| 1 | /* A type-safe hash table template. |
| 2 | Copyright (C) 2012-2025 Free Software Foundation, Inc. |
| 3 | Contributed by Lawrence Crowl <crowl@google.com> |
| 4 | |
| 5 | This file is part of GCC. |
| 6 | |
| 7 | GCC is free software; you can redistribute it and/or modify it under |
| 8 | the terms of the GNU General Public License as published by the Free |
| 9 | Software Foundation; either version 3, or (at your option) any later |
| 10 | version. |
| 11 | |
| 12 | GCC is distributed in the hope that it will be useful, but WITHOUT ANY |
| 13 | WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 14 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| 15 | for more details. |
| 16 | |
| 17 | You should have received a copy of the GNU General Public License |
| 18 | along with GCC; see the file COPYING3. If not see |
| 19 | <http://www.gnu.org/licenses/>. */ |
| 20 | |
| 21 | |
| 22 | /* This file implements a typed hash table. |
| 23 | The implementation borrows from libiberty's htab_t in hashtab.h. |
| 24 | |
| 25 | |
| 26 | INTRODUCTION TO TYPES |
| 27 | |
| 28 | Users of the hash table generally need to be aware of three types. |
| 29 | |
| 30 | 1. The type being placed into the hash table. This type is called |
| 31 | the value type. |
| 32 | |
| 33 | 2. The type used to describe how to handle the value type within |
| 34 | the hash table. This descriptor type provides the hash table with |
| 35 | several things. |
| 36 | |
| 37 | - A typedef named 'value_type' to the value type (from above). |
| 38 | Provided a suitable Descriptor class it may be a user-defined, |
| 39 | non-POD type. |
| 40 | |
| 41 | - A static member function named 'hash' that takes a value_type |
| 42 | (or 'const value_type &') and returns a hashval_t value. |
| 43 | |
| 44 | - A typedef named 'compare_type' that is used to test when a value |
| 45 | is found. This type is the comparison type. Usually, it will be |
| 46 | the same as value_type and may be a user-defined, non-POD type. |
| 47 | If it is not the same type, you must generally explicitly compute |
| 48 | hash values and pass them to the hash table. |
| 49 | |
| 50 | - A static member function named 'equal' that takes a value_type |
| 51 | and a compare_type, and returns a bool. Both arguments can be |
| 52 | const references. |
| 53 | |
| 54 | - A static function named 'remove' that takes an value_type pointer |
| 55 | and frees the memory allocated by it. This function is used when |
| 56 | individual elements of the table need to be disposed of (e.g., |
| 57 | when deleting a hash table, removing elements from the table, etc). |
| 58 | |
| 59 | - An optional static function named 'keep_cache_entry'. This |
| 60 | function is provided only for garbage-collected elements that |
| 61 | are not marked by the normal gc mark pass. It describes what |
| 62 | what should happen to the element at the end of the gc mark phase. |
| 63 | The return value should be: |
| 64 | - 0 if the element should be deleted |
| 65 | - 1 if the element should be kept and needs to be marked |
| 66 | - -1 if the element should be kept and is already marked. |
| 67 | Returning -1 rather than 1 is purely an optimization. |
| 68 | |
| 69 | 3. The type of the hash table itself. (More later.) |
| 70 | |
| 71 | In very special circumstances, users may need to know about a fourth type. |
| 72 | |
| 73 | 4. The template type used to describe how hash table memory |
| 74 | is allocated. This type is called the allocator type. It is |
| 75 | parameterized on the value type. It provides two functions: |
| 76 | |
| 77 | - A static member function named 'data_alloc'. This function |
| 78 | allocates the data elements in the table. |
| 79 | |
| 80 | - A static member function named 'data_free'. This function |
| 81 | deallocates the data elements in the table. |
| 82 | |
| 83 | Hash table are instantiated with two type arguments. |
| 84 | |
| 85 | * The descriptor type, (2) above. |
| 86 | |
| 87 | * The allocator type, (4) above. In general, you will not need to |
| 88 | provide your own allocator type. By default, hash tables will use |
| 89 | the class template xcallocator, which uses malloc/free for allocation. |
| 90 | |
| 91 | |
| 92 | DEFINING A DESCRIPTOR TYPE |
| 93 | |
| 94 | The first task in using the hash table is to describe the element type. |
| 95 | We compose this into a few steps. |
| 96 | |
| 97 | 1. Decide on a removal policy for values stored in the table. |
| 98 | hash-traits.h provides class templates for the four most common |
| 99 | policies: |
| 100 | |
| 101 | * typed_free_remove implements the static 'remove' member function |
| 102 | by calling free(). |
| 103 | |
| 104 | * typed_noop_remove implements the static 'remove' member function |
| 105 | by doing nothing. |
| 106 | |
| 107 | * ggc_remove implements the static 'remove' member by doing nothing, |
| 108 | but instead provides routines for gc marking and for PCH streaming. |
| 109 | Use this for garbage-collected data that needs to be preserved across |
| 110 | collections. |
| 111 | |
| 112 | * ggc_cache_remove is like ggc_remove, except that it does not |
| 113 | mark the entries during the normal gc mark phase. Instead it |
| 114 | uses 'keep_cache_entry' (described above) to keep elements that |
| 115 | were not collected and delete those that were. Use this for |
| 116 | garbage-collected caches that should not in themselves stop |
| 117 | the data from being collected. |
| 118 | |
| 119 | You can use these policies by simply deriving the descriptor type |
| 120 | from one of those class template, with the appropriate argument. |
| 121 | |
| 122 | Otherwise, you need to write the static 'remove' member function |
| 123 | in the descriptor class. |
| 124 | |
| 125 | 2. Choose a hash function. Write the static 'hash' member function. |
| 126 | |
| 127 | 3. Decide whether the lookup function should take as input an object |
| 128 | of type value_type or something more restricted. Define compare_type |
| 129 | accordingly. |
| 130 | |
| 131 | 4. Choose an equality testing function 'equal' that compares a value_type |
| 132 | and a compare_type. |
| 133 | |
| 134 | If your elements are pointers, it is usually easiest to start with one |
| 135 | of the generic pointer descriptors described below and override the bits |
| 136 | you need to change. |
| 137 | |
| 138 | AN EXAMPLE DESCRIPTOR TYPE |
| 139 | |
| 140 | Suppose you want to put some_type into the hash table. You could define |
| 141 | the descriptor type as follows. |
| 142 | |
| 143 | struct some_type_hasher : nofree_ptr_hash <some_type> |
| 144 | // Deriving from nofree_ptr_hash means that we get a 'remove' that does |
| 145 | // nothing. This choice is good for raw values. |
| 146 | { |
| 147 | static inline hashval_t hash (const value_type *); |
| 148 | static inline bool equal (const value_type *, const compare_type *); |
| 149 | }; |
| 150 | |
| 151 | inline hashval_t |
| 152 | some_type_hasher::hash (const value_type *e) |
| 153 | { ... compute and return a hash value for E ... } |
| 154 | |
| 155 | inline bool |
| 156 | some_type_hasher::equal (const value_type *p1, const compare_type *p2) |
| 157 | { ... compare P1 vs P2. Return true if they are the 'same' ... } |
| 158 | |
| 159 | |
| 160 | AN EXAMPLE HASH_TABLE DECLARATION |
| 161 | |
| 162 | To instantiate a hash table for some_type: |
| 163 | |
| 164 | hash_table <some_type_hasher> some_type_hash_table; |
| 165 | |
| 166 | There is no need to mention some_type directly, as the hash table will |
| 167 | obtain it using some_type_hasher::value_type. |
| 168 | |
| 169 | You can then use any of the functions in hash_table's public interface. |
| 170 | See hash_table for details. The interface is very similar to libiberty's |
| 171 | htab_t. |
| 172 | |
| 173 | If a hash table is used only in some rare cases, it is possible |
| 174 | to construct the hash_table lazily before first use. This is done |
| 175 | through: |
| 176 | |
| 177 | hash_table <some_type_hasher, true> some_type_hash_table; |
| 178 | |
| 179 | which will cause whatever methods actually need the allocated entries |
| 180 | array to allocate it later. |
| 181 | |
| 182 | |
| 183 | EASY DESCRIPTORS FOR POINTERS |
| 184 | |
| 185 | There are four descriptors for pointer elements, one for each of |
| 186 | the removal policies above: |
| 187 | |
| 188 | * nofree_ptr_hash (based on typed_noop_remove) |
| 189 | * free_ptr_hash (based on typed_free_remove) |
| 190 | * ggc_ptr_hash (based on ggc_remove) |
| 191 | * ggc_cache_ptr_hash (based on ggc_cache_remove) |
| 192 | |
| 193 | These descriptors hash and compare elements by their pointer value, |
| 194 | rather than what they point to. So, to instantiate a hash table over |
| 195 | pointers to whatever_type, without freeing the whatever_types, use: |
| 196 | |
| 197 | hash_table <nofree_ptr_hash <whatever_type> > whatever_type_hash_table; |
| 198 | |
| 199 | |
| 200 | HASH TABLE ITERATORS |
| 201 | |
| 202 | The hash table provides standard C++ iterators. For example, consider a |
| 203 | hash table of some_info. We wish to consume each element of the table: |
| 204 | |
| 205 | extern void consume (some_info *); |
| 206 | |
| 207 | We define a convenience typedef and the hash table: |
| 208 | |
| 209 | typedef hash_table <some_info_hasher> info_table_type; |
| 210 | info_table_type info_table; |
| 211 | |
| 212 | Then we write the loop in typical C++ style: |
| 213 | |
| 214 | for (info_table_type::iterator iter = info_table.begin (); |
| 215 | iter != info_table.end (); |
| 216 | ++iter) |
| 217 | if ((*iter).status == INFO_READY) |
| 218 | consume (&*iter); |
| 219 | |
| 220 | Or with common sub-expression elimination: |
| 221 | |
| 222 | for (info_table_type::iterator iter = info_table.begin (); |
| 223 | iter != info_table.end (); |
| 224 | ++iter) |
| 225 | { |
| 226 | some_info &elem = *iter; |
| 227 | if (elem.status == INFO_READY) |
| 228 | consume (&elem); |
| 229 | } |
| 230 | |
| 231 | One can also use a more typical GCC style: |
| 232 | |
| 233 | typedef some_info *some_info_p; |
| 234 | some_info *elem_ptr; |
| 235 | info_table_type::iterator iter; |
| 236 | FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter) |
| 237 | if (elem_ptr->status == INFO_READY) |
| 238 | consume (elem_ptr); |
| 239 | |
| 240 | */ |
| 241 | |
| 242 | |
| 243 | #ifndef TYPED_HASHTAB_H |
| 244 | #define TYPED_HASHTAB_H |
| 245 | |
| 246 | #include "statistics.h" |
| 247 | #include "ggc.h" |
| 248 | #include "vec.h" |
| 249 | #include "hashtab.h" |
| 250 | #include "inchash.h" |
| 251 | #include "mem-stats-traits.h" |
| 252 | #include "hash-traits.h" |
| 253 | #include "hash-map-traits.h" |
| 254 | |
| 255 | template<typename, typename, typename> class hash_map; |
| 256 | template<typename, bool, typename> class hash_set; |
| 257 | |
| 258 | /* The ordinary memory allocator. */ |
| 259 | /* FIXME (crowl): This allocator may be extracted for wider sharing later. */ |
| 260 | |
| 261 | template <typename Type> |
| 262 | struct xcallocator |
| 263 | { |
| 264 | static Type *data_alloc (size_t count); |
| 265 | static void data_free (Type *memory); |
| 266 | }; |
| 267 | |
| 268 | |
| 269 | /* Allocate memory for COUNT data blocks. */ |
| 270 | |
| 271 | template <typename Type> |
| 272 | inline Type * |
| 273 | xcallocator <Type>::data_alloc (size_t count) |
| 274 | { |
| 275 | return static_cast <Type *> (xcalloc (count, sizeof (Type))); |
| 276 | } |
| 277 | |
| 278 | |
| 279 | /* Free memory for data blocks. */ |
| 280 | |
| 281 | template <typename Type> |
| 282 | inline void |
| 283 | xcallocator <Type>::data_free (Type *memory) |
| 284 | { |
| 285 | return ::free (ptr: memory); |
| 286 | } |
| 287 | |
| 288 | |
| 289 | /* Table of primes and their inversion information. */ |
| 290 | |
| 291 | struct prime_ent |
| 292 | { |
| 293 | hashval_t prime; |
| 294 | hashval_t inv; |
| 295 | hashval_t inv_m2; /* inverse of prime-2 */ |
| 296 | hashval_t shift; |
| 297 | }; |
| 298 | |
| 299 | extern struct prime_ent const prime_tab[]; |
| 300 | |
| 301 | /* Limit number of comparisons when calling hash_table<>::verify. */ |
| 302 | extern unsigned int hash_table_sanitize_eq_limit; |
| 303 | |
| 304 | /* Functions for computing hash table indexes. */ |
| 305 | |
| 306 | extern unsigned int hash_table_higher_prime_index (unsigned long n) |
| 307 | ATTRIBUTE_PURE; |
| 308 | |
| 309 | extern ATTRIBUTE_NORETURN ATTRIBUTE_COLD void hashtab_chk_error (); |
| 310 | |
| 311 | /* Return X % Y using multiplicative inverse values INV and SHIFT. |
| 312 | |
| 313 | The multiplicative inverses computed above are for 32-bit types, |
| 314 | and requires that we be able to compute a highpart multiply. |
| 315 | |
| 316 | FIX: I am not at all convinced that |
| 317 | 3 loads, 2 multiplications, 3 shifts, and 3 additions |
| 318 | will be faster than |
| 319 | 1 load and 1 modulus |
| 320 | on modern systems running a compiler. */ |
| 321 | |
| 322 | inline hashval_t |
| 323 | mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift) |
| 324 | { |
| 325 | hashval_t t1, t2, t3, t4, q, r; |
| 326 | |
| 327 | t1 = ((uint64_t)x * inv) >> 32; |
| 328 | t2 = x - t1; |
| 329 | t3 = t2 >> 1; |
| 330 | t4 = t1 + t3; |
| 331 | q = t4 >> shift; |
| 332 | r = x - (q * y); |
| 333 | |
| 334 | return r; |
| 335 | } |
| 336 | |
| 337 | /* Compute the primary table index for HASH given current prime index. */ |
| 338 | |
| 339 | inline hashval_t |
| 340 | hash_table_mod1 (hashval_t hash, unsigned int index) |
| 341 | { |
| 342 | const struct prime_ent *p = &prime_tab[index]; |
| 343 | gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32); |
| 344 | return mul_mod (x: hash, y: p->prime, inv: p->inv, shift: p->shift); |
| 345 | } |
| 346 | |
| 347 | /* Compute the secondary table index for HASH given current prime index. */ |
| 348 | |
| 349 | inline hashval_t |
| 350 | hash_table_mod2 (hashval_t hash, unsigned int index) |
| 351 | { |
| 352 | const struct prime_ent *p = &prime_tab[index]; |
| 353 | gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32); |
| 354 | return 1 + mul_mod (x: hash, y: p->prime - 2, inv: p->inv_m2, shift: p->shift); |
| 355 | } |
| 356 | |
| 357 | class mem_usage; |
| 358 | |
| 359 | /* User-facing hash table type. |
| 360 | |
| 361 | The table stores elements of type Descriptor::value_type and uses |
| 362 | the static descriptor functions described at the top of the file |
| 363 | to hash, compare and remove elements. |
| 364 | |
| 365 | Specify the template Allocator to allocate and free memory. |
| 366 | The default is xcallocator. |
| 367 | |
| 368 | Storage is an implementation detail and should not be used outside the |
| 369 | hash table code. |
| 370 | |
| 371 | */ |
| 372 | template <typename Descriptor, bool Lazy = false, |
| 373 | template<typename Type> class Allocator = xcallocator> |
| 374 | class hash_table |
| 375 | { |
| 376 | typedef typename Descriptor::value_type value_type; |
| 377 | typedef typename Descriptor::compare_type compare_type; |
| 378 | |
| 379 | public: |
| 380 | explicit hash_table (size_t, bool ggc = false, |
| 381 | bool sanitize_eq_and_hash = true, |
| 382 | bool gather_mem_stats = GATHER_STATISTICS, |
| 383 | mem_alloc_origin origin = HASH_TABLE_ORIGIN |
| 384 | CXX_MEM_STAT_INFO); |
| 385 | explicit hash_table (const hash_table &, bool ggc = false, |
| 386 | bool sanitize_eq_and_hash = true, |
| 387 | bool gather_mem_stats = GATHER_STATISTICS, |
| 388 | mem_alloc_origin origin = HASH_TABLE_ORIGIN |
| 389 | CXX_MEM_STAT_INFO); |
| 390 | ~hash_table (); |
| 391 | |
| 392 | /* Create a hash_table in gc memory. */ |
| 393 | static hash_table * |
| 394 | create_ggc (size_t n, bool sanitize_eq_and_hash = true CXX_MEM_STAT_INFO) |
| 395 | { |
| 396 | hash_table *table = ggc_alloc<hash_table> (); |
| 397 | new (table) hash_table (n, true, sanitize_eq_and_hash, GATHER_STATISTICS, |
| 398 | HASH_TABLE_ORIGIN PASS_MEM_STAT); |
| 399 | return table; |
| 400 | } |
| 401 | |
| 402 | /* Current size (in entries) of the hash table. */ |
| 403 | size_t size () const { return m_size; } |
| 404 | |
| 405 | /* Return the current number of elements in this hash table. */ |
| 406 | size_t elements () const { return m_n_elements - m_n_deleted; } |
| 407 | |
| 408 | /* Return the current number of elements in this hash table. */ |
| 409 | size_t elements_with_deleted () const { return m_n_elements; } |
| 410 | |
| 411 | /* This function clears all entries in this hash table. */ |
| 412 | void empty () { if (elements ()) empty_slow (); } |
| 413 | |
| 414 | /* Return true when there are no elements in this hash table. */ |
| 415 | bool is_empty () const { return elements () == 0; } |
| 416 | |
| 417 | /* This function clears a specified SLOT in a hash table. It is |
| 418 | useful when you've already done the lookup and don't want to do it |
| 419 | again. */ |
| 420 | void clear_slot (value_type *); |
| 421 | |
| 422 | /* This function searches for a hash table entry equal to the given |
| 423 | COMPARABLE element starting with the given HASH value. It cannot |
| 424 | be used to insert or delete an element. */ |
| 425 | value_type &find_with_hash (const compare_type &, hashval_t); |
| 426 | |
| 427 | /* Like find_slot_with_hash, but compute the hash value from the element. */ |
| 428 | value_type &find (const value_type &value) |
| 429 | { |
| 430 | return find_with_hash (value, Descriptor::hash (value)); |
| 431 | } |
| 432 | |
| 433 | value_type *find_slot (const value_type &value, insert_option insert) |
| 434 | { |
| 435 | return find_slot_with_hash (comparable: value, hash: Descriptor::hash (value), insert); |
| 436 | } |
| 437 | |
| 438 | /* This function searches for a hash table slot containing an entry |
| 439 | equal to the given COMPARABLE element and starting with the given |
| 440 | HASH. To delete an entry, call this with insert=NO_INSERT, then |
| 441 | call clear_slot on the slot returned (possibly after doing some |
| 442 | checks). To insert an entry, call this with insert=INSERT, then |
| 443 | write the value you want into the returned slot. When inserting an |
| 444 | entry, NULL may be returned if memory allocation fails. */ |
| 445 | value_type *find_slot_with_hash (const compare_type &comparable, |
| 446 | hashval_t hash, enum insert_option insert); |
| 447 | |
| 448 | /* This function deletes an element with the given COMPARABLE value |
| 449 | from hash table starting with the given HASH. If there is no |
| 450 | matching element in the hash table, this function does nothing. */ |
| 451 | void remove_elt_with_hash (const compare_type &, hashval_t); |
| 452 | |
| 453 | /* Like remove_elt_with_hash, but compute the hash value from the |
| 454 | element. */ |
| 455 | void remove_elt (const value_type &value) |
| 456 | { |
| 457 | remove_elt_with_hash (value, Descriptor::hash (value)); |
| 458 | } |
| 459 | |
| 460 | /* This function scans over the entire hash table calling CALLBACK for |
| 461 | each live entry. If CALLBACK returns false, the iteration stops. |
| 462 | ARGUMENT is passed as CALLBACK's second argument. */ |
| 463 | template <typename Argument, |
| 464 | int (*Callback) (value_type *slot, Argument argument)> |
| 465 | void traverse_noresize (Argument argument); |
| 466 | |
| 467 | /* Like traverse_noresize, but does resize the table when it is too empty |
| 468 | to improve effectivity of subsequent calls. */ |
| 469 | template <typename Argument, |
| 470 | int (*Callback) (value_type *slot, Argument argument)> |
| 471 | void traverse (Argument argument); |
| 472 | |
| 473 | class iterator |
| 474 | { |
| 475 | public: |
| 476 | iterator () : m_slot (NULL), m_limit (NULL) {} |
| 477 | |
| 478 | iterator (value_type *slot, value_type *limit) : |
| 479 | m_slot (slot), m_limit (limit) {} |
| 480 | |
| 481 | inline value_type &operator * () { return *m_slot; } |
| 482 | void slide (); |
| 483 | inline iterator &operator ++ (); |
| 484 | bool operator != (const iterator &other) const |
| 485 | { |
| 486 | return m_slot != other.m_slot || m_limit != other.m_limit; |
| 487 | } |
| 488 | |
| 489 | private: |
| 490 | value_type *m_slot; |
| 491 | value_type *m_limit; |
| 492 | }; |
| 493 | |
| 494 | iterator begin () const |
| 495 | { |
| 496 | if (Lazy && m_entries == NULL) |
| 497 | return iterator (); |
| 498 | check_complete_insertion (); |
| 499 | iterator iter (m_entries, m_entries + m_size); |
| 500 | iter.slide (); |
| 501 | return iter; |
| 502 | } |
| 503 | |
| 504 | iterator end () const { return iterator (); } |
| 505 | |
| 506 | double collisions () const |
| 507 | { |
| 508 | return m_searches ? static_cast <double> (m_collisions) / m_searches : 0; |
| 509 | } |
| 510 | |
| 511 | private: |
| 512 | /* FIXME: Make the class assignable. See pr90959. */ |
| 513 | void operator= (hash_table&); |
| 514 | |
| 515 | template<typename T> friend void gt_ggc_mx (hash_table<T> *); |
| 516 | template<typename T> friend void gt_pch_nx (hash_table<T> *); |
| 517 | template<typename T> friend void |
| 518 | hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *); |
| 519 | template<typename T, typename U, typename V> friend void |
| 520 | gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *); |
| 521 | template<typename T, typename U> |
| 522 | friend void gt_pch_nx (hash_set<T, false, U> *, gt_pointer_operator, void *); |
| 523 | template<typename T> friend void gt_pch_nx (hash_table<T> *, |
| 524 | gt_pointer_operator, void *); |
| 525 | |
| 526 | template<typename T> friend void gt_cleare_cache (hash_table<T> *); |
| 527 | |
| 528 | void empty_slow (); |
| 529 | |
| 530 | value_type *alloc_entries (size_t n CXX_MEM_STAT_INFO) const; |
| 531 | value_type *find_empty_slot_for_expand (hashval_t); |
| 532 | void verify (const compare_type &comparable, hashval_t hash); |
| 533 | bool too_empty_p (unsigned int); |
| 534 | void expand (); |
| 535 | static bool is_deleted (value_type &v) |
| 536 | { |
| 537 | /* Traits are supposed to avoid recognizing elements as both empty |
| 538 | and deleted, but to fail safe in case custom traits fail to do |
| 539 | that, make sure we never test for is_deleted without having |
| 540 | first ruled out is_empty. */ |
| 541 | gcc_checking_assert (!Descriptor::is_empty (v)); |
| 542 | return Descriptor::is_deleted (v); |
| 543 | } |
| 544 | |
| 545 | static bool is_empty (value_type &v) |
| 546 | { |
| 547 | return Descriptor::is_empty (v); |
| 548 | } |
| 549 | |
| 550 | static void mark_deleted (value_type &v) |
| 551 | { |
| 552 | Descriptor::mark_deleted (v); |
| 553 | /* Traits are supposed to refuse to set elements as deleted if |
| 554 | those would be indistinguishable from empty, but to fail safe |
| 555 | in case custom traits fail to do that, check that the |
| 556 | just-deleted element does not look empty. */ |
| 557 | gcc_checking_assert (!Descriptor::is_empty (v)); |
| 558 | } |
| 559 | |
| 560 | static void mark_empty (value_type &v) |
| 561 | { |
| 562 | Descriptor::mark_empty (v); |
| 563 | } |
| 564 | |
| 565 | public: |
| 566 | void check_complete_insertion () const |
| 567 | { |
| 568 | #if CHECKING_P |
| 569 | if (!m_inserting_slot) |
| 570 | return; |
| 571 | |
| 572 | gcc_checking_assert (m_inserting_slot >= &m_entries[0] |
| 573 | && m_inserting_slot < &m_entries[m_size]); |
| 574 | |
| 575 | if (!is_empty (*m_inserting_slot)) |
| 576 | m_inserting_slot = NULL; |
| 577 | else |
| 578 | gcc_unreachable (); |
| 579 | #endif |
| 580 | } |
| 581 | |
| 582 | private: |
| 583 | value_type *check_insert_slot (value_type *ret) |
| 584 | { |
| 585 | #if CHECKING_P |
| 586 | gcc_checking_assert (is_empty (*ret)); |
| 587 | m_inserting_slot = ret; |
| 588 | #endif |
| 589 | return ret; |
| 590 | } |
| 591 | |
| 592 | #if CHECKING_P |
| 593 | mutable value_type *m_inserting_slot; |
| 594 | #endif |
| 595 | |
| 596 | /* Table itself. */ |
| 597 | value_type *m_entries; |
| 598 | |
| 599 | size_t m_size; |
| 600 | |
| 601 | /* Current number of elements including also deleted elements. */ |
| 602 | size_t m_n_elements; |
| 603 | |
| 604 | /* Current number of deleted elements in the table. */ |
| 605 | size_t m_n_deleted; |
| 606 | |
| 607 | /* The following member is used for debugging. Its value is number |
| 608 | of all calls of `htab_find_slot' for the hash table. */ |
| 609 | unsigned int m_searches; |
| 610 | |
| 611 | /* The following member is used for debugging. Its value is number |
| 612 | of collisions fixed for time of work with the hash table. */ |
| 613 | unsigned int m_collisions; |
| 614 | |
| 615 | /* Current size (in entries) of the hash table, as an index into the |
| 616 | table of primes. */ |
| 617 | unsigned int m_size_prime_index; |
| 618 | |
| 619 | /* if m_entries is stored in ggc memory. */ |
| 620 | bool m_ggc; |
| 621 | |
| 622 | /* True if the table should be sanitized for equal and hash functions. */ |
| 623 | bool m_sanitize_eq_and_hash; |
| 624 | |
| 625 | /* If we should gather memory statistics for the table. */ |
| 626 | #if GATHER_STATISTICS |
| 627 | bool m_gather_mem_stats; |
| 628 | #else |
| 629 | static const bool m_gather_mem_stats = false; |
| 630 | #endif |
| 631 | }; |
| 632 | |
| 633 | /* As mem-stats.h heavily utilizes hash maps (hash tables), we have to include |
| 634 | mem-stats.h after hash_table declaration. */ |
| 635 | |
| 636 | #include "mem-stats.h" |
| 637 | #include "hash-map.h" |
| 638 | |
| 639 | extern mem_alloc_description<mem_usage>& hash_table_usage (void); |
| 640 | |
| 641 | /* Support function for statistics. */ |
| 642 | extern void dump_hash_table_loc_statistics (void); |
| 643 | |
| 644 | template<typename Descriptor, bool Lazy, |
| 645 | template<typename Type> class Allocator> |
| 646 | hash_table<Descriptor, Lazy, Allocator>::hash_table (size_t size, bool ggc, |
| 647 | bool sanitize_eq_and_hash, |
| 648 | bool gather_mem_stats |
| 649 | ATTRIBUTE_UNUSED, |
| 650 | mem_alloc_origin origin |
| 651 | MEM_STAT_DECL) : |
| 652 | #if CHECKING_P |
| 653 | m_inserting_slot (0), |
| 654 | #endif |
| 655 | m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0), |
| 656 | m_ggc (ggc), m_sanitize_eq_and_hash (sanitize_eq_and_hash) |
| 657 | #if GATHER_STATISTICS |
| 658 | , m_gather_mem_stats (gather_mem_stats) |
| 659 | #endif |
| 660 | { |
| 661 | unsigned int size_prime_index; |
| 662 | |
| 663 | size_prime_index = hash_table_higher_prime_index (n: size); |
| 664 | size = prime_tab[size_prime_index].prime; |
| 665 | |
| 666 | if (m_gather_mem_stats) |
| 667 | hash_table_usage ().register_descriptor (this, origin, ggc |
| 668 | FINAL_PASS_MEM_STAT); |
| 669 | |
| 670 | if (Lazy) |
| 671 | m_entries = NULL; |
| 672 | else |
| 673 | m_entries = alloc_entries (n: size PASS_MEM_STAT); |
| 674 | m_size = size; |
| 675 | m_size_prime_index = size_prime_index; |
| 676 | } |
| 677 | |
| 678 | template<typename Descriptor, bool Lazy, |
| 679 | template<typename Type> class Allocator> |
| 680 | hash_table<Descriptor, Lazy, Allocator>::hash_table (const hash_table &h, |
| 681 | bool ggc, |
| 682 | bool sanitize_eq_and_hash, |
| 683 | bool gather_mem_stats |
| 684 | ATTRIBUTE_UNUSED, |
| 685 | mem_alloc_origin origin |
| 686 | MEM_STAT_DECL) : |
| 687 | #if CHECKING_P |
| 688 | m_inserting_slot (0), |
| 689 | #endif |
| 690 | m_n_elements (h.m_n_elements), m_n_deleted (h.m_n_deleted), |
| 691 | m_searches (0), m_collisions (0), m_ggc (ggc), |
| 692 | m_sanitize_eq_and_hash (sanitize_eq_and_hash) |
| 693 | #if GATHER_STATISTICS |
| 694 | , m_gather_mem_stats (gather_mem_stats) |
| 695 | #endif |
| 696 | { |
| 697 | h.check_complete_insertion (); |
| 698 | |
| 699 | size_t size = h.m_size; |
| 700 | |
| 701 | if (m_gather_mem_stats) |
| 702 | hash_table_usage ().register_descriptor (this, origin, ggc |
| 703 | FINAL_PASS_MEM_STAT); |
| 704 | |
| 705 | if (Lazy && h.m_entries == NULL) |
| 706 | m_entries = NULL; |
| 707 | else |
| 708 | { |
| 709 | value_type *nentries = alloc_entries (n: size PASS_MEM_STAT); |
| 710 | for (size_t i = 0; i < size; ++i) |
| 711 | { |
| 712 | value_type &entry = h.m_entries[i]; |
| 713 | if (is_empty (entry)) |
| 714 | continue; |
| 715 | else if (is_deleted (v&: entry)) |
| 716 | mark_deleted (v&: nentries[i]); |
| 717 | else |
| 718 | new ((void*) (nentries + i)) value_type (entry); |
| 719 | } |
| 720 | m_entries = nentries; |
| 721 | } |
| 722 | m_size = size; |
| 723 | m_size_prime_index = h.m_size_prime_index; |
| 724 | } |
| 725 | |
| 726 | template<typename Descriptor, bool Lazy, |
| 727 | template<typename Type> class Allocator> |
| 728 | hash_table<Descriptor, Lazy, Allocator>::~hash_table () |
| 729 | { |
| 730 | check_complete_insertion (); |
| 731 | |
| 732 | if (!Lazy || m_entries) |
| 733 | { |
| 734 | for (size_t i = m_size - 1; i < m_size; i--) |
| 735 | if (!is_empty (m_entries[i]) && !is_deleted (v&: m_entries[i])) |
| 736 | Descriptor::remove (m_entries[i]); |
| 737 | |
| 738 | if (!m_ggc) |
| 739 | Allocator <value_type> ::data_free (m_entries); |
| 740 | else |
| 741 | ggc_free (m_entries); |
| 742 | if (m_gather_mem_stats) |
| 743 | hash_table_usage ().release_instance_overhead (ptr: this, |
| 744 | size: sizeof (value_type) |
| 745 | * m_size, remove_from_map: true); |
| 746 | } |
| 747 | else if (m_gather_mem_stats) |
| 748 | hash_table_usage ().unregister_descriptor (ptr: this); |
| 749 | } |
| 750 | |
| 751 | /* This function returns an array of empty hash table elements. */ |
| 752 | |
| 753 | template<typename Descriptor, bool Lazy, |
| 754 | template<typename Type> class Allocator> |
| 755 | inline typename hash_table<Descriptor, Lazy, Allocator>::value_type * |
| 756 | hash_table<Descriptor, Lazy, |
| 757 | Allocator>::alloc_entries (size_t n MEM_STAT_DECL) const |
| 758 | { |
| 759 | value_type *nentries; |
| 760 | |
| 761 | if (m_gather_mem_stats) |
| 762 | hash_table_usage ().register_instance_overhead (size: sizeof (value_type) * n, ptr: this); |
| 763 | |
| 764 | if (!m_ggc) |
| 765 | nentries = Allocator <value_type> ::data_alloc (n); |
| 766 | else |
| 767 | nentries = ::ggc_cleared_vec_alloc<value_type> (n PASS_MEM_STAT); |
| 768 | |
| 769 | gcc_assert (nentries != NULL); |
| 770 | if (!Descriptor::empty_zero_p) |
| 771 | for (size_t i = 0; i < n; i++) |
| 772 | mark_empty (v&: nentries[i]); |
| 773 | |
| 774 | return nentries; |
| 775 | } |
| 776 | |
| 777 | /* Similar to find_slot, but without several unwanted side effects: |
| 778 | - Does not call equal when it finds an existing entry. |
| 779 | - Does not change the count of elements/searches/collisions in the |
| 780 | hash table. |
| 781 | This function also assumes there are no deleted entries in the table. |
| 782 | HASH is the hash value for the element to be inserted. */ |
| 783 | |
| 784 | template<typename Descriptor, bool Lazy, |
| 785 | template<typename Type> class Allocator> |
| 786 | typename hash_table<Descriptor, Lazy, Allocator>::value_type * |
| 787 | hash_table<Descriptor, Lazy, |
| 788 | Allocator>::find_empty_slot_for_expand (hashval_t hash) |
| 789 | { |
| 790 | hashval_t index = hash_table_mod1 (hash, index: m_size_prime_index); |
| 791 | size_t size = m_size; |
| 792 | value_type *slot = m_entries + index; |
| 793 | hashval_t hash2; |
| 794 | |
| 795 | if (is_empty (*slot)) |
| 796 | return slot; |
| 797 | gcc_checking_assert (!is_deleted (*slot)); |
| 798 | |
| 799 | hash2 = hash_table_mod2 (hash, index: m_size_prime_index); |
| 800 | for (;;) |
| 801 | { |
| 802 | index += hash2; |
| 803 | if (index >= size) |
| 804 | index -= size; |
| 805 | |
| 806 | slot = m_entries + index; |
| 807 | if (is_empty (*slot)) |
| 808 | return slot; |
| 809 | gcc_checking_assert (!is_deleted (*slot)); |
| 810 | } |
| 811 | } |
| 812 | |
| 813 | /* Return true if the current table is excessively big for ELTS elements. */ |
| 814 | |
| 815 | template<typename Descriptor, bool Lazy, |
| 816 | template<typename Type> class Allocator> |
| 817 | inline bool |
| 818 | hash_table<Descriptor, Lazy, Allocator>::too_empty_p (unsigned int elts) |
| 819 | { |
| 820 | return elts * 8 < m_size && m_size > 32; |
| 821 | } |
| 822 | |
| 823 | /* The following function changes size of memory allocated for the |
| 824 | entries and repeatedly inserts the table elements. The occupancy |
| 825 | of the table after the call will be about 50%. Naturally the hash |
| 826 | table must already exist. Remember also that the place of the |
| 827 | table entries is changed. If memory allocation fails, this function |
| 828 | will abort. */ |
| 829 | |
| 830 | template<typename Descriptor, bool Lazy, |
| 831 | template<typename Type> class Allocator> |
| 832 | void |
| 833 | hash_table<Descriptor, Lazy, Allocator>::expand () |
| 834 | { |
| 835 | check_complete_insertion (); |
| 836 | |
| 837 | value_type *oentries = m_entries; |
| 838 | unsigned int oindex = m_size_prime_index; |
| 839 | size_t osize = size (); |
| 840 | value_type *olimit = oentries + osize; |
| 841 | size_t elts = elements (); |
| 842 | |
| 843 | /* Resize only when table after removal of unused elements is either |
| 844 | too full or too empty. */ |
| 845 | unsigned int nindex; |
| 846 | size_t nsize; |
| 847 | if (elts * 2 > osize || too_empty_p (elts)) |
| 848 | { |
| 849 | nindex = hash_table_higher_prime_index (n: elts * 2); |
| 850 | nsize = prime_tab[nindex].prime; |
| 851 | } |
| 852 | else |
| 853 | { |
| 854 | nindex = oindex; |
| 855 | nsize = osize; |
| 856 | } |
| 857 | |
| 858 | value_type *nentries = alloc_entries (n: nsize); |
| 859 | |
| 860 | if (m_gather_mem_stats) |
| 861 | hash_table_usage ().release_instance_overhead (ptr: this, size: sizeof (value_type) |
| 862 | * osize); |
| 863 | |
| 864 | size_t n_deleted = m_n_deleted; |
| 865 | |
| 866 | m_entries = nentries; |
| 867 | m_size = nsize; |
| 868 | m_size_prime_index = nindex; |
| 869 | m_n_elements -= m_n_deleted; |
| 870 | m_n_deleted = 0; |
| 871 | |
| 872 | size_t n_elements = m_n_elements; |
| 873 | |
| 874 | value_type *p = oentries; |
| 875 | do |
| 876 | { |
| 877 | value_type &x = *p; |
| 878 | |
| 879 | if (is_empty (x)) |
| 880 | ; |
| 881 | else if (is_deleted (v&: x)) |
| 882 | n_deleted--; |
| 883 | else |
| 884 | { |
| 885 | n_elements--; |
| 886 | value_type *q = find_empty_slot_for_expand (hash: Descriptor::hash (x)); |
| 887 | new ((void*) q) value_type (std::move (x)); |
| 888 | /* After the resources of 'x' have been moved to a new object at 'q', |
| 889 | we now have to destroy the 'x' object, to end its lifetime. */ |
| 890 | x.~value_type (); |
| 891 | } |
| 892 | |
| 893 | p++; |
| 894 | } |
| 895 | while (p < olimit); |
| 896 | |
| 897 | gcc_checking_assert (!n_elements && !n_deleted); |
| 898 | |
| 899 | if (!m_ggc) |
| 900 | Allocator <value_type> ::data_free (oentries); |
| 901 | else |
| 902 | ggc_free (oentries); |
| 903 | } |
| 904 | |
| 905 | /* Implements empty() in cases where it isn't a no-op. */ |
| 906 | |
| 907 | template<typename Descriptor, bool Lazy, |
| 908 | template<typename Type> class Allocator> |
| 909 | void |
| 910 | hash_table<Descriptor, Lazy, Allocator>::empty_slow () |
| 911 | { |
| 912 | check_complete_insertion (); |
| 913 | |
| 914 | size_t size = m_size; |
| 915 | size_t nsize = size; |
| 916 | value_type *entries = m_entries; |
| 917 | |
| 918 | for (size_t i = size - 1; i < size; i--) |
| 919 | if (!is_empty (entries[i]) && !is_deleted (v&: entries[i])) |
| 920 | Descriptor::remove (entries[i]); |
| 921 | |
| 922 | /* Instead of clearing megabyte, downsize the table. */ |
| 923 | if (size > 1024*1024 / sizeof (value_type)) |
| 924 | nsize = 1024 / sizeof (value_type); |
| 925 | else if (too_empty_p (elts: m_n_elements)) |
| 926 | nsize = m_n_elements * 2; |
| 927 | |
| 928 | if (nsize != size) |
| 929 | { |
| 930 | unsigned int nindex = hash_table_higher_prime_index (n: nsize); |
| 931 | |
| 932 | nsize = prime_tab[nindex].prime; |
| 933 | |
| 934 | if (!m_ggc) |
| 935 | Allocator <value_type> ::data_free (m_entries); |
| 936 | else |
| 937 | ggc_free (m_entries); |
| 938 | |
| 939 | m_entries = alloc_entries (n: nsize); |
| 940 | m_size = nsize; |
| 941 | m_size_prime_index = nindex; |
| 942 | } |
| 943 | else if (Descriptor::empty_zero_p) |
| 944 | memset (s: (void *) entries, c: 0, n: size * sizeof (value_type)); |
| 945 | else |
| 946 | for (size_t i = 0; i < size; i++) |
| 947 | mark_empty (v&: entries[i]); |
| 948 | |
| 949 | m_n_deleted = 0; |
| 950 | m_n_elements = 0; |
| 951 | } |
| 952 | |
| 953 | /* This function clears a specified SLOT in a hash table. It is |
| 954 | useful when you've already done the lookup and don't want to do it |
| 955 | again. */ |
| 956 | |
| 957 | template<typename Descriptor, bool Lazy, |
| 958 | template<typename Type> class Allocator> |
| 959 | void |
| 960 | hash_table<Descriptor, Lazy, Allocator>::clear_slot (value_type *slot) |
| 961 | { |
| 962 | check_complete_insertion (); |
| 963 | |
| 964 | gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size () |
| 965 | || is_empty (*slot) || is_deleted (*slot))); |
| 966 | |
| 967 | Descriptor::remove (*slot); |
| 968 | |
| 969 | mark_deleted (v&: *slot); |
| 970 | m_n_deleted++; |
| 971 | } |
| 972 | |
| 973 | /* This function searches for a hash table entry equal to the given |
| 974 | COMPARABLE element starting with the given HASH value. It cannot |
| 975 | be used to insert or delete an element. */ |
| 976 | |
| 977 | template<typename Descriptor, bool Lazy, |
| 978 | template<typename Type> class Allocator> |
| 979 | typename hash_table<Descriptor, Lazy, Allocator>::value_type & |
| 980 | hash_table<Descriptor, Lazy, Allocator> |
| 981 | ::find_with_hash (const compare_type &comparable, hashval_t hash) |
| 982 | { |
| 983 | m_searches++; |
| 984 | size_t size = m_size; |
| 985 | hashval_t index = hash_table_mod1 (hash, index: m_size_prime_index); |
| 986 | |
| 987 | if (Lazy && m_entries == NULL) |
| 988 | m_entries = alloc_entries (n: size); |
| 989 | |
| 990 | check_complete_insertion (); |
| 991 | |
| 992 | #if CHECKING_P |
| 993 | if (m_sanitize_eq_and_hash) |
| 994 | verify (comparable, hash); |
| 995 | #endif |
| 996 | |
| 997 | value_type *entry = &m_entries[index]; |
| 998 | if (is_empty (*entry) |
| 999 | || (!is_deleted (v&: *entry) && Descriptor::equal (*entry, comparable))) |
| 1000 | return *entry; |
| 1001 | |
| 1002 | hashval_t hash2 = hash_table_mod2 (hash, index: m_size_prime_index); |
| 1003 | for (;;) |
| 1004 | { |
| 1005 | m_collisions++; |
| 1006 | index += hash2; |
| 1007 | if (index >= size) |
| 1008 | index -= size; |
| 1009 | |
| 1010 | entry = &m_entries[index]; |
| 1011 | if (is_empty (*entry) |
| 1012 | || (!is_deleted (v&: *entry) && Descriptor::equal (*entry, comparable))) |
| 1013 | return *entry; |
| 1014 | } |
| 1015 | } |
| 1016 | |
| 1017 | /* This function searches for a hash table slot containing an entry |
| 1018 | equal to the given COMPARABLE element and starting with the given |
| 1019 | HASH. To delete an entry, call this with insert=NO_INSERT, then |
| 1020 | call clear_slot on the slot returned (possibly after doing some |
| 1021 | checks). To insert an entry, call this with insert=INSERT, then |
| 1022 | write the value you want into the returned slot. When inserting an |
| 1023 | entry, NULL may be returned if memory allocation fails. */ |
| 1024 | |
| 1025 | template<typename Descriptor, bool Lazy, |
| 1026 | template<typename Type> class Allocator> |
| 1027 | typename hash_table<Descriptor, Lazy, Allocator>::value_type * |
| 1028 | hash_table<Descriptor, Lazy, Allocator> |
| 1029 | ::find_slot_with_hash (const compare_type &comparable, hashval_t hash, |
| 1030 | enum insert_option insert) |
| 1031 | { |
| 1032 | if (Lazy && m_entries == NULL) |
| 1033 | { |
| 1034 | if (insert == INSERT) |
| 1035 | m_entries = alloc_entries (n: m_size); |
| 1036 | else |
| 1037 | return NULL; |
| 1038 | } |
| 1039 | if (insert == INSERT && m_size * 3 <= m_n_elements * 4) |
| 1040 | expand (); |
| 1041 | else |
| 1042 | check_complete_insertion (); |
| 1043 | |
| 1044 | #if CHECKING_P |
| 1045 | if (m_sanitize_eq_and_hash) |
| 1046 | verify (comparable, hash); |
| 1047 | #endif |
| 1048 | |
| 1049 | m_searches++; |
| 1050 | value_type *first_deleted_slot = NULL; |
| 1051 | hashval_t index = hash_table_mod1 (hash, index: m_size_prime_index); |
| 1052 | hashval_t hash2 = hash_table_mod2 (hash, index: m_size_prime_index); |
| 1053 | value_type *entry = &m_entries[index]; |
| 1054 | size_t size = m_size; |
| 1055 | if (is_empty (*entry)) |
| 1056 | goto empty_entry; |
| 1057 | else if (is_deleted (v&: *entry)) |
| 1058 | first_deleted_slot = &m_entries[index]; |
| 1059 | else if (Descriptor::equal (*entry, comparable)) |
| 1060 | return &m_entries[index]; |
| 1061 | |
| 1062 | for (;;) |
| 1063 | { |
| 1064 | m_collisions++; |
| 1065 | index += hash2; |
| 1066 | if (index >= size) |
| 1067 | index -= size; |
| 1068 | |
| 1069 | entry = &m_entries[index]; |
| 1070 | if (is_empty (*entry)) |
| 1071 | goto empty_entry; |
| 1072 | else if (is_deleted (v&: *entry)) |
| 1073 | { |
| 1074 | if (!first_deleted_slot) |
| 1075 | first_deleted_slot = &m_entries[index]; |
| 1076 | } |
| 1077 | else if (Descriptor::equal (*entry, comparable)) |
| 1078 | return &m_entries[index]; |
| 1079 | } |
| 1080 | |
| 1081 | empty_entry: |
| 1082 | if (insert == NO_INSERT) |
| 1083 | return NULL; |
| 1084 | |
| 1085 | if (first_deleted_slot) |
| 1086 | { |
| 1087 | m_n_deleted--; |
| 1088 | mark_empty (v&: *first_deleted_slot); |
| 1089 | return check_insert_slot (ret: first_deleted_slot); |
| 1090 | } |
| 1091 | |
| 1092 | m_n_elements++; |
| 1093 | return check_insert_slot (ret: &m_entries[index]); |
| 1094 | } |
| 1095 | |
| 1096 | /* Verify that all existing elements in the hash table which are |
| 1097 | equal to COMPARABLE have an equal HASH value provided as argument. |
| 1098 | Also check that the hash table element counts are correct. */ |
| 1099 | |
| 1100 | template<typename Descriptor, bool Lazy, |
| 1101 | template<typename Type> class Allocator> |
| 1102 | void |
| 1103 | hash_table<Descriptor, Lazy, Allocator> |
| 1104 | ::verify (const compare_type &comparable, hashval_t hash) |
| 1105 | { |
| 1106 | size_t n_elements = m_n_elements; |
| 1107 | size_t n_deleted = m_n_deleted; |
| 1108 | for (size_t i = 0; i < MIN (hash_table_sanitize_eq_limit, m_size); i++) |
| 1109 | { |
| 1110 | value_type *entry = &m_entries[i]; |
| 1111 | if (!is_empty (*entry)) |
| 1112 | { |
| 1113 | n_elements--; |
| 1114 | if (is_deleted (v&: *entry)) |
| 1115 | n_deleted--; |
| 1116 | else if (hash != Descriptor::hash (*entry) |
| 1117 | && Descriptor::equal (*entry, comparable)) |
| 1118 | hashtab_chk_error (); |
| 1119 | } |
| 1120 | } |
| 1121 | if (hash_table_sanitize_eq_limit >= m_size) |
| 1122 | gcc_checking_assert (!n_elements && !n_deleted); |
| 1123 | } |
| 1124 | |
| 1125 | /* This function deletes an element with the given COMPARABLE value |
| 1126 | from hash table starting with the given HASH. If there is no |
| 1127 | matching element in the hash table, this function does nothing. */ |
| 1128 | |
| 1129 | template<typename Descriptor, bool Lazy, |
| 1130 | template<typename Type> class Allocator> |
| 1131 | void |
| 1132 | hash_table<Descriptor, Lazy, Allocator> |
| 1133 | ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash) |
| 1134 | { |
| 1135 | check_complete_insertion (); |
| 1136 | |
| 1137 | value_type *slot = find_slot_with_hash (comparable, hash, insert: NO_INSERT); |
| 1138 | if (slot == NULL) |
| 1139 | return; |
| 1140 | |
| 1141 | Descriptor::remove (*slot); |
| 1142 | |
| 1143 | mark_deleted (v&: *slot); |
| 1144 | m_n_deleted++; |
| 1145 | } |
| 1146 | |
| 1147 | /* This function scans over the entire hash table calling CALLBACK for |
| 1148 | each live entry. If CALLBACK returns false, the iteration stops. |
| 1149 | ARGUMENT is passed as CALLBACK's second argument. */ |
| 1150 | |
| 1151 | template<typename Descriptor, bool Lazy, |
| 1152 | template<typename Type> class Allocator> |
| 1153 | template<typename Argument, |
| 1154 | int (*Callback) |
| 1155 | (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot, |
| 1156 | Argument argument)> |
| 1157 | void |
| 1158 | hash_table<Descriptor, Lazy, Allocator>::traverse_noresize (Argument argument) |
| 1159 | { |
| 1160 | if (Lazy && m_entries == NULL) |
| 1161 | return; |
| 1162 | |
| 1163 | check_complete_insertion (); |
| 1164 | |
| 1165 | value_type *slot = m_entries; |
| 1166 | value_type *limit = slot + size (); |
| 1167 | |
| 1168 | do |
| 1169 | { |
| 1170 | value_type &x = *slot; |
| 1171 | |
| 1172 | if (!is_empty (x) && !is_deleted (v&: x)) |
| 1173 | if (! Callback (slot, argument)) |
| 1174 | break; |
| 1175 | } |
| 1176 | while (++slot < limit); |
| 1177 | } |
| 1178 | |
| 1179 | /* Like traverse_noresize, but does resize the table when it is too empty |
| 1180 | to improve effectivity of subsequent calls. */ |
| 1181 | |
| 1182 | template <typename Descriptor, bool Lazy, |
| 1183 | template <typename Type> class Allocator> |
| 1184 | template <typename Argument, |
| 1185 | int (*Callback) |
| 1186 | (typename hash_table<Descriptor, Lazy, Allocator>::value_type *slot, |
| 1187 | Argument argument)> |
| 1188 | void |
| 1189 | hash_table<Descriptor, Lazy, Allocator>::traverse (Argument argument) |
| 1190 | { |
| 1191 | if (too_empty_p (elts: elements ()) && (!Lazy || m_entries)) |
| 1192 | expand (); |
| 1193 | |
| 1194 | traverse_noresize <Argument, Callback> (argument); |
| 1195 | } |
| 1196 | |
| 1197 | /* Slide down the iterator slots until an active entry is found. */ |
| 1198 | |
| 1199 | template<typename Descriptor, bool Lazy, |
| 1200 | template<typename Type> class Allocator> |
| 1201 | void |
| 1202 | hash_table<Descriptor, Lazy, Allocator>::iterator::slide () |
| 1203 | { |
| 1204 | for ( ; m_slot < m_limit; ++m_slot ) |
| 1205 | { |
| 1206 | value_type &x = *m_slot; |
| 1207 | if (!is_empty (x) && !is_deleted (v&: x)) |
| 1208 | return; |
| 1209 | } |
| 1210 | m_slot = NULL; |
| 1211 | m_limit = NULL; |
| 1212 | } |
| 1213 | |
| 1214 | /* Bump the iterator. */ |
| 1215 | |
| 1216 | template<typename Descriptor, bool Lazy, |
| 1217 | template<typename Type> class Allocator> |
| 1218 | inline typename hash_table<Descriptor, Lazy, Allocator>::iterator & |
| 1219 | hash_table<Descriptor, Lazy, Allocator>::iterator::operator ++ () |
| 1220 | { |
| 1221 | ++m_slot; |
| 1222 | slide (); |
| 1223 | return *this; |
| 1224 | } |
| 1225 | |
| 1226 | |
| 1227 | /* Iterate through the elements of hash_table HTAB, |
| 1228 | using hash_table <....>::iterator ITER, |
| 1229 | storing each element in RESULT, which is of type TYPE. */ |
| 1230 | |
| 1231 | #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \ |
| 1232 | for ((ITER) = (HTAB).begin (); \ |
| 1233 | (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \ |
| 1234 | ++(ITER)) |
| 1235 | |
| 1236 | /* ggc walking routines. */ |
| 1237 | |
| 1238 | template<typename E> |
| 1239 | inline void |
| 1240 | gt_ggc_mx (hash_table<E> *h) |
| 1241 | { |
| 1242 | typedef hash_table<E> table; |
| 1243 | |
| 1244 | if (!ggc_test_and_set_mark (h->m_entries)) |
| 1245 | return; |
| 1246 | |
| 1247 | for (size_t i = 0; i < h->m_size; i++) |
| 1248 | { |
| 1249 | if (table::is_empty (h->m_entries[i]) |
| 1250 | || table::is_deleted (h->m_entries[i])) |
| 1251 | continue; |
| 1252 | |
| 1253 | /* Use ggc_maxbe_mx so we don't mark right away for cache tables; we'll |
| 1254 | mark in gt_cleare_cache if appropriate. */ |
| 1255 | E::ggc_maybe_mx (h->m_entries[i]); |
| 1256 | } |
| 1257 | } |
| 1258 | |
| 1259 | template<typename D> |
| 1260 | inline void |
| 1261 | hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op, |
| 1262 | void *cookie) |
| 1263 | { |
| 1264 | hash_table<D> *map = static_cast<hash_table<D> *> (h); |
| 1265 | gcc_checking_assert (map->m_entries == obj); |
| 1266 | for (size_t i = 0; i < map->m_size; i++) |
| 1267 | { |
| 1268 | typedef hash_table<D> table; |
| 1269 | if (table::is_empty (map->m_entries[i]) |
| 1270 | || table::is_deleted (map->m_entries[i])) |
| 1271 | continue; |
| 1272 | |
| 1273 | D::pch_nx (map->m_entries[i], op, cookie); |
| 1274 | } |
| 1275 | } |
| 1276 | |
| 1277 | template<typename D> |
| 1278 | void |
| 1279 | gt_pch_nx (hash_table<D> *h) |
| 1280 | { |
| 1281 | h->check_complete_insertion (); |
| 1282 | bool success |
| 1283 | = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>); |
| 1284 | gcc_checking_assert (success); |
| 1285 | for (size_t i = 0; i < h->m_size; i++) |
| 1286 | { |
| 1287 | if (hash_table<D>::is_empty (h->m_entries[i]) |
| 1288 | || hash_table<D>::is_deleted (h->m_entries[i])) |
| 1289 | continue; |
| 1290 | |
| 1291 | D::pch_nx (h->m_entries[i]); |
| 1292 | } |
| 1293 | } |
| 1294 | |
| 1295 | template<typename D> |
| 1296 | inline void |
| 1297 | gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie) |
| 1298 | { |
| 1299 | op (&h->m_entries, NULL, cookie); |
| 1300 | } |
| 1301 | |
| 1302 | template<typename H> |
| 1303 | inline void |
| 1304 | gt_cleare_cache (hash_table<H> *h) |
| 1305 | { |
| 1306 | typedef hash_table<H> table; |
| 1307 | if (!h) |
| 1308 | return; |
| 1309 | |
| 1310 | for (typename table::iterator iter = h->begin (); iter != h->end (); ++iter) |
| 1311 | if (!table::is_empty (*iter) && !table::is_deleted (*iter)) |
| 1312 | { |
| 1313 | int res = H::keep_cache_entry (*iter); |
| 1314 | if (res == 0) |
| 1315 | h->clear_slot (&*iter); |
| 1316 | else if (res != -1) |
| 1317 | H::ggc_mx (*iter); |
| 1318 | } |
| 1319 | } |
| 1320 | |
| 1321 | #endif /* TYPED_HASHTAB_H */ |
| 1322 | |