn *); |
3630 | extern HOST_WIDE_INT get_integer_term (const_rtx); |
3631 | extern rtx get_related_value (const_rtx); |
3632 | extern bool offset_within_block_p (const_rtx, HOST_WIDE_INT); |
3633 | extern void split_const (rtx, rtx *, rtx *); |
3634 | extern rtx strip_offset (rtx, poly_int64 *); |
3635 | extern poly_int64 get_args_size (const_rtx); |
3636 | extern bool unsigned_reg_p (rtx); |
3637 | extern bool reg_mentioned_p (const_rtx, const_rtx); |
3638 | extern int count_occurrences (const_rtx, const_rtx, int); |
3639 | extern bool reg_referenced_p (const_rtx, const_rtx); |
3640 | extern bool reg_used_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
3641 | extern bool reg_set_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
3642 | extern int commutative_operand_precedence (rtx); |
3643 | extern bool swap_commutative_operands_p (rtx, rtx); |
3644 | extern bool modified_between_p (const_rtx, const rtx_insn *, const rtx_insn *); |
3645 | extern bool no_labels_between_p (const rtx_insn *, const rtx_insn *); |
3646 | extern bool modified_in_p (const_rtx, const_rtx); |
3647 | extern bool reg_set_p (const_rtx, const_rtx); |
3648 | extern bool multiple_sets (const_rtx); |
3649 | extern bool set_noop_p (const_rtx); |
3650 | extern bool noop_move_p (const rtx_insn *); |
3651 | extern bool refers_to_regno_p (unsigned int, unsigned int, const_rtx, rtx *); |
3652 | extern bool reg_overlap_mentioned_p (const_rtx, const_rtx); |
3653 | extern const_rtx set_of (const_rtx, const_rtx); |
3654 | extern void record_hard_reg_sets (rtx, const_rtx, void *); |
3655 | extern void record_hard_reg_uses (rtx *, void *); |
3656 | extern void find_all_hard_regs (const_rtx, HARD_REG_SET *); |
3657 | extern void find_all_hard_reg_sets (const rtx_insn *, HARD_REG_SET *, bool); |
3658 | extern void note_pattern_stores (const_rtx, |
3659 | void (*) (rtx, const_rtx, void *), void *); |
3660 | extern void note_stores (const rtx_insn *, |
3661 | void (*) (rtx, const_rtx, void *), void *); |
3662 | extern void note_uses (rtx *, void (*) (rtx *, void *), void *); |
3663 | extern bool dead_or_set_p (const rtx_insn *, const_rtx); |
3664 | extern bool dead_or_set_regno_p (const rtx_insn *, unsigned int); |
3665 | extern rtx find_reg_note (const_rtx, enum reg_note, const_rtx); |
3666 | extern rtx find_regno_note (const_rtx, enum reg_note, unsigned int); |
3667 | extern rtx find_reg_equal_equiv_note (const_rtx); |
3668 | extern rtx find_constant_src (const rtx_insn *); |
3669 | extern bool find_reg_fusage (const_rtx, enum rtx_code, const_rtx); |
3670 | extern bool find_regno_fusage (const_rtx, enum rtx_code, unsigned int); |
3671 | extern rtx alloc_reg_note (enum reg_note, rtx, rtx); |
3672 | extern void add_reg_note (rtx, enum reg_note, rtx); |
3673 | extern void add_int_reg_note (rtx_insn *, enum reg_note, int); |
3674 | extern void add_args_size_note (rtx_insn *, poly_int64); |
3675 | extern void add_shallow_copy_of_reg_note (rtx_insn *, rtx); |
3676 | extern rtx duplicate_reg_note (rtx); |
3677 | extern void remove_note (rtx_insn *, const_rtx); |
3678 | extern bool remove_reg_equal_equiv_notes (rtx_insn *, bool = false); |
3679 | extern void remove_reg_equal_equiv_notes_for_regno (unsigned int); |
3680 | extern bool side_effects_p (const_rtx); |
3681 | extern bool volatile_refs_p (const_rtx); |
3682 | extern bool volatile_insn_p (const_rtx); |
3683 | extern bool may_trap_p_1 (const_rtx, unsigned); |
3684 | extern bool may_trap_p (const_rtx); |
3685 | extern bool may_trap_or_fault_p (const_rtx); |
3686 | extern bool can_throw_internal (const_rtx); |
3687 | extern bool can_throw_external (const_rtx); |
3688 | extern bool insn_could_throw_p (const_rtx); |
3689 | extern bool insn_nothrow_p (const_rtx); |
3690 | extern bool can_nonlocal_goto (const rtx_insn *); |
3691 | extern void copy_reg_eh_region_note_forward (rtx, rtx_insn *, rtx); |
3692 | extern void copy_reg_eh_region_note_backward (rtx, rtx_insn *, rtx); |
3693 | extern rtx replace_rtx (rtx, rtx, rtx, bool = false); |
3694 | extern void replace_label (rtx *, rtx, rtx, bool); |
3695 | extern void replace_label_in_insn (rtx_insn *, rtx_insn *, rtx_insn *, bool); |
3696 | extern bool rtx_referenced_p (const_rtx, const_rtx); |
3697 | extern bool tablejump_p (const rtx_insn *, rtx_insn **, rtx_jump_table_data **); |
3698 | extern rtx tablejump_casesi_pattern (const rtx_insn *insn); |
3699 | extern bool computed_jump_p (const rtx_insn *); |
3700 | extern bool tls_referenced_p (const_rtx); |
3701 | extern bool contains_mem_rtx_p (rtx x); |
3702 | extern bool register_asm_p (const_rtx); |
3703 | |
3704 | /* Overload for refers_to_regno_p for checking a single register. */ |
3705 | inline bool |
3706 | refers_to_regno_p (unsigned int regnum, const_rtx x, rtx* loc = NULL) |
3707 | { |
3708 | return refers_to_regno_p (regnum, regnum + 1, x, loc); |
3709 | } |
3710 | |
3711 | /* Callback for for_each_inc_dec, to process the autoinc operation OP |
3712 | within MEM that sets DEST to SRC + SRCOFF, or SRC if SRCOFF is |
3713 | NULL. The callback is passed the same opaque ARG passed to |
3714 | for_each_inc_dec. Return zero to continue looking for other |
3715 | autoinc operations or any other value to interrupt the traversal and |
3716 | return that value to the caller of for_each_inc_dec. */ |
3717 | typedef int (*for_each_inc_dec_fn) (rtx mem, rtx op, rtx dest, rtx src, |
3718 | rtx srcoff, void *arg); |
3719 | extern int for_each_inc_dec (rtx, for_each_inc_dec_fn, void *arg); |
3720 | |
3721 | extern rtx regno_use_in (unsigned int, rtx); |
3722 | extern bool auto_inc_p (const_rtx); |
3723 | extern bool in_insn_list_p (const rtx_insn_list *, const rtx_insn *); |
3724 | extern void remove_node_from_insn_list (const rtx_insn *, rtx_insn_list **); |
3725 | extern bool loc_mentioned_in_p (rtx *, const_rtx); |
3726 | extern rtx_insn *find_first_parameter_load (rtx_insn *, rtx_insn *); |
3727 | extern bool keep_with_call_p (const rtx_insn *); |
3728 | extern bool label_is_jump_target_p (const_rtx, const rtx_insn *); |
3729 | extern int pattern_cost (rtx, bool); |
3730 | extern int insn_cost (rtx_insn *, bool); |
3731 | extern unsigned seq_cost (const rtx_insn *, bool); |
3732 | |
3733 | /* Given an insn and condition, return a canonical description of |
3734 | the test being made. */ |
3735 | extern rtx canonicalize_condition (rtx_insn *, rtx, int, rtx_insn **, rtx, |
3736 | int, int); |
3737 | |
3738 | /* Given a JUMP_INSN, return a canonical description of the test |
3739 | being made. */ |
3740 | extern rtx get_condition (rtx_insn *, rtx_insn **, int, int); |
3741 | |
3742 | /* Information about a subreg of a hard register. */ |
3743 | struct subreg_info |
3744 | { |
3745 | /* Offset of first hard register involved in the subreg. */ |
3746 | int offset; |
3747 | /* Number of hard registers involved in the subreg. In the case of |
3748 | a paradoxical subreg, this is the number of registers that would |
3749 | be modified by writing to the subreg; some of them may be don't-care |
3750 | when reading from the subreg. */ |
3751 | int nregs; |
3752 | /* Whether this subreg can be represented as a hard reg with the new |
3753 | mode (by adding OFFSET to the original hard register). */ |
3754 | bool representable_p; |
3755 | }; |
3756 | |
3757 | extern void subreg_get_info (unsigned int, machine_mode, |
3758 | poly_uint64, machine_mode, |
3759 | struct subreg_info *); |
3760 | |
3761 | /* lists.cc */ |
3762 | |
3763 | extern void free_EXPR_LIST_list (rtx_expr_list **); |
3764 | extern void free_INSN_LIST_list (rtx_insn_list **); |
3765 | extern void free_EXPR_LIST_node (rtx); |
3766 | extern void free_INSN_LIST_node (rtx); |
3767 | extern rtx_insn_list *alloc_INSN_LIST (rtx, rtx); |
3768 | extern rtx_insn_list *copy_INSN_LIST (rtx_insn_list *); |
3769 | extern rtx_insn_list *concat_INSN_LIST (rtx_insn_list *, rtx_insn_list *); |
3770 | extern rtx_expr_list *alloc_EXPR_LIST (int, rtx, rtx); |
3771 | extern void remove_free_INSN_LIST_elem (rtx_insn *, rtx_insn_list **); |
3772 | extern rtx remove_list_elem (rtx, rtx *); |
3773 | extern rtx_insn *remove_free_INSN_LIST_node (rtx_insn_list **); |
3774 | extern rtx remove_free_EXPR_LIST_node (rtx_expr_list **); |
3775 | |
3776 | |
3777 | /* reginfo.cc */ |
3778 | |
3779 | /* Resize reg info. */ |
3780 | extern bool resize_reg_info (void); |
3781 | /* Free up register info memory. */ |
3782 | extern void free_reg_info (void); |
3783 | extern void init_subregs_of_mode (void); |
3784 | extern void finish_subregs_of_mode (void); |
3785 | extern void reginfo_cc_finalize (void); |
3786 | |
3787 | /* recog.cc */ |
3788 | extern rtx extract_asm_operands (rtx); |
3789 | extern int asm_noperands (const_rtx); |
3790 | extern const char *decode_asm_operands (rtx, rtx *, rtx **, const char **, |
3791 | machine_mode *, location_t *); |
3792 | extern void get_referenced_operands (const char *, bool *, unsigned int); |
3793 | |
3794 | extern enum reg_class reg_preferred_class (int); |
3795 | extern enum reg_class reg_alternate_class (int); |
3796 | extern enum reg_class reg_allocno_class (int); |
3797 | extern void setup_reg_classes (int, enum reg_class, enum reg_class, |
3798 | enum reg_class); |
3799 | |
3800 | extern void split_all_insns (void); |
3801 | extern void split_all_insns_noflow (void); |
3802 | |
3803 | #define MAX_SAVED_CONST_INT 64 |
3804 | extern GTY(()) rtx const_int_rtx[MAX_SAVED_CONST_INT * 2 + 1]; |
3805 | |
3806 | #define const0_rtx (const_int_rtx[MAX_SAVED_CONST_INT]) |
3807 | #define const1_rtx (const_int_rtx[MAX_SAVED_CONST_INT+1]) |
3808 | #define const2_rtx (const_int_rtx[MAX_SAVED_CONST_INT+2]) |
3809 | #define constm1_rtx (const_int_rtx[MAX_SAVED_CONST_INT-1]) |
3810 | extern GTY(()) rtx const_true_rtx; |
3811 | |
3812 | extern GTY(()) rtx const_tiny_rtx[4][(int) MAX_MACHINE_MODE]; |
3813 | |
3814 | /* Returns a constant 0 rtx in mode MODE. Integer modes are treated the |
3815 | same as VOIDmode. */ |
3816 | |
3817 | #define CONST0_RTX(MODE) (const_tiny_rtx[0][(int) (MODE)]) |
3818 | |
3819 | /* Likewise, for the constants 1 and 2 and -1. */ |
3820 | |
3821 | #define CONST1_RTX(MODE) (const_tiny_rtx[1][(int) (MODE)]) |
3822 | #define CONST2_RTX(MODE) (const_tiny_rtx[2][(int) (MODE)]) |
3823 | #define CONSTM1_RTX(MODE) (const_tiny_rtx[3][(int) (MODE)]) |
3824 | |
3825 | extern GTY(()) rtx pc_rtx; |
3826 | extern GTY(()) rtx ret_rtx; |
3827 | extern GTY(()) rtx simple_return_rtx; |
3828 | extern GTY(()) rtx_insn *invalid_insn_rtx; |
3829 | |
3830 | /* If HARD_FRAME_POINTER_REGNUM is defined, then a special dummy reg |
3831 | is used to represent the frame pointer. This is because the |
3832 | hard frame pointer and the automatic variables are separated by an amount |
3833 | that cannot be determined until after register allocation. We can assume |
3834 | that in this case ELIMINABLE_REGS will be defined, one action of which |
3835 | will be to eliminate FRAME_POINTER_REGNUM into HARD_FRAME_POINTER_REGNUM. */ |
3836 | #ifndef HARD_FRAME_POINTER_REGNUM |
3837 | #define HARD_FRAME_POINTER_REGNUM FRAME_POINTER_REGNUM |
3838 | #endif |
3839 | |
3840 | #ifndef HARD_FRAME_POINTER_IS_FRAME_POINTER |
3841 | #define HARD_FRAME_POINTER_IS_FRAME_POINTER \ |
3842 | (HARD_FRAME_POINTER_REGNUM == FRAME_POINTER_REGNUM) |
3843 | #endif |
3844 | |
3845 | #ifndef HARD_FRAME_POINTER_IS_ARG_POINTER |
3846 | #define HARD_FRAME_POINTER_IS_ARG_POINTER \ |
3847 | (HARD_FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM) |
3848 | #endif |
3849 | |
3850 | /* Index labels for global_rtl. */ |
3851 | enum global_rtl_index |
3852 | { |
3853 | GR_STACK_POINTER, |
3854 | GR_FRAME_POINTER, |
3855 | /* For register elimination to work properly these hard_frame_pointer_rtx, |
3856 | frame_pointer_rtx, and arg_pointer_rtx must be the same if they refer to |
3857 | the same register. */ |
3858 | #if FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM |
3859 | GR_ARG_POINTER = GR_FRAME_POINTER, |
3860 | #endif |
3861 | #if HARD_FRAME_POINTER_IS_FRAME_POINTER |
3862 | GR_HARD_FRAME_POINTER = GR_FRAME_POINTER, |
3863 | #else |
3864 | GR_HARD_FRAME_POINTER, |
3865 | #endif |
3866 | #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM |
3867 | #if HARD_FRAME_POINTER_IS_ARG_POINTER |
3868 | GR_ARG_POINTER = GR_HARD_FRAME_POINTER, |
3869 | #else |
3870 | GR_ARG_POINTER, |
3871 | #endif |
3872 | #endif |
3873 | GR_VIRTUAL_INCOMING_ARGS, |
3874 | GR_VIRTUAL_STACK_ARGS, |
3875 | GR_VIRTUAL_STACK_DYNAMIC, |
3876 | GR_VIRTUAL_OUTGOING_ARGS, |
3877 | GR_VIRTUAL_CFA, |
3878 | GR_VIRTUAL_PREFERRED_STACK_BOUNDARY, |
3879 | |
3880 | GR_MAX |
3881 | }; |
3882 | |
3883 | /* Target-dependent globals. */ |
3884 | struct GTY(()) target_rtl { |
3885 | /* All references to the hard registers in global_rtl_index go through |
3886 | these unique rtl objects. On machines where the frame-pointer and |
3887 | arg-pointer are the same register, they use the same unique object. |
3888 | |
3889 | After register allocation, other rtl objects which used to be pseudo-regs |
3890 | may be clobbered to refer to the frame-pointer register. |
3891 | But references that were originally to the frame-pointer can be |
3892 | distinguished from the others because they contain frame_pointer_rtx. |
3893 | |
3894 | When to use frame_pointer_rtx and hard_frame_pointer_rtx is a little |
3895 | tricky: until register elimination has taken place hard_frame_pointer_rtx |
3896 | should be used if it is being set, and frame_pointer_rtx otherwise. After |
3897 | register elimination hard_frame_pointer_rtx should always be used. |
3898 | On machines where the two registers are same (most) then these are the |
3899 | same. */ |
3900 | rtx x_global_rtl[GR_MAX]; |
3901 | |
3902 | /* A unique representation of (REG:Pmode PIC_OFFSET_TABLE_REGNUM). */ |
3903 | rtx x_pic_offset_table_rtx; |
3904 | |
3905 | /* A unique representation of (REG:Pmode RETURN_ADDRESS_POINTER_REGNUM). |
3906 | This is used to implement __builtin_return_address for some machines; |
3907 | see for instance the MIPS port. */ |
3908 | rtx x_return_address_pointer_rtx; |
3909 | |
3910 | /* Commonly used RTL for hard registers. These objects are not |
3911 | necessarily unique, so we allocate them separately from global_rtl. |
3912 | They are initialized once per compilation unit, then copied into |
3913 | regno_reg_rtx at the beginning of each function. */ |
3914 | rtx x_initial_regno_reg_rtx[FIRST_PSEUDO_REGISTER]; |
3915 | |
3916 | /* A sample (mem:M stack_pointer_rtx) rtx for each mode M. */ |
3917 | rtx x_top_of_stack[MAX_MACHINE_MODE]; |
3918 | |
3919 | /* Static hunks of RTL used by the aliasing code; these are treated |
3920 | as persistent to avoid unnecessary RTL allocations. */ |
3921 | rtx x_static_reg_base_value[FIRST_PSEUDO_REGISTER]; |
3922 | |
3923 | /* The default memory attributes for each mode. */ |
3924 | class mem_attrs *x_mode_mem_attrs[(int) MAX_MACHINE_MODE]; |
3925 | |
3926 | /* Track if RTL has been initialized. */ |
3927 | bool target_specific_initialized; |
3928 | }; |
3929 | |
3930 | extern GTY(()) struct target_rtl default_target_rtl; |
3931 | #if SWITCHABLE_TARGET |
3932 | extern struct target_rtl *this_target_rtl; |
3933 | #else |
3934 | #define this_target_rtl (&default_target_rtl) |
3935 | #endif |
3936 | |
3937 | #define global_rtl \ |
3938 | (this_target_rtl->x_global_rtl) |
3939 | #define pic_offset_table_rtx \ |
3940 | (this_target_rtl->x_pic_offset_table_rtx) |
3941 | #define return_address_pointer_rtx \ |
3942 | (this_target_rtl->x_return_address_pointer_rtx) |
3943 | #define top_of_stack \ |
3944 | (this_target_rtl->x_top_of_stack) |
3945 | #define mode_mem_attrs \ |
3946 | (this_target_rtl->x_mode_mem_attrs) |
3947 | |
3948 | /* All references to certain hard regs, except those created |
3949 | by allocating pseudo regs into them (when that's possible), |
3950 | go through these unique rtx objects. */ |
3951 | #define stack_pointer_rtx (global_rtl[GR_STACK_POINTER]) |
3952 | #define frame_pointer_rtx (global_rtl[GR_FRAME_POINTER]) |
3953 | #define hard_frame_pointer_rtx (global_rtl[GR_HARD_FRAME_POINTER]) |
3954 | #define arg_pointer_rtx (global_rtl[GR_ARG_POINTER]) |
3955 | |
3956 | #ifndef GENERATOR_FILE |
3957 | /* Return the attributes of a MEM rtx. */ |
3958 | inline const class mem_attrs * |
3959 | get_mem_attrs (const_rtx x) |
3960 | { |
3961 | class mem_attrs *attrs; |
3962 | |
3963 | attrs = MEM_ATTRS (x); |
3964 | if (!attrs) |
3965 | attrs = mode_mem_attrs[(int) GET_MODE (x)]; |
3966 | return attrs; |
3967 | } |
3968 | #endif |
3969 | |
3970 | /* Include the RTL generation functions. */ |
3971 | |
3972 | #ifndef GENERATOR_FILE |
3973 | #include "genrtl.h" |
3974 | #undef gen_rtx_ASM_INPUT |
3975 | #define gen_rtx_ASM_INPUT(MODE, ARG0) \ |
3976 | gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), 0) |
3977 | #define gen_rtx_ASM_INPUT_loc(MODE, ARG0, LOC) \ |
3978 | gen_rtx_fmt_si (ASM_INPUT, (MODE), (ARG0), (LOC)) |
3979 | #endif |
3980 | |
3981 | /* There are some RTL codes that require special attention; the |
3982 | generation functions included above do the raw handling. If you |
3983 | add to this list, modify special_rtx in gengenrtl.cc as well. */ |
3984 | |
3985 | extern rtx_expr_list *gen_rtx_EXPR_LIST (machine_mode, rtx, rtx); |
3986 | extern rtx_insn_list *gen_rtx_INSN_LIST (machine_mode, rtx, rtx); |
3987 | extern rtx_insn * |
3988 | gen_rtx_INSN (machine_mode mode, rtx_insn *prev_insn, rtx_insn *next_insn, |
3989 | basic_block bb, rtx pattern, int location, int code, |
3990 | rtx reg_notes); |
3991 | extern rtx gen_rtx_CONST_INT (machine_mode, HOST_WIDE_INT); |
3992 | extern rtx gen_rtx_CONST_VECTOR (machine_mode, rtvec); |
3993 | extern void set_mode_and_regno (rtx, machine_mode, unsigned int); |
3994 | extern rtx init_raw_REG (rtx, machine_mode, unsigned int); |
3995 | extern rtx gen_raw_REG (machine_mode, unsigned int); |
3996 | #define alloca_raw_REG(mode, regno) \ |
3997 | init_raw_REG (rtx_alloca (REG), (mode), (regno)) |
3998 | extern rtx gen_rtx_REG (machine_mode, unsigned int); |
3999 | extern rtx gen_rtx_SUBREG (machine_mode, rtx, poly_uint64); |
4000 | extern rtx gen_rtx_MEM (machine_mode, rtx); |
4001 | extern rtx gen_rtx_VAR_LOCATION (machine_mode, tree, rtx, |
4002 | enum var_init_status); |
4003 | |
4004 | #ifdef GENERATOR_FILE |
4005 | #define PUT_MODE(RTX, MODE) PUT_MODE_RAW (RTX, MODE) |
4006 | #else |
4007 | inline void |
4008 | PUT_MODE (rtx x, machine_mode mode) |
4009 | { |
4010 | if (REG_P (x)) |
4011 | set_mode_and_regno (x, mode, REGNO (x)); |
4012 | else |
4013 | PUT_MODE_RAW (x, mode); |
4014 | } |
4015 | #endif |
4016 | |
4017 | #define GEN_INT(N) gen_rtx_CONST_INT (VOIDmode, (N)) |
4018 | |
4019 | /* Virtual registers are used during RTL generation to refer to locations into |
4020 | the stack frame when the actual location isn't known until RTL generation |
4021 | is complete. The routine instantiate_virtual_regs replaces these with |
4022 | the proper value, which is normally {frame,arg,stack}_pointer_rtx plus |
4023 | a constant. */ |
4024 | |
4025 | #define FIRST_VIRTUAL_REGISTER (FIRST_PSEUDO_REGISTER) |
4026 | |
4027 | /* This points to the first word of the incoming arguments passed on the stack, |
4028 | either by the caller or by the callee when pretending it was passed by the |
4029 | caller. */ |
4030 | |
4031 | #define virtual_incoming_args_rtx (global_rtl[GR_VIRTUAL_INCOMING_ARGS]) |
4032 | |
4033 | #define VIRTUAL_INCOMING_ARGS_REGNUM (FIRST_VIRTUAL_REGISTER) |
4034 | |
4035 | /* If FRAME_GROWS_DOWNWARD, this points to immediately above the first |
4036 | variable on the stack. Otherwise, it points to the first variable on |
4037 | the stack. */ |
4038 | |
4039 | #define virtual_stack_vars_rtx (global_rtl[GR_VIRTUAL_STACK_ARGS]) |
4040 | |
4041 | #define VIRTUAL_STACK_VARS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 1) |
4042 | |
4043 | /* This points to the location of dynamically-allocated memory on the stack |
4044 | immediately after the stack pointer has been adjusted by the amount |
4045 | desired. */ |
4046 | |
4047 | #define virtual_stack_dynamic_rtx (global_rtl[GR_VIRTUAL_STACK_DYNAMIC]) |
4048 | |
4049 | #define VIRTUAL_STACK_DYNAMIC_REGNUM ((FIRST_VIRTUAL_REGISTER) + 2) |
4050 | |
4051 | /* This points to the location in the stack at which outgoing arguments should |
4052 | be written when the stack is pre-pushed (arguments pushed using push |
4053 | insns always use sp). */ |
4054 | |
4055 | #define virtual_outgoing_args_rtx (global_rtl[GR_VIRTUAL_OUTGOING_ARGS]) |
4056 | |
4057 | #define VIRTUAL_OUTGOING_ARGS_REGNUM ((FIRST_VIRTUAL_REGISTER) + 3) |
4058 | |
4059 | /* This points to the Canonical Frame Address of the function. This |
4060 | should correspond to the CFA produced by INCOMING_FRAME_SP_OFFSET, |
4061 | but is calculated relative to the arg pointer for simplicity; the |
4062 | frame pointer nor stack pointer are necessarily fixed relative to |
4063 | the CFA until after reload. */ |
4064 | |
4065 | #define virtual_cfa_rtx (global_rtl[GR_VIRTUAL_CFA]) |
4066 | |
4067 | #define VIRTUAL_CFA_REGNUM ((FIRST_VIRTUAL_REGISTER) + 4) |
4068 | |
4069 | #define LAST_VIRTUAL_POINTER_REGISTER ((FIRST_VIRTUAL_REGISTER) + 4) |
4070 | |
4071 | /* This is replaced by crtl->preferred_stack_boundary / BITS_PER_UNIT |
4072 | when finalized. */ |
4073 | |
4074 | #define virtual_preferred_stack_boundary_rtx \ |
4075 | (global_rtl[GR_VIRTUAL_PREFERRED_STACK_BOUNDARY]) |
4076 | |
4077 | #define VIRTUAL_PREFERRED_STACK_BOUNDARY_REGNUM \ |
4078 | ((FIRST_VIRTUAL_REGISTER) + 5) |
4079 | |
4080 | #define LAST_VIRTUAL_REGISTER ((FIRST_VIRTUAL_REGISTER) + 5) |
4081 | |
4082 | /* Nonzero if REGNUM is a pointer into the stack frame. */ |
4083 | #define REGNO_PTR_FRAME_P(REGNUM) \ |
4084 | ((REGNUM) == STACK_POINTER_REGNUM \ |
4085 | || (REGNUM) == FRAME_POINTER_REGNUM \ |
4086 | || (REGNUM) == HARD_FRAME_POINTER_REGNUM \ |
4087 | || (REGNUM) == ARG_POINTER_REGNUM \ |
4088 | || VIRTUAL_REGISTER_NUM_P (REGNUM)) |
4089 | |
4090 | /* REGNUM never really appearing in the INSN stream. */ |
4091 | #define INVALID_REGNUM (~(unsigned int) 0) |
4092 | |
4093 | /* REGNUM for which no debug information can be generated. */ |
4094 | #define IGNORED_DWARF_REGNUM (INVALID_REGNUM - 1) |
4095 | |
4096 | extern rtx output_constant_def (tree, int); |
4097 | extern rtx lookup_constant_def (tree); |
4098 | |
4099 | /* Nonzero after end of reload pass. |
4100 | Set to 1 or 0 by reload1.cc. */ |
4101 | |
4102 | extern int reload_completed; |
4103 | |
4104 | /* Nonzero after thread_prologue_and_epilogue_insns has run. */ |
4105 | extern int epilogue_completed; |
4106 | |
4107 | /* Set to 1 while reload_as_needed is operating. |
4108 | Required by some machines to handle any generated moves differently. */ |
4109 | |
4110 | extern int reload_in_progress; |
4111 | |
4112 | /* Set to true while in IRA. */ |
4113 | extern bool ira_in_progress; |
4114 | |
4115 | /* Set to true while in LRA. */ |
4116 | extern bool lra_in_progress; |
4117 | |
4118 | /* This macro indicates whether you may create a new |
4119 | pseudo-register. */ |
4120 | |
4121 | #define can_create_pseudo_p() (!reload_in_progress && !reload_completed) |
4122 | |
4123 | #ifdef STACK_REGS |
4124 | /* Nonzero after end of regstack pass. |
4125 | Set to 1 or 0 by reg-stack.cc. */ |
4126 | extern int regstack_completed; |
4127 | #endif |
4128 | |
4129 | /* If this is nonzero, we do not bother generating VOLATILE |
4130 | around volatile memory references, and we are willing to |
4131 | output indirect addresses. If cse is to follow, we reject |
4132 | indirect addresses so a useful potential cse is generated; |
4133 | if it is used only once, instruction combination will produce |
4134 | the same indirect address eventually. */ |
4135 | extern int cse_not_expected; |
4136 | |
4137 | /* Translates rtx code to tree code, for those codes needed by |
4138 | real_arithmetic. The function returns an int because the caller may not |
4139 | know what `enum tree_code' means. */ |
4140 | |
4141 | extern int rtx_to_tree_code (enum rtx_code); |
4142 | |
4143 | /* In cse.cc */ |
4144 | extern int delete_trivially_dead_insns (rtx_insn *, int); |
4145 | extern bool exp_equiv_p (const_rtx, const_rtx, int, bool); |
4146 | |
4147 | typedef bool (*hash_rtx_callback_function) (const_rtx, machine_mode, rtx *, |
4148 | machine_mode *); |
4149 | extern unsigned hash_rtx (const_rtx, machine_mode, int *, int *, |
4150 | bool, hash_rtx_callback_function = NULL); |
4151 | |
4152 | /* In dse.cc */ |
4153 | extern bool check_for_inc_dec (rtx_insn *insn); |
4154 | |
4155 | /* In jump.cc */ |
4156 | extern bool comparison_dominates_p (enum rtx_code, enum rtx_code); |
4157 | extern bool jump_to_label_p (const rtx_insn *); |
4158 | extern bool condjump_p (const rtx_insn *); |
4159 | extern bool any_condjump_p (const rtx_insn *); |
4160 | extern bool any_uncondjump_p (const rtx_insn *); |
4161 | extern rtx pc_set (const rtx_insn *); |
4162 | extern rtx condjump_label (const rtx_insn *); |
4163 | extern bool simplejump_p (const rtx_insn *); |
4164 | extern bool returnjump_p (const rtx_insn *); |
4165 | extern bool eh_returnjump_p (rtx_insn *); |
4166 | extern bool onlyjump_p (const rtx_insn *); |
4167 | extern bool invert_jump_1 (rtx_jump_insn *, rtx); |
4168 | extern bool invert_jump (rtx_jump_insn *, rtx, int); |
4169 | extern bool rtx_renumbered_equal_p (const_rtx, const_rtx); |
4170 | extern int true_regnum (const_rtx); |
4171 | extern unsigned int reg_or_subregno (const_rtx); |
4172 | extern bool redirect_jump_1 (rtx_insn *, rtx); |
4173 | extern void redirect_jump_2 (rtx_jump_insn *, rtx, rtx, int, int); |
4174 | extern bool redirect_jump (rtx_jump_insn *, rtx, int); |
4175 | extern void rebuild_jump_labels (rtx_insn *); |
4176 | extern void rebuild_jump_labels_chain (rtx_insn *); |
4177 | extern rtx reversed_comparison (const_rtx, machine_mode); |
4178 | extern enum rtx_code reversed_comparison_code (const_rtx, const rtx_insn *); |
4179 | extern enum rtx_code reversed_comparison_code_parts (enum rtx_code, const_rtx, |
4180 | const_rtx, const rtx_insn *); |
4181 | extern void delete_for_peephole (rtx_insn *, rtx_insn *); |
4182 | extern bool condjump_in_parallel_p (const rtx_insn *); |
4183 | |
4184 | /* In emit-rtl.cc. */ |
4185 | extern int max_reg_num (void); |
4186 | extern int max_label_num (void); |
4187 | extern int get_first_label_num (void); |
4188 | extern void maybe_set_first_label_num (rtx_code_label *); |
4189 | extern void delete_insns_since (rtx_insn *); |
4190 | extern void mark_reg_pointer (rtx, int); |
4191 | extern void mark_user_reg (rtx); |
4192 | extern void reset_used_flags (rtx); |
4193 | extern void set_used_flags (rtx); |
4194 | extern void reorder_insns (rtx_insn *, rtx_insn *, rtx_insn *); |
4195 | extern void reorder_insns_nobb (rtx_insn *, rtx_insn *, rtx_insn *); |
4196 | extern int get_max_insn_count (void); |
4197 | extern bool in_sequence_p (void); |
4198 | extern void init_emit (void); |
4199 | extern void init_emit_regs (void); |
4200 | extern void init_derived_machine_modes (void); |
4201 | extern void init_emit_once (void); |
4202 | extern void push_topmost_sequence (void); |
4203 | extern void pop_topmost_sequence (void); |
4204 | extern void set_new_first_and_last_insn (rtx_insn *, rtx_insn *); |
4205 | extern void unshare_all_rtl (void); |
4206 | extern void unshare_all_rtl_again (rtx_insn *); |
4207 | extern void unshare_all_rtl_in_chain (rtx_insn *); |
4208 | extern void verify_rtl_sharing (void); |
4209 | extern void add_insn (rtx_insn *); |
4210 | extern void add_insn_before (rtx_insn *, rtx_insn *, basic_block); |
4211 | extern void add_insn_after (rtx_insn *, rtx_insn *, basic_block); |
4212 | extern void remove_insn (rtx_insn *); |
4213 | extern rtx_insn *emit (rtx, bool = true); |
4214 | extern void emit_insn_at_entry (rtx); |
4215 | extern rtx gen_lowpart_SUBREG (machine_mode, rtx); |
4216 | extern rtx gen_const_mem (machine_mode, rtx); |
4217 | extern rtx gen_frame_mem (machine_mode, rtx); |
4218 | extern rtx gen_tmp_stack_mem (machine_mode, rtx); |
4219 | extern bool validate_subreg (machine_mode, machine_mode, |
4220 | const_rtx, poly_uint64); |
4221 | |
4222 | /* In combine.cc */ |
4223 | extern unsigned int extended_count (const_rtx, machine_mode, bool); |
4224 | extern rtx remove_death (unsigned int, rtx_insn *); |
4225 | extern rtx make_compound_operation (rtx, enum rtx_code); |
4226 | |
4227 | /* In sched-rgn.cc. */ |
4228 | extern void schedule_insns (void); |
4229 | |
4230 | /* In sched-ebb.cc. */ |
4231 | extern void schedule_ebbs (void); |
4232 | |
4233 | /* In sel-sched-dump.cc. */ |
4234 | extern void sel_sched_fix_param (const char *param, const char *val); |
4235 | |
4236 | /* In print-rtl.cc */ |
4237 | extern const char *print_rtx_head; |
4238 | extern void debug (const rtx_def &ref); |
4239 | extern void debug (const rtx_def *ptr); |
4240 | extern void debug_rtx (const_rtx); |
4241 | extern void debug_rtx_list (const rtx_insn *, int); |
4242 | extern void debug_rtx_range (const rtx_insn *, const rtx_insn *); |
4243 | extern const rtx_insn *debug_rtx_find (const rtx_insn *, int); |
4244 | extern void print_mem_expr (FILE *, const_tree); |
4245 | extern void print_rtl (FILE *, const_rtx); |
4246 | extern void print_simple_rtl (FILE *, const_rtx); |
4247 | extern void print_rtl_single (FILE *, const_rtx); |
4248 | extern void print_rtl_single_with_indent (FILE *, const_rtx, int); |
4249 | extern void print_inline_rtx (FILE *, const_rtx, int); |
4250 | |
4251 | /* In stmt.cc */ |
4252 | extern void expand_null_return (void); |
4253 | extern void expand_naked_return (void); |
4254 | extern void emit_jump (rtx); |
4255 | |
4256 | /* Memory operation built-ins differ by return value. Mapping |
4257 | of the enum values is following: |
4258 | - RETURN_BEGIN - return destination, e.g. memcpy |
4259 | - RETURN_END - return destination + n, e.g. mempcpy |
4260 | - RETURN_END_MINUS_ONE - return a pointer to the terminating |
4261 | null byte of the string, e.g. strcpy |
4262 | */ |
4263 | |
4264 | enum memop_ret |
4265 | { |
4266 | RETURN_BEGIN, |
4267 | RETURN_END, |
4268 | RETURN_END_MINUS_ONE |
4269 | }; |
4270 | |
4271 | /* In expr.cc */ |
4272 | extern rtx move_by_pieces (rtx, rtx, unsigned HOST_WIDE_INT, |
4273 | unsigned int, memop_ret); |
4274 | extern poly_int64 find_args_size_adjust (rtx_insn *); |
4275 | extern poly_int64 fixup_args_size_notes (rtx_insn *, rtx_insn *, poly_int64); |
4276 | |
4277 | /* In expmed.cc */ |
4278 | extern void init_expmed (void); |
4279 | extern void expand_inc (rtx, rtx); |
4280 | extern void expand_dec (rtx, rtx); |
4281 | |
4282 | /* In lower-subreg.cc */ |
4283 | extern void init_lower_subreg (void); |
4284 | |
4285 | /* In gcse.cc */ |
4286 | extern bool can_copy_p (machine_mode); |
4287 | extern bool can_assign_to_reg_without_clobbers_p (rtx, machine_mode); |
4288 | extern rtx_insn *prepare_copy_insn (rtx, rtx); |
4289 | |
4290 | /* In cprop.cc */ |
4291 | extern rtx fis_get_condition (rtx_insn *); |
4292 | |
4293 | /* In ira.cc */ |
4294 | extern HARD_REG_SET eliminable_regset; |
4295 | extern void mark_elimination (int, int); |
4296 | |
4297 | /* In reginfo.cc */ |
4298 | extern bool reg_classes_intersect_p (reg_class_t, reg_class_t); |
4299 | extern bool reg_class_subset_p (reg_class_t, reg_class_t); |
4300 | extern void globalize_reg (tree, int); |
4301 | extern void init_reg_modes_target (void); |
4302 | extern void init_regs (void); |
4303 | extern void reinit_regs (void); |
4304 | extern void init_fake_stack_mems (void); |
4305 | extern void save_register_info (void); |
4306 | extern void init_reg_sets (void); |
4307 | extern void regclass (rtx, int); |
4308 | extern void reg_scan (rtx_insn *, unsigned int); |
4309 | extern void fix_register (const char *, int, int); |
4310 | extern const HARD_REG_SET *valid_mode_changes_for_regno (unsigned int); |
4311 | |
4312 | /* In reload1.cc */ |
4313 | extern bool function_invariant_p (const_rtx); |
4314 | |
4315 | /* In calls.cc */ |
4316 | enum libcall_type |
4317 | { |
4318 | LCT_NORMAL = 0, |
4319 | LCT_CONST = 1, |
4320 | LCT_PURE = 2, |
4321 | LCT_NORETURN = 3, |
4322 | LCT_THROW = 4, |
4323 | LCT_RETURNS_TWICE = 5 |
4324 | }; |
4325 | |
4326 | extern rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type, |
4327 | machine_mode, int, rtx_mode_t *); |
4328 | |
4329 | /* Output a library call and discard the returned value. FUN is the |
4330 | address of the function, as a SYMBOL_REF rtx, and OUTMODE is the mode |
4331 | of the (discarded) return value. FN_TYPE is LCT_NORMAL for `normal' |
4332 | calls, LCT_CONST for `const' calls, LCT_PURE for `pure' calls, or |
4333 | another LCT_ value for other types of library calls. |
4334 | |
4335 | There are different overloads of this function for different numbers |
4336 | of arguments. In each case the argument value is followed by its mode. */ |
4337 | |
4338 | inline void |
4339 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode) |
4340 | { |
4341 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 0, NULL); |
4342 | } |
4343 | |
4344 | inline void |
4345 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
4346 | rtx arg1, machine_mode arg1_mode) |
4347 | { |
4348 | rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) }; |
4349 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 1, args); |
4350 | } |
4351 | |
4352 | inline void |
4353 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
4354 | rtx arg1, machine_mode arg1_mode, |
4355 | rtx arg2, machine_mode arg2_mode) |
4356 | { |
4357 | rtx_mode_t args[] = { |
4358 | rtx_mode_t (arg1, arg1_mode), |
4359 | rtx_mode_t (arg2, arg2_mode) |
4360 | }; |
4361 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 2, args); |
4362 | } |
4363 | |
4364 | inline void |
4365 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
4366 | rtx arg1, machine_mode arg1_mode, |
4367 | rtx arg2, machine_mode arg2_mode, |
4368 | rtx arg3, machine_mode arg3_mode) |
4369 | { |
4370 | rtx_mode_t args[] = { |
4371 | rtx_mode_t (arg1, arg1_mode), |
4372 | rtx_mode_t (arg2, arg2_mode), |
4373 | rtx_mode_t (arg3, arg3_mode) |
4374 | }; |
4375 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 3, args); |
4376 | } |
4377 | |
4378 | inline void |
4379 | emit_library_call (rtx fun, libcall_type fn_type, machine_mode outmode, |
4380 | rtx arg1, machine_mode arg1_mode, |
4381 | rtx arg2, machine_mode arg2_mode, |
4382 | rtx arg3, machine_mode arg3_mode, |
4383 | rtx arg4, machine_mode arg4_mode) |
4384 | { |
4385 | rtx_mode_t args[] = { |
4386 | rtx_mode_t (arg1, arg1_mode), |
4387 | rtx_mode_t (arg2, arg2_mode), |
4388 | rtx_mode_t (arg3, arg3_mode), |
4389 | rtx_mode_t (arg4, arg4_mode) |
4390 | }; |
4391 | emit_library_call_value_1 (0, fun, NULL_RTX, fn_type, outmode, 4, args); |
4392 | } |
4393 | |
4394 | /* Like emit_library_call, but return the value produced by the call. |
4395 | Use VALUE to store the result if it is nonnull, otherwise pick a |
4396 | convenient location. */ |
4397 | |
4398 | inline rtx |
4399 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
4400 | machine_mode outmode) |
4401 | { |
4402 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 0, NULL); |
4403 | } |
4404 | |
4405 | inline rtx |
4406 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
4407 | machine_mode outmode, |
4408 | rtx arg1, machine_mode arg1_mode) |
4409 | { |
4410 | rtx_mode_t args[] = { rtx_mode_t (arg1, arg1_mode) }; |
4411 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 1, args); |
4412 | } |
4413 | |
4414 | inline rtx |
4415 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
4416 | machine_mode outmode, |
4417 | rtx arg1, machine_mode arg1_mode, |
4418 | rtx arg2, machine_mode arg2_mode) |
4419 | { |
4420 | rtx_mode_t args[] = { |
4421 | rtx_mode_t (arg1, arg1_mode), |
4422 | rtx_mode_t (arg2, arg2_mode) |
4423 | }; |
4424 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 2, args); |
4425 | } |
4426 | |
4427 | inline rtx |
4428 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
4429 | machine_mode outmode, |
4430 | rtx arg1, machine_mode arg1_mode, |
4431 | rtx arg2, machine_mode arg2_mode, |
4432 | rtx arg3, machine_mode arg3_mode) |
4433 | { |
4434 | rtx_mode_t args[] = { |
4435 | rtx_mode_t (arg1, arg1_mode), |
4436 | rtx_mode_t (arg2, arg2_mode), |
4437 | rtx_mode_t (arg3, arg3_mode) |
4438 | }; |
4439 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 3, args); |
4440 | } |
4441 | |
4442 | inline rtx |
4443 | emit_library_call_value (rtx fun, rtx value, libcall_type fn_type, |
4444 | machine_mode outmode, |
4445 | rtx arg1, machine_mode arg1_mode, |
4446 | rtx arg2, machine_mode arg2_mode, |
4447 | rtx arg3, machine_mode arg3_mode, |
4448 | rtx arg4, machine_mode arg4_mode) |
4449 | { |
4450 | rtx_mode_t args[] = { |
4451 | rtx_mode_t (arg1, arg1_mode), |
4452 | rtx_mode_t (arg2, arg2_mode), |
4453 | rtx_mode_t (arg3, arg3_mode), |
4454 | rtx_mode_t (arg4, arg4_mode) |
4455 | }; |
4456 | return emit_library_call_value_1 (1, fun, value, fn_type, outmode, 4, args); |
4457 | } |
4458 | |
4459 | /* In varasm.cc */ |
4460 | extern void init_varasm_once (void); |
4461 | |
4462 | extern rtx make_debug_expr_from_rtl (const_rtx); |
4463 | |
4464 | /* In read-rtl.cc */ |
4465 | #ifdef GENERATOR_FILE |
4466 | extern bool read_rtx (const char *, vec<rtx> *); |
4467 | #endif |
4468 | |
4469 | /* In alias.cc */ |
4470 | extern rtx canon_rtx (rtx); |
4471 | extern rtx get_addr (rtx); |
4472 | extern bool read_dependence (const_rtx, const_rtx); |
4473 | extern bool true_dependence (const_rtx, machine_mode, const_rtx); |
4474 | extern bool canon_true_dependence (const_rtx, machine_mode, rtx, |
4475 | const_rtx, rtx); |
4476 | extern bool anti_dependence (const_rtx, const_rtx); |
4477 | extern bool canon_anti_dependence (const_rtx, bool, |
4478 | const_rtx, machine_mode, rtx); |
4479 | extern bool output_dependence (const_rtx, const_rtx); |
4480 | extern bool canon_output_dependence (const_rtx, bool, |
4481 | const_rtx, machine_mode, rtx); |
4482 | extern bool may_alias_p (const_rtx, const_rtx); |
4483 | extern void init_alias_target (void); |
4484 | extern void init_alias_analysis (void); |
4485 | extern void end_alias_analysis (void); |
4486 | extern void vt_equate_reg_base_value (const_rtx, const_rtx); |
4487 | extern bool memory_modified_in_insn_p (const_rtx, const_rtx); |
4488 | extern bool may_be_sp_based_p (rtx); |
4489 | extern rtx gen_hard_reg_clobber (machine_mode, unsigned int); |
4490 | extern rtx get_reg_known_value (unsigned int); |
4491 | extern bool get_reg_known_equiv_p (unsigned int); |
4492 | extern rtx get_reg_base_value (unsigned int); |
4493 | extern rtx extract_mem_from_operand (rtx); |
4494 | |
4495 | #ifdef STACK_REGS |
4496 | extern bool stack_regs_mentioned (const_rtx insn); |
4497 | #endif |
4498 | |
4499 | /* In toplev.cc */ |
4500 | extern GTY(()) rtx stack_limit_rtx; |
4501 | |
4502 | /* In var-tracking.cc */ |
4503 | extern unsigned int variable_tracking_main (void); |
4504 | extern void delete_vta_debug_insns (bool); |
4505 | |
4506 | /* In stor-layout.cc. */ |
4507 | extern void get_mode_bounds (scalar_int_mode, int, |
4508 | scalar_int_mode, rtx *, rtx *); |
4509 | |
4510 | /* In loop-iv.cc */ |
4511 | extern rtx canon_condition (rtx); |
4512 | extern void simplify_using_condition (rtx, rtx *, bitmap); |
4513 | |
4514 | /* In final.cc */ |
4515 | extern void compute_alignments (void); |
4516 | extern void update_alignments (vec<rtx> &); |
4517 | extern int asm_str_count (const char *templ); |
4518 | |
4519 | struct rtl_hooks |
4520 | { |
4521 | rtx (*gen_lowpart) (machine_mode, rtx); |
4522 | rtx (*gen_lowpart_no_emit) (machine_mode, rtx); |
4523 | rtx (*reg_nonzero_bits) (const_rtx, scalar_int_mode, scalar_int_mode, |
4524 | unsigned HOST_WIDE_INT *); |
4525 | rtx (*reg_num_sign_bit_copies) (const_rtx, scalar_int_mode, scalar_int_mode, |
4526 | unsigned int *); |
4527 | bool (*reg_truncated_to_mode) (machine_mode, const_rtx); |
4528 | |
4529 | /* Whenever you add entries here, make sure you adjust rtlhooks-def.h. */ |
4530 | }; |
4531 | |
4532 | /* Each pass can provide its own. */ |
4533 | extern struct rtl_hooks rtl_hooks; |
4534 | |
4535 | /* ... but then it has to restore these. */ |
4536 | extern const struct rtl_hooks general_rtl_hooks; |
4537 | |
4538 | /* Keep this for the nonce. */ |
4539 | #define gen_lowpart rtl_hooks.gen_lowpart |
4540 | |
4541 | extern void insn_locations_init (void); |
4542 | extern void insn_locations_finalize (void); |
4543 | extern void set_curr_insn_location (location_t); |
4544 | extern location_t curr_insn_location (void); |
4545 | extern void set_insn_locations (rtx_insn *, location_t); |
4546 | |
4547 | /* rtl-error.cc */ |
4548 | extern void _fatal_insn_not_found (const_rtx, const char *, int, const char *) |
4549 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
4550 | extern void _fatal_insn (const char *, const_rtx, const char *, int, const char *) |
4551 | ATTRIBUTE_NORETURN ATTRIBUTE_COLD; |
4552 | |
4553 | #define fatal_insn(msgid, insn) \ |
4554 | _fatal_insn (msgid, insn, __FILE__, __LINE__, __FUNCTION__) |
4555 | #define fatal_insn_not_found(insn) \ |
4556 | _fatal_insn_not_found (insn, __FILE__, __LINE__, __FUNCTION__) |
4557 | |
4558 | /* reginfo.cc */ |
4559 | extern tree GTY(()) global_regs_decl[FIRST_PSEUDO_REGISTER]; |
4560 | |
4561 | /* Information about the function that is propagated by the RTL backend. |
4562 | Available only for functions that has been already assembled. */ |
4563 | |
4564 | struct GTY(()) cgraph_rtl_info { |
4565 | unsigned int preferred_incoming_stack_boundary; |
4566 | |
4567 | /* Which registers the function clobbers, either directly or by |
4568 | calling another function. */ |
4569 | HARD_REG_SET function_used_regs; |
4570 | }; |
4571 | |
4572 | /* If loads from memories of mode MODE always sign or zero extend, |
4573 | return SIGN_EXTEND or ZERO_EXTEND as appropriate. Return UNKNOWN |
4574 | otherwise. */ |
4575 | |
4576 | inline rtx_code |
4577 | load_extend_op (machine_mode mode) |
4578 | { |
4579 | scalar_int_mode int_mode; |
4580 | if (is_a <scalar_int_mode> (m: mode, result: &int_mode) |
4581 | && GET_MODE_PRECISION (mode: int_mode) < BITS_PER_WORD) |
4582 | return LOAD_EXTEND_OP (int_mode); |
4583 | return UNKNOWN; |
4584 | } |
4585 | |
4586 | /* If X is a PLUS of a base and a constant offset, add the constant to *OFFSET |
4587 | and return the base. Return X otherwise. */ |
4588 | |
4589 | inline rtx |
4590 | strip_offset_and_add (rtx x, poly_int64 *offset) |
4591 | { |
4592 | if (GET_CODE (x) == PLUS) |
4593 | { |
4594 | poly_int64 suboffset; |
4595 | x = strip_offset (x, &suboffset); |
4596 | *offset = poly_uint64 (*offset) + suboffset; |
4597 | } |
4598 | return x; |
4599 | } |
4600 | |
4601 | /* Return true if X is an operation that always operates on the full |
4602 | registers for WORD_REGISTER_OPERATIONS architectures. */ |
4603 | |
4604 | inline bool |
4605 | word_register_operation_p (const_rtx x) |
4606 | { |
4607 | switch (GET_CODE (x)) |
4608 | { |
4609 | case CONST_INT: |
4610 | case ROTATE: |
4611 | case ROTATERT: |
4612 | case SIGN_EXTRACT: |
4613 | case ZERO_EXTRACT: |
4614 | return false; |
4615 | |
4616 | default: |
4617 | return true; |
4618 | } |
4619 | } |
4620 | |
4621 | /* Holds an rtx comparison to simplify passing many parameters pertaining to a |
4622 | single comparison. */ |
4623 | |
4624 | struct rtx_comparison { |
4625 | rtx_code code; |
4626 | rtx op0, op1; |
4627 | machine_mode mode; |
4628 | }; |
4629 | |
4630 | /* gtype-desc.cc. */ |
4631 | extern void gt_ggc_mx (rtx &); |
4632 | extern void gt_pch_nx (rtx &); |
4633 | extern void gt_pch_nx (rtx &, gt_pointer_operator, void *); |
4634 | |
4635 | #endif /* ! GCC_RTL_H */ |
4636 |
Definitions
- rtx_code
- rtx_class
- addr_diff_vec_flags
- mem_attrs
- reg_attrs
- rtunion
- reg_info
- block_symbol
- object_block
- hwivec_def
- const_poly_int_def
- rtx_def
- u
- rtx_expr_list
- test
- rtx_insn_list
- test
- rtx_sequence
- test
- test
- rtx_insn
- deleted
- set_deleted
- set_undeleted
- rtx_debug_insn
- rtx_nonjump_insn
- rtx_jump_insn
- rtx_call_insn
- rtx_jump_table_data
- rtx_barrier
- rtx_code_label
- rtx_note
- rtvec_def
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- test
- next
- element
- next
- insn
- len
- element
- insn
- INSN_UID
- INSN_UID
- PREV_INSN
- SET_PREV_INSN
- NEXT_INSN
- SET_NEXT_INSN
- BLOCK_FOR_INSN
- BLOCK_FOR_INSN
- set_block_for_insn
- PATTERN
- PATTERN
- INSN_LOCATION
- INSN_LOCATION
- INSN_HAS_LOCATION
- get_labels
- get_data_mode
- jump_table_for_label
- reg_note
- insn_note
- label_kind
- JUMP_LABEL_AS_INSN
- jump_label
- jump_target
- set_jump_target
- label_ref_label
- set_label_ref_label
- rhs_regno
- END_REGNO
- set_regno_raw
- const_vector_encoded_nelts
- always_void_p
- full_rtx_costs
- init_costs_to_max
- init_costs_to_zero
- costs_lt_p
- costs_add_n_insns
- subreg_shape
- subreg_shape
- operator ==
- operator !=
- unique_id
- shape_of_subreg
- address_info
- int_traits
- get_precision
- decompose
- shwi
- min_value
- max_value
- const_poly_int_value
- poly_int_rtx_p
- to_poly_wide
- rtx_to_poly_int64
- poly_int_rtx_p
- subreg_lsb_1
- subreg_offset_from_lsb
- SRP_POINTER
- SRP_SIGNED
- SRP_UNSIGNED
- SRP_SIGNED_AND_UNSIGNED
- set_rtx_cost
- get_full_set_rtx_cost
- set_src_cost
- get_full_set_src_cost
- rtx_init
- const_vec_duplicate_p
- const_vec_duplicate_p
- vec_duplicate_p
- unwrap_const_vec_duplicate
- const_vec_series_p
- vec_series_p
- same_vector_encodings_p
- subreg_unpromoted_mode
- subreg_promoted_mode
- partial_subreg_p
- partial_subreg_p
- paradoxical_subreg_p
- paradoxical_subreg_p
- subreg_lowpart_offset
- narrower_subreg_mode
- wider_subreg_mode
- wider_subreg_mode
- subreg_highpart_offset
- unsigned_condition_p
- simplify_context
- simplify_unary_operation
- simplify_binary_operation
- simplify_ternary_operation
- simplify_relational_operation
- simplify_subreg
- simplify_gen_unary
- simplify_gen_binary
- simplify_gen_ternary
- simplify_gen_relational
- simplify_gen_subreg
- simplify_gen_vec_select
- lowpart_subreg
- single_set
- refers_to_regno_p
- subreg_info
- global_rtl_index
- target_rtl
- get_mem_attrs
- PUT_MODE
- memop_ret
- libcall_type
- emit_library_call
- emit_library_call
- emit_library_call
- emit_library_call
- emit_library_call
- emit_library_call_value
- emit_library_call_value
- emit_library_call_value
- emit_library_call_value
- emit_library_call_value
- rtl_hooks
- cgraph_rtl_info
- load_extend_op
- strip_offset_and_add
- word_register_operation_p
Learn to use CMake with our Intro Training
Find out more